1
|
Fujiwara N, Miyahara K, Nakazawa-Tanaka N, Oishi Y, Akazawa C, Tada N, Yamataka A. Differentiation of enteric neural crest cells transplanted from SOX10-Venus mouse embryonic stem cells into the gut of the endothelin receptor B null mouse model. Pediatr Surg Int 2022; 39:18. [PMID: 36449105 DOI: 10.1007/s00383-022-05318-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/23/2022] [Indexed: 12/05/2022]
Abstract
PURPOSE Failure of enteric neural crest-derived cells (ENCCs) to correctly colonize the embryonic gut results in Hirschsprung's disease (HD). Embryonic stem cells (ESCs) have the potential to differentiate into all tissue-specific cells and lineages, including ENCCs. We investigated the cellular differentiation of ESCs from Sox10-Venus + mice into both control and endothelin receptor-B knockout (Ednrb KO) mouse gut to assess each region. METHODS We established ESCs from Sox10-Venus + mice. These cells were cultured for 2 days, then selected and co-cultured with either a dissociated control or Sox10-Venus - Ednrb KO mouse gut (both small intestine and colon) on embryonic day (E) 13.5. Four days later, cells were immunolabeled for Tuj1 and visualized using confocal microscopy. RESULTS Confocal microscopy revealed that transplanted Sox10-Venu + cells from ESCs migrated extensively within the host gut. Moreover, Tuj1-positive neurites were detected in the transplanted ESCs. Tuj1 expression was significantly decreased in aganglionic HD colon compared to controls (p < 0.05) and the HD small intestine (p < 0.05). CONCLUSIONS This study demonstrated that an appropriate host environment is crucial for normal and complete colonization of the gut. Further investigations are required to confirm whether modifying this environment can improve the results of this model.
Collapse
Affiliation(s)
- Naho Fujiwara
- Department of Pediatric General and Urogenital Surgery, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Katsumi Miyahara
- Department of Pediatric General and Urogenital Surgery, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Nana Nakazawa-Tanaka
- Department of Pediatric General and Urogenital Surgery, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Department of Pediatric Surgery, Juntendo Nerima Hospital, Nerima-ku, Tokyo, Japan
| | - Yoshie Oishi
- Medical Technology Innovation Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Chihiro Akazawa
- Intractable Disease Research Center, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Norihiro Tada
- Atopy Research Center, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Atsuyuki Yamataka
- Department of Pediatric General and Urogenital Surgery, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| |
Collapse
|
2
|
Li S, Qin M, Mao S, Mei L, Cai X, Feng Y, He C, Song J. A comprehensive genotype-phenotype evaluation of eight Chinese probands with Waardenburg syndrome. BMC Med Genomics 2022; 15:230. [PMID: 36329483 PMCID: PMC9632049 DOI: 10.1186/s12920-022-01379-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Background Waardenburg syndrome (WS) is the most common form of syndromic deafness with phenotypic and genetic heterogeneity in the Chinese population. This study aimed to clarify the clinical characteristics and the genetic cause in eight Chinese WS families (including three familial and five sporadic cases). Further genotype–phenotype relationships were also investigated. Methods All probands underwent screening for the known WS-related genes including PAX3, SOX10, MITF, EDNRB, EDN3, and SNAI2 using next-generation sequencing to identify disease-causing genes. Further validation using Sanger sequencing was performed. Relevant findings for the associated genotype–phenotype from previous literature were retrospectively analyzed. Result Disease-causing variants were detected in all eight probands by molecular genetic analysis of the WS genes (SOX10(NM_006941.4): c.544_557del, c.553 C > T, c.762delA, c.336G > A; MITF(NM_000248.3): c.626 A > T; PAX3(NM_181459.4): c.838delG, c.452-2 A > G, c.214 A > G). Six mutations (SOX10:c.553 C > T, c.544_557del, c.762delA; PAX3: c.838delG, c.214 A > G; MITF:c.626 A > T) were first reported. Clinical evaluation revealed prominent phenotypic variability in these WS patients. Twelve WS1 cases and five WS2 cases were diagnosed in total. Two probands with SOX10 mutations developed progressive changes in iris color with age, returning from pale blue at birth to normal tan. Additionally, one proband had a renal malformation (horseshoe kidneys).All cases were first described as WS cases. Congenital inner ear malformations were more common, and semicircular malformations were exclusively observed in probands with SOX10 mutations. Unilateral hearing loss occurred more often in cases with PAX3 mutations. Conclusion Our findings helped illuminate the phenotypic and genotypic spectrum of WS in Chinese populations and could contribute to better genetic counseling of WS. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01379-6.
Collapse
Affiliation(s)
- Sijun Li
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, Hunan, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Mengyao Qin
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, Hunan, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China.,Department of Otolaryngology Head and Neck Surgery, The First People's Hospital of Changde City, Hunan, Changde, China
| | - Shuang Mao
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, Hunan, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Lingyun Mei
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, Hunan, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Xinzhang Cai
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, Hunan, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China
| | - Yong Feng
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, Hunan, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China.,Department of Otorhinolaryngology, University of South China Affiliated Changsha Central Hospital, Changsha, Hunan, China
| | - Chufeng He
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, Hunan, China. .,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China.
| | - Jian Song
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, Hunan, China. .,Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, China.
| |
Collapse
|
3
|
Comparative role of SOX10 gene in the gliogenesis of central, peripheral, and enteric nervous systems. Differentiation 2022; 128:13-25. [DOI: 10.1016/j.diff.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022]
|
4
|
Qi J, Ma L, Guo W. Recent advances in the regulation mechanism of SOX10. J Otol 2022; 17:247-252. [PMID: 36249926 PMCID: PMC9547104 DOI: 10.1016/j.joto.2022.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Neural crest (NC) is the primitive neural structure in embryonic stage, which develops from ectodermal neural plate cells and epithelial cells. When the neural fold forms into neural tube, neural crest also forms a cord like structure above the neural tube and below the ectoderm. Neural crest cells (NCC) have strong migration and proliferation abilities. A number of tissue cells differentiate from neural crest cells, such as melanocytes, central and peripheral neurons, glial cells, craniofacial cells, osteoblasts, chondrocytes and smooth muscle cells. The migration and differentiation of neural crest cells are regulated by a gene network where a variety of genes, transcriptional factors, signal pathways and growth factors are involved.
Collapse
Affiliation(s)
- Jingcui Qi
- Department of Otorhinolaryngology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Long Ma
- PLA Rocket Force Characteristic Medical Center Department of Stomatology, China
| | - Weiwei Guo
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Lab of Hearing Science, Ministry of Education, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
- Corresponding author. College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
5
|
Sox10 Gene Is Required for the Survival of Saccular and Utricular Hair Cells in a Porcine Model. Mol Neurobiol 2022; 59:3323-3335. [DOI: 10.1007/s12035-021-02691-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/08/2021] [Indexed: 10/18/2022]
|
6
|
Dady A, Davidson L, Halley PA, Storey KG. Human spinal cord in vitro differentiation pace is initially maintained in heterologous embryonic environments. eLife 2022; 11:e67283. [PMID: 35188104 PMCID: PMC8929931 DOI: 10.7554/elife.67283] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 02/02/2022] [Indexed: 11/23/2022] Open
Abstract
Species-specific differentiation pace in vitro indicates that some aspects of neural differentiation are governed by cell intrinsic properties. Here we describe a novel in vitro human neural-rosette assay that recapitulates dorsal spinal cord differentiation but proceeds more rapidly than in the human embryo, suggesting that it lacks endogenous signalling dynamics. To test whether in vitro conditions represent an intrinsic differentiation pace, human iPSC-derived neural rosettes were challenged by grafting into the faster differentiating chicken embryonic neural tube iso-chronically, or hetero-chronically into older embryos. In both contexts in vitro differentiation pace was initially unchanged, while long-term analysis revealed iso-chronic slowed and hetero-chronic conditions promoted human neural differentiation. Moreover, hetero-chronic conditions did not alter the human neural differentiation programme, which progressed to neurogenesis, while the host embryo advanced into gliogenesis. This study demonstrates that intrinsic properties limit human differentiation pace, and that timely extrinsic signals are required for progression through an intrinsic human neural differentiation programme.
Collapse
Affiliation(s)
- Alwyn Dady
- Division of Cell and Developmental Biology, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Lindsay Davidson
- Division of Cell and Developmental Biology, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Pamela A Halley
- Division of Cell and Developmental Biology, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Kate G Storey
- Division of Cell and Developmental Biology, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| |
Collapse
|
7
|
Yu L, Peng F, Dong X, Chen Y, Sun D, Jiang S, Deng C. Sex-Determining Region Y Chromosome-Related High-Mobility-Group Box 10 in Cancer: A Potential Therapeutic Target. Front Cell Dev Biol 2020; 8:564740. [PMID: 33344444 PMCID: PMC7744619 DOI: 10.3389/fcell.2020.564740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/17/2020] [Indexed: 01/20/2023] Open
Abstract
Sex-determining region Y-related high mobility group-box 10 (SOX10), a member of the SOX family, has recently been highlighted as an essential transcriptional factor involved in developmental biology. Recently, the functionality of SOX 10 has been increasingly revealed by researchers worldwide. It has been reported that SOX10 significantly regulates the proliferation, migration, and apoptosis of tumors and is closely associated with the progression of cancer. In this review, we first introduce the basic background of the SOX family and SOX10 and then discuss the pathophysiological roles of SOX10 in cancer. Besides, we enumerate the application of SOX10 in the pathological diagnosis and therapeutic potential of cancer. Eventually, we summarize the potential directions and perspectives of SOX10 in neoplastic theranostics. The information compiled herein may assist in additional studies and increase the potential of SOX10 as a therapeutic target for cancer.
