1
|
Hemorphins-From Discovery to Functions and Pharmacology. Molecules 2021; 26:molecules26133879. [PMID: 34201982 PMCID: PMC8270332 DOI: 10.3390/molecules26133879] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 01/31/2023] Open
Abstract
During the last three decades, a variety of different studies on bioactive peptides that are opioid receptor ligands, have been carried out, with regard to their isolation and identification, as well as their molecular functions in living organisms. Thus, in this review, we would like to summarize the present state-of-the art concerning hemorphins, methodological aspects of their identification, and their potential role as therapeutic agents. We have collected and discussed articles describing hemorphins, from their discovery up until now, thus presenting a very wide spectrum of their characteristic and applications. One of the major assets of the present paper is a combination of analytical and pharmacological aspects of peptides described by a team who participated in the initial research on hemorphins. This review is, in part, focused on the analysis of endogenous opioid peptides in biological samples using advanced techniques, description of the identification of synthetic/endogenous hemorphins, their involvement in pharmacology, learning, pain and other function. Finally, the part regarding hemorphin analogues and their synthesis, has been added.
Collapse
|
2
|
Wei F, Zhao L, Jing Y. Hemoglobin-derived peptides and mood regulation. Peptides 2020; 127:170268. [PMID: 32070683 DOI: 10.1016/j.peptides.2020.170268] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022]
Abstract
Evidence accumulated over the past decades has revealed that red blood cells and hemoglobin (Hb) in the blood play important roles in modulating moods and emotions. The number of red blood cells affects the mood. Hb is the principal content in the red blood cells besides water. Denatured Hb is hydrolyzed to produce bioactive peptides. RVD-hemopressin α (RVD-Hpα), which is a fragment of α-chain (95-103) in Hb, functions as a negative allosteric modulator of cannabinoid receptor 1 and a positive allosteric modulator of cannabinoid receptor 2. Hemorphins, which are fragments of β-chain in Hb, exert their effects on opioid receptors. Two hemorphins, namely, LVV-hemorphin-6 and LVV-hemorphin-7, could induce anxiolytic-like effects. The use of Hb-derived bioactive peptides for the treatment of mood disorders is desirable due to cannabinoid-opioid cross modulation and the critical roles of the two systems in physiological processes, such as memory, mood and emotion.
Collapse
Affiliation(s)
- Fengmei Wei
- Department of Physiology and Psychology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Long Zhao
- Department of Orthopaedics, Lanzhou University First Affiliated Hospital, Lanzhou, Gansu, 730000, PR China
| | - Yuhong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, Gansu, 730000, PR China.
| |
Collapse
|
3
|
da Cruz KR, Ianzer D, Turones LC, Reis LL, Camargo-Silva G, Mendonça MM, da Silva ES, Pedrino GR, de Castro CH, Costa EA, Xavier CH. Behavioral effects evoked by the beta globin-derived nonapeptide LVV-H6. Peptides 2019; 115:59-68. [PMID: 30890354 DOI: 10.1016/j.peptides.2019.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/04/2019] [Accepted: 03/12/2019] [Indexed: 02/05/2023]
Abstract
LVV-hemorphin-6 (LVV-h6) is bioactive peptide and is a product of the degradation of hemoglobin. Since LVV-h6 effects are possibly mediated by opioid or AT4/IRAP receptors, we hypothesized that LVV-h6 would modify behavior. We evaluated whether LVV-h6 affects: i) anxiety-like behavior and locomotion; ii) depression-like behavior; iii) cardiovascular and neuroendocrine reactivity to emotional stress. Male Wistar rats ( ± 300 g) received LVV-h6 (153 nmol/kg i.p.) or vehicle (NaCl 0.9% i.p.). We used: i) open field (OF) test for locomotion; ii) elevated plus maze (EPM) for anxiety-like behavior; iii) forced swimming test (FST) for depression-like behavior and iv) air jet for cardiovascular and neuroendocrine reactivity to stress. Diazepam (2 mg/kg i.p.) and imipramine (15 mg/kg i.p.) were used as positive control for EPM and FST, respectively. To evaluate the LVV-h6 mechanisms, we used: the antagonist of oxytocin (OT) receptors (atosiban - ATS 1 and 0.1 mg/kg i.p.); the inhibitor of tyrosine hydroxylase (Alpha-methyl-p-tyrosine - AMPT 200 mg/kg i.p.) to investigate the involvement of catecholaminergic paths; and the antagonist of opioid receptors (naltrexone - NTX 0.3 mg/kg s.c.). We found that LVV-h6: i) evoked anxiolytic-like effect; ii) evoked antidepressant-like effect in the FST; and iii) did not change the locomotion, neuroendocrine and cardiovascular responses to stress. The LVV-h6 anxiolytic-like effect was not reverted by ATS and AMPT. However, the antidepressant effects were reverted only by NTX. Hence, our findings demonstrate that LVV-h6 modulates anxiety-like behavior by routes that are not oxytocinergic, catecholaminergic or opioid. The antidepressant-like effects of LVV-h6 rely on opioid pathways.
