1
|
Zhang W, Liu Y, Zhao Z, Zhang Y, Liang Y, Wang W. YBX1: A Multifunctional Protein in Senescence and Immune Regulation. Curr Issues Mol Biol 2024; 46:14058-14079. [PMID: 39727969 DOI: 10.3390/cimb46120841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/07/2024] [Accepted: 12/08/2024] [Indexed: 12/28/2024] Open
Abstract
The Y-box binding protein 1 (YBX1) is a multifunctional protein with a wide range of roles in cell biology. It plays a crucial role in immune modulation, senescence, and disease progression. This review presents a comprehensive analysis of the specific functions and mechanisms of YBX1 in these areas. Initially, YBX1 is shown to be closely associated with cellular senescence and impacts significant biological processes, including cell proliferation, damage repair, and metabolism. This suggests potential applications in the prevention and treatment of senescence-related diseases. Additionally, YBX1 regulates the immune response by controlling the function of immune cells and the expression of immune molecules. It is essential in maintaining immune system homeostasis and impacts the pathological process of various diseases, including tumors. Lastly, the diverse functions of the YBX1 protein make it a promising candidate for the development of innovative therapeutic strategies for diseases. Comprehensive research on its mechanisms could provide novel insights and approaches for the prevention, diagnosis, and treatment of related diseases.
Collapse
Affiliation(s)
- Wenze Zhang
- The First College of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Ying Liu
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Zhe Zhao
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Yizhi Zhang
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Yujuan Liang
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Wanxia Wang
- The First College of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Lanzhou 730000, China
| |
Collapse
|
2
|
Khozooei S, Veerappan S, Toulany M. YB-1 activating cascades as potential targets in KRAS-mutated tumors. Strahlenther Onkol 2023; 199:1110-1127. [PMID: 37268766 DOI: 10.1007/s00066-023-02092-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/23/2023] [Indexed: 06/04/2023]
Abstract
Y‑box binding protein‑1 (YB-1) is a multifunctional protein that is highly expressed in human solid tumors of various entities. Several cellular processes, e.g. cell cycle progression, cancer stemness and DNA damage signaling that are involved in the response to chemoradiotherapy (CRT) are tightly governed by YB‑1. KRAS gene with about 30% mutations in all cancers, is considered the most commonly mutated oncogene in human cancers. Accumulating evidence indicates that oncogenic KRAS mediates CRT resistance. AKT and p90 ribosomal S6 kinase are downstream of KRAS and are the major kinases that stimulate YB‑1 phosphorylation. Thus, there is a close link between the KRAS mutation status and YB‑1 activity. In this review paper, we highlight the importance of the KRAS/YB‑1 cascade in the response of KRAS-mutated solid tumors to CRT. Likewise, the opportunities to interfere with this pathway to improve CRT outcome are discussed in light of the current literature.
Collapse
Affiliation(s)
- Shayan Khozooei
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Soundaram Veerappan
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
3
|
Sun X, Gao C, Xu X, Li M, Zhao X, Wang Y, Wang Y, Zhang S, Yan Z, Liu X, Wu C. FBL promotes cancer cell resistance to DNA damage and BRCA1 transcription via YBX1. EMBO Rep 2023; 24:e56230. [PMID: 37489617 PMCID: PMC10481664 DOI: 10.15252/embr.202256230] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/26/2023] Open
Abstract
Fibrillarin (FBL) is a highly conserved nucleolar methyltransferase responsible for methylation of ribosomal RNA and proteins. Here, we reveal a role for FBL in DNA damage response and its impact on cancer proliferation and sensitivity to DNA-damaging agents. FBL is highly expressed in various cancers and correlates with poor survival outcomes in cancer patients. Knockdown of FBL sensitizes tumor cells and xenografts to DNA crosslinking agents, and leads to homologous recombination-mediated DNA repair defects. We identify Y-box-binding protein-1 (YBX1) as a key interacting partner of FBL, and FBL increases the nuclear accumulation of YBX1 in response to DNA damage. We show that FBL promotes the expression of BRCA1 by increasing the binding of YBX1 to the BRCA1 promoter. Our study sheds light on the regulatory mechanism of FBL in tumorigenesis and DNA damage response, providing potential therapeutic targets to overcome chemoresistance in cancer.
Collapse
Affiliation(s)
- Xiaorui Sun
- College of Life SciencesHebei UniversityBaodingChina
| | - Congwen Gao
- College of Life SciencesHebei UniversityBaodingChina
| | - Xin Xu
- College of Life SciencesHebei UniversityBaodingChina
| | - Mengyuan Li
- College of Life SciencesHebei UniversityBaodingChina
| | - Xinhua Zhao
- College of Life SciencesHebei UniversityBaodingChina
| | - Yanan Wang
- Affiliated Hospital of Hebei UniversityBaodingChina
| | - Yun Wang
- Affiliated Hospital of Hebei UniversityBaodingChina
| | - Shun Zhang
- Affiliated Hospital of Hebei UniversityBaodingChina
| | - Zhenzhen Yan
- College of Life SciencesHebei UniversityBaodingChina
| | - Xiuhua Liu
- College of Life SciencesHebei UniversityBaodingChina
| | - Chen Wu
- College of Life SciencesHebei UniversityBaodingChina
- The Key Laboratory of Zoological Systematics and ApplicationHebei UniversityBaodingChina
| |
Collapse
|
4
|
Nöthen T, Sarabi MA, Weinert S, Zuschratter W, Morgenroth R, Mertens PR, Braun-Dullaeus RC, Medunjanin S. DNA-Dependent Protein Kinase Mediates YB-1 (Y-Box Binding Protein)-Induced Double Strand Break Repair. Arterioscler Thromb Vasc Biol 2023; 43:300-311. [PMID: 36475703 DOI: 10.1161/atvbaha.122.317922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND DNA-PK (DNA-dependent protein kinase) is a stress-activated serine/threonine kinase that plays a central role in vascular smooth muscle cell proliferation and vascular proliferative disease processes such as neointimal formation. In this study, we link the activation of DNA-PK to the function of the transcription factor YB-1 (Y-box binding protein). METHODS To identify YB-1 phosphorylation by DNA-PK, we generated different YB-1-expressing vectors. YB-1 nuclear translocation was investigated using immunoblotting and immunofluorescence staining. For YB-1 activity, luciferase assays were performed. RESULTS We show by mutational analysis and kinase assay that the transcriptional regulator YB-1 is a substrate of DNA-PK. Blockade of DNA-PK by specific inhibitors revealed its critical involvement in YB-1phosphorylation as demonstrated by inhibition of an overexpressed YB-1 reporter construct. Using DNA-PK-deficient cells, we demonstrate that the shuttling of YB-1 from the cytoplasm to the nucleus is dependent on DNA-PK and that the N-terminal domain of YB-1 is phosphorylated at threonine 89. Point mutation of YB-1 at this residue abrogated the translocation of YB-1 into the nucleus. The phosphorylation of YB-1 by DNA-PK increased cellular DNA repair after exposure to ionizing radiation. Atherosclerotic tissue specimens were analyzed by immunohistochemistry. The DNA-PK subunits and YB-1 phosphorylated at T89 were found colocalized suggesting their in vivo interaction. In mice, the local application of the specific DNA-PK inhibitor NU7026 via thermosensitive Pluronic F-127 gel around dilated arteries significantly reduced the phosphorylation of YB-1. CONCLUSIONS DNA-PK directly phosphorylates YB-1 and, this way, modulates YB-1 function. This interaction could be demonstrated in vivo, and colocalization in human atherosclerotic plaques suggests clinical relevance of our finding. Phosphorylation of YB-1 by DNA-PK may represent a novel mechanism governing atherosclerotic plaque progression.
Collapse
Affiliation(s)
- Till Nöthen
- Department of Internal Medicine, Division of Cardiology and Angiology (T.N., M.A.S., S.W., R.C.B.-D., S.M.), Otto-von-Guericke University, Magdeburg, Germany
| | - Mohsen Abdi Sarabi
- Department of Internal Medicine, Division of Cardiology and Angiology (T.N., M.A.S., S.W., R.C.B.-D., S.M.), Otto-von-Guericke University, Magdeburg, Germany
| | - Sönke Weinert
- Department of Internal Medicine, Division of Cardiology and Angiology (T.N., M.A.S., S.W., R.C.B.-D., S.M.), Otto-von-Guericke University, Magdeburg, Germany
| | | | - Ronnie Morgenroth
- Department of Internal Medicine, Division of Nephrology and Hypertension, Diabetes and Endocrinology (R.M., P.R.M.), Otto-von-Guericke University, Magdeburg, Germany
| | - Peter R Mertens
- Department of Internal Medicine, Division of Nephrology and Hypertension, Diabetes and Endocrinology (R.M., P.R.M.), Otto-von-Guericke University, Magdeburg, Germany
| | - Ruediger C Braun-Dullaeus
- Department of Internal Medicine, Division of Cardiology and Angiology (T.N., M.A.S., S.W., R.C.B.-D., S.M.), Otto-von-Guericke University, Magdeburg, Germany
| | - Senad Medunjanin
- Department of Internal Medicine, Division of Cardiology and Angiology (T.N., M.A.S., S.W., R.C.B.-D., S.M.), Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
5
|
Wang T, Rho O, Eguiarte-Solomon F, DiGiovanni J. Twist1 as a target for prevention of cutaneous squamous cell carcinoma. Mol Carcinog 2023; 62:62-76. [PMID: 36373194 PMCID: PMC9772054 DOI: 10.1002/mc.23482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022]
Abstract
Cutaneous squamous cell carcinoma (cSCC) represents an important clinical problem requiring novel approaches for both prevention and treatment. The transcription factor, Twist-related protein 1 (Twist1), has been identified as having a key mechanistic role in the development and progression of cSCC. Studies in relevant mouse models of cSCC have shown that Twist1 regulates epithelial-mesenchymal transition (EMT) and stemness driving progression and metastasis of cSCC. In addition, further research has shown that Twist1 regulates the balance between keratinocyte proliferation and differentiation and therefore impacts earlier stages of cSCC development. Through use of keratinocyte specific Twist1 knockout models, a role for this gene in keratinocyte stem cell homeostasis has been revealed. As a transcription factor, Twist1 regulates a large number of genes both in a positive, as well as a negative manner across several interdependent pathways. Studies in keratinocyte specific knockout models have shown that Twist1 upregulates the expression of genes involved in proliferation, stemness, and EMT while downregulating the expression of genes associated with differentiation. Furthermore, a number of compounds, including naturally occurring compounds, have been identified that target Twist1 and can block its effects in cancer cells and in keratinocytes in vivo. Collectively, the current understanding of Twist1 function in cSCC development and progression suggests that it represents a potential target for prevention and treatment of cSCC.
Collapse
Affiliation(s)
- Tingzeng Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78723, United States
| | - Okkyung Rho
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78723, United States
| | - Fernando Eguiarte-Solomon
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78723, United States
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78723, United States
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX 78723, United States
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78723, United States
| |
Collapse
|
6
|
Gouda MB, Hassan NM, Kandil EI, Haroun RAH. Pathogenetic Significance of YBX1 Expression in Acute Myeloid Leukemia Relapse. Curr Res Transl Med 2022; 70:103336. [DOI: 10.1016/j.retram.2022.103336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/26/2021] [Accepted: 01/30/2022] [Indexed: 11/03/2022]
|
7
|
YB-1 as an Oncoprotein: Functions, Regulation, Post-Translational Modifications, and Targeted Therapy. Cells 2022; 11:cells11071217. [PMID: 35406781 PMCID: PMC8997642 DOI: 10.3390/cells11071217] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/26/2022] [Accepted: 04/02/2022] [Indexed: 02/04/2023] Open
Abstract
Y box binding protein 1 (YB-1) is a protein with a highly conserved cold shock domain (CSD) that also belongs to the family of DNA- and RNA-binding proteins. YB-1 is present in both the nucleus and cytoplasm and plays versatile roles in gene transcription, RNA splicing, DNA damage repair, cell cycle progression, and immunity. Cumulative evidence suggests that YB-1 promotes the progression of multiple tumor types and serves as a potential tumor biomarker and therapeutic target. This review comprehensively summarizes the emerging functions, mechanisms, and regulation of YB-1 in cancers, and further discusses targeted strategies.
