1
|
Ganapathy PS, Dun Y, Ha Y, Duplantier J, Allen JB, Farooq A, Bozard BR, Smith SB. Sensitivity of staurosporine-induced differentiated RGC-5 cells to homocysteine. Curr Eye Res 2010; 35:80-90. [PMID: 20021258 DOI: 10.3109/02713680903421194] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Homocysteine is implicated in ganglion cell death associated with glaucoma. To understand mechanisms of homocysteine-induced cell death, we analyzed the sensitivity of the RGC-5 cell line, differentiated using staurosporine, to physiologically-relevant levels of the excitotoxic amino acid homocysteine. METHODS RGC-5 cells were differentiated 24 hr using 316 nM staurosporine and tested for expression of Thy 1.2 via immunodetection, RT-PCR, and immunoblotting. The sensitivity of staurosporine-differentiated RGC-5 cells to physiological levels of homocysteine (50, 100, 250 microM) and to high levels of homocysteine (1 mM), glutamate (1 mM), and oxidative stress (25 microM:10 mU/ml xanthine:xanthine oxidase) was assessed by TUNEL assay and by immunodetection of cleaved caspase-3. The sensitivity of undifferentiated RGC-5 cells to high (1, 5, and 10 mM) homocysteine was also examined. RESULTS Undifferentiated RGC-5 cells express Thy 1.2 mRNA and protein. Staurosporine-differentiated RGC-5 cells extend neurite processes and express Thy 1.2 after 24 hr differentiation; they express NF-L after 1 and 3 days differentiation. Treatment of staurosporine -differentiated RGC-5 cells with 50, 100, or 250 microM homocysteine did not alter neurite processes nor induce cell death (detected by TUNEL and active caspase-3) to a level greater than that observed in the control (non-homocysteine-treated, staurosporine-differentiated) cells. The 1 mM dosage of homocysteine in staurosporine-differentiated RGC-5 cells also did not induce cell death above control levels, although 18 hr treatment of non-differentiated RGC-5 cells with 5 mM homocysteine decreased survival by 50%. CONCLUSIONS RGC-5 cells differentiated for 24 hr with 316 nM staurosporine project robust neurite processes and are positive for ganglion cell markers consistent with a more neuronal phenotype than non-staurosporine-differentiated RGC-5 cells. However, concentrations of homocysteine known to induce ganglion cell death in vivo and in primary ganglion cells are not sufficient to induce death of RGC-5 cells, even when they are differentiated with staurosporine.
Collapse
Affiliation(s)
- Preethi S Ganapathy
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, Georgia 30912-2000, USA
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Ge C, Yu M, Petitte JN, Zhang C. Epidermal growth factor-induced proliferation of chicken primordial germ cells: involvement of calcium/protein kinase C and NFKB1. Biol Reprod 2008; 80:528-36. [PMID: 19005168 DOI: 10.1095/biolreprod.108.072728] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epidermal growth factor (EGF) has been shown to stimulate survival in diverse cells in vitro. In the present study, the effects of EGF and the EGF-related signaling pathway on proliferation of chicken primordial germ cells (PGCs) were investigated. Results showed that EGF (10-100 ng/ml) increased the number and area of PGC colonies in a time- and dose-dependent manner. EGF also activated PKC, a process that was inhibited by AG1478 (an EGFR tyrosine kinase inhibitor) and ethyleneglycol-bis-(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA; an intracellular Ca(2+) chelator). In addition, the degradation of NFKBIA and NFKB1 (p65) translocation was observed after EGF treatment, which was significantly blocked by pretreatment with AG1478, EGTA, H(7), or SN50 (NFKB1-specific inhibitor). Furthermore, we found that EGF-induced cell proliferation was significantly attenuated by AG1478, EGTA, H(7), and SN50, respectively. On the other hand, inhibition of EGFR, Ca(2+)/PKC, or NFKB1 abolished the EGF-stimulated increase in the expression of cyclins CCND1 and CCNE1, cyclin-dependent kinase 6 (CDK6), CDK2, and BCL2, and restored the EGF-induced inhibition of BAX expression and caspase 3/9 activity, indicating that EGFR, PKC, and NFKB1 signaling cascades were involved in EGF-stimulated DNA synthesis and antiapoptosis action. In conclusion, EGF stimulated proliferation of chicken PGCs via activation of Ca(2+)/PKC involving NFKB1 signaling pathway. These observations suggest that EGF signaling is important in regulating germ cell proliferation in the chicken embryonic gonad.
Collapse
Affiliation(s)
- Chutian Ge
- Key Laboratory of Animal Epidemic Etiology & Immunological Prevention of the Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | | | | | | |
Collapse
|
3
|
Shao H, Yi XM, Wells A. Epidermal growth factor protects fibroblasts from apoptosis via PI3 kinase and Rac signaling pathways. Wound Repair Regen 2008; 16:551-8. [PMID: 18638274 DOI: 10.1111/j.1524-475x.2008.00402.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The fibroplasia noted during wound repair is resolved by fibroblast cell death. How fibroblasts undergo death and how this is prevented by trophic growth factors present during the regenerative phase are unknown at the molecular level. We examined a model of staurosporine-induced apoptosis in fibroblasts. We demonstrated that epidermal growth factor (EGF) stimulation of fibroblast NR6WT expressing human EGF receptors blocks staurosporine-induced apoptosis by inhibiting the activation of caspase-3. The survival effect of EGF on rescuing apoptotic NR6WT involves signaling pathways that derive from PI3K and Rac; the blockade of apoptosis is abolished when PI3K and Rac signals are inhibited simultaneously. Furthermore, by using KP372-1, a specific Akt inhibitor, we found that downstream of Akt signaling pathways is absolutely required for the EGF rescue from staurosporine-induced apoptosis in NR6WT. Interestingly, EGF prevention of apoptosis induced by tumor necrosis factor-alpha in the face of cycloheximide blockade of protein translation occurs via a different set of pathways as the simultaneous inhibition of extracellular signal-regulated kinase, Rac, and PI3K signaling did not eliminate EGF from rescuing fibroblasts in the face of this cytokine. These findings indicate that EGF receptor activation provides survival response against staurosporine-induced apoptosis through signal pathways of PI3K and Rac, which then may prevent the activation of caspase-3.
