1
|
Fatty acid transport proteins (FATPs) in cancer. Chem Phys Lipids 2023; 250:105269. [PMID: 36462545 DOI: 10.1016/j.chemphyslip.2022.105269] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/12/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Lipids play pivotal roles in cancer biology. Lipids have a wide range of biological roles, especially in cell membrane synthesis, serve as energetic molecules in regulating energy-demanding processes; and they play a significant role as signalling molecules and modulators of numerous cellular functions. Lipids may participate in the development of cancer through the fatty acid signalling pathway. Lipids consumed in the diet act as a key source of extracellular pools of fatty acids transported into the cellular system. Increased availability of lipids to cancer cells is due to increased uptake of fatty acids from adipose tissues. Lipids serve as a source of energy for rapidly dividing cancerous cells. Surviving requires the swift synthesis of biomass and membrane matrix to perform exclusive functions such as cell proliferation, growth, invasion, and angiogenesis. FATPs (fatty acid transport proteins) are a group of proteins involved in fatty acid uptake, mainly localized within cells and the cellular membrane, and have a key role in long-chain fatty acid transport. FATPs are composed of six isoforms that are tissue-specific and encoded by a specific gene. Previous studies have reported that FATPs can alter fatty acid metabolism, cell growth, and cell proliferation and are involved in the development of various cancers. They have shown increased expression in most cancers, such as melanoma, breast cancer, prostate cancer, renal cell carcinoma, hepatocellular carcinoma, bladder cancer, and lung cancer. This review introduces a variety of FATP isoforms and summarises their functions and their possible roles in the development of cancer.
Collapse
|
2
|
FATP2-targeted therapies - A role beyond fatty liver disease. Pharmacol Res 2020; 161:105228. [PMID: 33027714 DOI: 10.1016/j.phrs.2020.105228] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 12/31/2022]
Abstract
Fatty acid transport protein 2 (FATP2) is a multifunctional protein whose specific function is determined by the type of located cell, its intracellular location, or organelle-specific interactions. In the different diseases setting, a newfound appreciation for the biological function of FATP2 has come into view. Two main functions of FATP2 are to activate long-chain fatty acids (LCFAs) as a very long-chain acyl-coenzyme A (CoA) synthetase (ACSVL) and to transport LCFAs as a fatty acid transporter. FATP2 is not only involved in the occurrence of nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM), but also plays an important role in lithogenic diet-induced cholelithiasis, the formation of cancer tumor immunity, the progression of chronic kidney disease (CKD), and the regulation of zoledronate-induced nephrotoxicity. Herein, we review the updated information on the role of FATP2 in related diseases. In particular, we discuss the new functions of FATP2 and propose that FATP2 is a potential clinical biomarker and therapeutic target. In conclusion, regulatory strategies for FATP2 may bring new treatment options for cancer and lipid metabolism-related disorders.
Collapse
|
3
|
Lei CX, Li MM, Tian JJ, Wen JK, Li YY. Transcriptome analysis of golden pompano (Trachinotus ovatus) liver indicates a potential regulatory target involved in HUFA uptake and deposition. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 33:100633. [PMID: 31733535 DOI: 10.1016/j.cbd.2019.100633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022]
Abstract
Promoting highly unsaturated fatty acid (HUFA) uptake and deposition can improve nutritional value of farmed fish and reduce dietary fish oil addition. Previously, we found that the golden pompano Trachinotus ovatus liver HUFA content increased with the increasing of dietary HUFA. Therefore, we examined the common genes and pathways responsible for HUFA uptake and deposition in T. ovatus liver using transcriptome sequencing technology after feeding with either 1.0% or 2.1% HUFA for 8 weeks. Results showed that a total of 140 and 147 genes were significantly upregulated and downregulated, respectively. Five bile acid synthesis-related genes (CYP7A1, CYP8B1, AKR1D1, SCP2 and ACOT8), which are related to dietary fat emulsification were downregulated in 2.1% HUFA group, implying that the cholate synthesized through the classical pathway might be the main bile acid form in fat emulsification. Moreover, fatty acid transport protein (FATP)-6, fatty acid binding protein (FABP)-1, -4, and -6 increased with HUFA deposition, especially FATP6 and FABP4, suggesting that the two genes may be important mediators involved in HUFA uptake and deposition. KEGG analysis showed that most of the differential genes described above were involved in peroxisome proliferator activator receptor (PPAR) signaling pathway, and PPARγ increased with HUFA deposition, indicating that PPARγ might be a key regulator of HUFA uptake and deposition by regulating the genes involved in fatty acid emulsification and transport. This study focused on the liver, which is the center of intermediary metabolism, providing a comprehensive understanding of the molecular regulation of HUFA uptake and deposition in T. ovatus, which should be further investigated to develop potential measures to improve HUFA content.
Collapse
Affiliation(s)
- Cai-Xia Lei
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Meng-Meng Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jing-Jing Tian
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Ji-Kai Wen
- College of Life Science, South China Agricultural University, Guangzhou 510642, China.
| | - Yuan-You Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Mitchell RW, Hatch GM. Fatty acid transport into the brain: of fatty acid fables and lipid tails. Prostaglandins Leukot Essent Fatty Acids 2011; 85:293-302. [PMID: 21816594 DOI: 10.1016/j.plefa.2011.04.007] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The blood-brain barrier formed by the brain capillary endothelial cells provides a protective barrier between the systemic blood and the extracellular environment of the central nervous system. Brain capillaries are a continuous layer of endothelial cells with highly developed tight junctional complexes and a lack of fenestrations. The presence of these tight junctions in the cerebral microvessel endothelial cells aids in the restriction of movement of molecules and solutes into the brain. Fatty acids are important components of biological membranes, are precursors for the biosynthesis of phospholipids and sphingolipids and are utilized for mitochondrial β-oxidation. The brain is capable of synthesizing only a few fatty acids. Hence, most fatty acids must enter into the brain from the blood. Here we review current mechanisms of transport of free fatty acids into cells and describe how free fatty acids move from the blood into the brain. We discuss both diffusional as well as protein-mediated movement of fatty acids across biological membranes.