Collapse
Affiliation(s)
- Kellen Rosa da Cruz
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Danielle Ianzer
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Larissa Córdova Turones
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Lilian Liz Reis
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Gabriel Camargo-Silva
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Michelle Mendanha Mendonça
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Elder Sales da Silva
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Gustavo Rodrigues Pedrino
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Carlos Henrique de Castro
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Elson Alves Costa
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Carlos H Xavier
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
4
|
Domenger D, Cudennec B, Kouach M, Touche V, Landry C, Lesage J, Gosselet F, Lestavel S, Goossens JF, Dhulster P, Ravallec R. Food-Derived Hemorphins Cross Intestinal and Blood-Brain Barriers In Vitro. Front Endocrinol (Lausanne) 2018; 9:159. [PMID: 29692758 PMCID: PMC5903475 DOI: 10.3389/fendo.2018.00159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 03/26/2018] [Indexed: 01/08/2023] Open
Abstract
A qualitative study is presented, where the main question was whether food-derived hemorphins, i.e., originating from digested alimentary hemoglobin, could pass the intestinal barrier and/or the blood-brain barrier (BBB). Once absorbed, hemorphins are opioid receptor (OR) ligands that may interact with peripheral and central OR and have effects on food intake and energy balance regulation. LLVV-YPWT (LLVV-H4), LVV-H4, VV-H4, VV-YPWTQRF (VV-H7), and VV-H7 hemorphins that were previously identified in the 120 min digest resulting from the simulated gastrointestinal digestion of hemoglobin have been synthesized to be tested in in vitro models of passage of IB and BBB. LC-MS/MS analyses yielded that all hemorphins, except the LLVV-H4 sequence, were able to cross intact the human intestinal epithelium model with Caco-2 cells within 5-60 min when applied at 5 mM. Moreover, all hemorphins crossed intact the human BBB model with brain-like endothelial cells (BLEC) within 30 min when applied at 100 µM. Fragments of these hemorphins were also detected, especially the YPWT common tetrapeptide that retains OR-binding capacity. A cAMP assay performed in Caco-2 cells indicates that tested hemorphins behave as OR agonists in these cells by reducing cAMP production. We further provide preliminary results regarding the effects of hemorphins on tight junction proteins, specifically here the claudin-4 that is involved in paracellular permeability. All hemorphins at 100 µM, except the LLVV-H4 peptide, significantly decreased claudin-4 mRNA levels in the Caco-2 intestinal model. This in vitro study is a first step toward demonstrating food-derived hemorphins bioavailability which is in line with the growing body of evidence supporting physiological functions for food-derived peptides.
Collapse
Affiliation(s)
- Dorothée Domenger
- Université de Lille INRA, ISA, Université d’Artois, Université Littoral Côte d’Opale, EA 7394-ICV Institut Charles Viollette, Lille, France
| | - Benoit Cudennec
- Université de Lille INRA, ISA, Université d’Artois, Université Littoral Côte d’Opale, EA 7394-ICV Institut Charles Viollette, Lille, France
- *Correspondence: Benoit Cudennec, ; Rozenn Ravallec,
| | - Mostafa Kouach
- Plateau de Spectrométrie de Masse “PSM-GRITA”, EA 7365, Faculté de Pharmacie, Université de Lille, Lille, France
| | - Véronique Touche
- Université de Lille INSERM, CHU Lille, Institut Pasteur de Lille, U1011 – EGID, Lille, France
| | - Christophe Landry
- Université d’Artois EA 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Lens, France
| | - Jean Lesage
- Université Lille Nord de France, Unité Environnement Périnatal et Croissance EA 4489, Équipe dénutritions maternelles périnatales, Université Lille 1, Villeneuve-d’Ascq, France
| | - Fabien Gosselet
- Université d’Artois EA 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Lens, France
| | - Sophie Lestavel
- Université de Lille INSERM, CHU Lille, Institut Pasteur de Lille, U1011 – EGID, Lille, France
| | - Jean-François Goossens
- Plateau de Spectrométrie de Masse “PSM-GRITA”, EA 7365, Faculté de Pharmacie, Université de Lille, Lille, France
| | - Pascal Dhulster
- Université de Lille INRA, ISA, Université d’Artois, Université Littoral Côte d’Opale, EA 7394-ICV Institut Charles Viollette, Lille, France
| | - Rozenn Ravallec
- Université de Lille INRA, ISA, Université d’Artois, Université Littoral Côte d’Opale, EA 7394-ICV Institut Charles Viollette, Lille, France
- *Correspondence: Benoit Cudennec, ; Rozenn Ravallec,
| |
Collapse
|
5
|
da Cruz KR, Turones LC, Camargo-Silva G, Gomes KP, Mendonça MM, Galdino P, Rodrigues-Silva C, Santos RAS, Costa EA, Ghedini PC, Ianzer D, Xavier CH. The hemoglobin derived peptide LVV-hemorphin-7 evokes behavioral effects mediated by oxytocin receptors. Neuropeptides 2017; 66:59-68. [PMID: 28985964 DOI: 10.1016/j.npep.2017.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/25/2017] [Accepted: 09/25/2017] [Indexed: 10/18/2022]
Abstract