Collapse
Affiliation(s)
- Liming Yu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Fan Peng
- Department of Cardiology, Xijing Hopspital, The Airforce Military Medical University, Xi'an, China
| | - Xue Dong
- Outpatient Department of Liaoning Military Region, General Hospital of Northern Theater Command, Shenyang, China
| | - Ying Chen
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dongdong Sun
- Department of Cardiology, Xijing Hopspital, The Airforce Military Medical University, Xi'an, China
| | - Shuai Jiang
- Department of Cardiology, Xijing Hopspital, The Airforce Military Medical University, Xi'an, China
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
8
|
Betters E, Charney RM, Garcia-Castro MI. Early specification and development of rabbit neural crest cells. Dev Biol 2018; 444 Suppl 1:S181-S192. [PMID: 29932896 PMCID: PMC6685428 DOI: 10.1016/j.ydbio.2018.06.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/01/2018] [Accepted: 06/18/2018] [Indexed: 11/19/2022]
Abstract
The phenomenal migratory and differentiation capacity of neural crest cells has been well established across model organisms. While the earliest stages of neural crest development have been investigated in non-mammalian model systems such as Xenopus and Aves, the early specification of this cell population has not been evaluated in mammalian embryos, of which the murine model is the most prevalent. Towards a more comprehensive understanding of mammalian neural crest formation and human comparative studies, we have used the rabbit as a mammalian system for the study of early neural crest specification and development. We examine the expression profile of well-characterized neural crest markers in rabbit embryos across developmental time from early gastrula to later neurula stages, and provide a comparison to markers of migratory neural crest in the chick. Importantly, we apply explant specification assays to address the pivotal question of mammalian neural crest ontogeny, and provide the first evidence that a specified population of neural crest cells exists in the rabbit gastrula prior to the overt expression of neural crest markers. Finally, we demonstrate that FGF signaling is necessary for early rabbit neural crest formation, as SU5402 treatment strongly represses neural crest marker expression in explant assays. This study pioneers the rabbit as a model for neural crest development, and provides the first demonstration of mammalian neural crest specification and the requirement of FGF signaling in this process.
Collapse
Affiliation(s)
- Erin Betters
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Rebekah M Charney
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Martín I Garcia-Castro
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
9
|
LeBel DP, Wolff DJ, Batalis NI, Ellingham T, Matics N, Patwardhan SC, Znoyko IY, Schandl CA. First Report of Prenatal Ascertainment of a Fetus With Homozygous Loss of the SOX10 Gene and Phenotypic Correlation by Autopsy Examination. Pediatr Dev Pathol 2018; 21:561-567. [PMID: 29216801 DOI: 10.1177/1093526617744714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The SOX10 gene plays a vital role in neural crest cell development and migration. Abnormalities in SOX10 are associated with Waardenburg syndrome Types II and IV, and these patients have recognizable clinical features. This case report highlights the first ever reported homozygous loss of function of the SOX10 gene in a human. This deletion is correlated using family history, prenatal ultrasound, microarray analysis of amniotic fluid, and ultimately, a medical autopsy examination to further elucidate phenotypic effects of this genetic variation. Incorporating the use of molecular pathology into the autopsy examination of fetuses with suspected congenital anomalies is vital for appropriate family counseling, and with the ability to use formalin-fixed and paraffin-embedded tissues, has become a practical approach in autopsy pathology.
Collapse
Affiliation(s)
- David P LeBel
- 1 Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Daynna J Wolff
- 1 Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Nicholas I Batalis
- 1 Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Tara Ellingham
- 1 Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Natalie Matics
- 1 Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Sanjay C Patwardhan
- 2 Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan
| | - Iya Y Znoyko
- 1 Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Cynthia A Schandl
- 1 Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
10
|
Hao QQ, Li L, Chen W, Jiang QQ, Ji F, Sun W, Wei H, Guo WW, Yang SM. Key Genes and Pathways Associated With Inner Ear Malformation in SOX10 p.R109W Mutation Pigs. Front Mol Neurosci 2018; 11:181. [PMID: 29922125 PMCID: PMC5996026 DOI: 10.3389/fnmol.2018.00181] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 05/11/2018] [Indexed: 12/24/2022] Open
Abstract
SRY-box 10 (SOX10) mutation may lead to inner ear deformities. However, its molecular mechanisms on inner ear development are not clear. In this work, the inner ear morphology was investigated at different embryonic stages of the SOX10 mutation miniature porcine model with sensorineural hearing loss, and high-throughput RNA-seq and bioinformatics analyses were applied. Our results indicated that the SOX10 mutation in the miniature pigs led to an incomplete partition (IP) of the cochlea, a cystic apex caused by fusion from middle and apical turns, cochlear modiolar defects and a shortened cochlear duct. The model demonstrated 173 differentially expressed genes (DEGs) and 185 differentially expressed long non-coding RNAs (lncRNAs). The down-regulated DEGs most significantly enriched the inflammatory mediator regulation of the TRP channels, arachidonic acid metabolism, and the salivary secretion pathways, while the up-regulated DEGs most significantly enriched the systemic lupus erythematosus and alcoholism pathways. Based on gene cluster analysis, we selected four gene groups: WNT1, KCNQ4, STRC and PAX6.
Collapse
Affiliation(s)
- Qing-Qing Hao
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Key Laboratory of Hearing Impairment Science, Chinese PLA Medical School, Beijing, China
| | - Liang Li
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Wei Chen
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Key Laboratory of Hearing Impairment Science, Chinese PLA Medical School, Beijing, China
| | - Qing-Qing Jiang
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Key Laboratory of Hearing Impairment Science, Chinese PLA Medical School, Beijing, China
| | - Fei Ji
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Key Laboratory of Hearing Impairment Science, Chinese PLA Medical School, Beijing, China
| | - Wei Sun
- Department of Communicative Disorders & Sciences, Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, NY, United States
| | - Hong Wei
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Wei-Wei Guo
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Key Laboratory of Hearing Impairment Science, Chinese PLA Medical School, Beijing, China
| | - Shi-Ming Yang
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Key Laboratory of Hearing Impairment Science, Chinese PLA Medical School, Beijing, China
| |
Collapse
|
11
|
Bogdanova-Mihaylova P, Alexander MD, Murphy RPJ, Murphy SM. Waardenburg syndrome: a rare cause of inherited neuropathy due to SOX10 mutation. J Peripher Nerv Syst 2018; 22:219-223. [PMID: 28544110 DOI: 10.1111/jns.12221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 02/03/2023]
Abstract
Waardenburg syndrome (WS) is a rare disorder comprising sensorineural deafness and pigmentation abnormalities. Four distinct subtypes are defined based on the presence or absence of additional symptoms. Mutations in six genes have been described in WS. SOX10 mutations are usually associated with a more severe phenotype of WS with peripheral demyelinating neuropathy, central dysmyelinating leukodystrophy, and Hirschsprung disease. Here we report a 32-year-old man with a novel heterozygous missense variant in SOX10 gene, who presented with congenital deafness, Hirschsprung disease, iris heterochromia, foot deformity, and intermediate conduction velocity length-dependent sensorimotor neuropathy. This case highlights that the presence of other non-neuropathic features in a patient with presumed hereditary neuropathy should alert the clinician to possible atypical rare causes.
Collapse
Affiliation(s)
- Petya Bogdanova-Mihaylova
- Department of Neurology, Adelaide & Meath Hospitals incorporating the National Children's Hospital, Tallaght, Ireland
| | - Michael D Alexander
- Department of Neurophysiology, Adelaide & Meath Hospitals incorporating the National Children's Hospital, Tallaght, Ireland
| | - Raymond P J Murphy
- Department of Neurology, Adelaide & Meath Hospitals incorporating the National Children's Hospital, Tallaght, Ireland
| | - Sinéad M Murphy
- Department of Neurology, Adelaide & Meath Hospitals incorporating the National Children's Hospital, Tallaght, Ireland.,Academic Unit of Neurology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
12
|
|
13
|
SOX10 is over-expressed in bladder cancer and contributes to the malignant bladder cancer cell behaviors. Clin Transl Oncol 2017; 19:1035-1044. [DOI: 10.1007/s12094-017-1641-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/27/2017] [Indexed: 02/07/2023]
|
14
|
Belle M, Godefroy D, Couly G, Malone SA, Collier F, Giacobini P, Chédotal A. Tridimensional Visualization and Analysis of Early Human Development. Cell 2017; 169:161-173.e12. [DOI: 10.1016/j.cell.2017.03.008] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/23/2017] [Accepted: 03/03/2017] [Indexed: 12/19/2022]
|
15
|
Functional constraints on SoxE proteins in neural crest development: The importance of differential expression for evolution of protein activity. Dev Biol 2016; 418:166-178. [DOI: 10.1016/j.ydbio.2016.07.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 07/28/2016] [Accepted: 07/30/2016] [Indexed: 10/21/2022]
|
16
|
Blokzijl A, Chen LE, Gustafsdottir SM, Vuu J, Ullenhag G, Kämpe O, Landegren U, Kamali-Moghaddam M, Hedstrand H. Elevated Levels of SOX10 in Serum from Vitiligo and Melanoma Patients, Analyzed by Proximity Ligation Assay. PLoS One 2016; 11:e0154214. [PMID: 27110718 PMCID: PMC4844164 DOI: 10.1371/journal.pone.0154214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/11/2016] [Indexed: 01/09/2023] Open
Abstract
Background The diagnosis of malignant melanoma currently relies on clinical inspection of the skin surface and on the histopathological status of the excised tumor. The serum marker S100B is used for prognostic estimates at later stages of the disease, but analyses are marred by false positives and inadequate sensitivity in predicting relapsing disorder. Objectives To investigate SOX10 as a potential biomarker for melanoma and vitiligo. Methods In this study we have applied proximity ligation assay (PLA) to detect the transcription factor SOX10 as a possible serum marker for melanoma. We studied a cohort of 110 melanoma patients. We further investigated a second cohort of 85 patients with vitiligo, which is a disease that also affects melanocytes. Results The specificity of the SOX10 assay in serum was high, with only 1% of healthy blood donors being positive. In contrast, elevated serum SOX10 was found with high frequency among vitiligo and melanoma patients. In patients with metastases, lack of SOX10 detection was associated with treatment benefit. In two responding patients, a change from SOX10 positivity to undetectable levels was seen before the response was evident clinically. Conclusions We show for the first time that SOX10 represents a promising new serum melanoma marker for detection of early stage disease, complementing the established S100B marker. Our findings imply that SOX10 can be used to monitor responses to treatment and to assess if the treatment is of benefit at stages earlier than what is possible radiologically.