Collapse
Affiliation(s)
- Ryan W Mitchell
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, A307 Chown Building, 753 McDermot Avenue, Winnipeg, Manitoba, Canada R3E 0T6
| | | |
Collapse
|
5
|
Ogundare M, Theofilopoulos S, Lockhart A, Hall LJ, Arenas E, Sjövall J, Brenton AG, Wang Y, Griffiths WJ. Cerebrospinal fluid steroidomics: are bioactive bile acids present in brain? J Biol Chem 2009; 285:4666-79. [PMID: 19996111 DOI: 10.1074/jbc.m109.086678] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In this study we have profiled the free sterol content of cerebrospinal fluid by a combination of charge tagging and liquid chromatography-tandem mass spectrometry. Surprisingly, the most abundant cholesterol metabolites were found to be C(27) and C(24) intermediates of the bile acid biosynthetic pathways with structures corresponding to 7alpha-hydroxy-3-oxocholest-4-en-26-oic acid (7.170 +/- 2.826 ng/ml, mean +/- S.D., six subjects), 3beta-hydroxycholest-5-en-26-oic acid (0.416 +/- 0.193 ng/ml), 7alpha,x-dihydroxy-3-oxocholest-4-en-26-oic acid (1.330 +/- 0.543 ng/ml), and 7alpha-hydroxy-3-oxochol-4-en-24-oic acid (0.172 +/- 0.085 ng/ml), and the C(26) sterol 7alpha-hydroxy-26-norcholest-4-ene-3,x-dione (0.204 +/- 0.083 ng/ml), where x is an oxygen atom either on the CD rings or more likely on the C-17 side chain. The ability of intermediates of the bile acid biosynthetic pathways to activate the liver X receptors (LXRs) and the farnesoid X receptor was also evaluated. The acidic cholesterol metabolites 3beta-hydroxycholest-5-en-26-oic acid and 3beta,7alpha-dihydroxycholest-5-en-26-oic acid were found to activate LXR in a luciferase assay, but the major metabolite identified in this study, i.e. 7alpha-hydroxy-3-oxocholest-4-en-26-oic acid, was not an LXR ligand. 7Alpha-hydroxy-3-oxocholest-4-en-26-oic acid is formed from 3beta,7alpha-dihydroxycholest-5-en-26-oic acid in a reaction catalyzed by 3beta-hydroxy-Delta(5)-C(27)-steroid dehydrogenase (HSD3B7), which may thus represent a deactivation pathway of LXR ligands in brain. Significantly, LXR activation has been found to reduce the symptoms of Alzheimer disease (Fan, J., Donkin, J., and Wellington C. (2009) Biofactors 35, 239-248); thus, cholesterol metabolites may play an important role in the etiology of Alzheimer disease.
Collapse
Affiliation(s)
- Michael Ogundare
- Institute of Mass Spectrometry, School of Medicine, Grove Building, Swansea University, Singleton Park, Swansea SA2 8PP, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Chiu HC, Liang JS, Wang JS, Lu JF. Mutational analyses of Taiwanese kindred with X-linked adrenoleukodystrophy. Pediatr Neurol 2006; 35:250-6. [PMID: 16996397 DOI: 10.1016/j.pediatrneurol.2006.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 03/17/2006] [Accepted: 04/03/2006] [Indexed: 11/19/2022]
Abstract
X-linked adrenoleukodystrophy is a neurodegenerative disorder with highly variable clinical presentation, including the childhood cerebral form, adult form adrenomyeloneuropathy, and Addison disease. The biochemical hallmark of the disorder is the accumulation of saturated very long chain fatty acids in all tissues and body fluids. This accumulation results from mutations in the ABCD1 gene localized to Xq28. Using polymerase chain reaction and direct sequencing of deoxyribonucleic acid, we identified five novel mutations, including a microdeletion (1624 del ATC), a splicing site mutation (intervening sequence 1 [IVS1] -2a>c), and three missense mutations (1172 T>C, 1520 G>A, and 1754 T>C), from Taiwanese kindred with X-linked adrenoleukodystrophy. A polymorphism involving a single nucleotide deletion in the intervening sequence 5 (IVS5 -6 del c) of the ABCD1 gene, previously misattributed as a mutation in the Chinese population, was also identified. The dinucleotide deletion (1415 del AG) mutation common in Japan and Western countries was not found as frequently in the Chinese and Taiwanese populations. Instead, a higher mutation frequency was observed in exon 6 of the ABCD1 gene among Japanese, Chinese, and Taiwanese kindred with X-linked adrenoleukodystrophy, representing a potential mutational hotspot for future mutational screening among these Asian populations.