Collapse
|
8
|
Eliseeva IA, Sogorina EM, Smolin EA, Kulakovskiy IV, Lyabin DN. Diverse Regulation of YB-1 and YB-3 Abundance in Mammals. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S48-S167. [PMID: 35501986 DOI: 10.1134/s000629792214005x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 06/14/2023]
Abstract
YB proteins are DNA/RNA binding proteins, members of the family of proteins with cold shock domain. Role of YB proteins in the life of cells, tissues, and whole organisms is extremely important. They are involved in transcription regulation, pre-mRNA splicing, mRNA translation and stability, mRNA packaging into mRNPs, including stress granules, DNA repair, and many other cellular events. Many processes, from embryonic development to aging, depend on when and how much of these proteins have been synthesized. Here we discuss regulation of the levels of YB-1 and, in part, of its homologs in the cell. Because the amount of YB-1 is immediately associated with its functioning, understanding the mechanisms of regulation of the protein amount invariably reveals the events where YB-1 is involved. Control over the YB-1 abundance may allow using this gene/protein as a therapeutic target in cancers, where an increased expression of the YBX1 gene often correlates with the disease severity and poor prognosis.
Collapse
Affiliation(s)
- Irina A Eliseeva
- Institute of Protein Research, Pushchino, Moscow Region, 142290, Russia.
| | | | - Egor A Smolin
- Institute of Protein Research, Pushchino, Moscow Region, 142290, Russia.
| | - Ivan V Kulakovskiy
- Institute of Protein Research, Pushchino, Moscow Region, 142290, Russia.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Moscow, 119991, Russia
| | - Dmitry N Lyabin
- Institute of Protein Research, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
9
|
Sogorina EM, Kim ER, Sorokin AV, Lyabin DN, Ovchinnikov LP, Mordovkina DA, Eliseeva IA. YB-1 Phosphorylation at Serine 209 Inhibits Its Nuclear Translocation. Int J Mol Sci 2021; 23:ijms23010428. [PMID: 35008856 PMCID: PMC8745666 DOI: 10.3390/ijms23010428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/09/2021] [Accepted: 12/18/2021] [Indexed: 01/18/2023] Open
Abstract
YB-1 is a multifunctional DNA- and RNA-binding protein involved in cell proliferation, differentiation, and migration. YB-1 is a predominantly cytoplasmic protein that is transported to the nucleus in certain conditions, including DNA-damaging stress, transcription inhibition, and viral infection. In tumors, YB-1 nuclear localization correlates with high aggressiveness, multidrug resistance, and a poor prognosis. It is known that posttranslational modifications can regulate the nuclear translocation of YB-1. In particular, well-studied phosphorylation at serine 102 (S102) activates YB-1 nuclear import. Here, we report that Akt kinase phosphorylates YB-1 in vitro at serine 209 (S209), which is located in the vicinity of the YB-1 nuclear localization signal. Using phosphomimetic substitutions, we showed that S209 phosphorylation inhibits YB-1 nuclear translocation and prevents p-S102-mediated YB-1 nuclear import.
Collapse
Affiliation(s)
- Ekaterina M. Sogorina
- Group of Protein Biosynthesis Regulation, Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.M.S.); (E.R.K.); (A.V.S.); (D.N.L.)
| | - Ekaterina R. Kim
- Group of Protein Biosynthesis Regulation, Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.M.S.); (E.R.K.); (A.V.S.); (D.N.L.)
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alexey V. Sorokin
- Group of Protein Biosynthesis Regulation, Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.M.S.); (E.R.K.); (A.V.S.); (D.N.L.)
- Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dmitry N. Lyabin
- Group of Protein Biosynthesis Regulation, Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.M.S.); (E.R.K.); (A.V.S.); (D.N.L.)
| | - Lev P. Ovchinnikov
- Group of Protein Biosynthesis Regulation, Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.M.S.); (E.R.K.); (A.V.S.); (D.N.L.)
| | - Daria A. Mordovkina
- Group of Protein Biosynthesis Regulation, Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.M.S.); (E.R.K.); (A.V.S.); (D.N.L.)
- Correspondence: (D.A.M.); (I.A.E.)
| | - Irina A. Eliseeva
- Group of Protein Biosynthesis Regulation, Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (E.M.S.); (E.R.K.); (A.V.S.); (D.N.L.)
- Correspondence: (D.A.M.); (I.A.E.)
| |
Collapse
|
10
|
Yang JW, Sun C, Jin QY, Qiao XH, Guo XL. Potential therapeutic strategies for targeting Y-box-binding protein 1 in cancers. Curr Cancer Drug Targets 2021; 21:897-906. [PMID: 34465278 DOI: 10.2174/1568009621666210831125001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022]
Abstract
As one of the most conservative proteins in evolution, Y-box-binding protein 1 (YB-1) has long been considered as a potential cancer target. YB-1 is usually poorly expressed in normal cells and exerts cellular physiological functions such as DNA repair, pre-mRNA splicing and mRNA stabilizing. In cancer cells, the expression of YB-1 is up-regulated and undergoes nuclear translocation and contributes to tumorigenesis, angiogenesis, tumor proliferation, invasion, migration and chemotherapy drug resistance. During the past decades, a variety of pharmacological tools such as siRNA, shRNA, microRNA, circular RNA, lncRNA and various compounds have been developed to target YB-1 for cancer therapy. In this review, we describe the physiological characteristics of YB-1 in detail, highlight the role of YB-1 in tumors and summarize the current therapeutic methods for targeting YB-1 in cancer.
Collapse
Affiliation(s)
- Jia-Wei Yang
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012. China
| | - Chao Sun
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012. China
| | - Qiu-Yang Jin
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012. China
| | - Xing-Hui Qiao
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012. China
| | - Xiu-Li Guo
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012. China
| |
Collapse
|
11
|
Ahmadi SE, Rahimi S, Zarandi B, Chegeni R, Safa M. MYC: a multipurpose oncogene with prognostic and therapeutic implications in blood malignancies. J Hematol Oncol 2021; 14:121. [PMID: 34372899 PMCID: PMC8351444 DOI: 10.1186/s13045-021-01111-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/12/2021] [Indexed: 12/17/2022] Open
Abstract
MYC oncogene is a transcription factor with a wide array of functions affecting cellular activities such as cell cycle, apoptosis, DNA damage response, and hematopoiesis. Due to the multi-functionality of MYC, its expression is regulated at multiple levels. Deregulation of this oncogene can give rise to a variety of cancers. In this review, MYC regulation and the mechanisms by which MYC adjusts cellular functions and its implication in hematologic malignancies are summarized. Further, we also discuss potential inhibitors of MYC that could be beneficial for treating hematologic malignancies.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rouzbeh Chegeni
- Medical Laboratory Sciences Program, College of Health and Human Sciences, Northern Illinois University, DeKalb, IL, USA.
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Alkrekshi A, Wang W, Rana PS, Markovic V, Sossey-Alaoui K. A comprehensive review of the functions of YB-1 in cancer stemness, metastasis and drug resistance. Cell Signal 2021; 85:110073. [PMID: 34224843 DOI: 10.1016/j.cellsig.2021.110073] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/31/2022]
Abstract
The Y Box binding protein 1 (YB-1) is a member of the highly conserved Cold Shock Domain protein family with multifunctional properties both in the cytoplasm and inside the nucleus. YB-1 is also involved in various cellular functions, including regulation of transcription, mRNA stability, and splicing. Recent studies have associated YB-1 with the regulation of the malignant phenotypes in several tumor types. In this review article, we provide an in-depth and expansive review of the literature pertaining to the multiple physiological functions of YB-1. We will also review the role of YB-1 in cancer development, progression, metastasis, and drug resistance in various malignancies, with more weight on literature published in the last decade. The methodology included querying databases PubMed, Embase, and Google Scholar for Y box binding protein 1, YB-1, YBX1, and Y-box-1.
Collapse
Affiliation(s)
- Akram Alkrekshi
- Department of Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.; MetroHealth Medical Center, Rammelkamp Center for Research, R457, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Wei Wang
- Department of Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.; MetroHealth Medical Center, Rammelkamp Center for Research, R457, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Priyanka Shailendra Rana
- Department of Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.; MetroHealth Medical Center, Rammelkamp Center for Research, R457, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Vesna Markovic
- MetroHealth Medical Center, Rammelkamp Center for Research, R457, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Khalid Sossey-Alaoui
- Department of Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.; MetroHealth Medical Center, Rammelkamp Center for Research, R457, 2500 MetroHealth Drive, Cleveland, OH 44109, USA; Case Comprehensive Cancer Center, Cleveland, OH, USA.
| |
Collapse
|
13
|
Lettau K, Khozooei S, Kosnopfel C, Zips D, Schittek B, Toulany M. Targeting the Y-box Binding Protein-1 Axis to Overcome Radiochemotherapy Resistance in Solid Tumors. Int J Radiat Oncol Biol Phys 2021; 111:1072-1087. [PMID: 34166770 DOI: 10.1016/j.ijrobp.2021.06.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 12/18/2022]
Abstract
Multifunctional Y-box binding protein-1 (YB-1) is highly expressed in different human solid tumors and is involved in various cellular processes. DNA damage is the major mechanism by which radiochemotherapy (RCT) induces cell death. On induction of DNA damage, a multicomponent signal transduction network, known as the DNA damage response, is activated to induce cell cycle arrest and initiate DNA repair, which protects cells against damage. YB-1 regulates nearly all cancer hallmarks described to date by participating in DNA damage response, gene transcription, mRNA splicing, translation, and tumor stemness. YB-1 lacks kinase activity, and p90 ribosomal S6 kinase and AKT are the key kinases within the RAS/mitogen-activated protein kinase and phosphoinositide 3-kinase pathways that directly activate YB-1. Thus, the molecular targeting of ribosomal S6 kinase and AKT is thought to be the most effective strategy for blocking the cellular function of YB-1 in human solid tumors. In this review, after describing the prosurvival effect of YB-1 with a focus on DNA damage repair and cancer cell stemness, clinical evidence will be provided indicating an inverse correlation between YB-1 expression and the treatment outcome of solid tumors after RCT. In the interest of being concise, YB-1 signaling cascades will be briefly discussed and the current literature on YB-1 posttranslational modifications will be summarized. Finally, the current status of targeting the YB-1 axis, especially in combination with RCT, will be highlighted.