Collapse
Affiliation(s)
- Andries Blokzijl
- Dept. of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, SE-751 08 Uppsala, Sweden
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, SE-751 24, Uppsala, Sweden
| | - Lei E. Chen
- Dept. of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, SE-751 08 Uppsala, Sweden
| | - Sigrun M. Gustafsdottir
- Dept. of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, SE-751 08 Uppsala, Sweden
| | - Jimmy Vuu
- Dept. of Medical Sciences, Uppsala University, SE-751 08 Uppsala, Sweden
| | - Gustav Ullenhag
- Dept. of Radiology, Oncology and Radiation Science, Uppsala University, Uppsala, Sweden
| | - Olle Kämpe
- Dept. of Medical Sciences, Uppsala University, SE-751 08 Uppsala, Sweden
| | - Ulf Landegren
- Dept. of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, SE-751 08 Uppsala, Sweden
| | - Masood Kamali-Moghaddam
- Dept. of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Box 815, SE-751 08 Uppsala, Sweden
| | - Håkan Hedstrand
- Dept. of Medical Sciences, Uppsala University, SE-751 08 Uppsala, Sweden
- * E-mail:
| |
Collapse
|
17
|
Tong X, Li L, Li X, Heng L, Zhong L, Su X, Rong R, Hu S, Liu W, Jia B, Liu X, Kou G, Han J, Guo S, Hu Y, Li C, Tao Q, Guo Y. SOX10, a novel HMG-box-containing tumor suppressor, inhibits growth and metastasis of digestive cancers by suppressing the Wnt/β-catenin pathway. Oncotarget 2015; 5:10571-83. [PMID: 25301735 PMCID: PMC4279394 DOI: 10.18632/oncotarget.2512] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 09/24/2014] [Indexed: 11/25/2022] Open
Abstract
SOX10 was identified as a methylated gene in our previous cancer methylome study. Here we further analyzed its epigenetic inactivation, biological functions and related cell signaling in digestive cancers (colorectal, gastric and esophageal cancers) in detail. SOX10 expression was decreased in multiple digestive cancer cell lines as well as primary tumors due to its promoter methylation. Pharmacologic or genetic demethylation reversed SOX10 silencing. Ectopic expression of SOX10in SOX10-deficient cancer cells inhibits their proliferation, tumorigenicity, and metastatic potentials in vitro and in vivo. SOX10 also suppressed the epithelial to mesenchymal transition (EMT) and stemness properties of digestive tumor cells. Mechanistically, SOX10 competes with TCF4 to bind β-catenin and transrepresses its downstream target genes via its own DNA-binding property. SOX10 mutations that disrupt the SOX10-β-catenin interaction partially prevented tumor suppression. SOX10is thus a commonly inactivated tumor suppressor that antagonizes Wnt/β-catenin signaling in cancer cells from different digestive tissues.
Collapse
Affiliation(s)
- Xin Tong
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, China. PLA General Hospital Cancer Center Key Laboratory, Medical School of Chinese PLA, Beijing, China. Department of Pharmacy, Liao Cheng University, Shandong, China
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Xiaoyan Li
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, China. PLA General Hospital Cancer Center Key Laboratory, Medical School of Chinese PLA, Beijing, China
| | - Lei Heng
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, China
| | - Lan Zhong
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Xianwei Su
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Rong Rong
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Shi Hu
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, China
| | - Wenjia Liu
- PLA General Hospital Cancer Center Key Laboratory, Medical School of Chinese PLA, Beijing, China
| | - Baoqing Jia
- PLA General Hospital Cancer Center Key Laboratory, Medical School of Chinese PLA, Beijing, China
| | - Xing Liu
- 150 hospital of Chinese PLA, Luoyang, China
| | - Geng Kou
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, China. Department of Pharmacy, Liao Cheng University, Shandong, China
| | - Jun Han
- Department of Pharmacy, Liao Cheng University, Shandong, China. State Key Laboratory of Antibody Medicine & Targeting Therapy and Shanghai Key Laboratory of Cell Engineering & Antibody, Shanghai, China
| | - Shangjing Guo
- Department of Pharmacy, Liao Cheng University, Shandong, China
| | - Yi Hu
- PLA General Hospital Cancer Center Key Laboratory, Medical School of Chinese PLA, Beijing, China
| | - Cheng Li
- PLA General Hospital Cancer Center Key Laboratory, Medical School of Chinese PLA, Beijing, China
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Yajun Guo
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, China. PLA General Hospital Cancer Center Key Laboratory, Medical School of Chinese PLA, Beijing, China. Department of Pharmacy, Liao Cheng University, Shandong, China. State Key Laboratory of Antibody Medicine & Targeting Therapy and Shanghai Key Laboratory of Cell Engineering & Antibody, Shanghai, China
| |
Collapse
|
18
|
Alghamdi SA, Zoroquiain P, Dias ABT, Alhumaid SR, Aldrees S, Burnier MN. Diagnostic value of SOX-10 immunohistochemical staining for the detection of uveal melanoma. Ecancermedicalscience 2015; 9:566. [PMID: 26316887 PMCID: PMC4544573 DOI: 10.3332/ecancer.2015.566] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Indexed: 02/04/2023] Open
Abstract
Objectives SOX-10 has been shown to be a sensitive marker of cutaneous melanoma. This study aimed to evaluate Sox-10 expression in uveal melanoma. Methods A total of 40 tissue blocks of enucleated eyes with uveal melanoma were cut and stained using an anti-SOX-10 mouse monoclonal antibody and HMB-45 antibody. Results SOX-10 showed exclusive nuclear positivity in 100% of the uveal melanoma cases (38/38). HMB-45 showed cytoplasmic positivity in 97.3 (37/38). Positivity for SOX-10 was also noted in the inner and outer nuclear layers of the retina in 78% of the enucleated eyes. Conclusions SOX-10 expression proved to be the most sensitive marker for uveal melanoma, and therefore, we propose a modified panel for the diagnosis of uveal melanoma that includes both SOX-10 and HMB-45. The observation of distinct, diffuse nuclear SOX-10 expression in retinal inner and outer nuclear layers is a finding that warrants further investigation as a marker for retinoblastoma.
Collapse
Affiliation(s)
- Sarah A Alghamdi
- Henry C Witelson Ocular Pathology Laboratory, McGill University, H4A 3J1, Canada
| | - Pablo Zoroquiain
- Henry C Witelson Ocular Pathology Laboratory, McGill University, H4A 3J1, Canada
| | - Ana Beatriz T Dias
- Henry C Witelson Ocular Pathology Laboratory, McGill University, H4A 3J1, Canada
| | - Sulaiman R Alhumaid
- Henry C Witelson Ocular Pathology Laboratory, McGill University, H4A 3J1, Canada
| | - Sultan Aldrees
- Henry C Witelson Ocular Pathology Laboratory, McGill University, H4A 3J1, Canada
| | - Miguel N Burnier
- Henry C Witelson Ocular Pathology Laboratory, McGill University, H4A 3J1, Canada
| |
Collapse
|
19
|
Tacha D, Qi W, Ra S, Bremer R, Yu C, Chu J, Hoang L, Robbins B. A Newly Developed Mouse Monoclonal SOX10 Antibody Is a Highly Sensitive and Specific Marker for Malignant Melanoma, Including Spindle Cell and Desmoplastic Melanomas. Arch Pathol Lab Med 2014; 139:530-6. [DOI: 10.5858/arpa.2014-0077-oa] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Context
Recent immunohistochemical studies have demonstrated Sry-related HMG-Box gene 10 (SOX10) expression in malignant melanomas, malignant peripheral nerve sheath tumors, a subset of breast carcinomas, and gliomas. SOX10 has shown important clinical utility in its ability to detect desmoplastic and spindle cell melanomas. To date, most publications have employed a research use–only goat polyclonal SOX10 antibody for immunohistochemical staining.
Objective
To describe the development of a new mouse monoclonal SOX10 antibody (BC34) and evaluate its immunohistochemical staining profile in a wide range of normal and neoplastic tissues, with an emphasis on melanoma.
Design
SOX10 antibody was optimized for staining using a polymer detection system and visualization with diaminobenzidine.
Results
In normal tissues, SOX10 was expressed in skin melanocytes and eccrine cells, breast myoepithelial and lobular epithelial cells, salivary gland myoepithelial cells, peripheral nerve Schwann cells, and central nervous system glial cells. SOX10 was expressed in 238 of 257 melanomas (92.6%), including 50 of 51 of both spindle cell and desmoplastic melanomas (98%). SOX10 was expressed in 100% of nevi (20 of 20) and schwannomas (28 of 28). In other neoplasms, SOX10 was expressed in 18 of 109 invasive ductal breast carcinomas (16.5%). All other carcinomas were negative for SOX10. SOX10 was identified in 25 of 52 central nervous system neoplasms, primarily in astrocytomas (22 of 41; 53.7%), and in 4 of 99 various sarcomas examined (4.0%).