Collapse
Affiliation(s)
- Hanshuang Shao
- Department of Pathology, University of Pittsburgh, and Department of Pathology, Pittsburgh VAMC, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
4
|
Paramá A, Castro R, Lamas J, Sanmartín ML, Santamarina MT, Leiro J. Scuticociliate proteinases may modulate turbot immune response by inducing apoptosis in pronephric leucocytes. Int J Parasitol 2007; 37:87-95. [PMID: 17049529 DOI: 10.1016/j.ijpara.2006.08.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Revised: 08/25/2006] [Accepted: 08/29/2006] [Indexed: 11/26/2022]
Abstract
The role of proteinases of the histiophagous ciliate Philasterides dicentrarchi, purified by affinity chromatography in bacitracin-Sepharose, on apoptosis (programmed cell death) of turbot pronephric leucocytes (PL) was investigated. The results showed that more than 90% of proteinases purified by bacitracin-Sepharose were cysteine proteinases, which lacked significant caspase-3-like activity and generated three main gelatinolytic bands of molecular weights 36, 45 and 77 kDa as determined by gelatine-SDS-PAGE and immunoblot. Viability of PL cells after 24 h stimulation with P. dicentrarchi cysteine proteinases did not differ from that of non-stimulated cells. Apoptosis was confirmed by: (i) caspase activity, (ii) DNA fragmentation, and (iii) nucleus fragmentation. The caspase-3-like activity in PL incubated for 4h in the presence of 125, 250 and 500 microg/ml of proteinases increased in a dose-dependent fashion. The PL DNA was fragmented following 24-h exposure to P. dicentrarchi cysteine proteinases and characteristic DNA ladders consisting of multimers of approximately 180-200 pb were produced. Morphological changes, such as chromatin condensation and nucleus fragmentation, were observed under fluorescence microscopy after DAPI staining of the PL cells incubated with cysteine proteinase-incubated for 24 h. The results suggest that the pathogenic scuticociliate P. dicentrarchi may induce host leucocyte programmed cell death via the production of cysteine proteinases, as a mechanism of pathogenesis and evasion of the turbot innate immune response.
Collapse
Affiliation(s)
- A Paramá
- Departamento de Microbiología y Parasitología, Laboratorio de Parasitología, Instituto de Investigación y Análisis Alimentarios, Universidad de Santiago de Compostela, C/ Constantino Candeira, s/n, 15782 Santiago de Compostela, Spain
| | | | | | | | | | | |
Collapse
|
5
|
Clark JA, Lane RH, Maclennan NK, Holubec H, Dvorakova K, Halpern MD, Williams CS, Payne CM, Dvorak B. Epidermal growth factor reduces intestinal apoptosis in an experimental model of necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol 2005; 288:G755-62. [PMID: 15528252 DOI: 10.1152/ajpgi.00172.2004] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Necrotizing enterocolitis (NEC) is a devastating intestinal disease of premature infants. Although end-stage NEC is characterized histopathologically as extensive necrosis, apoptosis may account for the initial loss of epithelium before full development of disease. We have previously shown that epidermal growth factor (EGF) reduces the incidence of NEC in a rat model. Although EGF has been shown to protect intestinal enterocytes from apoptosis, the mechanism of EGF-mediated protection against NEC is not known. The aim of this study was to investigate if EGF treatment elicits changes in expression of apoptotic markers in the ileum during the development of NEC. With the use of a well-established neonatal rat model of NEC, rats were divided into the following three experimental groups: dam fed (DF), milk formula fed (NEC), or fed with formula supplemented with 500 ng/ml EGF (NEC+EGF). Changes in ileal morphology, gene and protein expression, and histological localization of apoptotic regulators were evaluated. Anti-apoptotic Bcl-2 mRNA levels were markedly reduced and pro-apoptotic Bax mRNA levels were markedly elevated in the NEC group compared with DF controls. Supplementation of EGF into formula significantly increased anti-apoptotic Bcl-2 mRNA, whereas pro-apoptotic Bax was significantly decreased. The Bax-to-Bcl-2 ratio for mRNA and protein was markedly decreased in NEC+EGF animals compared with the NEC group. The presence of caspase-3-positive epithelial cells was markedly reduced in EGF-treated rats. These data suggest that alteration of the balance between pro-and anti-apoptotic proteins in the site of injury is a possible mechanism by which EGF maintains intestinal integrity and protects intestinal epithelium against NEC injury.