Collapse
Affiliation(s)
- Konstanze Lettau
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tübingen, Tübingen Germany; German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ) Heidelberg, Germany
| | - Shayan Khozooei
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tübingen, Tübingen Germany; German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ) Heidelberg, Germany
| | - Corinna Kosnopfel
- Department of Dermatology, University Hospital Würzburg, Würzburg, Germany
| | - Daniel Zips
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tübingen, Tübingen Germany; German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ) Heidelberg, Germany
| | - Birgit Schittek
- Department of Dermatology, Division of Dermatooncology, Eberhard-Karls-Universität, Tübingen, Tübingen, Germany
| | - Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tübingen, Tübingen Germany; German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ) Heidelberg, Germany.
| |
Collapse
|
14
|
Wang L, Zhu N, Jia J, Gu L, Du Y, Tang G, Wang X, Yang M, Yuan W. Trimethylamine N-oxide mediated Y-box binding protein-1 nuclear translocation promotes cell cycle progression by directly downregulating Gadd45a expression in a cellular model of chronic kidney disease. Life Sci 2021; 271:119173. [PMID: 33556375 DOI: 10.1016/j.lfs.2021.119173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/14/2021] [Accepted: 01/26/2021] [Indexed: 11/30/2022]
Abstract
AIMS Cell cycle arrest plays critical roles in preventing renal tubular epithelial cell (RTEC) injury and maladaptation after the onset of chronic kidney disease (CKD), but the underlying mechanism governing this arrest has not been fully elucidated. This study was designed to determine the underlying role of YB-1 in promoting cell cycle progression and nuclear translocation in HK-2 cells induced by trimethylamine N-oxide (TMAO). MAIN METHODS YB-1 primarily accumulated in the cytoplasm in HK-2 cells after they were treated with TMAO for 30 min and 6 h. Gene expression was analysed using RNA sequencing in HK-2 cells treated with TMAO. Cell cycle progression was analysed via flow cytometry. Luciferase assay and ChIP-PCR were performed to determine the relationship between transcription factor YB-1 and Gadd45a promoter region. Additionally, mice were fed with TMAO to test renal dysfunction and measure the expression of YB-1, GADD45a and CCNA2 in the kidney sections through immunohistochemistry. KEY FINDINGS YB-1 primarily accumulated in the cytoplasm in HK-2 cells after they were treated with TMAO for 30 min and 6 h. RNA sequencing analysis showed that the cell cycle checkpoint genes growth arrest and DNA damage (Gadd)45a, Gadd45g, cyclin (Ccn)a2, Ccnb1, Ccne1 and Ccnf were differentially expressed in HK-2 cells after treated with 400 μM TMAO for 30 min. Flow cytometry results demonstrated that cell cycle progression was blocked at the G2/M checkpoint. In animal models, elevated dietary TMAO directly led to progressive renal tubulointerstitial dysfunction and inhibited the expression of YB-1 in kidney. Moreover, YB-1 was determined to regulate Gadd45a expression by directly binding to its promoter region. YB-1 expression was negatively correlated with the expression of Gadd45a and Gadd45g but positively correlated with Ccna2, Ccnb1, Ccne1 and Ccnf in CKD. SIGNIFICANCE YB-1 may be a reliable molecular target and an effective prognostic biomarker for CKD.
Collapse
Affiliation(s)
- Ling Wang
- Department of Nephrology, Shanghai General Hospital, Nanjing Medical University, No.100 Haining Road, Hongkou District, Shanghai, China; Department of Nephrology, Shanghai General Hospital, No.100 Haining Road, Hongkou District, Shanghai, China
| | - Nan Zhu
- Department of Nephrology, Shanghai General Hospital, No.100 Haining Road, Hongkou District, Shanghai, China
| | - Jieshuang Jia
- Department of Nephrology, Shanghai General Hospital, No.100 Haining Road, Hongkou District, Shanghai, China
| | - Lijie Gu
- Department of Nephrology, Shanghai General Hospital, No.100 Haining Road, Hongkou District, Shanghai, China
| | - Yi Du
- Department of Nephrology, Shanghai General Hospital, No.100 Haining Road, Hongkou District, Shanghai, China
| | - Gang Tang
- Department of Nephrology, Shanghai General Hospital, No.100 Haining Road, Hongkou District, Shanghai, China
| | - Xuan Wang
- Department of Nephrology, Shanghai General Hospital, No.100 Haining Road, Hongkou District, Shanghai, China
| | - Man Yang
- Department of Nephrology, Shanghai General Hospital, No.100 Haining Road, Hongkou District, Shanghai, China
| | - Weijie Yuan
- Department of Nephrology, Shanghai General Hospital, Nanjing Medical University, No.100 Haining Road, Hongkou District, Shanghai, China; Department of Nephrology, Shanghai General Hospital, No.100 Haining Road, Hongkou District, Shanghai, China.
| |
Collapse
|
15
|
Pham TP, Bink DI, Stanicek L, van Bergen A, van Leeuwen E, Tran Y, Matic L, Hedin U, Wittig I, Dimmeler S, Boon RA. Long Non-coding RNA Aerrie Controls DNA Damage Repair via YBX1 to Maintain Endothelial Cell Function. Front Cell Dev Biol 2021; 8:619079. [PMID: 33505972 PMCID: PMC7829583 DOI: 10.3389/fcell.2020.619079] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022] Open
Abstract
Aging is accompanied by many physiological changes. These changes can progressively lead to many types of cardiovascular diseases. During this process blood vessels lose their ability to maintain vascular homeostasis, ultimately resulting in hypertension, stroke, or myocardial infarction. Increase in DNA damage is one of the hallmarks of aging and can be repaired by the DNA signaling and repair system. In our study we show that long non-coding RNA Aerrie (linc01013) contributes to the DNA signaling and repair mechanism. Silencing of Aerrie in endothelial cells impairs angiogenesis, migration, and barrier function. Aerrie associates with YBX1 and together they act as important factors in DNA damage signaling and repair. This study identifies Aerrie as a novel factor in genomic stability and as a binding partner of YBX1 in responding to DNA damage.
Collapse
Affiliation(s)
- Tan Phát Pham
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Diewertje I. Bink
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Laura Stanicek
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt, Germany
| | - Anke van Bergen
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Esmee van Leeuwen
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Yvonne Tran
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ljubica Matic
- Vascular Surgery Division, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Hedin
- Vascular Surgery Division, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ilka Wittig
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt, Germany
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt, Germany
- German Center for Cardiovascular Research DZHK, Partner Site Frankfurt Rhine-Main, Berlin, Germany
| | - Reinier A. Boon
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt, Germany
- German Center for Cardiovascular Research DZHK, Partner Site Frankfurt Rhine-Main, Berlin, Germany
| |
Collapse
|
16
|
Pleiotropic roles of cold shock proteins with special emphasis on unexplored cold shock protein member of Plasmodium falciparum. Malar J 2020; 19:382. [PMID: 33109193 PMCID: PMC7592540 DOI: 10.1186/s12936-020-03448-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
The cold shock domain (CSD) forms the hallmark of the cold shock protein family that provides the characteristic feature of binding with nucleic acids. While much of the information is available on bacterial, plants and human cold shock proteins, their existence and functions in the malaria parasite remains undefined. In the present review, the available information on functions of well-characterized cold shock protein members in different organisms has been collected and an attempt was made to identify the presence and role of cold shock proteins in malaria parasite. A single Plasmodium falciparum cold shock protein (PfCoSP) was found in P. falciparum which is reported to be essential for parasite survival. Essentiality of PfCoSP underscores its importance in malaria parasite life cycle. In silico tools were used to predict the features of PfCoSP and to identify its homologues in bacteria, plants, humans, and other Plasmodium species. Modelled structures of PfCoSP and its homologues in Plasmodium species were compared with human cold shock protein 'YBOX-1' (Y-box binding protein 1) that provide important insights into their functioning. PfCoSP model was subjected to docking with B-form DNA and RNA to reveal a number of residues crucial for their interaction. Transcriptome analysis and motifs identified in PfCoSP implicate its role in controlling gene expression at gametocyte, ookinete and asexual blood stages of malaria parasite. Overall, this review emphasizes the functional diversity of the cold shock protein family by discussing their known roles in gene expression regulation, cold acclimation, developmental processes like flowering transition, and flower and seed development, and probable function in gametocytogenesis in case of malaria parasite. This enables readers to view the cold shock protein family comprehensively.
Collapse
|
17
|
Naumenko KN, Sukhanova MV, Hamon L, Kurgina TA, Alemasova EE, Kutuzov MM, Pastré D, Lavrik OI. Regulation of Poly(ADP-Ribose) Polymerase 1 Activity by Y-Box-Binding Protein 1. Biomolecules 2020; 10:E1325. [PMID: 32947956 PMCID: PMC7565162 DOI: 10.3390/biom10091325] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 12/23/2022] Open
Abstract
Y-box-binding protein 1 (YB-1) is a multifunctional positively charged protein that interacts with DNA or RNA and poly(ADP-ribose) (PAR). YB-1 is poly(ADP-ribosyl)ated and stimulates poly(ADP-ribose) polymerase 1 (PARP1) activity. Here, we studied the mechanism of YB-1-dependent PAR synthesis by PARP1 in vitro using biochemical and atomic force microscopy assays. PAR synthesis activity of PARP1 is known to be facilitated by co-factors such as Mg2+. However, in contrast to an Mg2+-dependent reaction, the activation of PARP1 by YB-1 is accompanied by overall up-regulation of protein PARylation and shortening of the PAR polymer. Therefore, YB-1 and cation co-factors stimulated PAR synthesis in divergent ways. PARP1 autoPARylation in the presence of YB-1 as well as trans-PARylation of YB-1 are greatly affected by the type of damaged DNA, suggesting that PARP1 activation depends on the formation of a PARP1-YB-1-DNA ternary complex. An unstructured C-terminal part of YB-1 involved in an interaction with PAR behaves similarly to full-length YB-1, indicating that both DNA and PAR binding are involved in the stimulation of PARP1 activity by YB-1. Thus, YB-1 is likely linked to the regulation of PARylation events in cells via an interaction with PAR and damaged DNA.
Collapse
Affiliation(s)
- Konstantin N. Naumenko
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia; (K.N.N.); (M.V.S.); (T.A.K.); (E.E.A.); (M.M.K.)
| | - Mariya V. Sukhanova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia; (K.N.N.); (M.V.S.); (T.A.K.); (E.E.A.); (M.M.K.)
| | - Loic Hamon
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, University of Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France; (L.H.); (D.P.)
| | - Tatyana A. Kurgina
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia; (K.N.N.); (M.V.S.); (T.A.K.); (E.E.A.); (M.M.K.)
- Department of Molecular Biology, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Elizaveta E. Alemasova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia; (K.N.N.); (M.V.S.); (T.A.K.); (E.E.A.); (M.M.K.)
| | - Mikhail M. Kutuzov
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia; (K.N.N.); (M.V.S.); (T.A.K.); (E.E.A.); (M.M.K.)
| | - David Pastré
- Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, University of Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France; (L.H.); (D.P.)
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia; (K.N.N.); (M.V.S.); (T.A.K.); (E.E.A.); (M.M.K.)
- Department of Molecular Biology, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
18
|
Lyabin DN, Eliseeva IA, Smolin EA, Doronin AN, Budkina KS, Kulakovskiy IV, Ovchinnikov LP. YB-3 substitutes YB-1 in global mRNA binding. RNA Biol 2020; 17:487-499. [PMID: 31944153 PMCID: PMC7237157 DOI: 10.1080/15476286.2019.1710050] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Y-box binding proteins are DNA- and RNA-binding proteins with an evolutionarily ancient and conserved cold shock domain. The Y-box binding protein 1 (YB-1) is the most studied due to its abundance in somatic cells. YB-1 is involved in a variety of cellular processes, including proliferation, differentiation and stress response. Here, using Ribo-Seq and RIP-Seq we confirm that YB-1 binds a wide range of mRNAs and globally acts as a translation inhibitor. Surprisingly, YBX1 knockout results in only minor alterations in the expression of other genes, mostly caused by changes in RNA abundance. But YB-3 mRNA is an exception: it is better translated in the absence of YB-1, thereby producing an increased amount of YB-3 and thus suggesting that its synthesis is under YB-1 negative control. We have shown that the set of mRNAs bound to YB-3 is strikingly similar to that of YB-1, and that the mRNA-binding by YB-3 is enhanced in the absence of YB-1, resulting in a similar global reduction of translation of bound mRNAs in YB-1-null cells. Thus, YB-3 acts as a substitute for YB-1 in mRNA binding and, probably, in global translational control.