Conclusions
The newly developed mouse monoclonal SOX10 antibody BC34 is highly sensitive and specific for malignant melanoma, including desmoplastic and spindle cell variants, and appears highly suitable for clinical use.
Collapse
Affiliation(s)
- David Tacha
- From the Chief Medical Office (Dr Tacha), and the Departments of Research and Development, Biocare Medical, LLC, Concord, California (Drs Qi, Bremer, Yu, and Hoang, and Mr Chu); and the San Diego Pathologists Medical Group, San Diego, California (Drs Ra and Robbins)
| | - Weimin Qi
- From the Chief Medical Office (Dr Tacha), and the Departments of Research and Development, Biocare Medical, LLC, Concord, California (Drs Qi, Bremer, Yu, and Hoang, and Mr Chu); and the San Diego Pathologists Medical Group, San Diego, California (Drs Ra and Robbins)
| | - Seong Ra
- From the Chief Medical Office (Dr Tacha), and the Departments of Research and Development, Biocare Medical, LLC, Concord, California (Drs Qi, Bremer, Yu, and Hoang, and Mr Chu); and the San Diego Pathologists Medical Group, San Diego, California (Drs Ra and Robbins)
| | - Ryan Bremer
- From the Chief Medical Office (Dr Tacha), and the Departments of Research and Development, Biocare Medical, LLC, Concord, California (Drs Qi, Bremer, Yu, and Hoang, and Mr Chu); and the San Diego Pathologists Medical Group, San Diego, California (Drs Ra and Robbins)
| | - Charlie Yu
- From the Chief Medical Office (Dr Tacha), and the Departments of Research and Development, Biocare Medical, LLC, Concord, California (Drs Qi, Bremer, Yu, and Hoang, and Mr Chu); and the San Diego Pathologists Medical Group, San Diego, California (Drs Ra and Robbins)
| | - Joseph Chu
- From the Chief Medical Office (Dr Tacha), and the Departments of Research and Development, Biocare Medical, LLC, Concord, California (Drs Qi, Bremer, Yu, and Hoang, and Mr Chu); and the San Diego Pathologists Medical Group, San Diego, California (Drs Ra and Robbins)
| | - Laura Hoang
- From the Chief Medical Office (Dr Tacha), and the Departments of Research and Development, Biocare Medical, LLC, Concord, California (Drs Qi, Bremer, Yu, and Hoang, and Mr Chu); and the San Diego Pathologists Medical Group, San Diego, California (Drs Ra and Robbins)
| | - Bruce Robbins
- From the Chief Medical Office (Dr Tacha), and the Departments of Research and Development, Biocare Medical, LLC, Concord, California (Drs Qi, Bremer, Yu, and Hoang, and Mr Chu); and the San Diego Pathologists Medical Group, San Diego, California (Drs Ra and Robbins)
| |
Collapse
|
20
|
Na JI, Kim HJ, Jung JJ, Kim Y, Kim SS, Lee JH, Lee KH, Park JT. Granular cell tumours of the colorectum: histopathological and immunohistochemical evaluation of 30 cases. Histopathology 2014; 65:764-74. [DOI: 10.1111/his.12487] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/23/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Jong-In Na
- Department of Pathology; Chonnam National University Medical School; Gwangju Korea
| | - Hye-Jeong Kim
- Department of Pathology; Chonnam National University Medical School; Gwangju Korea
| | - Jong-Jae Jung
- Department of Pathology; Chonnam National University Medical School; Gwangju Korea
| | - Young Kim
- Department of Pathology; Chonnam National University Medical School; Gwangju Korea
| | - Sung-Sun Kim
- Department of Pathology; Chonnam National University Medical School; Gwangju Korea
| | - Jae-Hyuk Lee
- Department of Pathology; Chonnam National University Medical School; Gwangju Korea
| | - Kyung-Hwa Lee
- Department of Pathology; Chonnam National University Medical School; Gwangju Korea
| | - Jong-Tae Park
- Department of Forensic Medicine; Chonnam National University Medical School; Gwangju Korea
| |
Collapse
|
21
|
Locher H, Frijns JHM, van Iperen L, de Groot JCMJ, Huisman MA, Chuva de Sousa Lopes SM. Neurosensory development and cell fate determination in the human cochlea. Neural Dev 2013; 8:20. [PMID: 24131517 PMCID: PMC3854452 DOI: 10.1186/1749-8104-8-20] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 09/20/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hearing depends on correct functioning of the cochlear hair cells, and their innervation by spiral ganglion neurons. Most of the insight into the embryological and molecular development of this sensory system has been derived from animal studies. In contrast, little is known about the molecular expression patterns and dynamics of signaling molecules during normal fetal development of the human cochlea. In this study, we investigated the onset of hair cell differentiation and innervation in the human fetal cochlea at various stages of development. RESULTS At 10 weeks of gestation, we observed a prosensory domain expressing SOX2 and SOX9/SOX10 within the cochlear duct epithelium. In this domain, hair cell differentiation was consistently present from 12 weeks, coinciding with downregulation of SOX9/SOX10, to be followed several weeks later by downregulation of SOX2. Outgrowing neurites from spiral ganglion neurons were found penetrating into the cochlear duct epithelium prior to hair cell differentiation, and directly targeted the hair cells as they developed. Ubiquitous Peripherin expression by spiral ganglion neurons gradually diminished and became restricted to the type II spiral ganglion neurons by 18 weeks. At 20 weeks, when the onset of human hearing is thought to take place, the expression profiles in hair cells and spiral ganglion neurons matched the expression patterns of the adult mammalian cochleae. CONCLUSIONS Our study provides new insights into the fetal development of the human cochlea, contributing to our understanding of deafness and to the development of new therapeutic strategies to restore hearing.
Collapse
Affiliation(s)
| | | | | | | | | | - Susana M Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, T-01-032, Einthovenweg 20, 2333 ZC Leiden, the Netherlands.
| |
Collapse
|
22
|
Bondurand N, Sham MH. The role of SOX10 during enteric nervous system development. Dev Biol 2013; 382:330-43. [DOI: 10.1016/j.ydbio.2013.04.024] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 04/24/2013] [Indexed: 12/30/2022]
|
23
|
Xia X, Nan P, Zhang L, Sun J, Chang Z. Homologue of Sox10 in Misgurnus anguillicaudatus: sequence, expression pattern during early embryogenesis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:1341-1351. [PMID: 23535997 DOI: 10.1007/s10695-013-9788-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 03/09/2013] [Indexed: 06/02/2023]
Abstract
A number of genetic studies have established that Sox10 is a transcription factor associated with neurogenesis in vertebrates. We have isolated a homologue of Sox10 gene from the brain of Misgurnus anguillicaudatus by using homologous cloning and RACE method, designated as MaSox10b. The full-length cDNA of MaSox10b contained a 311 bp 5'UTR, a 312 bp 3'UTR and an ORF encoding a putative protein of 490 amino acids with a characteristic HMG-box DNA-binding domain of 79 amino acids (aa: 105-183). Phylogenetic tree shows that the MaSOX10b fits within the Sox10 clade and clusters firmly into Sox10b branches. During embryogenesis, MaSox10b was first detected in gastrulae stage. From somitogenesis stage and thereafter, distinct expression was observed in the medial neural tube, extending from the hindbrain through the posterior trunk. Taken together, these preliminary findings suggested that MaSox10b is highly conserved during vertebrate evolution and involved in a wide range of developmental processes including embryogenesis and neurogenesis.
Collapse
Affiliation(s)
- Xiaohua Xia
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, 453007, Henan, People's Republic of China
| | | | | | | | | |
Collapse
|
24
|
Xia X, Chen J, Zhang L, Du Q, Sun J, Chang Z. Molecular cloning and mRNA expression pattern of Sox10 in Paramisgurnus dabryanus. Mol Biol Rep 2012; 40:3123-34. [DOI: 10.1007/s11033-012-2386-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/17/2012] [Indexed: 02/06/2023]
|
25
|
Elmaleh-Bergès M, Baumann C, Noël-Pétroff N, Sekkal A, Couloigner V, Devriendt K, Wilson M, Marlin S, Sebag G, Pingault V. Spectrum of temporal bone abnormalities in patients with Waardenburg syndrome and SOX10 mutations. AJNR Am J Neuroradiol 2012; 34:1257-63. [PMID: 23237859 DOI: 10.3174/ajnr.a3367] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Waardenburg syndrome, characterized by deafness and pigmentation abnormalities, is clinically and genetically heterogeneous, consisting of 4 distinct subtypes and involving several genes. SOX10 mutations have been found both in types 2 and 4 Waardenburg syndrome and neurologic variants. The purpose of this study was to evaluate both the full spectrum and relative frequencies of inner ear malformations in these patients. MATERIALS AND METHODS Fifteen patients with Waardenburg syndrome and different SOX10 mutations were studied retrospectively. Imaging was performed between February 2000 and March 2010 for cochlear implant work-up, diagnosis of hearing loss, and/or evaluation of neurologic impairment. Eleven patients had both CT and MR imaging examinations, 3 had MR imaging only, and 1 had CT only. RESULTS Temporal bone abnormalities were bilateral. The most frequent pattern associated agenesis or hypoplasia of ≥1 semicircular canal, an enlarged vestibule, and a cochlea with a reduced size and occasionally an abnormal shape, but with normal partition in the 13/15 cases that could be analyzed. Three patients lacked a cochlear nerve, bilaterally in 2 patients. In addition, associated abnormalities were found when adequate MR imaging sequences were available: agenesis of the olfactory bulbs (7/8), hypoplastic or absent lacrimal glands (11/14), hypoplastic parotid glands (12/14), and white matter signal anomalies (7/13). CONCLUSIONS In the appropriate clinical context, bilateral agenesis or hypoplasia of the semicircular canals or both, associated with an enlarged vestibule and a cochlear deformity, strongly suggests a diagnosis of Waardenburg syndrome linked to a SOX10 mutation.