Collapse
Affiliation(s)
- Jessica A Clark
- Dept. of Pediatrics, Univ. of Arizona, 1501 N. Campbell Ave, P.O. Box 245073, Tucson, AZ 85724-5073, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Toulany M, Dittmann K, Baumann M, Rodemann HP. Radiosensitization of Ras-mutated human tumor cells in vitro by the specific EGF receptor antagonist BIBX1382BS. Radiother Oncol 2005; 74:117-29. [PMID: 15734199 DOI: 10.1016/j.radonc.2004.11.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2004] [Revised: 10/18/2004] [Accepted: 11/01/2004] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND PURPOSE To investigate the cellular and molecular consequences of antagonizing radiation-induced EGFR-activation in vitro. PATIENTS AND METHODS The effect of the EGFR tyrosine kinase inhibitor BIBX1382BS on radiation sensitivity was determined after single- and fractionated-dose irradiation in human cell lines of bronchial carcinoma (A549), breast adeno-carcinoma (MDA-MB-231), pharyngeal squamous-cell carcinoma (FaDu), squamous-cell carcinoma of cervix (HTB-35) as well as normal (HSF-7) and transformed (HH4-DED) human skin fibroblasts. Applying immuno-precipitation and western blotting pattern of radiation-dependent activation of different components of EGFR-signaling after pre-treatment with and without BIBX1382BS or other tyrosine kinase inhibitors was analyzed. RESULTS Autophosphorylation of EGFR which occurred 1-5 min after irradiation (IR, 2 Gy) or treatment with EGF (100 ng/ml) could be inhibited in all cells tested by pre-treatment with BIBX1382BS for 30 min. Combination of drug treatment with fractionated irradiation (4x2 Gy) led to a strong radiosensitizing effect in Ras-mutated A549 and MDA-MB-231 cells, but not in normal Ras presenting cell lines FaDu and HTB-35 or normal and transformed human skin fibroblasts. Both BIBX1382BS as well as the PI3 kinase inhibitor LY294002 led to a blockage (for A549 cells) or reduction (for FaDu cells) of radiation-induced P-AKT. In contrast to FaDu cells, treatment of A549 cells with LY294002 resulted in a significant decrease of post-irradiation survival of A549 cells. Furthermore, only in Ras-mutated cells, but not in normal Ras cells clonogenic survival and phosphorylation of AKT was sensitive to pre-treatment with TGF-alpha-neutralizing antibody indicating an important role of TGF-alpha in regulating radiation-induced EGFR signaling. CONCLUSIONS Enhancement of radiation sensitivity by the specific EGFR-tyrosine kinase inhibitor BIBX1382BS is not generally achieved in human tumor cells, but depends most likely on the Ras genotype of the cell lines tested.
Collapse
Affiliation(s)
- Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, Eberhard-Karls University Tuebingen, Roentgenweg 11, 72076 Tuebingen, Germany
| | | | | | | |
Collapse
|
7
|
Vinci MC, Visentin B, Cusinato F, Nardelli GB, Trevisi L, Luciani S. Effect of vascular endothelial growth factor and epidermal growth factor on iatrogenic apoptosis in human endothelial cells. Biochem Pharmacol 2004; 67:277-84. [PMID: 14698040 DOI: 10.1016/j.bcp.2003.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To study the effect of growth factors on iatrogenic apoptosis, we examined the influence of vascular endothelial growth factor (VEGF) and epidermal growth factor (EGF) on staurosporine-induced apoptosis in primary cultures of human umbilical vein endothelial cells (HUVEC). Apoptosis was evaluated by a cell viability test, the TUNEL-POD assay and the activation of the pro-apoptotic caspase-3. Staurosporine (10-100nM) caused the activation of caspase-3. This effect was manifest after 2hr of incubation and reached its maximum after 5hr. Severe loss of viability followed within 18hr. VEGF or EGF (10-100ng/mL) added together with staurosporine decreased the activation of caspase-3. The loss of viability was 24hr delayed. The action of growth factors was observed at 1% serum concentration but also at concentration optimal for HUVEC survival (10%, v/v). Furthermore, the inhibition of PI-3 kinase (PI-3K) by wortmannin or LY294002 as well as the inhibition of MEK by PD098059 or U0126 prevented the protective effect of VEGF and EGF. Western blotting analysis showed that after 3hr of incubation with staurosporine the level of the anti-apoptotic protein Mcl-1 decreased and this effect was reverted by VEGF. It is concluded that VEGF and EGF antagonize the pro-apoptotic action of staurosporine by the combined signalling of PI-3K and ERKs pathways.
Collapse
Affiliation(s)
- Maria Cristina Vinci
- Department of Pharmacology and Anaesthesiology, University of Padua, Padua, Italy
| | | | | | | | | | | |
Collapse
|
8
|
Lassarre C, Ricort JM. Growth factor-specific regulation of insulin receptor substrate-1 expression in MCF-7 breast carcinoma cells: effects on the insulin-like growth factor signaling pathway. Endocrinology 2003; 144:4811-9. [PMID: 12960057 DOI: 10.1210/en.2002-0205] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IGFs are potent mitogens that play a crucial role in cell proliferation and/or differentiation and tumorigenesis. Insulin receptor substrate-1 (IRS-1) is a key protein in the IGF signaling pathway in the estrogen-dependent MCF-7 breast carcinoma cell line. In this study, three growth factors [fibroblast growth factor (FGF), epidermal growth factor (EGF), and platelet-derived growth factor (PDGF)] were tested for their ability to modulate IRS-1 protein expression and the IGF-I signaling pathway. FGF and, to a lesser extent, EGF were found to increase IRS-1 protein, whereas PDGF had no effect. This indicates that growth factors can specifically modulate IRS-1 protein content. The increases provoked by EGF and FGF were dependent on the MAPK signaling pathway but independent of phosphatidylinositol 3-kinase (PI 3-kinase) signaling and required de novo protein synthesis. We noted that the kinetics of MAPK activation was continuous in response to FGF but transient in response to EGF. In addition, transfection of cells with a constitutively active form of MAPK kinase, which results in continuous MAPK activity, increased IRS-1 expression. Taken together, these results suggest that stimulation of IRS-1 expression was therefore stronger when MAPK activity was sustained. Pretreatment of cells with EGF, FGF, or PDGF for 24 h reduced IGF-I-induced tyrosine phosphorylation per molecule of IRS-1. However, IGF-I-induced PI 3-kinase activity was decreased by 24 h of pretreatment with EGF or PDGF but not with FGF. Our results therefore demonstrate that different growth factors are capable of specifically modulating the IGF-I signaling via IRS-1. They further suggest that the FGF-induced increase in IRS-1 counterbalances the inhibition of IRS-1 tyrosine phosphorylation to allow normal stimulation of IGF-I-induced PI 3-kinase activity.