Collapse
Affiliation(s)
- D N Lyabin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
| | - I A Eliseeva
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
| | - E A Smolin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
| | - A N Doronin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia.,Department of Bioengineering, BIOCAD, Lyubuchany, Russia.,Faculty of Molecular and Cellular Biotechnology, Pushchino State Institute of Natural Science, Pushchino, Russia
| | - K S Budkina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
| | - I V Kulakovskiy
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Institute of Mathematical Problems of Biology RAS - the Branch of Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Pushchino, Russia
| | - L P Ovchinnikov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
19
|
Inhibition of Transcription Induces Phosphorylation of YB-1 at Ser102 and Its Accumulation in the Nucleus. Cells 2019; 9:cells9010104. [PMID: 31906126 PMCID: PMC7016903 DOI: 10.3390/cells9010104] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/26/2019] [Accepted: 12/30/2019] [Indexed: 02/04/2023] Open
Abstract
The Y-box binding protein 1 (YB-1) is an RNA/DNA-binding protein regulating gene expression in the cytoplasm and the nucleus. Although mostly cytoplasmic, YB-1 accumulates in the nucleus under stress conditions. Its nuclear localization is associated with aggressiveness and multidrug resistance of cancer cells, which makes the understanding of the regulatory mechanisms of YB-1 subcellular distribution essential. Here, we report that inhibition of RNA polymerase II (RNAPII) activity results in the nuclear accumulation of YB-1 accompanied by its phosphorylation at Ser102. The inhibition of kinase activity reduces YB-1 phosphorylation and its accumulation in the nucleus. The presence of RNA in the nucleus is shown to be required for the nuclear retention of YB-1. Thus, the subcellular localization of YB-1 depends on its post-translational modifications (PTMs) and intracellular RNA distribution.
Collapse
|
20
|
Colleti C, Melo-Hanchuk TD, da Silva FRM, Saito Â, Kobarg J. Complex interactomes and post-translational modifications of the regulatory proteins HABP4 and SERBP1 suggest pleiotropic cellular functions. World J Biol Chem 2019; 10:44-64. [PMID: 31768228 PMCID: PMC6872977 DOI: 10.4331/wjbc.v10.i3.44] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/30/2019] [Accepted: 10/15/2019] [Indexed: 02/05/2023] Open
Abstract
The 57 kDa antigen recognized by the Ki-1 antibody, is also known as intracellular hyaluronic acid binding protein 4 and shares 40.7% identity and 67.4% similarity with serpin mRNA binding protein 1, which is also named CGI-55, or plasminogen activator inhibitor type-1-RNA binding protein-1, indicating that they might be paralog proteins, possibly with similar or redundant functions in human cells. Through the identification of their protein interactomes, both regulatory proteins have been functionally implicated in transcriptional regulation, mRNA metabolism, specifically RNA splicing, the regulation of mRNA stability, especially, in the context of the progesterone hormone response, and the DNA damage response. Both proteins also show a complex pattern of post-translational modifications, involving Ser/Thr phosphorylation, mainly through protein kinase C, arginine methylation and SUMOylation, suggesting that their functions and locations are highly regulated. Furthermore, they show a highly dynamic cellular localization pattern with localizations in both the cytoplasm and nucleus as well as punctuated localizations in both granular cytoplasmic protein bodies, upon stress, and nuclear splicing speckles. Several reports in the literature show altered expressions of both regulatory proteins in a series of cancers as well as mutations in their genes that may contribute to tumorigenesis. This review highlights important aspects of the structure, interactome, post-translational modifications, sub-cellular localization and function of both regulatory proteins and further discusses their possible functions and their potential as tumor markers in different cancer settings.
Collapse
Affiliation(s)
- Carolina Colleti
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, Brazil
- Institute of Biology, Departament of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | - Talita Diniz Melo-Hanchuk
- Institute of Biology, Departament of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | - Flávia Regina Moraes da Silva
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, Brazil
- Institute of Biology, Departament of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | - Ângela Saito
- Laboratório Nacional de Biociências, CNPEM, Campinas 13083-970, Brazil
| | - Jörg Kobarg
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, Brazil
- Institute of Biology, Departament of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| |
Collapse
|
21
|
Kim A, Shim S, Kim YH, Kim MJ, Park S, Myung JK. Inhibition of Y Box Binding Protein 1 Suppresses Cell Growth and Motility in Colorectal Cancer. Mol Cancer Ther 2019; 19:479-489. [DOI: 10.1158/1535-7163.mct-19-0265] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/14/2019] [Accepted: 10/25/2019] [Indexed: 11/16/2022]
|
22
|
He J, Xie TL, Li X, Yu Y, Zhan ZP, Weng SP, Guo CJ, He JG. Molecular cloning of Y-Box binding protein-1 from mandarin fish and its roles in stress-response and antiviral immunity. FISH & SHELLFISH IMMUNOLOGY 2019; 93:406-415. [PMID: 31369857 DOI: 10.1016/j.fsi.2019.07.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/14/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Mandarin fish (Siniperca chuatsi) is a universally farmed fish species in China and has a large farming scale and economic value. With the high-density cultural mode in mandarin fish, viral diseases, such as infectious spleen and kidney necrosis virus (ISKNV) and Siniperca chuatsi rhabdovirus (SCRV), have increased loss, which has seriously restricted the development of aquaculture. Y-Box binding protein 1 (YB-1) is a member of cold shock protein family that regulates multiple cellular processes. The roles of mammalian YB-1 protein in environmental stress and innate immunity have been studied well, but its roles in teleost fishes remain unknown. In the present study, the characteristic of S. chuatsi YB-1 (scYB-1) and its roles in cold stress and virus infection were investigated. The scYB-1 obtained an 1541 bp cDNA that contains a 903 bp open reading frame encoding a protein of 300 amino acids. Tissue distribution results showed that the scYB-1 is a ubiquitously expressed gene found among tissues from mandarin fish. Overexpression of scYB-1 can increase the expression levels of cold shock-responsive genes, such as scHsc70a, scHsc70b, and scp53. Furthermore, the role of scYB-1 in innate immunity was also investigated in mandarin fish fry (MFF-1) cells. The expression level of scYB-1 was significant change in response to poly (I:C), poly (dG:dC), PMA, ISKNV, or SCRV stimulation. The overexpression of scYB-1 can significantly increase the expression levels of NF-κB-responsive genes, including scIL-8, scTNF-α, and scIFN-h. The NF-κB-luciferase report assay results showed that the relative expression of luciferin was significantly increased in the cells overexpressed with scYB-1 compared with those in cells overexpressed with control plasmid. These results indicate that scYB-1 can induce the NF-κB signaling pathway in MFF-1 cells. Overexpressed scYB-1 can downregulate the expression of ISKNV viral major capsid protein (mcp) gene but upregulates the expression of SCRV mcp gene. Moreover, knockdown of scYB-1 using siRNA can upregulate the expression of ISKNV mcp gene but downregulates the expression of SCRV mcp gene. These results indicate that scYB-1 suppresses ISKNV infection while enhancing SCRV infection. The above observations suggest that scYB-1 is involved in cold stress and virus infection. Our study will provide an insight into the roles of teleost fish YB-1 protein in stress response and innate immunity.
Collapse
Affiliation(s)
- Jian He
- State Key Laboratory for Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong, 510006, PR China
| | - Tao-Lin Xie
- State Key Laboratory for Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong, 510006, PR China
| | - Xiao Li
- State Key Laboratory for Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong, 510006, PR China
| | - Yang Yu
- State Key Laboratory for Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong, 510006, PR China
| | - Zhi-Peng Zhan
- State Key Laboratory for Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong, 510006, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| | - Shao-Ping Weng
- State Key Laboratory for Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong, 510006, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| | - Chang-Jun Guo
- State Key Laboratory for Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong, 510006, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, PR China.
| | - Jian-Guo He
- State Key Laboratory for Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong, 510006, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| |
Collapse
|
23
|
Johnson TG, Schelch K, Mehta S, Burgess A, Reid G. Why Be One Protein When You Can Affect Many? The Multiple Roles of YB-1 in Lung Cancer and Mesothelioma. Front Cell Dev Biol 2019; 7:221. [PMID: 31632972 PMCID: PMC6781797 DOI: 10.3389/fcell.2019.00221] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022] Open
Abstract
Lung cancers and malignant pleural mesothelioma (MPM) have some of the worst 5-year survival rates of all cancer types, primarily due to a lack of effective treatment options for most patients. Targeted therapies have shown some promise in thoracic cancers, although efficacy is limited only to patients harboring specific mutations or target expression. Although a number of actionable mutations have now been identified, a large population of thoracic cancer patients have no therapeutic options outside of first-line chemotherapy. It is therefore crucial to identify alternative targets that might lead to the development of new ways of treating patients diagnosed with these diseases. The multifunctional oncoprotein Y-box binding protein-1 (YB-1) could serve as one such target. Recent studies also link this protein to many inherent behaviors of thoracic cancer cells such as proliferation, invasion, metastasis and involvement in cancer stem-like cells. Here, we review the regulation of YB-1 at the transcriptional, translational, post-translational and sub-cellular levels in thoracic cancer and discuss its potential use as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Thomas G Johnson
- Asbestos Diseases Research Institute, Sydney, NSW, Australia.,Cell Division Laboratory, The ANZAC Research Institute, Sydney, NSW, Australia.,School of Medicine, The University of Sydney, Sydney, NSW, Australia.,Sydney Catalyst Translational Cancer Research Centre, The University of Sydney, Sydney, NSW, Australia
| | - Karin Schelch
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Sunali Mehta
- Department of Pathology, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre, University of Otago, Dunedin, New Zealand
| | - Andrew Burgess
- Cell Division Laboratory, The ANZAC Research Institute, Sydney, NSW, Australia.,School of Medicine, The University of Sydney, Sydney, NSW, Australia
| | - Glen Reid
- Department of Pathology, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
24
|
Kuwano M, Shibata T, Watari K, Ono M. Oncogenic Y-box binding protein-1 as an effective therapeutic target in drug-resistant cancer. Cancer Sci 2019; 110:1536-1543. [PMID: 30903644 PMCID: PMC6500994 DOI: 10.1111/cas.14006] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/13/2019] [Accepted: 03/18/2019] [Indexed: 12/30/2022] Open
Abstract
Y-box binding protein-1 (YBX1), a multifunctional oncoprotein containing an evolutionarily conserved cold shock domain, dysregulates a wide range of genes involved in cell proliferation and survival, drug resistance, and chromatin destabilization by cancer. Expression of a multidrug resistance-associated ATP binding cassette transporter gene, ABCB1, as well as growth factor receptor genes, EGFR and HER2/ErbB2, was initially discovered to be transcriptionally activated by YBX1 in cancer cells. Expression of other drug resistance-related genes, MVP/LRP, TOP2A, CD44, CD49f, BCL2, MYC, and androgen receptor (AR), is also transcriptionally activated by YBX1, consistently indicating that YBX1 is involved in tumor drug resistance. Furthermore, there is strong evidence to support that nuclear localization and/or overexpression of YBX1 can predict poor outcomes in patients with more than 20 different tumor types. YBX1 is phosphorylated by kinases, including AKT, p70S6K, and p90RSK, and translocated into the nucleus to promote the transcription of resistance- and malignancy-related genes. Phosphorylated YBX1, therefore, plays a crucial role as a potent transcription factor in cancer. Herein, a novel anticancer therapeutic strategy is presented by targeting activated YBX1 to overcome drug resistance and malignant progression.