Collapse
Affiliation(s)
- M Elmaleh-Bergès
- Departments of Pediatric Imaging, Hôpital Robert Debré, Paris, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Heerema MGJ, Suurmeijer AJH. Sox10 immunohistochemistry allows the pathologist to differentiate between prototypical granular cell tumors and other granular cell lesions. Histopathology 2012; 61:997-9. [DOI: 10.1111/j.1365-2559.2012.04311.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Liu Q, Lu H, Zhang L, Xie J, Shen W, Zhang W. Homologues of sox8 and sox10 in the orange-spotted grouper Epinephelus coioides: sequences, expression patterns, and their effects on cyp19a1a promoter activities in vitro. Comp Biochem Physiol B Biochem Mol Biol 2012; 163:86-95. [PMID: 22580033 DOI: 10.1016/j.cbpb.2012.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 05/03/2012] [Accepted: 05/03/2012] [Indexed: 02/06/2023]
Abstract
Sox8 and Sox10 are members of group E Sox proteins involved in a wide range of developmental processes including sex determination and neurogenesis in vertebrates. The orange-spotted grouper sox8a and sox10a homologues were isolated and characterized in the present study. Both sox8a and sox10a genes contain three exons and two introns, and encode putative proteins with typical structures of group E Sox. Sox8a was expressed in diverse tissues including the central nervous system and some peripheral tissues. In contrast, sox10a mRNA was detected primarily in the central nervous system. During embryogenesis, sox8a mRNA seemed to be de novo synthesized in the embryos from otic vesicle stage. However, sox10a mRNA was only detectable in juvenile fish 35 days post hatching and thereafter. The mRNA levels of sox8a in the gonads were not significantly different among ovarian developmental stages but increased in the testis. In vitro transfection assays showed that the Sox10a but not Sox8a up-regulated cyp19a1a promoter activities. Taken together, these results suggested that the sox8a may play roles in diverse tissues and during embryogenesis, whereas sox10a may be mainly involved in the neural regulation of juvenile and adult fish, and that certain Sox homologues may regulate the orange-spotted grouper cyp19a1a promoter.
Collapse
Affiliation(s)
- Qiongyou Liu
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | | | | | | | | | | |
Collapse
|
28
|
Martínez L, Aras-López R, Lancha S, Vallejo-Cremades MT, Pederiva F, XiaoMei L, Tovar JA. Abnormal development of the enteric nervous system in rat embryos and fetuses with congenital diaphragmatic hernia. Pediatr Surg Int 2011; 27:165-73. [PMID: 21069350 DOI: 10.1007/s00383-010-2788-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND/AIM Esophageal dilatation, gastroesophageal reflux, and intestinal obstruction have been demonstrated in CDH survivors. Abnormal esophageal and intestinal innervations were recently found in rats and babies with this disease. Our aim was to further characterize these malformations in embryos and fetal rats exposed to nitrofen. METHODS Pregnant rats received either 100 mg nitrofen or vehicle on E9.5. Fetuses were recovered at E15, E18, and E21. Sections of esophagus and small bowel were histochemically stained with acetylcholinesterase (AChE) and immunostained for PGP9.5. PGP9.5 gen protein were measured on E21 and PGP9.5 mRNA on E15, E18 and E21. Comparisons between groups were made with non-parametrics tests. RESULTS Histochemistry and immunohistochemistry showed deficient innervation in all anatomical areas studied at E15, E18, and E21, and WB confirmed this decrease in E21 fetuses. PGP9.5 messenger was decreased in nitrofen-exposed animals on E18 (esophagus) or E15 (small bowel), and increased on E21 in the esophagus and E18 in small bowel. CONCLUSIONS Development of the enteric nervous system of the esophagus, stomach, and small bowel is deficient in rat embryos and fetuses exposed to nitrofen. These anomalies could account in part for the long-term gastrointestinal morbidity observed in CDH survivors.
Collapse
Affiliation(s)
- Leopoldo Martínez
- Department of Pediatric Surgery, Hospital Universitario La Paz, Paseo de la Castellana, 261, 28046, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
29
|
Betters E, Liu Y, Kjaeldgaard A, Sundström E, García-Castro MI. Analysis of early human neural crest development. Dev Biol 2010; 344:578-92. [PMID: 20478300 DOI: 10.1016/j.ydbio.2010.05.012] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 04/22/2010] [Accepted: 05/10/2010] [Indexed: 11/18/2022]
Abstract
The outstanding migration and differentiation capacities of neural crest cells (NCCs) have fascinated scientists since Wilhelm His described this cell population in 1868. Today, after intense research using vertebrate model organisms, we have gained considerable knowledge regarding the origin, migration and differentiation of NCCs. However, our understanding of NCC development in human embryos remains largely uncharacterized, despite the role the neural crest plays in several human pathologies. Here, we report for the first time the expression of a battery of molecular markers before, during, or following NCC migration in human embryos from Carnegie Stages (CS) 12 to 18. Our work demonstrates the expression of Sox9, Sox10 and Pax3 transcription factors in premigratory NCCs, while actively migrating NCCs display the additional transcription factors Pax7 and AP-2alpha. Importantly, while HNK-1 labels few migrating NCCs, p75(NTR) labels a large proportion of this population. However, the broad expression of p75(NTR) - and other markers - beyond the neural crest stresses the need for the identification of additional markers to improve our capacity to investigate human NCC development, and to enable the generation of better diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Erin Betters
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | | | | | | | | |
Collapse
|
30
|
Chimge NO, Bayarsaihan D. Generation of neural crest progenitors from human embryonic stem cells. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 314:95-103. [PMID: 19780036 DOI: 10.1002/jez.b.21321] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The neural crest (NC) is a transient population of multipotent progenitors arising at the lateral edge of the neural plate in vertebrate embryos, which then migrate throughout the body to generate diverse array of tissues such as the peripheral nervous system, skin melanocytes, and craniofacial cartilage, bone and teeth. The transient nature of neural crest stem cells make extremely challenging to study the biology of these important cells. In humans induction and differentiation of embryonic NC occurs very early, within a few weeks of fertilization giving rise to technical and ethical issues surrounding isolation of early embryonic tissues and therefore severely limiting the study of human NC cells. For that reason our current knowledge of the biology of NC mostly derives from the studies of lower organisms. Recent progress in human embryonic stem cell research provides a unique opportunity for generation of a useful source of cells for basic developmental studies. The development of cost-effective, time and labor efficient improved differentiation protocols for the production of human NC cells is a critical step toward a better understanding of NC biology.
Collapse
Affiliation(s)
- Nyam-Osor Chimge
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | | |
Collapse
|
31
|
Buchtová M, Kuo WP, Nimmagadda S, Benson SL, Geetha-Loganathan P, Logan C, Au-Yeung T, Chiang E, Fu K, Richman JM. Whole genome microarray analysis of chicken embryo facial prominences. Dev Dyn 2010; 239:574-91. [PMID: 19941351 DOI: 10.1002/dvdy.22135] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The face is one of the three regions most frequently affected by congenital defects in humans. To understand the molecular mechanisms involved, it is necessary to have a more complete picture of gene expression in the embryo. Here, we use microarrays to profile expression in chicken facial prominences, post neural crest migration and before differentiation of mesenchymal cells. Chip-wide analysis revealed that maxillary and mandibular prominences had similar expression profiles while the frontonasal mass chips were distinct. Of the 3094 genes that were differentially expressed in one or more regions of the face, a group of 56 genes was subsequently validated with quantitative polymerase chain reaction (QPCR) and a subset examined with in situ hybridization. Microarrays trends were consistent with the QPCR data for the majority of genes (81%). On the basis of QPCR and microarray data, groups of genes that characterize each of the facial prominences can be determined.
Collapse
Affiliation(s)
- Marcela Buchtová
- Department of Oral Health Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Breuskin I, Bodson M, Thelen N, Thiry M, Borgs L, Nguyen L, Lefebvre PP, Malgrange B. Sox10 promotes the survival of cochlear progenitors during the establishment of the organ of Corti. Dev Biol 2009; 335:327-39. [PMID: 19748502 DOI: 10.1016/j.ydbio.2009.09.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 09/04/2009] [Accepted: 09/04/2009] [Indexed: 01/01/2023]
Abstract
Transcription factors of the SoxE family are critical players that underlie various embryological processes. However, little is known about their function during inner ear development. Here, we show that Sox10 is initially expressed throughout the otic vesicle epithelium and becomes later restricted to supporting cells as cell differentiation proceeds in the organ of Corti. Morphological analyses of Sox10 mutant mice reveal a significant shortening of the cochlear duct likely resulting from the progressive depletion of cochlear progenitors. While Sox10 appears dispensable for the differentiation and patterning of the inner ear prosensory progenitors, our data support a critical role for this transcription factor in the promotion of their survival. We provide genetic evidences that Sox10, in a concentration-dependant manner, could play a role in the regulation of Jagged1, a gene known to be important for inner ear prosensory development. Together, our results demonstrate that Sox10 regulates the biology of early cochlear progenitors during inner ear development, but, in contrast to neural crest-derived cells, this transcription factor is dispensable for their differentiation. Evidence also suggests that this effect occurs via the activation of the Jagged1 gene.