LVV-hemorphin-7 (LVV-h7) is bioactive peptide resulting from degradation of hemoglobin β-globin chain. LVV-h7 is a specific agonist of angiotensin IV receptor. This receptor belongs to the class of insulin-regulated aminopeptidases (IRAP), which displays oxytocinase activity. Herein, our aims were to assess whether: i) LVV-h7 modifies centrally organized behavior and cardiovascular responses to stress and ii) mechanisms underlying LVV-h7 effects involve activation of oxytocin (OT) receptors, probably as result of reduction of IRAP proteolytic activity upon OT. Adult male Wistar rats (270-370g) received (i.p.) injections of LVV-h7 (153nmol/kg), or vehicle (0.1ml). Different protocols were used: i) open field (OP) test for locomotor/exploratory activities; ii) Elevated Plus Maze (EPM) for anxiety-like behavior; iii) forced swimming test (FST) test for depression-like behavior and iv) air jet for cardiovascular reactivity to acute stress exposure. Diazepam (2mg/kg) and imipramine (15mg/kg) were used as positive control for EPM and FST, respectively. The antagonist of OT receptors (OTr), atosiban (1 and 0,1mg/kg), was used to determine the involvement of oxytocinergic paths. We found that LVV-h7: i) increased the number of entries and the time spent in open arms of the maze, an indicative of anxiolysis; ii) provoked antidepressant effect in the FS test; and iii) increased the exploration and locomotion; iv) did not change the cardiovascular reactivity and neuroendocrine responses to acute stress. Also, increases in locomotion and the antidepressant effects evoked by LVV-h7 were reverted by OTr antagonist. We conclude that LVV-h7 modulates behavior, displays antidepressant and anxiolytic effects that are mediated in part by oxytocin receptors.
Collapse
Affiliation(s)
- Kellen Rosa da Cruz
- Laboratory of Cardiovascular Physiology and Therapeutics, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Larissa Córdova Turones
- Laboratory of Cardiovascular Physiology and Therapeutics, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Gabriel Camargo-Silva
- Laboratory of Cardiovascular Physiology and Therapeutics, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Karina Pereira Gomes
- Laboratory of Cardiovascular Physiology and Therapeutics, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Michelle Mendanha Mendonça
- Laboratory of Cardiovascular Physiology and Therapeutics, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Pablinny Galdino
- Laboratory of Cardiovascular Physiology and Therapeutics, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Christielly Rodrigues-Silva
- Laboratory of Pharmacology and Molecular Biochemistry, Department of Pharmacology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Robson Augusto Souza Santos
- Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Elson Alves Costa
- Laboratory of Pharmacology of Natural Products, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Paulo Cesar Ghedini
- Laboratory of Pharmacology and Molecular Biochemistry, Department of Pharmacology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Danielle Ianzer
- Laboratory of Cardiovascular Physiology and Therapeutics, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Carlos Henrique Xavier
- Laboratory of Cardiovascular Physiology and Therapeutics, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
6
|
Karhu T, Akiyama K, Vuolteenaho O, Bergmann U, Naito T, Tatemoto K, Herzig KH. Isolation of new ligands for orphan receptor MRGPRX1-hemorphins LVV-H7 and VV-H7. Peptides 2017; 96:61-66. [PMID: 28867075 DOI: 10.1016/j.peptides.2017.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/15/2017] [Accepted: 08/30/2017] [Indexed: 12/20/2022]
Abstract
The human MAS-related G protein-coupled receptor X1 (MRGPRX1) is a member of the GPCR family. The receptor is primate specific and expressed in the sensory neurons of dorsal root ganglion and trigeminal ganglion, where it is considered to be involved in the pain perception. The MRGPRX1 has unusual binding mechanism, as it is activated by several different ligands as well as several different fragments of precursor proteins. Thus, we hypothesize that it is activated by several unknown compounds as well since the receptor is still classified as orphan. Here, we describe the isolation of two novel endogenous ligands for the MRGPRX1 from human platelet preparation. The isolated ligands are hemoglobin β-chain fragments, known members of the hemorphin family.
Collapse
Affiliation(s)
- T Karhu
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland.
| | - K Akiyama
- Okinawa Institute of Science and Technology Graduate University, Tancha, Onna-son, Okinawa, Japan
| | - O Vuolteenaho
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland; Nordlab Oulu, Oulu, Finland
| | - U Bergmann
- Biocenter Oulu, University of Oulu, Oulu, Finland; Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - T Naito
- Okinawa Institute of Science and Technology Graduate University, Tancha, Onna-son, Okinawa, Japan; Research Institute of Natural-Drug Leads, Kanagawa University, Hiratsuka, Kanagawa, Japan
| | - K Tatemoto
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland
| | - K-H Herzig
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland; Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznan, Poland; Medical Research Center (MRC) and Oulu University Hospital, Oulu, Finland.