Collapse
Affiliation(s)
- Michihiko Kuwano
- Cancer Translational Research Center, St. Mary's Institute of Health Sciences, Kurume, Japan
| | - Tomohiro Shibata
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kosuke Watari
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Mayumi Ono
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
25
|
Li G, Wang L, Wang Y, Li H, Liu Z, Wang H, Xu B, Guo X. Developmental characterization and environmental stress responses of Y-box binding protein 1 gene (AccYB-1) from Apis cerana cerana. Gene 2018; 674:37-48. [DOI: 10.1016/j.gene.2018.06.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/11/2018] [Accepted: 06/21/2018] [Indexed: 12/11/2022]
|
26
|
Chua PJ, Lim JP, Guo TT, Khanna P, Hu Q, Bay BH, Baeg GH. Y-box binding protein-1 and STAT3 independently regulate ATP-binding cassette transporters in the chemoresistance of gastric cancer cells. Int J Oncol 2018; 53:2579-2589. [PMID: 30221675 DOI: 10.3892/ijo.2018.4557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/26/2018] [Indexed: 11/05/2022] Open
Abstract
Y-box binding protein-1 (YB-1) facilitates cancer chemoresistance through the upregulation of ATP-binding cassette (ABC) transporters associated with multidrug resistance, which is one of the primary obstacles in cancer treatment. Since aberrant Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling is also implicated in chemoresistance in numerous human malignancies, the interaction between YB-1 and JAK/STAT signaling was explored underlying the chemoresistance of NUGC3 gastric cancer cells. It was demonstrated that YB-1 translocated into the nuclei of NUGC3 cells exposed to doxorubicin hydrochloride, suggesting its important role in chemoresistance. Consistently, knockdown of YB-1 significantly decreased the chemoresistance of cells to doxorubicin hydrochloride and epirubicin hydrochloride, as evidenced by a decrease in cell viability. Notably, JAK inhibitor AG490 treatment further decreased the cell viability caused by YB-1 inhibition and doxorubicin hydrochloride. It was also observed that YB-1 transcriptionally regulated the ABCC3 transporter, whereas STAT3 modulated ABCC2 transporter levels. These findings suggest that YB-1 and STAT3 act together to facilitate chemoresistance via modulating the expression of different ABC transporters in NUGC3 cells. Notably, siYB-1 did not exhibit any significant effect on STAT3 expression. Similarly, siSTAT3 failed to alter YB-1 expression, suggesting that the two may not regulate each other in a mutual manner. However, double knockdown of YB-1 and STAT3 led to a synergistic inhibition of cell invasion in NUGC3 cells. Nonetheless, the combined treatment of YB-1 antagonists with STAT3 inhibitors may serve as an effective therapy in gastric cancer.
Collapse
Affiliation(s)
- Pei Jou Chua
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Jia Pei Lim
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Tian Tian Guo
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Puja Khanna
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Qidong Hu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Gyeong Hun Baeg
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| |
Collapse
|
27
|
Kosnopfel C, Sinnberg T, Sauer B, Busch C, Niessner H, Schmitt A, Forchhammer S, Grimmel C, Mertens PR, Hailfinger S, Dunn SE, Garbe C, Schittek B. YB-1 Expression and Phosphorylation Regulate Tumorigenicity and Invasiveness in Melanoma by Influencing EMT. Mol Cancer Res 2018; 16:1149-1160. [PMID: 29743296 DOI: 10.1158/1541-7786.mcr-17-0528] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/20/2017] [Accepted: 01/16/2018] [Indexed: 11/16/2022]
Abstract
Cutaneous melanoma represents one of the most aggressive human tumor entities possessing a high tendency to metastasize. Cancer cells frequently exploit a highly conserved developmental program, the epithelial-to-mesenchymal transition (EMT), to gain migratory and invasive properties promoting their metastatic spread. Cytoplasmic localization of the oncogenic transcription and translation factor Y-box binding protein 1 (YB-1) is a powerful inducer of EMT in breast carcinoma cells. Interestingly, EMT-like processes have also been observed in cutaneous melanoma despite its neural crest origin. Here, increased expression of YB-1 negatively affects patient survival in malignant melanoma and promotes melanoma cell tumorigenicity both in vitro and in vivo Intriguingly, this effect seems to be mainly mediated by cytoplasmic YB-1 that does not exhibit phosphorylation at serine-102 (S102). Moreover, S102 unphosphorylated YB-1 enhances the migratory and invasive potential of human melanoma cells in two-dimensional (2D) and three-dimensional (3D) culture systems and facilitates acquisition of a mesenchymal-like invasive phenotype in the chick embryo model. Collectively, these data demonstrate that the cytoplasmic activity of YB-1 stimulates tumorigenicity and metastatic potential of melanoma cells by promoting EMT-like properties.Implications: This study reveals for the first time that YB-1 efficiently drives tumorigenicity and invasiveness of melanoma cells in its S102 unphosphorylated cytoplasmic state and that YB-1 expression represents a negative prognostic factor in primary melanoma patients. Mol Cancer Res; 16(7); 1149-60. ©2018 AACR.
Collapse
Affiliation(s)
- Corinna Kosnopfel
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Tobias Sinnberg
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Birgit Sauer
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Christian Busch
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
- Dermateam, Winterthur, Switzerland
| | - Heike Niessner
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Anja Schmitt
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Stephan Forchhammer
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Cornelia Grimmel
- FACS Core Facility, Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Peter R Mertens
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, Magdeburg, Germany
| | - Stephan Hailfinger
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Sandra E Dunn
- Phoenix Molecular Designs, Vancouver, British Columbia, Canada
| | - Claus Garbe
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Birgit Schittek
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
28
|
The multifunctional protein YB-1 potentiates PARP1 activity and decreases the efficiency of PARP1 inhibitors. Oncotarget 2018; 9:23349-23365. [PMID: 29805738 PMCID: PMC5955111 DOI: 10.18632/oncotarget.25158] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 04/02/2018] [Indexed: 02/06/2023] Open
Abstract
Y-box-binding protein 1 (YB-1) is a multifunctional cellular factor overexpressed in tumors resistant to chemotherapy. An intrinsically disordered structure together with a high positive charge peculiar to YB-1 allows this protein to function in almost all cellular events related to nucleic acids including RNA, DNA and poly(ADP-ribose) (PAR). In the present study we show that YB-1 acts as a potent poly(ADP-ribose) polymerase 1 (PARP1) cofactor that can reduce the efficiency of PARP1 inhibitors. Similarly to that of histones or polyamines, stimulatory effect of YB-1 on the activity of PARP1 was significantly higher than the activator potential of Mg2+ and was independent of the presence of EDTA. The C-terminal domain of YB-1 proved to be indispensable for PARP1 stimulation. We also found that functional interactions of YB-1 and PARP1 can be mediated and regulated by poly(ADP-ribose).
Collapse
|
29
|
Matsumoto K, Kose S, Kuwahara I, Yoshimura M, Imamoto N, Yoshida M. Y-box protein-associated acidic protein (YBAP1/C1QBP) affects the localization and cytoplasmic functions of YB-1. Sci Rep 2018; 8:6198. [PMID: 29670170 PMCID: PMC5906478 DOI: 10.1038/s41598-018-24401-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/26/2018] [Indexed: 01/07/2023] Open
Abstract
The Y-box proteins are multifunctional nucleic acid-binding proteins involved in various aspects of gene regulation. The founding member of the Y-box protein family, YB-1, functions as a transcription factor as well as a principal component of messenger ribonucleoprotein particles (mRNPs) in somatic cells. The nuclear level of YB-1 is well correlated with poor prognosis in many human cancers. Previously, we showed that a Y-box protein–associated acidic protein, YBAP1, which is identical to complement component 1, q subcomponent-binding protein (C1QBP, also called gC1qR, hyaluronan-binding protein 1 [HABP1] or ASF/SF2-associated protein p32), relieves translational repression by YB-1. Here we show that the nuclear localization of YB-1 harboring a point mutation in the cold shock domain was inhibited when co-expressed with YBAP1, whereas cytoplasmic accumulation of the wild-type YB-1 was not affected. We showed that YBAP1 inhibited the interaction between YB-1 and transportin 1. In the cytoplasm, YBAP1 affected the accumulation of YB-1 to processing bodies (P-bodies) and partially abrogated the mRNA stabilization by YB-1. Our results, indicating that YBAP1/C1QBP regulates the nucleo-cytoplasmic distribution of YB-1 and its cytoplasmic functions, are consistent with a model that YBAP1/C1QBP acts as an mRNP remodeling factor.
Collapse
Affiliation(s)
- Ken Matsumoto
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, RIKEN, Wako, Saitama, Japan. .,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan. .,Molecular Entomology Laboratory, RIKEN, Wako, Saitama, Japan.
| | - Shingo Kose
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research (CPR), RIKEN, Wako, Saitama, Japan
| | - Iku Kuwahara
- Molecular Entomology Laboratory, RIKEN, Wako, Saitama, Japan
| | - Mami Yoshimura
- Molecular Entomology Laboratory, RIKEN, Wako, Saitama, Japan
| | - Naoko Imamoto
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research (CPR), RIKEN, Wako, Saitama, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, RIKEN, Wako, Saitama, Japan
| |
Collapse
|
30
|
Chao HM, Huang HX, Chang PH, Tseng KC, Miyajima A, Chern E. Y-box binding protein-1 promotes hepatocellular carcinoma-initiating cell progression and tumorigenesis via Wnt/β-catenin pathway. Oncotarget 2018; 8:2604-2616. [PMID: 27911878 PMCID: PMC5356827 DOI: 10.18632/oncotarget.13733] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 11/22/2016] [Indexed: 12/14/2022] Open
Abstract
Y-box binding protein-1 (YB-1) is a pleiotropic molecule that binds DNA to regulate genes on a transcriptional level in the nucleus and binds RNA to modulate gene translation in the cytoplasm. In our previous studies, YB-1 was also characterized as a fetal hepatic protein that regulates the maturation of hepatocytes and is upregulated during liver regeneration. Moreover, YB-1 has been shown to be expressed in human hepatocellular carcinoma (HCC). However, the role of YB-1 in HCC remains unclear. Here, we aimed to characterize the role of YB-1 in HCC. Based on the results of loss-of-function in HCC and gain-of-function in mice liver using hydrodynamic gene delivery, YB-1 promoted hepatic cells proliferation in vitro and in vivo. YB-1 was also involved in HCC cell proliferation, migration, and drug-resistance. The results of extreme limiting dilution sphere forming analysis and cancer initiating cell marker analysis were also shown that YB-1 maintained HCC initiating cells population. YB-1 also induced the epithelial-mesenchymal transition and stemness-related gene expression. Knockdown of YB-1 suppressed the expression of Wnt ligands and β-catenin, impaired Wnt/β-catenin signaling pathway and reduced the numbers of HCC initiating cells. Moreover, YB-1 displayed nuclear localization particularly in the HCC initiating cells, the EpCAM+ cells or sphere cells. Our findings suggested that YB-1 was a key factor in HCC tumorigenesis and maintained the HCC initiating cell population.