Collapse
|
33
|
Thomas AJ, Erickson CA. FOXD3 regulates the lineage switch between neural crest-derived glial cells and pigment cells by repressing MITF through a non-canonical mechanism. Development 2009; 136:1849-58. [PMID: 19403660 DOI: 10.1242/dev.031989] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The first neural crest cells to emigrate from the neural tube are specified as neurons and glial cells and are subsequently followed by melanocytes of the skin. We wished to understand how this fate switch is controlled. The transcriptional repressor FOXD3 is expressed exclusively in the neural/glial precursors and MITF is expressed only in melanoblasts. Moreover, FOXD3 represses melanogenesis. Here we show that avian MITF expression begins very early during melanoblast migration and that loss of MITF in melanoblasts causes them to transdifferentiate to a glial phenotype. Ectopic expression of FOXD3 represses MITF in cultured neural crest cells and in B16-F10 melanoma cells. We also show that FOXD3 does not bind directly to the MITF promoter, but instead interacts with the transcriptional activator PAX3 to prevent the binding of PAX3 to the MITF promoter. Overexpression of PAX3 is sufficient to rescue MITF expression from FOXD3-mediated repression. We conclude that FOXD3 controls the lineage choice between neural/glial and pigment cells by repressing MITF during the early phase of neural crest migration.
Collapse
Affiliation(s)
- Aaron J Thomas
- Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA.
| | | |
Collapse
|
34
|
cDNA cloning, tissues, embryos and larvae expression analysis of Sox10 in half-smooth tongue-sole, Cynoglossus semilaevis. Mar Genomics 2009; 1:109-14. [PMID: 21798161 DOI: 10.1016/j.margen.2008.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 10/23/2008] [Indexed: 11/22/2022]
Abstract
A half-smooth tongue-sole, Cynoglossus semilaevis Sox10 (Accession no.: EU070763) was isolated from brain of tongue sole by using homologous cloning and RACE method. The complete cDNA of the tongue sole Sox10 contains a 35 bp 5'UTR, a 1338 bp open reading frame (ORF) encoding 445 amino acids and a 1155 bp 3'UTR. A condensed phylogenetic tree was constructed based on the amino acid sequences of tongue sole Sox10 and other well-defined vertebrate Sox. The overall topology of the tree showed the tongue sole Sox10 clusters with all Sox10. Alignment of amino acid residues of the tongue sole Sox10 gene with those from other vertebrate indicated high level conservation of amino acid sequence. The RT-PCR analysis demonstrated that the tongue sole Sox10 was highly expressed in brain, gills, skin and eyes, intermediately in spleen, heart, head-kidney and muscles, weakly expressed in kidneys and intestine and no expression in liver and gonad. The Sox10 was also expressed weakly in germ cell and zygote. We cannot detect the expression of the Sox10 in 8-cells stage. However it resumed expression weakly from blastula stage to middle of gastrula. And it expressed highly from neurula stage to 25 dah (day after hatching). It suggested that the Sox10 was involved in the development of embryos and larvae in tongue sole.
Collapse
|
35
|
Dutton K, Abbas L, Spencer J, Brannon C, Mowbray C, Nikaido M, Kelsh RN, Whitfield TT. A zebrafish model for Waardenburg syndrome type IV reveals diverse roles for Sox10 in the otic vesicle. Dis Model Mech 2008; 2:68-83. [PMID: 19132125 PMCID: PMC2615172 DOI: 10.1242/dmm.001164] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 11/12/2008] [Indexed: 12/13/2022] Open
Abstract
In humans, mutations in the SOX10 gene are a cause of the auditory-pigmentary disorder Waardenburg syndrome type IV (WS4) and related variants. SOX10 encodes an Sry-related HMG box protein essential for the development of the neural crest; deafness in WS4 and other Waardenburg syndromes is usually attributed to loss of neural-crest-derived melanocytes in the stria vascularis of the cochlea. However, SOX10 is strongly expressed in the developing otic vesicle and so direct roles for SOX10 in the otic epithelium might also be important. Here, we examine the otic phenotype of zebrafish sox10 mutants, a model for WS4. As a cochlea is not present in the fish ear, the severe otic phenotype in these mutants cannot be attributed to effects on this tissue. In zebrafish sox10 mutants, we see abnormalities in all otic placodal derivatives. Gene expression studies indicate deregulated expression of several otic genes, including fgf8, in sox10 mutants. Using a combination of mutant and morphant data, we show that the three sox genes belonging to group E (sox9a, sox9b and sox10) provide a link between otic induction pathways and subsequent otic patterning: they act redundantly to maintain sox10 expression throughout otic tissue and to restrict fgf8 expression to anterior macula regions. Single-cell labelling experiments indicate a small and transient neural crest contribution to the zebrafish ear during normal development, but this is unlikely to account for the strong defects seen in the sox10 mutant. We discuss the implication that the deafness in WS4 patients with SOX10 mutations might reflect a haploinsufficiency for SOX10 in the otic epithelium, resulting in patterning and functional abnormalities in the inner ear.
Collapse
Affiliation(s)
- Kirsten Dutton
- Department of Biology and Biochemistry, Centre for Regenerative Medicine, Developmental Biology Programme, University of Bath, Bath, UK
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Thomas AJ, Erickson CA. The making of a melanocyte: the specification of melanoblasts from the neural crest. Pigment Cell Melanoma Res 2008; 21:598-610. [DOI: 10.1111/j.1755-148x.2008.00506.x] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
37
|
Antonellis A, Huynh JL, Lee-Lin SQ, Vinton RM, Renaud G, Loftus SK, Elliot G, Wolfsberg TG, Green ED, McCallion AS, Pavan WJ. Identification of neural crest and glial enhancers at the mouse Sox10 locus through transgenesis in zebrafish. PLoS Genet 2008; 4:e1000174. [PMID: 18773071 PMCID: PMC2518861 DOI: 10.1371/journal.pgen.1000174] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Accepted: 07/17/2008] [Indexed: 11/18/2022] Open
Abstract
Sox10 is a dynamically regulated transcription factor gene that is essential for the development of neural crest-derived and oligodendroglial populations. Developmental genes often require multiple regulatory sequences that integrate discrete and overlapping functions to coordinate their expression. To identify Sox10 cis-regulatory elements, we integrated multiple model systems, including cell-based screens and transposon-mediated transgensis in zebrafish, to scrutinize mammalian conserved, noncoding genomic segments at the mouse Sox10 locus. We demonstrate that eight of 11 Sox10 genomic elements direct reporter gene expression in transgenic zebrafish similar to patterns observed in transgenic mice, despite an absence of observable sequence conservation between mice and zebrafish. Multiple segments direct expression in overlapping populations of neural crest derivatives and glial cells, ranging from pan-Sox10 and pan-neural crest regulatory control to the modulation of expression in subpopulations of Sox10-expressing cells, including developing melanocytes and Schwann cells. Several sequences demonstrate overlapping spatial control, yet direct expression in incompletely overlapping developmental intervals. We were able to partially explain neural crest expression patterns by the presence of head to head SoxE family binding sites within two of the elements. Moreover, we were able to use this transcription factor binding site signature to identify the corresponding zebrafish enhancers in the absence of overall sequence homology. We demonstrate the utility of zebrafish transgenesis as a high-fidelity surrogate in the dissection of mammalian gene regulation, especially those with dynamically controlled developmental expression.
Collapse
Affiliation(s)
- Anthony Antonellis
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jimmy L. Huynh
- McKusick–Nathans Institute of Genetic Medicine, Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Shih-Queen Lee-Lin
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ryan M. Vinton
- McKusick–Nathans Institute of Genetic Medicine, Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Gabriel Renaud
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stacie K. Loftus
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Gene Elliot
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tyra G. Wolfsberg
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Eric D. Green
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Andrew S. McCallion
- McKusick–Nathans Institute of Genetic Medicine, Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| | - William J. Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
38
|
Hoff S, Zeller F, von Weyhern CWH, Wegner M, Schemann M, Michel K, Rühl A. Quantitative assessment of glial cells in the human and guinea pig enteric nervous system with an anti-Sox8/9/10 antibody. J Comp Neurol 2008; 509:356-71. [PMID: 18512230 DOI: 10.1002/cne.21769] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Quantitative changes of enteric glia (EGC) have been implicated in gastrointestinal disorders. To facilitate future studies of EGC in human pathology, we aimed to characterize thoroughly glial markers in the human enteric nervous system (ENS) and to compare EGC in man and guinea pig. Whole-mount preparations of the enteric nerve plexuses from human and guinea pig ileum and colon were labeled with antibodies against S100b, glial fibrillary acidic protein (GFAP), and p75NGFR and the transcription factors Sox8/9/10 and neuronally counterstained. Abundant immunoreactivity (IR) for S100b, GFAP, p75NGFR, and Sox8/9/10 was detected in EGC of all studied regions. Although the cytoplasmatic staining pattern of most markers did not permit glial quantification, the nuclear localization of Sox8/9/10-IR allowed to identify and count all EGC individually. In both man and guinea pig, myenteric ganglia were larger and contained more EGC and neurons than submucous ganglia. Furthermore, there were more EGC in the human than in the guinea pig myenteric plexus (MP), glial density was consistently higher in the human ENS, and the glia index (glia:neuron ratio) ranged from 1.3 to 1.9 and from 5.9 to 7.0 in the human submucous plexus (SMP) and MP, respectively, whereas, in guinea pig, the glia index was 0.8-1.0 in the SMP and 1.7 in the MP. The glia index was the most robust quantitative descriptor within one species. This is a comprehensive set of quantitative EGC measures in man and guinea pig that provides a basis for pathological assessment of glial proliferation and/or degeneration in the diseased gut.