| |
Collapse
|
7
|
Domenger D, Caron J, Belguesmia Y, Lesage J, Dhulster P, Ravallec R, Cudennec B. Bioactivities of hemorphins released from bovine haemoglobin gastrointestinal digestion: Dual effects on intestinal hormones and DPP-IV regulations. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.06.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
8
|
Artemova NV, Bumagina ZM, Kasakov AS, Shubin VV, Gurvits BY. Opioid peptides derived from food proteins suppress aggregation and promote reactivation of partly unfolded stressed proteins. Peptides 2010; 31:332-8. [PMID: 19954758 DOI: 10.1016/j.peptides.2009.11.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 11/23/2009] [Accepted: 11/23/2009] [Indexed: 02/06/2023]
Abstract
A new view of the opioid peptides is presented. The potential of small peptides derived from precursor food proteins, to bind to partly unfolded stressed proteins to prevent their irreversible aggregation and inactivation has been demonstrated in various in vitro test systems: dithiothreitol-induced aggregation of alpha-lactalbumin (LA), heat-induced aggregation of alcohol dehydrogenase (ADH), and aggregation and inactivation of bovine erythrocyte carbonic anhydrase (CA) in the process of its refolding after removal of stress conditions. Using dynamic light scattering (DLS), turbidimetry, fluorescence, and circular dichroism measurements protective effects of the synthetic opioid peptides: exorphin C from wheat gluten (Tyr-Pro-Ile-Ser-Leu), rubiscolin-5 from spinach ribulose-bisphosphate-carboxylase/oxygenase (Rubisco) (Tyr-Pro-Leu-Asp-Leu), and hemorphin-6 from bovine hemoglobin (Tyr-Pro-Trp-Thr-Gln-Arg) have been revealed. We have demonstrated the concentration-dependent suppression of light scattering intensity of aggregates of LA and ADH in the presence of the peptides, the population of nanoparticles with higher hydrodynamic radii being shifted to the lower ones, accompanied by an increase in the lag period of aggregation. The presence of the peptides in the refolding solution was shown to assist reactivation of CA and enhance the yield of the CA soluble protein. The results suggest that bioactive food protein fragments may be regarded as exogenous supplements to the endogenous defense mechanisms of the human organism under stress conditions.
Collapse
Affiliation(s)
- N V Artemova
- A.N. Bakh Institute of Biochemistry, Russian Academy of Sciences, Leninsky Prospect, 33, 119071 Moscow, Russia
| | | | | | | | | |
Collapse
|
9
|
Barkhudaryan N, Zakaryan H, Sarukhanyan F, Gabrielyan A, Dosch D, Kellermann J, Lottspeich F. Hemorphins act as homeostatic agents in response to endotoxin-induced stress. Neurochem Res 2009; 35:925-33. [PMID: 19967445 DOI: 10.1007/s11064-009-0097-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2009] [Indexed: 10/20/2022]
Abstract
The effect of synthetic LVV-hemorphin-7 and hemorphin-7 on hypothalamo-pituitary-adrenocortical axis activity in response to endotoxin-induced stress was studied. The intraperitoneal (ip) endotoxin (lipopolysaccaride, LPS) (0.5 mg/kg) administration in combination with hemorphin (1 mg/kg) induce significant decrease in plasma corticosterone and modest decrease in plasma levels of tumor necrosis factor-alpha (TNFalpha) in compare with elevated levels of both corticosterone and TNFalpha in plasma of rats received LPS administration alone. Increased activity of calcineurin in both plasma and brain of rats received ip administration of LPS, was recovered under LPS + hemorphin treatment. In two independent proteome analysis, using 2-dimensional fluorescence difference gel electrophoresis and the isotope coded protein label technology, peptidyl-prolyl cis-trans-isomerase A (cyclophilin A) was identified as regulated by hemorphins protein in mouse brain. A therapeutic potential of hemorphins and mechanisms of their homeostatic action in response to endotoxin-induced stress are discussed.
Collapse
Affiliation(s)
- Nina Barkhudaryan
- H. Buniatian Institute of Biochemistry of National Academy of Sciences, 5/1 P. Sevag Str, Yerevan, 0014, Republic of Armenia.
| | | | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Blishchenko EY, Sazonova OV, Yatskin ON, Kalinina OA, Tolmazova AG, Philippova MM, Karelin AA, Ivanov VT. beta-Actin-derived peptides isolated from acidic extract of rat spleen suppress tumor cell growth. J Pept Sci 2008; 14:811-8. [PMID: 18219705 DOI: 10.1002/psc.1008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Twenty-two fragments of beta-actin and beta-actin-related protein were isolated from the acidic extracts of rat spleen tissue. beta-Actin fragments (75-90), (78-89), and (78-88), 0.01-1 microM, decreased live cell number of L929 murine tumor fibroblasts by 80-90%, with maximal cytotoxic effect of 30-40%. The fragments of (78-90) segment and the fragment of beta-actin-related protein (69-77) were less active (inhibitory effect up to 55%, cytotoxic-up to 25%).