Collapse
Affiliation(s)
- Hsiao-Mei Chao
- niChe Laboratory for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan.,Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hong-Xuan Huang
- niChe Laboratory for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Po-Hsiang Chang
- niChe Laboratory for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Kuo-Chang Tseng
- niChe Laboratory for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Atsushi Miyajima
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Edward Chern
- niChe Laboratory for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
31
|
Blagden S, Abdel Mouti M, Chettle J. Ancient and modern: hints of a core post-transcriptional network driving chemotherapy resistance in ovarian cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9:e1432. [PMID: 28762650 PMCID: PMC5763387 DOI: 10.1002/wrna.1432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/12/2017] [Accepted: 06/12/2017] [Indexed: 01/04/2023]
Abstract
RNA-binding proteins (RBPs) and noncoding (nc)RNAs (such as microRNAs, long ncRNAs, and others) cooperate within a post-transcriptional network to regulate the expression of genes required for many aspects of cancer behavior including its sensitivity to chemotherapy. Here, using an RBP-centric approach, we explore the current knowledge surrounding contributers to post-transcriptional gene regulation (PTGR) in ovarian cancer and identify commonalities that hint at the existence of an evolutionarily conserved core PTGR network. This network regulates survival and chemotherapy resistance in the contemporary context of the cancer cell. There is emerging evidence that cancers become dependent on PTGR factors for their survival. Further understanding of this network may identify innovative therapeutic targets as well as yield crucial insights into the hard-wiring of many malignancies, including ovarian cancer. WIREs RNA 2018, 9:e1432. doi: 10.1002/wrna.1432 This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Translation Mechanisms RNA in Disease and Development > RNA in Disease.
Collapse
|
32
|
Yamashita T, Higashi M, Momose S, Morozumi M, Tamaru JI. Nuclear expression of Y box binding-1 is important for resistance to chemotherapy including gemcitabine in TP53-mutated bladder cancer. Int J Oncol 2017; 51:579-586. [PMID: 28714514 DOI: 10.3892/ijo.2017.4031] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/26/2017] [Indexed: 11/05/2022] Open
Abstract
The development and acquisition of multiple drug resistance in cancer cells remain a major obstacle in the treatment of bladder cancer. Nuclear translocation of Y box binding-1 (YB-1), which is a member of a family of DNA-binding proteins that contain a cold shock domain, plays a significant role in the acquisition of drug resistance by upregulating expression of the multidrug resistance-1 (MDR-1) gene product, p-glycoprotein. The tumor suppressor protein p53 is thought to be essential for nuclear translocation of YB-1. We hypothesized that nuclear translocation of YB-1 might be associated with drug resistance of bladder cancer with an abnormality of the TP53 gene that results in a mutated p53 protein. To test this hypothesis, we analyzed the association of YB-1 with drug resistance of TP53-mutated bladder cancer, including immunohistochemical analysis of YB-1, p-glycoprotein and p53 in vivo as well as the function of YB-1 nuclear translocation and regulation of its translocation by p53 in vitro. Additionally, we examined the association between the nuclear translocation of YB-1 and gemcitabine, a major anticancer-drug for bladder cancer, in cancer cell lines. Nuclear expression of YB-1 was correlated with the expression of p-glycoprotein and p53 in bladder cancer cases (p<0.05). In vitro, both introduction of TP53 and gemcitabine induced nuclear translocation of YB-1. These data indicate that YB-1 translocates to the nucleus coordinately with p53 expression and is involved in gemcitabine resistance in bladder cancer. Nuclear expression of YB-1 is important for resistance to chemotherapy including gemcitabine in TP53-mutated bladder cancer.
Collapse
Affiliation(s)
- Takahisa Yamashita
- Department of Pathology, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe-shi, Saitama 350-8550, Japan
| | - Morihiro Higashi
- Department of Pathology, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe-shi, Saitama 350-8550, Japan
| | - Shuji Momose
- Department of Pathology, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe-shi, Saitama 350-8550, Japan
| | - Makoto Morozumi
- Department of Urology, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe-shi, Saitama 350-8550, Japan
| | - Jun-Ichi Tamaru
- Department of Pathology, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe-shi, Saitama 350-8550, Japan
| |
Collapse
|
33
|
Wang W, Zheng Y, Jia J, Li C, Duan Q, Li R, Wang X, Shao Y, Chen C, Yan H. Antimicrobial peptide LL-37 promotes the viability and invasion of skin squamous cell carcinoma by upregulating YB-1. Exp Ther Med 2017; 14:499-506. [PMID: 28672959 PMCID: PMC5488501 DOI: 10.3892/etm.2017.4546] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/26/2017] [Indexed: 12/17/2022] Open
Abstract
Antimicrobial peptide LL-37 serves a function in the host defense against microbial invasion, and also regulates cell proliferation, immune activity and angiogenesis. Previous studies have reported that LL-37 participates in the development of numerous tumour types, such as ovarian cancer, lung cancer, melanoma and breast cancer. However, the function of LL-37 in the development of skin squamous cell carcinoma (SCC) has not yet been fully elucidated. The aim of the current study was to investigate how LL-37 promotes the expression of Y-box binding protein 1 (YB-1) in SCC. Short interfering RNA (siRNA) was used to inhibit the expression of YB-1, and in vitro MTT and Transwell migration assays were used to evaluate the effect of reduced YB-1 on the viability and invasion of A431 cells. A431 cells were stimulated with LL-37, and quantitative polymerase chain reaction, immunofluorescence and western blot analyses were used to detect changes in YB-1 expression. Mitogen-activated protein kinase kinase, mitogen-activated protein kinase and nuclear factor (NF)-κB signaling pathway inhibitors were also used to evaluate the mechanism of LL-37-induced YB-1 protein expression. It was found that YB-1 expression was increased in SCC tissue compared with normal tissue. Inhibiting YB-1 expression using siRNA significantly reduced the viability and suppressed the invasion of tumour cells (P<0.05 for both). LL-37 treatment at 0.05 µg/ml for 24 or 48 h significantly promoted YB-1 protein expression (P<0.05), and this was dependent on the NF-κB signaling pathway. In conclusion, the current study demonstrated that by upregulating the expression of YB-1, LL-37 can promote the occurrence and development of SCC, and this process involves the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Wei Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yan Zheng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jinjing Jia
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Changji Li
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Qiqi Duan
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Ruilian Li
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xin Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yongping Shao
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an, Shaanxi 710004, P.R. China.,Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Caifeng Chen
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Huling Yan
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
34
|
Yue D, Wang Y, Sun Y, Niu Y, Chang C. C1QBP Regulates YBX1 to Suppress the Androgen Receptor (AR)-Enhanced RCC Cell Invasion. Neoplasia 2017; 19:135-144. [PMID: 28107702 PMCID: PMC5247285 DOI: 10.1016/j.neo.2016.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/26/2016] [Accepted: 12/01/2016] [Indexed: 12/20/2022]
Abstract
Early studies suggested that the androgen receptor (AR) might play important roles to promote the renal cell carcinoma (RCC) progression; however, the detailed mechanisms remain unclear. Here we demonstrated the higher YBX1 expression with lower C1QBP expression in human RCC clinical tissues, and the intensity of C1QBP was negatively correlated with the YBX1 nuclear expression. Mechanism dissection found C1QBP could interact with YBX1 to suppress the YBX1 activation via altering the YBX1 phosphorylation and nuclear translocation in RCC cells. The consequences of such suppression of YBX1 might then result in suppressing the RCC cell migration and invasion that involved altering the AR-modulated MMP9 signals. Interruption of this newly identified C1QBP→YBX1→AR→MMP9-suppressed RCC cell invasion pathway via targeting YBX1 or AR partially reversed the RCC cell invasion. Importantly, results from in vivo mouse model with orthotopic implantation of RCC OSRC2 cells into the left renal capsule also confirmed in vitro cell line studies showing targeting YBX1 could suppress RCC cell invasion via regulation of AR/MMP9 signals. Collectively, these data suggest that C1QBP could regulate YBX1 to suppress the AR-enhanced RCC cell invasion. Targeting this newly identified C1QBP/YBX1/AR/MMP9 signal pathway may provide a new potential therapy to better suppress RCC metastasis.
Collapse
Affiliation(s)
- Dan Yue
- Chawnshang Chang Sex Hormone Research Center, Tianjin Institute of Urology and School of Laboratory Medicine, Tianjin Medical University, Tainjin 300203, China; George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot cancer Center, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Yong Wang
- Chawnshang Chang Sex Hormone Research Center, Tianjin Institute of Urology and School of Laboratory Medicine, Tianjin Medical University, Tainjin 300203, China; George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot cancer Center, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Yin Sun
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot cancer Center, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Yuanjie Niu
- Chawnshang Chang Sex Hormone Research Center, Tianjin Institute of Urology and School of Laboratory Medicine, Tianjin Medical University, Tainjin 300203, China.
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot cancer Center, University of Rochester Medical Center, Rochester, NY, 14642, USA; Sex Hormone Research Center, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
35
|
Jia J, Zheng Y, Wang W, Shao Y, Li Z, Wang Q, Wang Y, Yan H. Antimicrobial peptide LL-37 promotes YB-1 expression, and the viability, migration and invasion of malignant melanoma cells. Mol Med Rep 2016; 15:240-248. [PMID: 27922666 PMCID: PMC5355658 DOI: 10.3892/mmr.2016.5978] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/04/2016] [Indexed: 12/30/2022] Open
Abstract
The cathelicidin antimicrobial peptide, LL-37, is a multifunctional peptide with a broad spectrum of antimicrobial activities, such as chemotaxis and neutralizing endotoxins. Previous studies have demonstrated that it LL-37 serves a functional role in the development of numerous types of cancer including ovarian, breast, prostate and lung cancer. However, its role in the development of malignant melanoma (MM) remains unclear. To determine the role of LL-37 and the potential interaction with Y-box binding protein 1 (YB-1) in MM, RNA interference, western blot, reverse transcription-quantitative polymerase chain reaction, MTT and Transwell assays were performed. The current study demonstrated that LL-37 induced YB-1 expression, and increased tumor cell proliferation, migration and invasion of A375 and A875 MM cell lines. In addition, inhibition of nuclear factor-κB (NF-κB) attenuated LL-37-induced YB-1 expression. These results demonstrate that, through the upregulation of YB-1 expression and the activation of the NF-κB signaling pathway, LL-37 may promote the malignant progression of MM cells in vitro.
Collapse
Affiliation(s)
- Jinjing Jia
- Department of Dermatology, School of Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yan Zheng
- Department of Dermatology, School of Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Wei Wang
- Department of Dermatology, School of Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yongping Shao
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Zhengxiao Li
- Department of Dermatology, School of Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Qiong Wang
- Department of Dermatology, School of Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yuan Wang
- Department of Dermatology, School of Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Huling Yan
- Department of Dermatology, School of Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
36
|
Kariminia A, Ivison SM, Leung VM, Sung S, Couto N, Rozmus J, Rolf N, Narendran A, Dunn SE, Reid GSD, Schultz KR. Y-box-binding protein 1 contributes to IL-7-mediated survival signaling in B-cell precursor acute lymphoblastic leukemia. Oncol Lett 2016; 13:497-505. [PMID: 28123588 DOI: 10.3892/ol.2016.5437] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 09/27/2016] [Indexed: 11/06/2022] Open
Abstract
Y-box-binding protein 1 (YB-1) is a regulatory protein that is associated with drug resistance and relapse in solid tumors. As YB-1 mediates some of its activity through growth factor receptor signaling dysregulation, the present study compared the expression of YB-1 and interleukin 7 (IL-7) receptor α (IL-7Rα) in pediatric B-cell precursor (BCP) acute lymphoblastic leukemia (ALL) and normal BCP cells. The expression levels of IL-7Rα and YB-1 were higher in relapsed vs. diagnostic samples of primary BCP ALL; however, co-expression was also observed in a minor BCP cell population in samples from healthy donors. Functional crosstalk between YB-1 and IL-7R was detected: Overexpression of YB-1 increased surface levels of IL-7R in B cells, and the stimulation of BCP ALL cell lines and primary samples by IL-7 activated YB-1 by phosphorylation at S102 in a phosphatidylinositol 3-kinase-independent and MEK1/2-dependent manner. Targeted knockdown of YB-1 reduced IL-7-mediated protection against rapamycin, and an inhibitor of MEK1/2 potentiated rapamycin-mediated killing in the presence of IL-7. These data establish a novel link between two well-characterized pro-survival factors in acute leukemia, and suggest that YB-1 inhibition may represent a novel therapeutic strategy for increasing sensitivity to chemotherapy in patients with refractory acute B-cell leukemia.