Collapse
Affiliation(s)
- Hou-Chang Chiu
- School of Medicine, Fu Jen Catholic University, Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
7
|
Berger J, Gärtner J. X-linked adrenoleukodystrophy: clinical, biochemical and pathogenetic aspects. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1721-32. [PMID: 16949688 DOI: 10.1016/j.bbamcr.2006.07.010] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 07/24/2006] [Indexed: 11/17/2022]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a clinically heterogeneous disorder ranging from the severe childhood cerebral form to asymptomatic persons. The overall incidence is 1:16,800 including hemizygotes as well as heterozygotes. The principal molecular defect is due to inborn mutations in the ABCD1 gene encoding the adrenoleukodystrophy protein (ALDP), a transporter in the peroxisome membrane. ALDP is involved in the transport of substrates from the cytoplasm into the peroxisomal lumen. ALDP defects lead to characteristic accumulation of saturated very long-chain fatty acids, the diagnostic disease marker. The pathogenesis is unclear. Different molecular mechanisms seem to induce inflammatory demyelination, neurodegeneration and adrenocortical insufficiency involving the primary ABCD1 defect, environmental factors and modifier genes. Important information has been derived from the X-ALD mouse models; species differences however complicate the interpretation of results. So far, bone marrow transplantation is the only effective long-term treatment for childhood cerebral X-ALD, however, only when performed at an early-stage of disease. Urgently needed novel therapeutic strategies are under consideration ranging from dietary approaches to gene therapy.
Collapse
Affiliation(s)
- Johannes Berger
- Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria.
| | | |
Collapse
|
8
|
Black PN, DiRusso CC. Yeast acyl-CoA synthetases at the crossroads of fatty acid metabolism and regulation. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1771:286-98. [PMID: 16798075 DOI: 10.1016/j.bbalip.2006.05.003] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 04/27/2006] [Accepted: 05/08/2006] [Indexed: 11/26/2022]
Abstract
Acyl-CoA synthetases (ACSs) are a family of enzymes that catalyze the thioesterification of fatty acids with coenzymeA to form activated intermediates, which play a fundamental role in lipid metabolism and homeostasis of lipid-related processes. The products of the ACS enzyme reaction, acyl-CoAs, are required for complex lipid synthesis, energy production via beta-oxidation, protein acylation and fatty-acid dependent transcriptional regulation. ACS enzymes are also necessary for fatty acid import into cells by the process of vectorial acylation. The yeast Saccharomyces cerevisiae has four long chain ACS enzymes designated Faa1p through Faa4p, one very long chain ACS named Fat1p and one ACS, Fat2p, for which substrate specificity has not been defined. Pivotal roles have been defined for Faa1p and Faa4p in fatty acid import, beta-oxidation and transcriptional control mediated by the transcription factors Oaf1p/Pip2p and Mga2p/Spt23p. Fat1p is a bifunctional protein required for fatty acid transport of long chain fatty acids, as well as activation of very long chain fatty acids. This review focuses on the various roles yeast ACS enzymes play in cellular metabolism targeting especially the functions of specific isoforms in fatty acid transport, metabolism and energy production. We will also present evidence from directed experimentation, as well as information obtained by mining the molecular biological databases suggesting the long chain ACS enzymes are required in protein acylation, vesicular trafficking, signal transduction pathways and cell wall synthesis.
Collapse
Affiliation(s)
- Paul N Black
- Center for Metabolic Disease, Ordway Research Institute and Center for Cardiovascular Sciences, 150 New Scotland Ave., Albany Medical College, Albany, NY 12208, USA
| | | |
Collapse
|
9
|
Zheng Y, Zhou ZM, Min X, Li JM, Sha JH. Identification and characterization of the BGR-like gene with a potential role in human testicular development/spermatogenesis. Asian J Androl 2005; 7:21-32. [PMID: 15685348 DOI: 10.1111/j.1745-7262.2005.00014.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
AIM To investigate the roles of the BGR-like gene in testicular development/spermatogenesis. METHODS A human testis cDNA microarray was hybridized with probes from human adult testes and embryo testes. The differentially expressed clones were sequenced and analyzed. Expression of the BGR-like gene was analyzed by reverse transcription-polymerase chain reaction (RT-PCR). RESULTS A new gene exhibiting 50-fold difference in expression level between adult and fetal human testes was cloned and named the BGR-like gene. The cDNA consisted of 2500 nucleotides and had an open reading frame of 1437 nucleotides encoding a putative protein of 497 amino acid residues. Homologous comparison showed that the BGR-like gene was a new alternative splicing variant of the BGR gene and had sequence homology with the bubblegum gene of human, mouse, rat and Drosophila. Protein motif analysis of the BGR-like gene revealed that it contained a conserved adenosine monophosphate (AMP)-binding domain and a fatty acyl-CoA synthetase signature motif which existed in all acyl-CoA synthetases. The BGR-like gene transcript was imperceptibly expressed in human fetal testes, highly in human adult testes and moderately in elderly testes and human Leydig cells. RT-PCR-based tissue distribution experiments showed that the BGR-like gene was exclusively expressed in testes and was a testes-specific isoform of the BGR gene. A BGR-like gene transcript was not detected in some azoospermic testes. CONCLUSION The BGR-like gene may play an important role in spermatogenesis/testicular development and may be correlated with male infertility.