Collapse
Affiliation(s)
- Elena Y Blishchenko
- Shemyakin-Ovchinnikov Institute of Bio-organic Chemistry, Russian Academy of Sciences, Moscow, V-437, GSP, Russia
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Rapid progress of separation techniques as well as methods of structural analysis provided conditions in the past decade for total screening of complex biologic mixtures for any given class of biomolecules. The present review updates the reader with the modern state of peptidomics, a chapter of chemical biology that deals with structure and biologic properties of sets of peptides present in biologic tissues, cells or fluids. Scope and limitations of currently employed experimental techniques are considered and the main results are outlined. Considerable attention will be afforded to the biologic role of peptides formed in vivo by proteolysis of nonspecialized precursor proteins with other well-defined functions. In conclusion, the connection is discussed between peptidomics and the much more mature and still closely related field of proteomics.
Collapse
Affiliation(s)
- Vadim T Ivanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow V-437, Russia.
| | | |
Collapse
|
13
|
Dale CS, Pagano RDL, Rioli V, Hyslop S, Giorgi R, Ferro ES. Antinociceptive action of hemopressin in experimental hyperalgesia. Peptides 2005; 26:431-6. [PMID: 15652650 DOI: 10.1016/j.peptides.2004.10.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Revised: 10/26/2004] [Accepted: 10/29/2004] [Indexed: 10/26/2022]
Abstract
Endogenous hemorphins, derived from degradation of the beta-chain of hemoglobin, lower arterial blood pressure and exert an antinociceptive action in experimental models of nociception. Hemopressin, derived from the alpha-chain of hemoglobin, also decreases blood pressure, but its effects on pain have not been studied. In this work, we examined the influence of hemopressin on inflammatory pain. Hemopressin reverted the hyperalgesia induced by either carrageenin or bradykinin when injected concomitantly or 2.5 h after the phlogistic agents. Hemopressin administered systemically also reverted the hyperalgesia induced by carrageenin. Naloxone did not prevent the antinociceptive action of this peptide. These data suggest that hemopressin inhibits peripheral hyperalgesic responses by mechanisms independent of opioid receptor activation.
Collapse
|
14
|
Che FY, Biswas R, Fricker LD. Relative quantitation of peptides in wild-type and Cpe(fat/fat) mouse pituitary using stable isotopic tags and mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2005; 40:227-237. [PMID: 15706630 DOI: 10.1002/jms.742] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cpe(fat/fat) mice have a point mutation in the coding region of the carboxypeptidase E gene that renders the enzyme inactive. As a result, these mice have reduced levels of several neuropeptides and greatly increased levels of the peptide processing intermediates that contain C-terminal basic residues. However, previous studies examined a relatively small number of neuropeptides. In the present study, we used a quantitative peptidomics approach with stable isotopic labels to examine the levels of pituitary peptides in Cpe(fat/fat) mice relative to wild-type mice. Pituitary extracts from mutant and wild type mice were labeled with the stable isotopic label [3-(2,5-dioxopyrrolidin-1-yloxycarbonyl)propyl]trimethylammonium chloride containing nine atoms of hydrogen or deuterium. Then, the two samples were pooled and analyzed by liquid chromatography/mass spectrometry (LC/MS). The relative abundance of peptides was determined from a comparison of the intensities of the heavy and light peaks. Altogether, 72 peptides were detected in the Cpe(fat/fat) and/or wild-type mouse pituitary extracts of which 53 were identified by MS/MS sequencing. Several peptides identified in this analysis represent previously undescribed post-translational processing products of known pituitary prohormones. Of the 72 peptides detected in pituitary, 17 were detected only in the Cpe(fat/fat) mouse extracts; these represent peptide processing intermediates containing C-terminal basic residues. The peptides common to both Cpe(fat/fat) and wild-type mice were generally present at 2-5-fold lower levels in the Cpe(fat/fat) mouse pituitary extracts, although some peptides were present at equal levels and one peptide (acetyl beta-endorphin 1-31) was increased approximately 7-fold in the Cpe(fat/fat) pituitary extracts. In contrast, acetyl beta-endorphin 1-26 was present at approximately 10-fold lower levels in the Cpe(fat/fat) pituitary, compared with wild-type mice. The finding that many peptides are substantially decreased in Cpe(fat/fat) pituitary is consistent with the broad role for carboxypeptidase E in the biosynthesis of numerous neuropeptides.
Collapse
Affiliation(s)
- Fa-Yun Che
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
15
|
Fruitier-Arnaudin I, Cohen M, Coitoux C, Piot JM. In vitro metabolism of LVV-Hemorphin-7 by renal cytosol and purified prolyl endopeptidase. Peptides 2003; 24:1201-6. [PMID: 14612192 DOI: 10.1016/j.peptides.2003.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The metabolism of LVVH7, an endogenous peptide obtained by cathepsin D hydrolysis of the beta chain of hemoglobin, was studied, in vitro, in the presence of cytosol of rat kidney and compared with angiotensin IV. High metabolic activity was found against these two peptides (half life time < 2 min) in this subcellular fraction. The main products of LVVH7 metabolism by renal cytosol are VVH7, H7 and LVVH6 suggesting both aminopeptidase and carboxypeptidase activities. The use of PEP inhibitor in kidney cytosol permitted to demonstrate the major role of prolyl endopeptidase (PEP) in LVVH7 degradation. This fact was reinforced by a kinetic study investigated with purified enzyme (Km/Vmax about 238 mM-1 s-1 and close to that observed for angiotensin related peptides).