Collapse
Affiliation(s)
- Amina Kariminia
- Michael Cuccione Childhood Cancer Research Program, Child and Family Research Institute, Department of Pediatrics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Sabine M Ivison
- Michael Cuccione Childhood Cancer Research Program, Child and Family Research Institute, Department of Pediatrics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Vivian M Leung
- Michael Cuccione Childhood Cancer Research Program, Child and Family Research Institute, Department of Pediatrics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Susanna Sung
- Michael Cuccione Childhood Cancer Research Program, Child and Family Research Institute, Department of Pediatrics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Nicole Couto
- Michael Cuccione Childhood Cancer Research Program, Child and Family Research Institute, Department of Pediatrics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Jacob Rozmus
- Michael Cuccione Childhood Cancer Research Program, Child and Family Research Institute, Department of Pediatrics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Nina Rolf
- Michael Cuccione Childhood Cancer Research Program, Child and Family Research Institute, Department of Pediatrics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Aru Narendran
- Division of Pediatric Oncology, Alberta Children's Hospital, Calgary, AB T2N 4N1, Canada
| | - Sandra E Dunn
- Michael Cuccione Childhood Cancer Research Program, Child and Family Research Institute, Department of Pediatrics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Gregor S D Reid
- Michael Cuccione Childhood Cancer Research Program, Child and Family Research Institute, Department of Pediatrics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Kirk R Schultz
- Michael Cuccione Childhood Cancer Research Program, Child and Family Research Institute, Department of Pediatrics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
37
|
Satellite RNAs promote pancreatic oncogenic processes via the dysfunction of YBX1. Nat Commun 2016; 7:13006. [PMID: 27667193 PMCID: PMC5052683 DOI: 10.1038/ncomms13006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 08/23/2016] [Indexed: 01/01/2023] Open
Abstract
Highly repetitive tandem arrays at the centromeric and pericentromeric regions in chromosomes, previously considered silent, are actively transcribed, particularly in cancer. This aberrant expression occurs even in K-ras-mutated pancreatic intraepithelial neoplasia (PanIN) tissues, which are precancerous lesions. To examine the biological roles of the satellite RNAs in carcinogenesis, we construct mouse PanIN-derived cells expressing major satellite (MajSAT) RNA and show increased malignant properties. We find an increase in frequency of chromosomal instability and point mutations in both genomic and mitochondrial DNA. We identify Y-box binding protein 1 (YBX1) as a protein that binds to MajSAT RNA. MajSAT RNA inhibits the nuclear translocation of YBX1 under stress conditions, thus reducing its DNA-damage repair function. The forced expression of YBX1 significantly decreases the aberrant phenotypes. These findings indicate that during the early stage of cancer development, satellite transcripts may act as 'intrinsic mutagens' by inducing YBX1 dysfunction, which may be crucial in oncogenic processes.
Collapse
|
38
|
Bisio A, Latorre E, Andreotti V, Bressac-de Paillerets B, Harland M, Scarra GB, Ghiorzo P, Spitale RC, Provenzani A, Inga A. The 5'-untranslated region of p16INK4a melanoma tumor suppressor acts as a cellular IRES, controlling mRNA translation under hypoxia through YBX1 binding. Oncotarget 2016; 6:39980-94. [PMID: 26498684 PMCID: PMC4741874 DOI: 10.18632/oncotarget.5387] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/05/2015] [Indexed: 12/20/2022] Open
Abstract
CDKN2A/p16INK4a is an essential tumor suppressor gene that controls cell cycle progression and replicative senescence. It is also the main melanoma susceptibility gene. Here we report that p16INK4a 5'UTR mRNA acts as a cellular Internal Ribosome Entry Site (IRES). The potential for p16INK4a 5'UTR to drive cap-independent translation was evaluated by dual-luciferase assays using bicistronic and monocistronic vectors. Results of reporters' relative activities coupled to control analyses for actual bicistronic mRNA transcription, indicated that the wild type p16INK4a 5'UTR could stimulate cap-independent translation. Notably, hypoxic stress and the treatment with mTOR inhibitors enhanced the translation-stimulating property of p16INK4a 5'UTR. RNA immunoprecipitation performed in melanoma-derived SK-Mel-28 and in a patient-derived lymphoblastoid cell line indicated that YBX1 can bind the wild type p16INK4a mRNA increasing its translation efficiency, particularly during hypoxic stress. Modulation of YBX1 expression further supported its involvement in cap-independent translation of the wild type p16INK4a but not a c.-42T>A variant. RNA SHAPE assays revealed local flexibility changes for the c.-42T>A variant at the predicted YBX1 binding site region. Our results indicate that p16INK4a 5'UTR contains a cellular IRES that can enhance mRNA translation efficiency, in part through YBX1.
Collapse
Affiliation(s)
- Alessandra Bisio
- Laboratory of Transcriptional Networks, Centre for Integrative Biology, CIBIO, University of Trento, Trento, Italy
| | - Elisa Latorre
- Laboratory of Genomic Screening, Centre for Integrative Biology, CIBIO, University of Trento, Trento, Italy
| | - Virginia Andreotti
- Laboratory of Genetics of Rare Hereditary Cancers, DiMI, University of Genoa, Italy and IRCCS AOU San Martino-IST, Genoa, Italy
| | | | - Mark Harland
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Giovanna Bianchi Scarra
- Laboratory of Genetics of Rare Hereditary Cancers, DiMI, University of Genoa, Italy and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Paola Ghiorzo
- Laboratory of Genetics of Rare Hereditary Cancers, DiMI, University of Genoa, Italy and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Alessandro Provenzani
- Laboratory of Genomic Screening, Centre for Integrative Biology, CIBIO, University of Trento, Trento, Italy
| | - Alberto Inga
- Laboratory of Transcriptional Networks, Centre for Integrative Biology, CIBIO, University of Trento, Trento, Italy
| |
Collapse
|
39
|
Rauen T, Frye BC, Wang J, Raffetseder U, Alidousty C, En-Nia A, Floege J, Mertens PR. Cold shock protein YB-1 is involved in hypoxia-dependent gene transcription. Biochem Biophys Res Commun 2016; 478:982-7. [DOI: 10.1016/j.bbrc.2016.08.064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 08/10/2016] [Indexed: 01/23/2023]
|
40
|
Antimicrobial peptide LL-37 promotes the proliferation and invasion of skin squamous cell carcinoma by upregulating DNA-binding protein A. Oncol Lett 2016; 12:1745-1752. [PMID: 27588122 PMCID: PMC4998069 DOI: 10.3892/ol.2016.4865] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 06/29/2016] [Indexed: 12/11/2022] Open
Abstract
The antimicrobial peptide LL-37 not only contributes to the host defence against microbial invasion but also regulates immune activity, angiogenesis and cell proliferation. Studies have shown that LL-37 participates in the development of a variety of tumours, such as lung cancer, ovarian cancer, breast cancer and melanoma. However, the role of LL-37 in the development of skin squamous cell carcinoma (SCC) is not clear. The present study used immunohistochemistry to confirm that the expression of human DNA-binding protein A (dbpA) was increased in SCC tissues. After stimulating SCC A341 cells, LL-37 was shown promote the proliferation, migration and invasion of these malignant cells. LL-37 also promoted the upregulation of dbpA mRNA and protein expression. In addition, after using small interfering RNA to silence the normal dbpA expression in these malignant cells, the proliferation and invasion of the tumor cells were significantly reduced. When the NF-κB inhibitor PDTC was used to inhibit the process of LL-37-stimulated cells, it was found that the original upregulated expression of dbpA was downregulated. Overall, the present demonstrated that by upregulating the expression of dbpA, LL-37 can promote the proliferation and invasion of tumour cells, and that this process depends on the NF-κB signalling pathway.
Collapse
|
41
|
Holm PS, Retz M, Gschwend JE, Nawroth R. [YB-1-based virotherapy: A new therapeutic intervention for transitional cell carcinoma of the bladder?]. Urologe A 2015; 55:356-63. [PMID: 26556269 DOI: 10.1007/s00120-015-3811-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Therapeutic intervention using oncolytic viruses is called virotherapy. This type of virus is defined by the ability to replicate in tumor cells only and to destroy these cells upon replication. In addition, this virus type is able to induce a tumor-directed immune response. Early clinical trials have confirmed the safety profile of oncolytic viruses. Currently, different groups are working on the development of oncolytic viruses with a focus on treatment of nonmuscle invasive bladder cancer (NMIBC). A preliminary active recruiting clinical phase II/III trial ongoing in patients with a NMIBC was recently implemented in the United States. Our research group developed an oncolytic adenovirus that will soon enter a clinical phase I trial in patients diagnosed with glioma. This virus is being further modified for the treatment of NMIBC. In this review article, recent developments in the design and use of virotherapy in bladder cancer are summarized.
Collapse
Affiliation(s)
- P S Holm
- Urologische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675, München, Deutschland.
| | - M Retz
- Urologische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675, München, Deutschland
| | - J E Gschwend
- Urologische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675, München, Deutschland
| | - R Nawroth
- Urologische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675, München, Deutschland
| |
Collapse
|
42
|
Alemasova EE, Pestryakov PE, Sukhanova MV, Kretov DA, Moor NA, Curmi PA, Ovchinnikov LP, Lavrik OI. Poly(ADP-ribosyl)ation as a new posttranslational modification of YB-1. Biochimie 2015; 119:36-44. [PMID: 26453809 DOI: 10.1016/j.biochi.2015.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
Abstract
Multifunctional Y-box binding protein 1 (YB-1) is actively studied as one of the components of cellular response to genotoxic stress. However, the precise role of YB-1 in the process of DNA repair is still obscure. In the present work we report for the first time new posttranslational modification of YB-1 - poly(ADP-ribosyl)ation, catalyzed by one of the main regulatory enzymes of DNA repair - poly(ADP-ribose)polymerase 1 (PARP1) in the presence of model DNA substrate carrying multiple DNA lesions. Therefore, poly(ADP-ribosyl)ation of YB-1 catalyzed with PARP1, can be stimulated by damaged DNA. The observed property of YB-1 underlines its ability to participate in the DNA repair by its involvement in the regulatory cascades of DNA repair.