Collapse
Affiliation(s)
- Claudine Lassarre
- Institut National de la Santé et de la Recherche Médicale, Unité 515, Hôpital Saint-Antoine, Paris, France
| | | |
Collapse
|
9
|
Liang K, Ang KK, Milas L, Hunter N, Fan Z. The epidermal growth factor receptor mediates radioresistance. Int J Radiat Oncol Biol Phys 2003; 57:246-54. [PMID: 12909240 DOI: 10.1016/s0360-3016(03)00511-x] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The epidermal growth factor (EGF) receptor is frequently overexpressed in malignant tumors, and its level is correlated with increased cellular resistance to ionizing radiation. However, no precedent studies have investigated whether expression of EGF receptor would by itself confer on cancer cells resistance to radiation. The current study is aimed to address this question. METHODS AND MATERIALS A full-length human EGF receptor expression vector was transfected into the OCA-I murine ovarian carcinoma cells for stable clones expressing various levels of EGF receptors. Apoptosis and cell clonogenic survival assays were used to evaluate the sensitivity of the resulting cell clones to ionizing radiation. RESULTS OCA-I cell clones expressing various levels of EGF receptor (OCA-I EGFR) were obtained. These clones showed an EGF receptor level-dependent increase in resistance to ionizing radiation, measured by apoptosis and cell clonogenic survival assays. Compared with the results for parental OCA-I and control vector-transfected OCA-I cells at the 10% cell survival level, the radioresistance was increased by a factor of 1.60 for EGFR-C5 (high level of EGF receptor expression), 1.37 for EGFR-C3 (intermediate level of EGF receptor expression), and 1.28 for EGFR-C1 (low level of EGF receptor expression). Treatment of the OCA-I EGF receptor transfectants with the anti-EGF receptor monoclonal antibody C225 downregulated the levels of EGF receptor, reduced the phosphorylation levels of EGF receptor downstream substrates (such as Akt and MAPK), and reversed the cellular radioresistance. CONCLUSION Our results demonstrate that overexpression of the EGF receptor conferred cellular resistance to ionizing radiation. The EGF receptor is thus a valid target for potential radiosensitization.
Collapse
Affiliation(s)
- Ke Liang
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
10
|
Liou JS, Chen JS, Faller DV. Characterization of p21Ras-mediated apoptosis induced by protein kinase C inhibition and application to human tumor cell lines. J Cell Physiol 2003; 198:277-94. [PMID: 14603530 DOI: 10.1002/jcp.10409] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Suppression of PKC activity can selectively induce apoptosis in cells expressing a constitutively activated p21Ras protein. We demonstrate that continued expression of p21Ras activity is required in PKC-mediated apoptosis because farnesyltransferase inhibitors abrogated the loss of viability in p21Ras-transformed cells occurring following PKC inhibition. Studies utilizing gene transfer or viral vectors demonstrate that transient expression of oncogenic p21Ras activity is sufficient for induction of apoptosis by PKC inhibition, whereas physiologic activation of p21Ras by growth factor is not sufficient to induce apoptosis. Mechanistically, the p21Ras-mediated apoptosis induced by PKC inhibition is dependent upon mitochondrial dysregulation, with a concurrent loss of mitochondrial membrane potential (psim). Cyclosporine A, which prevented the loss of psim, also inhibited HMG-induced DNA fragmentation in cells expressing an activated p21Ras. Induction of apoptosis by PKC inhibition in human tumors with oncogenic p21Ras mutations was demonstrated. Inhibition of PKC caused increased apoptosis in MIA-PaCa-2, a human pancreatic tumor line containing a mutated Ki-ras allele, when compared to HS766T, a human pancreatic tumor line with normal Ki-ras alleles. Furthermore, PKC inhibition induced apoptosis in HCT116, a human colorectal tumor line containing an oncogenic Ki-ras allele but not in a subline (Hke3) in which the mutated Ki-ras allele had been disrupted. The PKC inhibitor 1-O-hexadecyl-2-O-methyl-rac-glycerol (HMG), significantly reduced p21Ras-mediated tumor growth in vivo in a nude mouse MIA-PaCa-2 xenograft model. Collectively these studies suggest the therapeutic feasibility of targeting PKC activity in tumors expressing an activated p21Ras oncoprotein.
Collapse
Affiliation(s)
- James S Liou
- Boston University School of Medicine, Cancer Research Center, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
11
|
Xia Y, Wong NS, Fong WF, Tideman H. Upregulation of GADD153 expression in the apoptotic signaling of N-(4-hydroxyphenyl)retinamide (4HPR). Int J Cancer 2002; 102:7-14. [PMID: 12353227 DOI: 10.1002/ijc.10664] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The molecular basis for the pharmacologic effects of N-(4-hydroxyphenyl)retinamide (4HPR) was investigated by studying the gene(s) that this compound may upregulate in cultured human epithelial tumor cells. Treatment of the cultured human nasopharyngeal carcinoma-derived cells (CNE3) with 4HPR caused modest cell-cycle arrest at G(1) and apoptosis. The mRNA levels of a total of 20 genes were downregulated with the majority of them involved in cell cycle-related functions. Only the mRNA level of the growth arrest and DNA-damage inducible gene (gadd153) was upregulated by approximately 7-fold, with a concomitant increase in intracellular protein level. Similar upregulation of gadd153 by 4HPR was observed in HeLa and 2 other tumor cell lines. The 4HPR-induced apoptosis was markedly enhanced in the CNE3 cells that transiently overexpressed the gadd153 protein. Unlike 4HPR, all-trans-retinoic acid (ATRA) had no effect on the mRNA or protein level of gadd153. The ability of 4HPR and ATRA to stimulate the promoter activity of gadd153 was then examined. In the HeLa cells, both 4HPR and ATRA caused a 2- to 4-fold stimulation of the promoter activity of gadd153, but similar to the CNE3 cells, ATRA was incapable of upregulating the protein level of gadd153. This is the first demonstration that gadd153 is a 4HPR-responsive gene in tumor cells and may have a functional role to play in 4HPR-induced apoptosis. Furthermore, our data suggest that the expression of gadd153 can be regulated by 4HPR at the transcriptional level.