Collapse
Affiliation(s)
- Ying Zheng
- Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | |
Collapse
|
10
|
DiRusso CC, Li H, Darwis D, Watkins PA, Berger J, Black PN. Comparative Biochemical Studies of the Murine Fatty Acid Transport Proteins (FATP) Expressed in Yeast. J Biol Chem 2005; 280:16829-37. [PMID: 15699031 DOI: 10.1074/jbc.m409598200] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The fatty acid transport protein (FATP) family is a group of proteins that are predicted to be components of specific fatty acid trafficking pathways. In mammalian systems, six different isoforms have been identified, which function in the import of exogenous fatty acids or in the activation of very long-chain fatty acids. This has led to controversy as to whether these proteins function as membrane-bound fatty acid transporters or as acyl-CoA synthetases, which activate long-chain fatty acids concomitant with transport. The yeast FATP orthologue, Fat1p, is a dual functional protein and is required for both the import of long-chain fatty acids and the activation of very long-chain fatty acids; these activities intrinsic to Fat1p are separable functions. To more precisely define the roles of the different mammalian isoforms in fatty acid trafficking, the six murine proteins (mmFATP1-6) were expressed and characterized in a genetically defined yeast strain, which cannot transport long-chain fatty acids and has reduced long-chain acyl-CoA synthetase activity (fat1Delta faa1Delta). Each isoform was evaluated for fatty acid transport, fatty acid activation (using C18:1, C20:4, and C24:0 as substrates), and accumulation of very long-chain fatty acids. Murine FATP1, -2, and -4 complemented the defects in fatty acid transport and very long-chain fatty acid activation associated with a deletion of the yeast FAT1 gene; mmFATP3, -5, and -6 did not complement the transport function even though each was localized to the yeast plasma membrane. Both mmFATP3 and -6 activated C20:4 and C20:4, while the expression of mmFATP5 did not substantially increase acyl-CoA synthetases activities using the substrates tested. These data support the conclusion that the different mmFATP isoforms play unique roles in fatty acid trafficking, including the transport of exogenous long-chain fatty acids.
Collapse
Affiliation(s)
- Concetta C DiRusso
- Ordway Research Institute, Center for Metabolic Disease, Albany, New York 12208, USA
| | | | | | | | | | | |
Collapse
|
11
|
Pei Z, Fraisl P, Berger J, Jia Z, Forss-Petter S, Watkins PA. Mouse very long-chain Acyl-CoA synthetase 3/fatty acid transport protein 3 catalyzes fatty acid activation but not fatty acid transport in MA-10 cells. J Biol Chem 2004; 279:54454-62. [PMID: 15469937 DOI: 10.1074/jbc.m410091200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The family of proteins that includes very long-chain acyl-CoA synthetases (ACSVL) consists of six members. These enzymes have also been designated fatty acid transport proteins. We cloned full-length mouse Acsvl3 cDNA and characterized its protein product ACSVL3/fatty acid transport protein 3. The predicted amino acid sequence contains two highly conserved motifs characteristic of acyl-CoA synthetases. Northern blot analysis revealed that the mouse Acsvl3 mRNA is highly expressed in adrenal gland, testis, and ovary, with lower expression in the brain of adult mice. A developmental Northern blot revealed that Acsvl3 mRNA levels were significantly higher in embryonic mouse brain (embryonic days 12-14) than in newborn or adult mice, suggesting a possible role in nervous system development. Immunohistochemistry revealed high ACSVL3 expression in adrenal cortical cells, spermatocytes and interstitial cells of the testis, theca cells of the ovary, cerebral cortical neurons, and cerebellar Purkinje cells. Endogenous ACSVL3 was found primarily in mitochondria of MA-10 and Neuro2a cells by both Western blot analysis of subcellular fractions and immunofluorescence analysis. In MA-10 cells, loss-of-function studies using RNA interference confirmed that endogenous ACSVL3 is an acyl-CoA synthetase capable of activating both long-chain (C16:0) and very long-chain (C24:0) fatty acids. However, despite decreased acyl-CoA synthetase activity, initial rates of fatty acid uptake were unaffected by knockdown of Acsvl3 expression in MA-10 cells. These studies cast doubt on the designation of ACSVL3 as a fatty acid transport protein.
Collapse
Affiliation(s)
- Zhengtong Pei
- Kennedy Krieger Research Institute and Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
12
|
Fraisl P, Forss-Petter S, Zigman M, Berger J. Murine bubblegum orthologue is a microsomal very long-chain acyl-CoA synthetase. Biochem J 2004; 377:85-93. [PMID: 14516277 PMCID: PMC1223850 DOI: 10.1042/bj20031062] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2003] [Revised: 09/26/2003] [Accepted: 09/30/2003] [Indexed: 11/17/2022]
Abstract
It has been suggested that a gene termed bubblegum (Bgm), encoding an acyl-CoA synthetase, could be involved in the pathogenesis of the inherited neurodegenerative disorder X-ALD (X-linked adrenoleukodystrophy). The precise function of the ALDP (ALD protein) still remains unclear. Aldp deficiency in mammals and Bgm deficiency in Drosophila led to accumulation of VLCFAs (very long-chain fatty acids). As a first step towards studying this interaction in wild-type versus Aldp-deficient mice, we analysed the expression pattern of the murine orthologue of the Bgm gene. In contrast with the ubiquitously expressed Ald gene, Bgm expression is restricted to the tissues that are affected by X-ALD such as brain, testis and adrenals. During mouse brain development, Bgm mRNA was first detected by Northern-blot analysis on embryonic day 18 and increased steadily towards adulthood, whereas the highest level of Ald mRNA was found on embryonic day 12 and decreased gradually during differentiation. Protein fractionation and confocal laser imaging of Bgm-green fluorescent protein fusion proteins revealed a microsomal localization that was different from peroxisomes (where Aldp is detected), endoplasmic reticulum and Golgi. Mouse Bgm showed acyl-CoA synthetase activity towards a VLCFA substrate in addition to LCFAs, and this activity was enriched in the microsomal compartment. Speculating that Bgm expression could be regulated by Ald deficiency, we compared the abundance of Bgm mRNA in wild-type and Ald knockout mice but observed no difference. Although mouse Bgm is capable of activating VLCFA, we conclude that a direct interaction between the mouse Bgm and the Aldp seems unlikely.