Collapse
Affiliation(s)
- Elizaveta E Alemasova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, 630090, Russia
| | - Pavel E Pestryakov
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, 630090, Russia
| | - Maria V Sukhanova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, 630090, Russia; Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Dmitry A Kretov
- Institute of Protein Research, RAS, Pushchino, Moscow Region, 142290, Russia; Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 829, Université d'Evry Val d'Essonne, Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, Evry, 91025, France
| | - Nina A Moor
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, 630090, Russia; Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Patrick A Curmi
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 829, Université d'Evry Val d'Essonne, Laboratoire Structure-Activité des Biomolécules Normales et Pathologiques, Evry, 91025, France
| | - Lev P Ovchinnikov
- Institute of Protein Research, RAS, Pushchino, Moscow Region, 142290, Russia
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, 630090, Russia; Novosibirsk State University, Novosibirsk, 630090, Russia.
| |
Collapse
|
43
|
Inoue K, Fry EA, Frazier DP. Transcription factors that interact with p53 and Mdm2. Int J Cancer 2015; 138:1577-85. [PMID: 26132471 DOI: 10.1002/ijc.29663] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/22/2015] [Indexed: 01/21/2023]
Abstract
The tumor suppressor p53 is activated upon cellular stresses such as DNA damage, oncogene activation, hypoxia, which transactivates sets of genes that induce DNA repair, cell cycle arrest, apoptosis, or autophagy, playing crucial roles in the prevention of tumor formation. The central regulator of the p53 pathway is Mdm2 which inhibits transcriptional activity, nuclear localization and protein stability. More than 30 cellular p53-binding proteins have been isolated and characterized including Mdm2, Mdm4, p300, BRCA1/2, ATM, ABL and 53BP-1/2. Most of them are nuclear proteins; however, not much is known about p53-binding transcription factors. In this review, we focus on transcription factors that directly interact with p53/Mdm2 through direct binding including Dmp1, E2F1, YB-1 and YY1. Dmp1 and YB-1 bind only to p53 while E2F1 and YY1 bind to both p53 and Mdm2. Dmp1 has been shown to bind to p53 and block all the known functions for Mdm2 on p53 inhibition, providing a secondary mechanism for tumor suppression in Arf-null cells. Although E2F1-p53 binding provides a checkpoint mechanism to silence hyperactive E2F1, YB-1 or YY1 interaction with p53 subverts the activity of p53, contributing to cell cycle progression and tumorigenesis. Thus, the modes and consequences for each protein-protein interaction vary from the viewpoint of tumor development and suppression.
Collapse
Affiliation(s)
- Kazushi Inoue
- Department of Pathology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157
| | - Elizabeth A Fry
- Department of Pathology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157
| | - Donna P Frazier
- Department of Pathology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157
| |
Collapse
|
44
|
Fomina EE, Pestryakov PE, Maltseva EA, Petruseva IO, Kretov DA, Ovchinnikov LP, Lavrik OI. Y-box binding protein 1 (YB-1) promotes detection of DNA bulky lesions by XPC-HR23B factor. BIOCHEMISTRY (MOSCOW) 2015; 80:219-27. [DOI: 10.1134/s000629791502008x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Wang Y, Yue D, Xiao M, Qi C, Chen Y, Sun D, Zhang N, Chen R. C1QBP Negatively Regulates the Activation of Oncoprotein YBX1 in the Renal Cell Carcinoma As Revealed by Interactomics Analysis. J Proteome Res 2014; 14:804-13. [DOI: 10.1021/pr500847p] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yong Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy; Research Center of Basic Medical Sciences; Tianjin Institute of Urology, Tianjin Medical University Second Hospital & School of Medical Laboratory, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Dan Yue
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy; Research Center of Basic Medical Sciences; Tianjin Institute of Urology, Tianjin Medical University Second Hospital & School of Medical Laboratory, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Mingming Xiao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy; Research Center of Basic Medical Sciences; Tianjin Institute of Urology, Tianjin Medical University Second Hospital & School of Medical Laboratory, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Can Qi
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy; Research Center of Basic Medical Sciences; Tianjin Institute of Urology, Tianjin Medical University Second Hospital & School of Medical Laboratory, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Yajing Chen
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy; Research Center of Basic Medical Sciences; Tianjin Institute of Urology, Tianjin Medical University Second Hospital & School of Medical Laboratory, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Duxin Sun
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109, United States
| | - Ning Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy; Research Center of Basic Medical Sciences; Tianjin Institute of Urology, Tianjin Medical University Second Hospital & School of Medical Laboratory, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Ruibing Chen
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy; Research Center of Basic Medical Sciences; Tianjin Institute of Urology, Tianjin Medical University Second Hospital & School of Medical Laboratory, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| |
Collapse
|
46
|
Abstract
Glioblastoma Multiforme (GBM) is a rapidly progressing brain tumor. Despite the relatively low percentage of cancer patients with glioma diagnoses, recent statistics indicate that the number of glioma patients may have increased over the past decade. Current therapeutic options for glioma patients include tumor resection, chemotherapy, and concomitant radiation therapy with an average survival of approximately 16 months. The rapid progression of gliomas has spurred the development of novel treatment options, such as cancer gene therapy and oncolytic virotherapy. Preclinical testing of oncolytic adenoviruses using glioma models revealed both positive and negative sides of the virotherapy approach. Here we present a detailed overview of the glioma virotherapy field and discuss auxiliary therapeutic strategies with the potential for augmenting clinical efficacy of GBM virotherapy treatment.
Collapse
Affiliation(s)
- I.V. Ulasov
- Swedish Medical Center, Center for Advanced Brain Tumor Treatment, 550 17th Avenue, James Tower, Suite 570, Seattle, WA 98122, USA
- Institute of Experimental Diagnostic and Biotherapy, N.N. Blokhin Cancer Research Center (RONC), Moscow 115478, Russia
- Corresponding author. Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, 550 17th Avenue, James Tower, Suite 570, Seattle, WA 98122, USA. Tel.: +1 206 991 2053; fax: +1 206 834 2608.
| | - A.V. Borovjagin
- Institute of Oral Health Research, University of Alabama at Birmingham School of Dentistry, 1919 7th Ave South, Birmingham, AL, 35294, USA
| | - B.A. Schroeder
- Michigan State University College of Medicine, Grand Rapids, MI, 49503, USA
| | - A.Y. Baryshnikov
- Institute of Experimental Diagnostic and Biotherapy, N.N. Blokhin Cancer Research Center (RONC), Moscow 115478, Russia
| |
Collapse
|
47
|
Bogolyubova I, Lyabin D, Bogolyubov D, Ovchinnikov L. Immunocytochemical study of YB-1 nuclear distribution in different cell types. Tissue Cell 2014; 46:457-61. [DOI: 10.1016/j.tice.2014.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 07/17/2014] [Accepted: 08/06/2014] [Indexed: 12/23/2022]
|
48
|
The structure, function and evolution of proteins that bind DNA and RNA. Nat Rev Mol Cell Biol 2014; 15:749-60. [PMID: 25269475 DOI: 10.1038/nrm3884] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Proteins that bind both DNA and RNA typify the ability of a single gene product to perform multiple functions. Such DNA- and RNA-binding proteins (DRBPs) have unique functional characteristics that stem from their specific structural features; these developed early in evolution and are widely conserved. Proteins that bind RNA have typically been considered as functionally distinct from proteins that bind DNA and studied independently. This practice is becoming outdated, in partly owing to the discovery of long non-coding RNAs (lncRNAs) that target DNA-binding proteins. Consequently, DRBPs were found to regulate many cellular processes, including transcription, translation, gene silencing, microRNA biogenesis and telomere maintenance.
Collapse
|
49
|
Salleron L, Magistrelli G, Mary C, Fischer N, Bairoch A, Lane L. DERA is the human deoxyribose phosphate aldolase and is involved in stress response. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2913-25. [PMID: 25229427 DOI: 10.1016/j.bbamcr.2014.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/13/2014] [Accepted: 09/07/2014] [Indexed: 10/24/2022]
Abstract
Deoxyribose-phosphate aldolase (EC 4.1.2.4), which converts 2-deoxy-d-ribose-5-phosphate into glyceraldehyde-3-phosphate and acetaldehyde, belongs to the core metabolism of living organisms. It was previously shown that human cells harbor deoxyribose phosphate aldolase activity but the protein responsible of this activity has never been formally identified. This study provides the first experimental evidence that DERA, which is mainly expressed in lung, liver and colon, is the human deoxyribose phosphate aldolase. Among human cell lines, the highest DERA mRNA level and deoxyribose phosphate aldolase activity were observed in liver-derived Huh-7 cells. DERA was shown to interact with the known stress granule component YBX1 and to be recruited to stress granules after oxidative or mitochondrial stress. In addition, cells in which DERA expression was down-regulated using shRNA formed fewer stress granules and were more prone to apoptosis after clotrimazole stress, suggesting the importance of DERA for stress granule formation. Furthermore, the expression of DERA was shown to permit cells in which mitochondrial ATP production was abolished to make use of extracellular deoxyinosine to maintain ATP levels. This study unraveled a previously undescribed pathway which may allow cells with high deoxyribose-phosphate aldolase activity, such as liver cells, to minimize or delay stress-induced damage by producing energy through deoxynucleoside degradation.
Collapse
Affiliation(s)
- Lisa Salleron
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | | | - Camille Mary
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Amos Bairoch
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland; CALIPHO GroupSIB-Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Lydie Lane
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland; CALIPHO GroupSIB-Swiss Institute of Bioinformatics, Geneva, Switzerland.
| |
Collapse
|
50
|
Dias SRC, Boroni M, Rocha EA, Dias TL, de Laet Souza D, Oliveira FMS, Bitar M, Macedo AM, Machado CR, Caliari MV, Franco GR. Evaluation of the Schistosoma mansoni Y-box-binding protein (SMYB1) potential as a vaccine candidate against schistosomiasis. Front Genet 2014; 5:174. [PMID: 24966869 PMCID: PMC4052899 DOI: 10.3389/fgene.2014.00174] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/22/2014] [Indexed: 12/21/2022] Open
Abstract
Schistosomiasis is a neglected tropical disease, and after malaria, is the second most important tropical disease in public health. A vaccine that reduces parasitemia is desirable to achieve mass treatment with a low cost. Although potential antigens have been identified and tested in clinical trials, no effective vaccine against schistosomiasis is available. Y-box-binding proteins (YBPs) regulate gene expression and participate in a variety of cellular processes, including transcriptional and translational regulation, DNA repair, cellular proliferation, drug resistance, and stress responses. The Schistosoma mansoni ortholog of the human YB-1, SMYB1, is expressed in all stages of the parasite life cycle. Although SMYB1 binds to DNA or RNA oligonucleotides, immunohistochemistry assays demonstrated that it is primarily localized in the cytoplasm of parasite cells. In addition, SMYB1 interacts with a protein involved in mRNA processing, suggesting that SMYB1 functions in the turnover, transport, and/or stabilization of RNA molecules during post-transcriptional gene regulation. Here we report the potential of SMYB1 as a vaccine candidate. We demonstrate that recombinant SMYB1 stimulates the production of high levels of specific IgG1 antibodies in a mouse model. The observed levels of specific IgG1 and IgG2a antibodies indicate an actual protection against cercariae challenge. Animals immunized with rSMYB1 exhibited a 26% reduction in adult worm burden and a 28% reduction in eggs retained in the liver. Although proteins from the worm tegument are considered optimal targets for vaccine development, this study demonstrates that unexposed cytoplasmic proteins can reduce the load of intestinal worms and the number of eggs retained in the liver.
Collapse
Affiliation(s)
- Sílvia R C Dias
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Mariana Boroni
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Elizângela A Rocha
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Thomaz L Dias
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Daniela de Laet Souza
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Fabrício M S Oliveira
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Mainá Bitar
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Andrea M Macedo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Carlos R Machado
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Marcelo V Caliari
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Glória R Franco
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| |
Collapse
|