Collapse
Affiliation(s)
- Yuhe Xia
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong, People's Republic of China
| | | | | | | |
Collapse
|
12
|
Toillon RA, Descamps S, Adriaenssens E, Ricort JM, Bernard D, Boilly B, Le Bourhis X. Normal breast epithelial cells induce apoptosis of breast cancer cells via Fas signaling. Exp Cell Res 2002; 275:31-43. [PMID: 11925103 DOI: 10.1006/excr.2002.5490] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fas/Fas ligand (Fas L) death pathway is an important mediator of apoptosis. Deregulation of Fas pathway is reported to be involved in the immune escape of breast cancer and the resistance to anti-cancer drugs. In this study, we demonstrated that conditioned medium by normal breast epithelial cells (NBEC-CM) induced apoptosis of MCF-7 and T-47D Fas-sensitive cells but had no effect on MDA-MB-231 Fas-resistant cells. Inhibition of PI3 kinase or NF-kappaB by specific inhibitors or transient transfections restored the sensitivity of MDA-MB-231 cells to NBEC-induced apoptosis. Moreover, the constitutive activation of NF-kappaB was controlled by PI3 kinase because inhibition of PI3 kinase reduced NF-kappaB activity. Inducible activation of NF-kappaB rendered MCF-7 cells resistant to NBEC-CM- and Fas agonist antibody-triggered apoptosis. Therefore, constitutive or inducible activation of PI3 kinase and/or NF-kappaB in breast cancer cells rendered them resistant to NBEC-triggered apoptosis. In addition, Fas neutralizing antibody and dominant negative Fas abolished NBEC-triggered apoptosis. Western blot and confocal microscopy analysis showed an increase of membrane Fas/Fas L when cells were induced into apoptotis by NBEC-CM. Taken together, these data show that NBEC induced apoptosis in breast cancer cells via Fas signaling.
Collapse
Affiliation(s)
- Robert-Alain Toillon
- Laboratoire de Biologie du Développement (UPRES, EA 1033), Equipe Facteurs de Croissance, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, 59655, France
| | | | | | | | | | | | | |
Collapse
|
13
|
Dickenson JM. Stimulation of protein kinase B and p70 S6 kinase by the histamine H1 receptor in DDT1MF-2 smooth muscle cells. Br J Pharmacol 2002; 135:1967-76. [PMID: 11959800 PMCID: PMC1573327 DOI: 10.1038/sj.bjp.0704664] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2001] [Revised: 12/04/2001] [Accepted: 02/01/2002] [Indexed: 12/19/2022] Open
Abstract
1. Previous studies have shown that the histamine H(1) receptor activates p42/p44 mitogen-activated protein kinases (MAPK) in DDT(1)MF-2 smooth muscle cells via a phosphatidylinositol 3-kinase (PI-3K)-dependent pathway. In this study the effect of histamine H(1) receptor stimulation on protein kinase B (PKB) and p70 S6 kinase, both of which are downstream targets of PI-3K, has been investigated. Increases in PKB and p70 S6 kinase activation were monitored by Western blotting using phospho-specific PKB (Ser(473)) and p70 S6 kinase (Thr(421)/Ser(424)) antibodies. 2. Histamine stimulated time and concentration-dependent increases in the phosphorylation of PKB and p70 S6 kinase in DDT(1)MF-2 cells. Both responses were completely inhibited by the histamine H(1) receptor antagonist mepyramine and following pre-treatment with pertussis toxin, to block G(i)/G(o) protein dependent pathways. 3. The PI-3K inhibitors wortmannin (IC(50) 5.9+/-0.5 nM) and LY 294002 (IC(50) 6.9+/-0.8 microM) attenuated the increase in PKB phosphorylation induced by histamine (100 microM) in a concentration-dependent manner. 4. Histamine-induced increases in p70 S6 kinase phosphorylation were partially sensitive to rapamycin (20 nM; 68% inhibition) but completely blocked by wortmannin (100 nM), LY 294002 (30 microM) and the MAPK kinase inhibitor PD 98059 (50 microM). 5. In summary, these data demonstrate that the histamine H(1) receptor stimulates PKB and p70 S6 kinase phosphorylation in DDT(1)MF-2 smooth muscle cells. However, functional studies revealed that histamine does not stimulate DDT(1)MF-2 cell proliferation or attenuate staurosporine-induced caspase-3 activity. The challenge for future research will be to link the stimulation of these kinase pathways with the physiological and pathophysiological roles of the histamine H(1) receptor.