Collapse
Affiliation(s)
- I Fruitier-Arnaudin
- Universite de la Rochelle Laboratoire de Génie Protéique et Cellulaire, Pole Sciences, EA3169, Bâtiment Marie Curie, Avenue Michel Crépeau, La Rochelle Cedex1 17042, France.
| | | | | | | |
Collapse
|
16
|
Hayakari M, Satoh K, Izumi H, Kudoh T, Asano J, Yamazaki T, Tsuchida S. Kinetic-controlled hydrolysis of Leu-Val-Val-hemorphin-7 catalyzed by angiotensin-converting enzyme from rat brain. Peptides 2003; 24:1075-82. [PMID: 14499287 DOI: 10.1016/s0196-9781(03)00178-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Leu-Val-Val-hemorphin-7 (LVV-H7, LVVYPWTQRY), an opioid peptide, was found to be hydrolyzed sequentially by rat brain angiotensin-converting enzyme (ACE) in three steps through dipeptidyl carboxypeptidase activity. The kinetic constants evaluated were in order of: k(1) (0.19 min(-1))>>k(2) (0.0008 min(-1)) approximately k(3) (0.0006 min(-1)) in 10 mM NaCl at pH 7.5 giving rise to LVV-H5 almost quantitatively. The decapeptide was noted to be hydrolyzed 164- and 346-fold more efficiently than angiotensin I (Ang I) in k(cat) and kcat/Km values, respectively, at their optimal conditions. The kinetic-controlled preferential action of the brain enzyme on LVV-H7 is suggestive of its multiple roles in vivo.
Collapse
Affiliation(s)
- Makoto Hayakari
- Second Department of Biochemistry, School of Medicine, Hirosaki University, 5 Zaifu-Cho, Hirosaki 036-8562, Japan.
| | | | | | | | | | | | | |
Collapse
|
17
|
Ivanov VT, Blishchenko EY, Sazonova OV, Karelin AA. What to synthesize? from Emil Fischer to peptidomics. J Pept Sci 2003; 9:553-62. [PMID: 14552418 DOI: 10.1002/psc.480] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The driving forces, incentives and strategic targets of peptide synthesis have undergone considerable evolution during the centenary following the pioneer work of Emil Fischer. In those days peptide synthesis was considered as a way of confirming the polypeptide theory of protein structure. The scientific community also expected (naively) that the synthesis would eventually lead to the creation of artificial living organisms. Only in the 1950s, when the first exact amino acid sequences were established did peptide chemistry obtain firmer ground and clearly defined targets. The total synthesis of peptide hormones and antibiotics became possible, providing valuable material for elucidating structure-functional relationships and the mechanisms of biological action. In the following years the number of peptides isolated from various biological sources grew with impressive speed and peptides became known as the most abundant, ubiquitous group of low molecular bioregulators. The design and synthesis of novel peptide based pharmaceuticals became an important area of peptide chemistry. At present we are facing the challenge of analysing the structures and bioactivities of total sets of peptides, i.e. peptidoms, present in concrete tissues or groups of cells. The results obtained along these lines at the IBCH RAS Institute of Bioorganic Chemistry are briefly considered in the review.
Collapse
Affiliation(s)
- Vadim T Ivanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia.
| | | | | | | |
Collapse
|
18
|
Nydahl KS, Pierson J, Nyberg F, Caprioli RM, Andrén PE. In vivo processing of LVV-hemorphin-7 in rat brain and blood utilizing microdialysis combined with electrospray mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2003; 17:838-844. [PMID: 12672139 DOI: 10.1002/rcm.972] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In vivo microdialysis in combination with liquid chromatography/electrospray time-of-flight mass spectrometry was used to study the processing of LVV-hemorphin-7, an endogenous decapeptide with opioid activity, in rat brain and blood. A microdialysis probe (flow rate 0.4 microL/min) was used to both introduce LVV-hemorphin-7 into the striatum of the brain (1.0 pmol/microL) or the venous blood (10 pmol/microL) and to collect the metabolic products. LVV-hemorphin-7 was extracellularly metabolized in the striatum to form C-terminal fragments 2-10, 3-10, 4-10, 5-10, 6-10, 7-10, and N-terminal fragments 1-9, 1-8, 1-6. Infusion of the aminopeptidase inhibitor amastatin (1.0 pmol/microL) into the striatum, together with LVV-hemorphin-7, decreased the processing of LVV-hemorphin-7 to form C-terminal fragments 2-10, 3-10, 4-10, but increased the relative levels of fragment 5-10 and N-terminal fragments 1-9, 1-8 and 1-6. The major metabolic product from LVV-hemorphin-7 in the striatum was the C-terminal fragment 5-10, which may be processed by an endopeptidase not sensitive to amastatin. The LVV-hemorphin-7 infusion to the venous blood produced the C-terminal fragments 2-10, 3-10, 4-10, and 5-10, N-terminal fragment 1-9, and internal fragments 4-7 and 4-9. It is concluded that the combination of microdialysis and electrospray mass spectrometry provides a powerful tool for the study of extracellular metabolism and kinetic processes of complex reaction systems in vivo.