Collapse
Affiliation(s)
- Peter Fraisl
- Division of Neuroimmunology, Brain Research Institute, Vienna University Medical School, Spitalgasse 4, 1090 Vienna, Austria
| | | | | | | |
Collapse
|
13
|
Abstract
The synthesis and excretion of bile acids comprise the major pathway of cholesterol catabolism in mammals. Synthesis provides a direct means of converting cholesterol, which is both hydrophobic and insoluble, into a water-soluble and readily excreted molecule, the bile acid. The biosynthetic steps that accomplish this transformation also confer detergent properties to the bile acid, which are exploited by the body to facilitate the secretion of cholesterol from the liver. This role in the elimination of cholesterol is counterbalanced by the ability of bile acids to solubilize dietary cholesterol and essential nutrients and to promote their delivery to the liver. The synthesis of a full complement of bile acids requires 17 enzymes. The expression of selected enzymes in the pathway is tightly regulated by nuclear hormone receptors and other transcription factors, which ensure a constant supply of bile acids in an ever changing metabolic environment. Inherited mutations that impair bile acid synthesis cause a spectrum of human disease; this ranges from liver failure in early childhood to progressive neuropathy in adults.
Collapse
Affiliation(s)
- David W Russell
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9046, USA.
| |
Collapse
|
14
|
Pei Z, Oey NA, Zuidervaart MM, Jia Z, Li Y, Steinberg SJ, Smith KD, Watkins PA. The acyl-CoA synthetase "bubblegum" (lipidosin): further characterization and role in neuronal fatty acid beta-oxidation.. J Biol Chem 2003; 278:47070-8. [PMID: 12975357 DOI: 10.1074/jbc.m310075200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acyl-CoA synthetases play a pivotal role in fatty acid metabolism, providing activated substrates for fatty acid catabolic and anabolic pathways. Acyl-CoA synthetases comprise numerous proteins with diverse substrate specificities, tissue expression patterns, and subcellular localizations, suggesting that each enzyme directs fatty acids toward a specific metabolic fate. We reported that hBG1, the human homolog of the acyl-CoA synthetase mutated in the Drosophila mutant "bubblegum," belongs to a previously unidentified enzyme family and is capable of activating both long- and very long-chain fatty acid substrates. We now report that when overexpressed, hBG1 can activate diverse saturated, monosaturated, and polyunsaturated fatty acids. Using in situ hybridization and immunohistochemistry, we detected expression of mBG1, the mouse homolog of hBG1, in cerebral cortical and cerebellar neurons and in steroidogenic cells of the adrenal gland, testis, and ovary. The expression pattern and ability of BG1 to activate very long-chain fatty acids implicates this enzyme in the pathogenesis of X-linked adrenoleukodystrophy. In neuron-derived Neuro2a cells, mBG1 co-sedimented with mitochondria and was found in small vesicular structures located in close proximity to mitochondria. RNA interference was used to decrease mBG1 expression in Neuro2a cells and led to a 30-35% decrease in activation and beta-oxidation of the long-chain fatty acid, palmitate. These results suggest that in Neuro2a cells, mBG1-activated long-chain fatty acids are directed toward mitochondrial degradation. mBG1 appears to play a minor role in very long-chain fatty acid activation in these cells, indicating that other acyl-CoA synthetases are necessary for very long-chain fatty acid metabolism in Neuro2a cells.
Collapse
Affiliation(s)
- Zhengtong Pei
- Kennedy Krieger Institute, Johns Hopkins University School of Medicine, 707 N. Broadway, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Falany CN, Xie X, Wheeler JB, Wang J, Smith M, He D, Barnes S. Molecular cloning and expression of rat liver bile acid CoA ligase. J Lipid Res 2002; 43:2062-71. [PMID: 12454267 DOI: 10.1194/jlr.m200260-jlr200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Bile acid CoA ligase (BAL) is responsible for catalyzing the first step in the conjugation of bile acids with amino acids. Sequencing of putative rat liver BAL cDNAs identified a cDNA (rBAL-1) possessing a 51 nucleotide 5'-untranslated region, an open reading frame of 2,070 bases encoding a 690 aa protein with a molecular mass of 75,960 Da, and a 138 nucleotide 3'-nontranslated region followed by a poly(A) tail. Identity of the cDNA was established by: 1) the rBAL-1 open reading frame encoded peptides obtained by chemical sequencing of the purified rBAL protein; 2) expressed rBAL-1 protein comigrated with purified rBAL during SDS-polyacrylamide gel electrophoresis; and 3) rBAL-1 expressed in insect Sf9 cells had enzymatic properties that were comparable to the enzyme isolated from rat liver. Evidence for a relationship between fatty acid and bile acid metabolism is suggested by specific inhibition of rBAL-1 by cis-unsaturated fatty acids and its high homology to a human very long chain fatty acid CoA ligase. In summary, these results indicate that the cDNA for rat liver BAL has been isolated and expression of the rBAL cDNA in insect Sf9 cells results in a catalytically active enzyme capable of utilizing several different bile acids as substrates.