Collapse
Affiliation(s)
- John M Dickenson
- Department of Life Sciences, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK.
| |
Collapse
|
14
|
Stoetzer OJ, Pogrebniak A, Pelka-Fleischer R, Hasmann M, Hiddemann W, Nuessler V. Modulation of apoptosis by mitochondrial uncouplers: apoptosis-delaying features despite intrinsic cytotoxicity. Biochem Pharmacol 2002; 63:471-83. [PMID: 11853698 DOI: 10.1016/s0006-2952(01)00879-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Disruption of mitochondrial electron transport and opening of the so-called mitochondrial permeability transition pores (PTPs) are early events in apoptotic cell death and may be caused by the uncoupler of mitochondrial oxidation and phosphorylation, carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP). We investigated the cellular toxicity of FCCP in HL60 and CCRF-CEM cells alone or in combination with the known apoptosis inducers such as inhibitor of serine/threonine protein kinases staurosporine (Sts) and protein kinase C inhibitor chelerythrine. FCCP induced apoptotic cell death in both cell lines in a dose-dependent manner, and we were able to demonstrate an appearance of caspase-3-dependent PARP cleavage fragments with Western blot and the appearance of large (15-50 kb) DNA fragments using pulsed-field gel electrophoresis. After 2 hr of incubation with Che or Sts more than half of the cells had died by apoptosis. We observed a statistically significant delay in Sts- and Che-induced apoptotic cell death in CCRF-CEM cells when the cells were preincubated with FCCP but not with zVAD-FMK: about 50% more cells survived after pre-treatment with FCCP, as compared to 1 hr treatment with Che alone (P<0.05), and 25% more cells were alive after 6 hr of treatment, as compared to 6 hr exposure to Sts alone (P<0.05). The protective effect of FCCP was, however, transient and lasted only 6 hr. Treatment with aurintricarboxylic acid completely prevented Che- and Sts-induced apoptotic cell death in CCRF-CEM and HL60 cells. Incubation with Che resulted in a drop in the intracellular ATP content, predominantly distinctive in HL60, and in NAD(+) content in CCRF-CEM cells. Both ATP and NAD(+) drop were prevented with ATA, but not with FCCP or zVAD. Our data suggest that treatment with uncouplers of oxidative phosphorylation can induce apoptotic cell death in haematopoietic cell lines. However, when used in combination with serine/threonine protein kinase inhibitors FCCP can even prevent apoptosis.
Collapse
Affiliation(s)
- Oliver J Stoetzer
- Medizinische Klinik III, Department of Haematology and Oncology, Klinikum Grosshadern, Marchioninistr. 15, 81377 Munich, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Kwon SH, Ahn SH, Kim YK, Bae GU, Yoon JW, Hong S, Lee HY, Lee YW, Lee HW, Han JW. Apicidin, a histone deacetylase inhibitor, induces apoptosis and Fas/Fas ligand expression in human acute promyelocytic leukemia cells. J Biol Chem 2002; 277:2073-80. [PMID: 11698395 DOI: 10.1074/jbc.m106699200] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously reported that apicidin arrested human cancer cell growth through selective induction of p21(WAF1/Cip1). In this study, the apoptotic potential of apicidin and its mechanism in HL60 cells was investigated. Treatment of HL60 cells with apicidin caused a decrease in viable cell number in a dose-dependent manner and an increase in DNA fragmentation, nuclear morphological change, and apoptotic body formation, concomitant with progressive accumulation of hyperacetylated histone H4. In addition, apicidin converted the procaspase-3 form to catalytically active effector protease, resulting in subsequent cleavages of poly(ADP-ribose) polymerase and p21(WAF1/Cip1). Incubation of HL60 cells with z-DEVD-fmk, a caspase-3 inhibitor, almost completely abrogated apicidin-induced activation of caspase-3, DNA fragmentation, and cleavages of poly(ADP-ribose) polymerase and p21(WAF1/Cip1). Moreover, these effects were preceded by an increase in translocation of Bax into the mitochondria, resulting in the release of cytochrome c and cleavage of procaspase-9. The addition of cycloheximide greatly inhibited activation of caspase-3 by apicidin by interfering with cleavage of procaspase-3 and DNA fragmentation, suggesting that apicidin-induced apoptosis was dependent on de novo protein synthesis. Consistent with these results, apicidin transiently increased the expressions of both Fas and Fas ligand. Preincubation with NOK-1 monoclonal antibody, which prevents the Fas-Fas ligand interaction and is inhibitory to Fas signaling, interfered with apicidin-induced translocation of Bax, cytochrome c release, cleavage of procaspase-3, and DNA fragmentation. Taken together, the results suggest that apicidin might induce apoptosis through selective induction of Fas/Fas ligand, resulting in the release of cytochrome c from the mitochondria to the cytosol and subsequent activation of caspase-9 and caspase-3.
Collapse
Affiliation(s)
- So Hee Kwon
- Department of Biochemistry and Molecular Biology, College of Pharmacy and Department of Genetic Engineering, College of Life Science and Natural Resources, Sungkyunkwan University, Suwon 440-746, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tessier C, Prigent-Tessier A, Ferguson-Gottschall S, Gu Y, Gibori G. PRL antiapoptotic effect in the rat decidua involves the PI3K/protein kinase B-mediated inhibition of caspase-3 activity. Endocrinology 2001; 142:4086-94. [PMID: 11517188 DOI: 10.1210/endo.142.9.8381] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During gestation, the uterus undergoes severe changes to accommodate and protect the developing conceptus. In particular, stromal endometrial cells proliferate and differentiate to form the decidual tissue, which produces PRL. Once the conceptus begins to grow, extensive regression by apoptosis take place in the decidua coincident with the loss of the PRL receptor in this tissue. In this report we have established for the first time that PRL, acting through the long form of the PRL receptor and the PI3K pathway, exerts an antiapoptotic effect in rat decidua. We have also shown that protein kinase B phosphorylation on serine 473 as well as its nuclear translocation are stimulated by PRL in decidual cells. Moreover, we have found that caspase-3, a well known effector of apoptosis, becomes expressed and active in the rat decidua just at a time when this tissue undergoes extensive apoptosis. PRL was able to down-regulate both caspase-3 mRNA levels as well as activity. Furthermore, using a protein kinase B dominant-negative expression vector, we provide evidence that PRL inhibition of caspase-3 requires an intact protein kinase B pathway. Finally, we have also found that rat placental lactogen I and II dose-dependently inhibit caspase-3 mRNA, suggesting multiple sources of PRL in the hormonal control of rat decidual regression. In summary, the results of this study have defined an important role for decidual PRL in the normal progress of pregnancy, specifically in the regression and reorganization of the decidua.