Collapse
Affiliation(s)
- Katarina Sanderson Nydahl
- Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, Uppsala University, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
19
|
Blishchenko E, Sazonova O, Surovoy A, Khaidukov S, Sheikine Y, Sokolov D, Freidlin I, Philippova M, Vass A, Karelin A, Ivanov V. Antiproliferative action of valorphin in cell cultures. J Pept Sci 2002; 8:438-52. [PMID: 12212807 DOI: 10.1002/psc.402] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The antiproliferative effects of the haemoglobin beta-chain fragment (33-39) (valorphin or VV-haemorphin-5) were studied in a panel of tumour cell lines and normal cells of different origin, using various methods of activity determination (trypan blue inclusion test, sulphorhodamine B staining, MTT staining, flow cytometry and clonogenic test). Valorphin suppressed the proliferation of tumour cells by 25%-95%, depending on the cell line. The maximal valorphin activity was detected in transformed cells of fibroblastic (L929) and epithelial (MCF-7) origin, transformed haematopoietic cells (K562, HL-60) being less sensitive. In normal cells, valorphin activity was several fold lower (10%-15%). A study of the dynamics of cell proliferation in L929 cells using a visual cell count and flow cytometry showed that valorphin induced reversible and relatively short (24 h) S-phase arrest of cell proliferation, accompanied by a reversible increase of cell size. The proliferation delay was followed by a comparatively long period of reversible resistance of the cells to the peptide (96 h) when the cells are dividing at normal rate. The same dynamics were demonstrated for A549, MCF-7 and primary murine breast carcinoma cells. On the basis of the data obtained, a pattern of regulation of cell growth by valorphin is suggested.
Collapse
|
20
|
Fruitier-Arnaudin I, Cohen M, Bordenave S, Sannier F, Piot JM. Comparative effects of angiotensin IV and two hemorphins on angiotensin-converting enzyme activity. Peptides 2002; 23:1465-70. [PMID: 12182948 DOI: 10.1016/s0196-9781(02)00083-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The role of angiotensin IV (AngIV) in the regulation of angiotensin-converting enzyme (ACE) was studied in vitro. This study demonstrates that this active fragment appeared as a novel endogenous ACE inhibitor. Inhibitory kinetic studies revealed that AngIV acts as a purely competitive inhibitor with a K(i) value of 35 microM. AngIV was found to be quite resistant to ACE hydrolysis opposite to hemorphins which are both ACE inhibitors and substrates. In order to confirm a putative role of AngIV and hemorphins in the Renin-Angiotensin system (RAS) regulation, we studied their influence on AngI conversion. We noticed that 16.7 microM of both peptides decreased more than 50% of AngI conversion to AngII in vitro. The capacity of hemorphins, particularly LVVH-7, and AngIV to inhibit ACE activity here suggests a synergistic relation between these two peptides and the regulation of RAS.
Collapse
Affiliation(s)
- Ingrid Fruitier-Arnaudin
- Laboratoire de Génie Protéique et Cellulaire, EA 3169, Pôle Sciences et Technologie, Bâtiment Marie Curie, Avenue Michel Crépeau, Université de La Rochelle, UFR Sciences, 17042 La Rochelle Cedex 1, France.
| | | | | | | | | |
Collapse
|
21
|
Blishchenko EY, Sazonova OV, Kalinina OA, Yatskin ON, Philippova MM, Surovoy AY, Karelin AA, Ivanov VT. Family of hemorphins: co-relations between amino acid sequences and effects in cell cultures. Peptides 2002; 23:903-10. [PMID: 12084521 DOI: 10.1016/s0196-9781(02)00017-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Hemorphins, i.e. endogenous fragments of beta-globin chain segment (32-41) LVVYPWTQRY(F) suppress the growth of transformed murine fibroblasts L929 cell culture, the effect is due to cytotoxicity and inhibition of cell proliferation. The contribution of cytotoxicity depends on the presence of Leu(32): VV-hemorphins, except VV-hemorphin-4, exhibit cytotoxicity significantly higher than respective LVV-hemorphins. Decrease of cell number induced by hemorphins depend on the extent of N- and C-terminal degradation of hemorphins: VV-hemorphins in most cases are more active than LVV-, V-hemorphins, and hemorphins. In the group of VV-hemorphins the activity of VV-hemorphin-5 (valorphin) is significantly higher than of VV-hemorphin-7, VV-hemorphin-6, and VV-hemorphin-4, meaning that the presence of C-terminal Gln is important for suppressing of cell number. The amino acid sequence VVYPWTQ corresponding to valorphin was identified as important for manifestation of the both cytotoxic and antiproliferative effects.