Collapse
Affiliation(s)
- Charles N Falany
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Brinkmann JFF, Abumrad NA, Ibrahimi A, van der Vusse GJ, Glatz JFC. New insights into long-chain fatty acid uptake by heart muscle: a crucial role for fatty acid translocase/CD36. Biochem J 2002; 367:561-70. [PMID: 12088505 PMCID: PMC1222912 DOI: 10.1042/bj20020747] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2002] [Revised: 06/24/2002] [Accepted: 06/28/2002] [Indexed: 01/30/2023]
Abstract
Long-chain fatty acids are an important source of energy for several cell types, in particular for the heart muscle cell. Three different proteins, fatty acid translocase (FAT)/CD36, fatty acid transport protein and plasma membrane fatty acid binding protein, have been identified as possible membrane fatty acid transporters. Much information has been accumulated recently about the fatty acid transporting function of FAT/CD36. Several experimental models to study the influence of altered FAT/CD36 expression on fatty acid homoeostasis have been identified or developed, and underscore the importance of FAT/CD36 for adequate fatty acid transport. These models include the FAT/CD36 null mouse, the spontaneously hypertensive rat and FAT/CD36-deficient humans. The fatty acid transporting role of FAT/CD36 is further demonstrated in mice overexpressing muscle-specific FAT/CD36, and in transgenic mice generated using a genetic-rescue approach. In addition, a wealth of information has been gathered about the mechanisms that regulate FAT/CD36 gene expression and the presence of functional FAT/CD36 on the plasma membrane. Available data also indicate that FAT/CD36 may have an important role in the aetiology of cardiac disease, especially cardiac hypertrophy and diabetic cardiomyopathy. This review discusses our current knowledge of the three candidate fatty acid transporters, the metabolic consequences of alterations in FAT/CD36 levels in different models, and the mechanisms that have been identified for FAT/CD36 regulation.
Collapse
Affiliation(s)
- Joep F F Brinkmann
- Cardiovascular Research Institute Maastricht (CARIM), Department of Physiology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
17
|
Heinzer AK, Kemp S, Lu JF, Watkins PA, Smith KD. Mouse very long-chain acyl-CoA synthetase in X-linked adrenoleukodystrophy. J Biol Chem 2002; 277:28765-73. [PMID: 12048192 DOI: 10.1074/jbc.m203053200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disorder characterized by accumulation of very long-chain fatty acids (VLCFA). This accumulation has been attributed to decreased VLCFA beta-oxidation and peroxisomal very long-chain acyl-CoA synthetase (VLCS) activity. The X-ALD gene, ABCD1, encodes a peroxisomal membrane ATP binding cassette transporter, ALDP, that is hypothesized to affect VLCS activity in peroxisomes by direct interaction with the VLCS enzyme. Recently, a VLCS gene that encodes a protein with significant sequence identity to known rat and human peroxisomal VLCS protein has been identified in mice. We find that the mouse VLCS gene (Vlcs) encodes an enzyme (Vlcs) with VLCS activity that localizes to peroxisomes and is expressed in X-ALD target tissues. We show that the expression of Vlcs in the peroxisomes of X-ALD mouse fibroblasts improves VLCFA beta-oxidation in these cells, implying a role for this enzyme in the biochemical abnormality of X-ALD. X-ALD mice, which accumulate VLCFA in tissues, show no change in the expression of Vlcs, the subcellular localization of Vlcs, or general peroxisomal VLCS activity. These observations imply that ALDP is not necessary for the proper expression or localization of Vlcs protein, and the control of VLCFA levels does not depend on the direct interaction of Vlcs and ALDP.
Collapse
Affiliation(s)
- Ann K Heinzer
- Kennedy Krieger Institute, the Department of Pediatrics, The Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
18
|
Stremmel W, Pohl L, Ring A, Herrmann T. A new concept of cellular uptake and intracellular trafficking of long-chain fatty acids. Lipids 2001; 36:981-9. [PMID: 11724471 DOI: 10.1007/s11745-001-0809-2] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fatty acids are the main structural and energy sources of the human body. Within the organism, they are presented to cells as fatty acid:albumin complexes. Dissociation from albumin represents the first step of the cellular uptake process, involving membrane proteins with high affinity for fatty acids, e.g., fatty acid translocase (FAT/CD 36) or the membrane fatty acid-binding protein (FABPpm). According to the thus created transmembrane concentration gradient, uncharged fatty acids can flip-flop from the outer leaflet across the phospholipid bilayer. At the cytosolic surface of the plasma membrane, fatty acids can associate with the cytosolic FABP (FABP(c)) or with caveolin-1. Caveolins are constituents of caveolae, which are proposed to serve as lipid delivery vehicles for subcellular organelles. It is not known whether protein (FABP(c))- and lipid (caveolae)-mediated intracellular trafficking of fatty acids operates in conjunction or in parallel. Channeling fatty acids to the different metabolic pathways requires activation to acyl-CoA. For this process, the family of fatty acid transport proteins (FATP 1-5/6) might be relevant because they have been shown to possess acyl-CoA synthetase activity. Their variable N-terminal signaling sequences suggest that they might be targeted to specific organelles by anchoring in the phospholipid bilayer of the different subcellular membranes. At the highly conserved cytosolic AMP-binding site of FATP, fatty acids are activated to acyl-CoA for subsequent metabolic disposition by specific organelles. Overall, fatty acid uptake represents a continuous flow involving the following: dissociation from albumin by membrane proteins with high affinity for fatty acids; passive flip-flop across the phospholipid bilayer; binding to FABP(C) and caveolin-1 at the cytosolic plasma membrane; and intracellular trafficking via FABP(c) and/or caveolae to sites of metabolic disposition. The uptake process is terminated after activation to acyl-CoA by the members of the FATP family targeted intracellularly to different organelles.