Collapse
Affiliation(s)
- C Tessier
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
17
|
Kawahara T, Teshima S, Kuwano Y, Oka A, Kishi K, Rokutan K. Helicobacter pylori lipopolysaccharide induces apoptosis of cultured guinea pig gastric mucosal cells. Am J Physiol Gastrointest Liver Physiol 2001; 281:G726-34. [PMID: 11518685 DOI: 10.1152/ajpgi.2001.281.3.g726] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Helicobacter pylori lipopolysaccharide (LPS) is generally accepted as a low-toxicity virulence. Primary cultures of guinea pig gastric mucosal cells expressed the Toll-like receptor 4 and were sensitive to H. pylori LPS as well as Escherichia coli LPS. H. pylori LPS stimulated phosphorylation of transforming growth factor-beta-activated kinase 1 (TAK1), TAK1-binding protein 1 (TAB1), and c-Jun NH(2)-terminal kinase (JNK) 2. H. pylori LPS at >2.1 endotoxin unit/ml (>1 ng/ml) activated caspase-8, stimulated cytochrome c release from mitochondria, and subsequently activated caspases-9 and -3, leading to apoptosis. Epidermal growth factor blocked all of these apoptotic processes and inhibited apoptosis, whereas it did not modify the phosphorylation of TAK1, TAB1, and JNK2. A comparatively specific inhibitor of caspase-8 or -9 blocked apoptosis, whereas cytochrome c release was prevented only with a caspase-8-like inhibitor. Our results suggest that caspase-8 and mitochondria may play crucial roles in H. pylori LPS-induced apoptosis and that this accelerated apoptosis may be involved in abnormal cell turnover of H. pylori-infected gastric mucosa.
Collapse
Affiliation(s)
- T Kawahara
- Department of Nutrition, School of Medicine, University of Tokushima, Tokushima 770-8503, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Liu B, Fang M, Lu Y, Lu Y, Mills GB, Fan Z. Involvement of JNK-mediated pathway in EGF-mediated protection against paclitaxel-induced apoptosis in SiHa human cervical cancer cells. Br J Cancer 2001; 85:303-11. [PMID: 11461094 PMCID: PMC2364054 DOI: 10.1054/bjoc.2001.1910] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We investigated the signalling pathways by which epidermal growth factor (EGF) modulates paclitaxel-induced apoptosis in SiHa human cervical cancer cells. SiHa cells exposed to paclitaxel underwent apoptosis, which was strongly inhibited by EGF. This inhibition of apoptosis by EGF was not altered by pharmacological blockade of phosphatidylinositol 3'-OH kinase (PI-3K) with the PI-3K specific inhibitor LY294002 or blockade of the mitogen-activated protein kinase (MAPK) kinase (MEK) with the MEK specific inhibitor PD98059, or by transfection of the cells with PI-3K or MEK dominant-negative expression vectors. EGF did not stimulate PI-3K/Akt, MEK/MAPK, or p38 MAPK activity in SiHa cells but did transiently activate the c-Jun NH2-terminal kinase (JNK). Co-exposure of SiHa cells to SB202190 at concentrations that inhibit JNK abolished the protective effect of EGF on SiHa cells against paclitaxel-induced apoptosis. Our findings indicate that the JNK signaling pathway plays an important role in EGF-mediated protection from paclitaxel-induced apoptosis in SiHa cells.
Collapse
Affiliation(s)
- B Liu
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
19
|
Liu B, Fang M, Lu Y, Mendelsohn J, Fan Z. Fibroblast growth factor and insulin-like growth factor differentially modulate the apoptosis and G1 arrest induced by anti-epidermal growth factor receptor monoclonal antibody. Oncogene 2001; 20:1913-22. [PMID: 11313939 DOI: 10.1038/sj.onc.1204277] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2000] [Revised: 01/15/2001] [Accepted: 01/17/2001] [Indexed: 12/24/2022]
Abstract
DiFi human colon carcinoma cells are stimulated by the transforming growth factor-alpha (TGF-alpha)/epidermal growth factor (EGF) receptor autocrine loop. Exposure of DiFi cells to monoclonal antibody (mAb) 225, which blocks ligand-induced activation of the EGF receptor, induces G1 arrest and subsequent cell death via apoptosis. We investigated the signal pathways by which basic fibroblast growth factor (bFGF) and insulin-like growth factor-1 (IGF-1) modulate mAb 225-induced G1 arrest and apoptosis in DiFi cells. Both bFGF and IGF-1 activated the mitogen-activated protein kinase (MAPK) kinase (MEK) pathway in DiFi cells. Additionally, IGF-1 activated the phosphoinositide 3-kinase (PI-3K)/Akt pathway. Both bFGF and IGF-1 inhibited mAb 225-induced apoptosis; however, bFGF provided sustained protection against apoptosis, while the protection by IGF-1 was only temporary. Also, bFGF reversed the mAb 225-induced increase in the p27(Kip1) level, inhibition of cyclin-dependent kinase-2 (CDK-2) activity, dephosphorylation of the retinoblastoma (Rb) protein and the resultant G1 arrest of the cells. In contrast, IGF-1 did not reverse such effects by mAb 225. The prevention of mAb 225-induced G1 arrest and apoptosis in DiFi cells by bFGF was sensitive to the MEK/MAPK inhibitor PD98059 but not to the PI-3K inhibitor LY294002. In contrast, inhibition of apoptosis by IGF-1 in DiFi cells was sensitive only to LY294002 and not to PD98059. These results further our understanding of how mAb 225 induces apoptosis in DiFi cells.