Collapse
Affiliation(s)
- Elena Y Blishchenko
- Group of Protein Research, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, Moscow, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Szikra J, Benyhe S, Orosz G, Darula Z, Piot JM, Fruitier I, Monory K, Hanoune J, Borsodi A. Radioligand binding properties of VV-hemorphin 7, an atypical opioid peptide. Biochem Biophys Res Commun 2001; 281:670-7. [PMID: 11237710 DOI: 10.1006/bbrc.2001.4397] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Receptor binding properties of the hemoglobin-derived nonapeptide VV-hemorphin 7 (Val-Val-Tyr-Pro-Trp-Thr-Gln-Arg-Phe-OH) were studied using both the unlabelled form and tritium-labelled derivative of the peptide. In binding studies using selective opioid radioligands, VV-hemorphin 7 exhibited a rank order of potency of mu > kappa >> delta. VV-hemorphin 7 was tritiated resulting in a compound with 1.03 TBq/mmol (27.8 Ci/mmol) specific radioactivity. The maximal number of binding sites was found to be 66.5 pmol/mg protein with an affinity of 82.1 nM in rat brain membranes. In competition studies, marked similarity was observed to the binding profile of the naturally occurring opioid heptapeptide Met-enkephalin-Arg-Phe (MERF) and its analogues to their naloxone-insensitive binding site. The common -Arg-Phe sequence at the carboxyl terminal end, which is similar to those of other endogenous peptides (-Arg-Phe-NH(2) in neuropeptide FF and FMRF-NH(2)) brings attention to the C-terminal end of the molecule and points to the possible existence of a common nonopioid binding site in mammals.
Collapse
Affiliation(s)
- J Szikra
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged, H-6701, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Karelin AA, Philippova MM, Yatskin ON, Kalinina OA, Nazimov IV, Blishchenko EY, Ivanov VT. Peptides comprising the bulk of rat brain extracts: isolation, amino acid sequences and biological activity. J Pept Sci 2000; 6:345-54. [PMID: 10969863 DOI: 10.1002/1099-1387(200008)6:8<345::aid-psc258>3.0.co;2-u] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Chromatographic separation of rat brain extracts followed by automatic Edman sequencing of the major individual components resulted in identification of 61 endogenous peptides derived from known functional proteins (hemoglobin, myelin basic protein, cytochrome-c oxidase, etc.) or unknown precursors. The results are compared with the data obtained earlier for bovine brain. Although the sequences of bovine and rat hemoglobin contain about 20% of amino acid substitutions, the families of structurally related peptides are very similar in both extracts. Several other proteins also give rise to identical or closely related peptide fragments in the two mammalian species. The outlined similarity extends almost exclusively to the most abundant peptides present in the extracts. The minor components show less overlap. Four hemoglobin-derived peptides isolated from rat brain were shown to be biologically active in tumor cells. Eleven are identical to bioactive peptides from other species. Ten structurally overlap with bioactive peptides from other sources. The data obtained show similar biosynthetic pathways of pool components in different species, the resultant peptides being aimed at fulfilling related functions.
Collapse
Affiliation(s)
- A A Karelin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow.
| | | | | | | | | | | | | |
Collapse
|
24
|
Karelin AA, Philippova MM, Karelina EV, Strizhkov BN, Nazimov IV, Ivanov VT, Danilova RA, Ashmarin IP. GABA-induced changes of the tissue-specific peptide pool of white rat brain. J Pept Sci 2000; 6:168-74. [PMID: 10809389 DOI: 10.1002/(sici)1099-1387(200004)6:4<168::aid-psc243>3.0.co;2-s] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Internasal administration of gamma-aminobutyric acid (GABA) induced prolonged behaviour changes and the appearance of three new compounds absent in the brain extracts of control rats. Two peptides associated with GABA administration were isolated and sequenced: Thr-Tyr-Thr-Phe, which corresponds to a gamma-immunoglobulin segment, and Val-Leu, which is present in a great number of proteins, hence its precursor could not be established. The third compound was not amenable to the Edman degradation technique. The data obtained show that the introduction of a neurotransmitter could cause specific changes in the levels of tissue-specific peptide components.
Collapse
Affiliation(s)
- A A Karelin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Systematic analysis of structures, localization, formation and biological activities of endogenous peptides derived from functional proteins, such as hemoglobin, myelin basic protein, immunoglobulins, etc., allowed establishing the basic features of that group of compounds. The sets of these peptides in mammalian tissues, or "tissue-specific peptide pools" are: (i) tissue specific; (ii) stable at normal conditions; (iii) conservative in the same tissues of different mammalian species; (iv) dependent on the general state of homeostasis of tissue or the whole organism. Formation of such peptides has features of both conformation and site specificity and also involves the action of carboxy- and amino-peptidases. As a result, the families of structurally related families of peptides are generated. The fragments of functional proteins exhibit a wide range of the biological effects, characteristic both for hormones and parahormones, from hormone-releasing to growth-regulatory activity. At the same time, the molecular mechanisms of action of the majority of such peptides are unknown. On the basis of the data obtained the components of tissue-specific peptide pools are considered to form a novel regulatory system, complementary to other peptidergic systems such as hormonal, nervous, immune, etc. The biological role of the fragments of functional proteins in vivo and the patterns of interaction with other regulatory systems are suggested.
Collapse
Affiliation(s)
- A A Karelin
- Shemyakin-Ovchinikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow
| | | |
Collapse
|