Collapse
Affiliation(s)
- W Stremmel
- Department of Gastroenterology, Ruprecht-Karls-University, 69115 Heidelberg, Germany.
| | | | | | | |
Collapse
|
19
|
Dirusso CC, Connell EJ, Faergeman NJ, Knudsen J, Hansen JK, Black PN. Murine FATP alleviates growth and biochemical deficiencies of yeast fat1Delta strains. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:4422-33. [PMID: 10880966 DOI: 10.1046/j.1432-1327.2000.01489.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Saccharomyces cerevisiae is an ideal model eukaryote for studying fatty-acid transport. Yeast are auxotrophic for unsaturated fatty acids when grown under hypoxic conditions or when the fatty-acid synthase inhibitor cerulenin is included in the growth media. The FAT1 gene encodes a protein, Fat1p, which is required for maximal levels of fatty-acid import and has an acyl CoA synthetase activity specific for very-long-chain fatty acids suggesting this protein plays a pivotal role in fatty-acid trafficking. In the present work, we present evidence that Fat1p and the murine fatty-acid transport protein (FATP) are functional homologues. FAT1 is essential for growth under hypoxic conditions and when cerulenin was included in the culture media in the presence or absence of unsaturated fatty acids. FAT1 disruptants (fat1Delta) fail to accumulate the fluorescent long-chain fatty acid fatty-acid analogue 4, 4-difluoro-5-methyl-4-bora-3a,4a-diaza-s-indacene-3-do decanoic acid (C1-BODIPY-C12), have a greatly diminished capacity to transport exogenous long-chain fatty acids, and have very long-chain acyl CoA synthetase activities that were 40% wild-type. The depression in very long-chain acyl CoA synthetase activities were not apparent in cells grown in the presence of oleate. Additionally, beta-oxidation of exogenous long-chain fatty acids is depressed to 30% wild-type levels. The reduction of beta-oxidation was correlated with a depression of intracellular oleoyl CoA levels in the fat1Delta strain following incubation of the cells with exogenous oleate. Expression of either Fat1p or murine FATP from a plasmid in a fat1Delta strain restored these phenotypic and biochemical deficiencies. Fat1p and FATP restored growth of fat1Delta cells in the presence of cerulenin and under hypoxic conditions. Furthermore, fatty-acid transport was restored and was found to be chain length specific: octanoate, a medium-chain fatty acid was transported in a Fat1p- and FATP-independent manner while the long-chain fatty acids myristate, palmitate, and oleate required either Fat1p or FATP for maximal levels of transport. Lignoceryl CoA synthetase activities were restored to wild-type levels in fat1Delta strains expressing either Fat1p or FATP. Fat1p or FATP also restored wild-type levels of beta-oxidation of exogenous long-chain fatty acids. These data show that Fat1p and FATP are functionally equivalent when expressed in yeast and play a central role in fatty-acid trafficking.
Collapse
Affiliation(s)
- C C Dirusso
- Center for Cardiovascular Sciences, Albany Medical College, NY 12208-3479, USA
| | | | | | | | | | | |
Collapse
|
20
|
Smith BT, Sengupta TK, Singh I. Intraperoxisomal localization of very-long-chain fatty acyl-CoA synthetase: implication in X-adrenoleukodystrophy. Exp Cell Res 2000; 254:309-20. [PMID: 10640429 DOI: 10.1006/excr.1999.4757] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
X-adrenoleukodystrophy (X-ALD) is a demyelinating disorder characterized by the accumulation of saturated very-long-chain (VLC) fatty acids (>C(22:0)) due to the impaired activity of VLC acyl-CoA synthetase (VLCAS). The gene responsible for X-ALD was found to code for a peroxisomal integral membrane protein (ALDP) that belongs to the ATP binding cassette superfamily of transporters. To understand the function of ALDP and how ALDP and VLCAS interrelate in the peroxisomal beta-oxidation of VLC fatty acids we investigated the peroxisomal topology of VLCAS protein. Antibodies raised against a peptide toward the C-terminus of VLCAS as well as against the N-terminus were used to define the intraperoxisomal localization and orientation of VLCAS in peroxisomes. Indirect immunofluorescent and electron microscopic studies show that peroxisomal VLCAS is localized on the matrix side. This finding was supported by protease protection assays and Western blot analysis of isolated peroxisomes. To further address the membrane topology of VLCAS, Western blot analysis of total membranes or integral membranes prepared from microsomes and peroxisomes indicates that VLCAS is a peripheral membrane-associated protein in peroxisomes, but an integral membrane in microsomes. Moreover, peroxisomes isolated from cultured skin fibroblasts from X-ALD patients with a mutation as well as a deletion in ALDP showed a normal amount of VLCAS. The consequence of VLCAS being localized to the luminal side of peroxisomes suggests that ALDP may be involved in stabilizing VLCAS activity, possibly through protein-protein interactions, and that loss or alterations in these interactions may account for the observed loss of peroxisomal VLCAS activity in X-ALD.