Collapse
Affiliation(s)
- Sebastian Hoff
- Department of Human Biology, Technische Universität München, D-85350 Freising-Weihenstephan, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Pomp O, Brokhman I, Ziegler L, Almog M, Korngreen A, Tavian M, Goldstein RS. PA6-induced human embryonic stem cell-derived neurospheres: a new source of human peripheral sensory neurons and neural crest cells. Brain Res 2008; 1230:50-60. [PMID: 18671952 DOI: 10.1016/j.brainres.2008.07.029] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 07/01/2008] [Accepted: 07/04/2008] [Indexed: 11/19/2022]
Abstract
Human embryonic stem cells (hESC) have been directed to differentiate into CNS cells with clinical importance. However, for study of development and regeneration of the human PNS, and peripheral neuropathies, it would be useful to have a source of human PNS derivatives. We have demonstrated that peripheral sensory neuron-like cells (PSN) can also be derived from hESC via neural crest-like (NC) intermediates, and from neural progenitors induced from hESC using noggin. Here we report the generation of higher purity PSN from passagable neurospheres (NSP) induced by murine PA6 stromal cells. hESC were cultured with PA6, and colonies that developed a specific morphology were cut from the plates. Culture of these colonies under non-adhesive conditions yielded NSPs. Several NC marker genes were expressed in the NSP, and these were also detected in 3-5week gestation human embryos containing migrating NC. These NSPs passaged for 2-8weeks and re-plated on PA6 gave rise to many Brn3a+/peripherin+ cells, characteristic of early sensory-like neurons. Re-culturing PA6-induced NSP cells with PA6 resulted in about 25% of the human cells in the co-cultures differentiating to PSN after 1week, compared to only about 10% PSN obtained after 3 weeks when noggin-induced NSP were used. Two month adherent cultures of PA6-induced NSP cells contained neurons expressing several PSN neuropeptides, and voltage-dependent currents and action potentials were obtained from a molecularly identified PSN. hESC-derived PA6-induced NSP cells are therefore an excellent potential source of human PSN for study of differentiation and modeling of PNS disease.
Collapse
Affiliation(s)
- Oz Pomp
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 52900 Ramat-Gan, Israel
| | | | | | | | | | | | | |
Collapse
|
40
|
A de novoSOX10 mutation causing severe type 4 Waardenburg syndrome without Hirschsprung disease. Am J Med Genet A 2008; 146A:1038-41. [DOI: 10.1002/ajmg.a.32247] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
41
|
Ferletta M, Uhrbom L, Olofsson T, Pontén F, Westermark B. Sox10 Has a Broad Expression Pattern in Gliomas and Enhances Platelet-Derived Growth Factor-B–Induced Gliomagenesis. Mol Cancer Res 2007; 5:891-7. [PMID: 17855658 DOI: 10.1158/1541-7786.mcr-07-0113] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In a previously published insertional mutagenesis screen for candidate brain tumor genes in the mouse using a Moloney mouse leukemia virus encoding platelet-derived growth factor (PDGF)-B, the Sox10 gene was tagged in five independent tumors. The proviral integrations suggest an enhancer effect on Sox10. All Moloney murine leukemia virus/PDGFB tumors had a high protein expression of Sox10 independently of malignant grade or tumor type. To investigate the role of Sox10 in gliomagenesis, we used the RCAS/tv-a mouse model in which the expression of retroviral-encoded genes can be directed to glial progenitor cells (Ntv-a mice). Both Ntv-a transgenic mice, wild-type, and Ntv-a p19Arf null mice were injected with RCAS-SOX10 alone or in combination with RCAS-PDGFB. Infection with RCAS-SOX10 alone did not induce any gliomas. Combined infection of RCAS-SOX10 and RCAS-PDGFB in wild-type Ntv-a mice yielded a tumor frequency of 12%, and in Ntv-a Arf-/- mice the tumor frequency was 30%. This indicates that Sox10 alone is not sufficient to induce gliomagenesis but acts synergistically with PDGFB in glioma development. All induced tumors displayed characteristics of PNET-like structures and oligodendroglioma. The tumors had a strong and widely distributed expression of Sox10 and PDGFR-alpha. We investigated the expression of Sox10 in other human tumors and in a number of gliomas. The Sox10 expression was restricted to gliomas and melanomas. All glioma types expressed Sox10, and tumors of low-grade glioma had a much broader distribution of Sox10 compared with high-grade gliomas.
Collapse
Affiliation(s)
- Maria Ferletta
- Department of Genetics and Pathology, Uppsala University, Rudbeck Laboratory C11, Dag Hammarskjoldsv 20, S-751 85 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
42
|
Silver DL, Hou L, Pavan WJ. The genetic regulation of pigment cell development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 589:155-69. [PMID: 17076280 DOI: 10.1007/978-0-387-46954-6_9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pigment cells in developing vertebrates are derived from a transient and pluripotent population of cells called neural crest. The neural crest delaminates from the developing neural tube and overlying ectoderm early in development. The pigment cells are the only derivative to migrate along the dorso-lateral pathway. As they migrate, the precursor pigment cell population differentiates and expands through proliferation and pro-survival processes, ultimately contributing to the coloration of organisms. The types of pigment cells that develop, timing of these processes, and final destination can vary between organisms. Studies from mice, chick, Xenopus, zebrafish, and medaka have led to the identification of many genes that regulate pigment cell development. These include several classes of proteins: transcription factors, transmembrane receptors, and extracellular ligands. This chapter discusses an overview of pigment cell development and the genes that regulate this important process.
Collapse
Affiliation(s)
- Debra L Silver
- Genetic Diseases Branch, NHGRI, NIH, Room 4A51, Bldg. 49, 49 Convent Drive, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
43
|
Bennetts JS, Rendtorff ND, Simpson F, Tranebjaerg L, Wicking C. The coding region of TP53INP2, a gene expressed in the developing nervous system, is not altered in a family with autosomal recessive non-progressive infantile ataxia on chromosome 20q11-q13. Dev Dyn 2007; 236:843-52. [PMID: 17238154 DOI: 10.1002/dvdy.21064] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The locus for autosomal recessive infantile cerebellar ataxia (CLA3 or SCAR6) has been mapped to chromosome 20q11-q13 in a single Norwegian pedigree. We identified a relatively uncharacterised mouse gene Tp53inp2, and showed that its human orthologue mapped within this candidate interval. Tp53inp2 appears to encode a mammalian-specific protein with homology to the two Tp53inp1 isoforms that respond to cellular stress and interact with p53. We show that Tp53inp2 expression is highly restricted during mouse embryogenesis, with strong expression in the developing brain and spinal cord, as well as in the sensory and motor neuron tracts of the peripheral nervous system. Given this expression pattern, the neurological phenotype of CLA3 and the chromosomal localisation of TP53INP2, we searched the coding region for mutations in samples from individuals from the CLA3 pedigree. Our failure to detect causative mutations suggests that alterations in the coding region of TP53INP2 are not responsible for ataxia in this family, although we cannot rule out changes in non-coding elements of this gene.
Collapse
|
44
|
Brokhman I, Gamarnik-Ziegler L, Pomp O, Aharonowiz M, Reubinoff BE, Goldstein RS. Peripheral sensory neurons differentiate from neural precursors derived from human embryonic stem cells. Differentiation 2007; 76:145-55. [PMID: 17608731 DOI: 10.1111/j.1432-0436.2007.00196.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neural precursors have been derived from human embryonic stem cells (hESC) using the bone morphogenetic protein antagonist noggin. These neural precursors can be further differentiated to produce neural cells that express central nervous system (CNS) markers. We have recently shown that naive hESC can be directed to differentiate into peripheral sensory (PS) neuron-like cells and putative neural crest precursors by co-culturing with PA6 stromal cells. In the present study, we examine whether hESC-derived neural precursors (NPC) can differentiate into the peripheral nervous system, as well as CNS cells. As little as 1 week after co-culture with PA6 cells, cells with the molecular characteristics of PS neurons and neural crest are observed in the cultures. With increased time in culture, more PS-like neurons appear, in parallel with a reduction in the neural crest-like cells. These results provide the first evidence that neural precursors derived from hESC have the potential to develop into PS neurons-like as well as CNS-like neuronal cells. About 10% of the cells in NPC-PA6 co-cultures express PS neuron markers after 3 weeks, compared with <1% of hESC cultured on PA6. This enrichment for peripheral neurons makes this an attractive system for generation of peripheral neurons for pathophysiology study and drug development for diseases of the peripheral nervous system such as Familial Dysautonomia and varicella virus infection.
Collapse
Affiliation(s)
- Irina Brokhman
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel.
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
AIM This review highlights the relevance of the neural crest (NC) as a developmental control mechanism involved in several pediatric surgical conditions and the investigative interest of following some of its known signaling pathways. METHODS The participation of the NC in facial clefts, ear defects, branchial fistulae and cysts, heart outflow tract and aortic arch anomalies, pigmentary disorders, abnormal enteric innervation, neural tumors, hemangiomas, and vascular anomalies is briefly reviewed. Then, the literature on clinical and experimental esophageal atresia-tracheoesophageal fistula (EA-TEF) and congenital diaphragmatic hernia (CDH) is reviewed for the presence of associated NC defects. Finally, some of the molecular signaling pathways involved in both conditions (sonic hedgehog, Hox genes, and retinoids) are summarized. RESULTS The association of facial, cardiovascular, thymic, parathyroid, and C-cell defects together with anomalies of extrinsic and intrinsic esophageal innervation in babies and/or animals with both EA-TEF and CDH strongly supports the hypothesis that NC is involved in the pathogenesis of these malformative clusters. On the other hand, both EA-TEF and CDH are observed in mice mutant for genes involved in the previously mentioned signaling pathways. CONCLUSIONS The investigation of NC-related molecular pathogenic pathways involved in malformative associations like EA-TEF and CDH that are induced by chromosomal anomalies, chemical teratogens, and engineered mutations is a promising way of clarifying why and how some pediatric surgical conditions occur. Pediatric surgeons should be actively involved in these investigations.