Collapse
Affiliation(s)
- B T Smith
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | |
Collapse
|
21
|
Steinberg SJ, Wang SJ, McGuinness MC, Watkins PA. Human liver-specific very-long-chain acyl-coenzyme A synthetase: cDNA cloning and characterization of a second enzymatically active protein. Mol Genet Metab 1999; 68:32-42. [PMID: 10479480 DOI: 10.1006/mgme.1999.2883] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Activation of fatty acids, catalyzed by acyl-coenzyme A (acyl-CoA) synthetases, is required for their subsequent metabolism. Peroxisomes and microsomes contain very-long-chain acyl-CoA synthetases (VLCSs) capable of activating fatty acids with a chain length of 22 or more carbons. Decreased peroxisomal VLCS activity is, in part, responsible for the biochemical pathology in X-linked adrenoleukodystrophy (X-ALD), illustrating the importance of VLCSs in cellular fatty acid homeostasis. We previously cloned two human genes encoding proteins homologous to rat peroxisomal VLCS; one (hVLCS) is the human ortholog to the rat VLCS gene and another (hVLCS-H1) encodes a related heart-specific protein. Here, we report the cloning of a third gene (hVLCS-H2) and characterization of its protein product. The hVLCS-H2 gene is located on human chromosome 19 and encodes a 690-amino-acid protein. The amino acid sequence of hVLCS-H2 is 44-45% identical and 67-69% similar to those of both hVLCS and hVLCS-H1. COS-1 cells transiently overexpressing hVLCS-H2 activated the very-long-chain fatty acid lignocerate (C24:0) at a rate >1.5-fold higher than that of nontransfected cells (P < 0.002). The hVLCS-H2-dependent activation of long- and branched-chain fatty acids following transient transfection was less striking. However, hVLCS-H2-dependent acyl-CoA synthetase activity with long- and very-long-chain fatty acid substrates was detected in COS-1 cells stably expressing hVLCS-H2. For all substrates tested (C18:0, C20:0, C24:0, C26:0), the hVLCS-H2 catalyzed activity was significantly increased (P < 0.01 to P < 0.0001). By both Northern analysis and reverse transcription polymerase chain reaction, hVLCS-H2 is expressed primarily in liver. Indirect immunofluorescence of COS-1 cells or human hepatoma-derived HepG2 cells expressing epitope-tagged hVLCS-H2 revealed that the protein was associated with the endoplasmic reticulum but not with peroxisomes. Thus, the primary role of hVLCS-H2 is likely to be in fatty acid elongation or complex lipid synthesis rather than in degradation.
Collapse
Affiliation(s)
- S J Steinberg
- Kennedy Krieger Institute and Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
22
|
Watkins PA, Pevsner J, Steinberg SJ. Human very long-chain acyl-CoA synthetase and two human homologs: initial characterization and relationship to fatty acid transport protein. Prostaglandins Leukot Essent Fatty Acids 1999; 60:323-8. [PMID: 10471116 DOI: 10.1016/s0952-3278(99)80007-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Several human genes with a high degree of homology to rat very long-chain acyl-CoA synthetase (rVLCS) and mouse fatty acid transport protein (mFATP) were identified. Full-length cDNA clones were obtained for three genes, and predicted amino acid sequences were generated. Initial characterization indicated that one gene was most likely hVLCS, the human ortholog of rVLCS. The other two (hVLCS-H1 and hVLCS-H2) were more closely related to rVLCS than to mFATP. Phylogenetic analysis of amino acid sequences confirmed that hVLCS-H1 and hVLCS-H2 were evolutionarily closer to VLCSs than FATPs. Alignment of predicted amino acid sequences of human, rat and mouse VLCSs and FATPs revealed the existence of two highly conserved motifs. While one motif is also present in long-chain acyl-CoA synthetases, the other serves to distinguish the VLCS/FATP family from the long-chain synthetase family. Elucidation of the biochemical functions of all VLCS/FATP family members should provide new insights into cellular fatty acid metabolism.
Collapse
Affiliation(s)
- P A Watkins
- Kennedy Krieger Institute, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
23
|
Steinberg SJ, Wang SJ, Kim DG, Mihalik SJ, Watkins PA. Human very-long-chain acyl-CoA synthetase: cloning, topography, and relevance to branched-chain fatty acid metabolism. Biochem Biophys Res Commun 1999; 257:615-21. [PMID: 10198260 DOI: 10.1006/bbrc.1999.0510] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Very-long-chain acyl-CoA synthetases (VLCS) activate very-long-chain fatty acids (VLCFA) containing 22 or more carbons to their CoA derivatives. We cloned the human ortholog (hVLCS) of the gene encoding the rat liver enzyme (rVLCS). Both hVLCS and rVLCS contain 620 amino acids, are expressed primarily in liver and kidney, and have a potential peroxisome targeting signal 1 (-LKL) at their carboxy termini. When expressed in COS-1 cells, hVLCS activated the VLCFA lignoceric acid (C24:0), a long-chain fatty acid (C16:0), and two branched-chain fatty acids, phytanic acid and pristanic acid. Immunofluorescence and immunoblot studies localized hVLCS to both peroxisomes and endoplasmic reticulum. In peroxisomes of HepG2 cells, hVLCS was topographically oriented facing the matrix and not the cytoplasm. This orientation, coupled with the observation that hVLCS activates branched-chain fatty acids, suggests that hVLCS could play a role in the intraperoxisomal reactivation of pristanic acid produced via alpha-oxidation of phytanic acid.
Collapse
Affiliation(s)
- S J Steinberg
- Kennedy Krieger Research Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | | | | | | | | |
Collapse
|