Collapse
MESH Headings
- Abnormalities, Multiple/embryology
- Abnormalities, Multiple/physiopathology
- Abnormalities, Multiple/surgery
- Blood Vessels/abnormalities
- Branchial Region/abnormalities
- Cardiovascular Abnormalities/embryology
- Cardiovascular Abnormalities/physiopathology
- Cell Lineage
- Cell Movement
- Child
- Child, Preschool
- Enteric Nervous System/abnormalities
- Esophageal Atresia/embryology
- Esophageal Atresia/physiopathology
- Esophageal Atresia/surgery
- Face/abnormalities
- Genes, Homeobox
- Hedgehog Proteins/physiology
- Hernia, Diaphragmatic/embryology
- Hernia, Diaphragmatic/physiopathology
- Hernia, Diaphragmatic/surgery
- Hernias, Diaphragmatic, Congenital
- Homeodomain Proteins/physiology
- Humans
- Infant
- Infant, Newborn
- Neoplasms/etiology
- Neural Crest/physiopathology
- Patched Receptors
- Pigmentation Disorders/etiology
- Receptors, Cell Surface/physiology
- Receptors, G-Protein-Coupled/physiology
- Receptors, Retinoic Acid/physiology
- Signal Transduction
- Smoothened Receptor
- Syndrome
- Transcription Factors/physiology
- Tretinoin/physiology
- Zinc Finger Protein GLI1
Collapse
Affiliation(s)
- Juan A Tovar
- Departamento de Cirugía Pediátrica, Hospital Universitario La Paz, 28046 Madrid, Spain.
| |
Collapse
|
46
|
Carney TJ, Dutton KA, Greenhill E, Delfino-Machín M, Dufourcq P, Blader P, Kelsh RN. A direct role for Sox10 in specification of neural crest-derived sensory neurons. Development 2006; 133:4619-30. [PMID: 17065232 DOI: 10.1242/dev.02668] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
sox10 is necessary for development of neural and pigment cell derivatives of the neural crest (NC). However, whereas a direct role for Sox10 activity has been established in pigment and glial lineages, this is more controversial in NC-derived sensory neurons of the dorsal root ganglia (DRGs). We proposed that sox10 functioned in specification of sensory neurons, whereas others suggested that sensory neuronal defects were merely secondary to absence of glia. Here we provide evidence that in zebrafish,early DRG sensory neuron survival is independent of differentiated glia. Critically, we demonstrate that Sox10 is expressed transiently in the sensory neuron lineage, and specifies sensory neuron precursors by regulating the proneural gene neurogenin1. Consistent with this, we have isolated a novel sox10 mutant that lacks glia and yet displays a neurogenic DRG phenotype. In conjunction with previous findings, these data establish the generality of our model of Sox10 function in NC fate specification.
Collapse
Affiliation(s)
- Thomas J Carney
- Centre for Regenerative Medicine, Developmental Biology Programme, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
For both vertebrate developmental and evolutionary biologists, and also for clinicians, the neural crest (NC) is a fundamental cell population. An understanding of Sox10 function in NC development is of particular significance since Sox10 mutations underlie several neurocristopathies. Surprisingly, experiments in different model organisms aimed at identifying Sox10's role(s) have suggested at least four distinct functions. Sox10 may be critical for formation of neural crest cells (NCCs), maintaining multipotency of crest cells, specification of derivative cell fates from these cells and their differentiation. Here, I discuss this controversy and argue that these functions are, in part, molecularly interrelated.
Collapse
Affiliation(s)
- Robert N Kelsh
- Centre for Regenerative Medicine, University of Bath, Department of Biology and Biochemistry, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|
48
|
Antonellis A, Bennett WR, Menheniott TR, Prasad AB, Lee-Lin SQ, Green ED, Paisley D, Kelsh RN, Pavan WJ, Ward A. Deletion of long-range sequences at Sox10 compromises developmental expression in a mouse model of Waardenburg-Shah (WS4) syndrome. Hum Mol Genet 2005; 15:259-71. [PMID: 16330480 DOI: 10.1093/hmg/ddi442] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The transcription factor SOX10 is mutated in the human neurocristopathy Waardenburg-Shah syndrome (WS4), which is characterized by enteric aganglionosis and pigmentation defects. SOX10 directly regulates genes expressed in neural crest lineages, including the enteric ganglia and melanocytes. Although some SOX10 target genes have been reported, the mechanisms by which SOX10 expression is regulated remain elusive. Here, we describe a transgene-insertion mutant mouse line (Hry) that displays partial enteric aganglionosis, a loss of melanocytes, and decreased Sox10 expression in homozygous embryos. Mutation analysis of Sox10 coding sequences was negative, suggesting that non-coding regulatory sequences are disrupted. To isolate the Hry molecular defect, Sox10 genomic sequences were collected from multiple species, comparative sequence analysis was performed and software was designed (ExactPlus) to identify identical sequences shared among species. Mutation analysis of conserved sequences revealed a 15.9 kb deletion located 47.3 kb upstream of Sox10 in Hry mice. ExactPlus revealed three clusters of highly conserved sequences within the deletion, one of which shows strong enhancer potential in cultured melanocytes. These studies: (i) present a novel hypomorphic Sox10 mutation that results in a WS4-like phenotype in mice; (ii) demonstrate that a 15.9 kb deletion underlies the observed phenotype and likely removes sequences essential for Sox10 expression; (iii) combine a novel in silico method for comparative sequence analysis with in vitro functional assays to identify candidate regulatory sequences deleted in this strain. These studies will direct further analyses of Sox10 regulation and provide candidate sequences for mutation detection in WS4 patients lacking a SOX10-coding mutation.
Collapse
Affiliation(s)
- Anthony Antonellis
- Geome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
McKeown SJ, Lee VM, Bronner-Fraser M, Newgreen DF, Farlie PG. Sox10 overexpression induces neural crest-like cells from all dorsoventral levels of the neural tube but inhibits differentiation. Dev Dyn 2005; 233:430-44. [PMID: 15768395 DOI: 10.1002/dvdy.20341] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
SoxE genes (Sox8, Sox9, and Sox10) are early response genes to neural crest induction. Although the early role of Sox9 has been examined in chick and frog, later roles in neural crest migration and differentiation remain largely unexplored. We first examined which SoxE genes were expressed in trunk neural crest cells and then investigated their function using in ovo electroporation. The results of this analysis reveal that Sox10 is present in migrating neural crest cells, whereas other SoxE genes are only expressed transiently after induction. Ectopic expression of Sox10 in the neural tube at trunk level induced expression of HNK-1 in neuroepithelial cells followed by extensive emigration from all levels of the dorsoventral neuraxis, including the floor plate. Sox10-expressing cells failed to express neuronal, Schwann, or melanocyte markers up to 6 days posttransfection (E8), suggesting these cells were maintained in an undifferentiated state. Overexpression of Sox8 or Sox9 had similar but not identical effects on neuroepithelial cells. These results show that high levels of Sox10, Sox9, or Sox8 expression in the neural tube are capable of inducing a migratory neural crest-like phenotype even in the absence of dorsal signals and can maintain these cells in an undifferentiated state.
Collapse
Affiliation(s)
- Sonja J McKeown
- Embryology Laboratory, Murdoch Children's Research Institute, Royal Children's Hospital, and Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
50
|
Rauch U, Klotz M, Maas-Omlor S, Wink E, Hänsgen A, Hagl C, Holland-Cunz S, Schäfer KH. Expression of intermediate filament proteins and neuronal markers in the human fetal gut. J Histochem Cytochem 2005; 54:39-46. [PMID: 16087706 DOI: 10.1369/jhc.4a6495.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The human enteric nervous system (ENS) derives from migrating neural crest cells (NCC) and is structured into different plexuses embedded in the gastrointestinal tract wall. During development of the NCC, a rearrangement of various cytoskeletal intermediate filaments such as nestin, peripherin, or alpha-internexin takes place. Although all are related to developing neurons, nestin is also used to identify neural stem cells. Until now, information about the prenatal development of the human ENS has been very restricted, especially concerning potential stem cells. In this study the expression of nestin, peripherin, and alpha-internexin, but also of neuronal markers such as protein gene product (PGP) 9.5 and tyrosine hydroxylase, were investigated in human fetal and postnatal gut. The tissue samples were rapidly removed and subsequently processed for immunohistochemistry or immunoblotting. Nestin could be detected in all samples investigated with the exception of the 9th and the 12th week of gestation (WOG). Although the neuronal marker PGP9.5 was coexpressed with nestin at the 14th WOG, this could no longer be observed at later time points. Alpha-internexin and peripherin expression also did not appear before the 14th WOG, where they were coexpressed with PGP9.5. This study reveals that the intermediate filament markers investigated are not suitable to detect early neural crest stem cells.
Collapse
Affiliation(s)
- Ulrich Rauch
- Department of Pediatric Surgery, Clinical Hospital Mannheim, Heidelberg University, Germany
| | | | | | | | | | | | | | | |
Collapse
|