Collapse
Affiliation(s)
- B Liu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas, TX 77030, USA
| | | | | | | | | |
Collapse
|
20
|
Fujiwara H, Matsunaga K, Saito M, Hagiya S, Furukawa K, Nakamura H, Ohizumi Y. Halenaquinone, a novel phosphatidylinositol 3-kinase inhibitor from a marine sponge, induces apoptosis in PC12 cells. Eur J Pharmacol 2001; 413:37-45. [PMID: 11173061 DOI: 10.1016/s0014-2999(00)00944-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In nerve growth factor-treated PC12 cells, 12b-methyl-(S)-1H-benzo[6,7]phenanthro[10,1-bc]furan-3,6,8,11(2H,12bH)-tetrone (halenaquinone) caused cytotoxicity in a concentration-dependent manner (EC(50) value; 10 microM). Gel electrophoretic DNA analysis of PC12 cells treated with halenaquinone (10 microM) and 11-(acetyloxy)-1,6b,7,8,9a,10,11,11b-octahydro-1-(methoxymethyl)-9a,11b-dimethyl-[1S-(1 alpha,6b alpha,9a beta,11 alpha,11b beta)]-3H-furo[4,3,2-de]indeno[4,5-h]-2-benzopyran-3,6,9-trione (wortmannin) (3 microM) showed a typical apoptotic DNA ladder. In the flow cytometric analysis, halenaquinone caused apoptosis in a concentration- and time-dependent manner (EC(50) value; 10 microM), whereas 2,3-dihydro-12b-methyl-(S)-1H-benzo[6,7]phenanthro[10,1-bc]furan-6,8,11(12bH)-trione (xestoquinone) with the methylene group at the C-3 position failed to cause apoptosis, suggesting that the carbonyl group at the C-3 position in halenaquinone is important for exerting apoptotic effects in PC12 cells. Phosphatidylinositol 3-kinase was inhibited by halenaquinone (IC(50) value; 3 microM) as well as wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase. Halenaquinone inhibited phosphatidylinositol 3-kinase activity at lower concentrations than those at which it induced apoptosis in PC12 cells. These results suggest that halenaquinone causes the death of PC12 cells through an apoptotic process and that the mechanism of halenaquinone-induced apoptosis may be partially explained by the inhibition of phosphatidylinositol 3-kinase activity.
Collapse
Affiliation(s)
- H Fujiwara
- Department of Pharmaceutical Molecular Biology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Diao CT, Li L, Lau SY, Wong TM, Wong NS. kappa-Opioid receptor potentiates apoptosis via a phospholipase C pathway in the CNE2 human epithelial tumor cell line. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1499:49-62. [PMID: 11118638 DOI: 10.1016/s0167-4889(00)00107-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanism by which kappa-opioid receptor (kappaor) modulated apoptosis was investigated in CNE2 human epithelial tumor cells. Induction of these cells to undergo apoptosis with staurosporine was associated with a massive increase in intracellular cAMP level. The inhibition of the increase in cAMP partially inhibited apoptosis as evidenced by a reduction of PARP and caspase-3 cleavage. Accordingly, a low but significant level of apoptosis is induced in these cells by the elevation of cAMP through the addition of forskolin and isobutylmethylxanthine. The existence of a cAMP-dependent and a cAMP-independent apoptotic pathway is therefore suggested. Receptor binding studies, RT-PCR experiments and Western blot analysis demonstrated the presence of type 1 kappaor in the CNE2 cells. Stimulation of kappaor in these cells resulted in the production of inositol (1,4,5)-trisphosphate, reduction of cAMP level and a marked enhancement of staurosporine-induced apoptosis. The potentiation of apoptosis by kappaor was prevented by inhibition of phospholipase C but was slightly enhanced by the presence of the active cAMP analogues, 8-CPT-cAMP and dibutyryl-cAMP. These data demonstrate for the first time that the phospholipase C pathway activated by type 1 kappaor expressed by cancer cells is involved in the potentiation of apoptosis.
Collapse
Affiliation(s)
- C T Diao
- Department of Biochemistry, Faculty of Medicine, University of Hong Kong, PR China
| | | | | | | | | |
Collapse
|
22
|
Leloup C, Michaelson DM, Fisher A, Hartmann T, Beyreuther K, Stein R. M1 muscarinic receptors block caspase activation by phosphoinositide 3-kinase- and MAPK/ERK-independent pathways. Cell Death Differ 2000; 7:825-33. [PMID: 11042677 DOI: 10.1038/sj.cdd.4400713] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
When PC12 cells are deprived of trophic support they undergo apoptosis. We have previously shown that survival of trophic factor-deprived PC12M1 cells can be promoted by activation of the G protein-coupled muscarinic receptors. The mechanism whereby muscarinic receptors inhibit apoptosis is poorly understood. In the present study we investigated this mechanism by examining the effect of muscarinic receptor activation on the serum deprivation-induced activity of key players in apoptosis, the caspases, in PC12M1 cells. The results showed that m1 muscarinic activation inhibits caspase activity induced by serum deprivation. This effect appeared to be caused by the prevention of activation of caspases such as caspase-2 and caspase-3, and not by the inhibition of existing activity. Muscarinic receptor activation also stimulated the mitogen-activated protein kinase/extracellular signaling-regulated kinase (MAPK/ERK) and phosphoinositide (PI) 3-kinase signaling pathways. The PI 3-kinase pathway inhibitors wortmannin and LY294002, as well as the MAPK/ERK pathway PD98059 inhibitor, did not however suppress the inhibitory effect of the muscarinic receptors on caspase activity. The results therefore suggested that the muscarinic survival effect is mediated by a pathway that leads to caspase inhibition by MAPK/ERK- and PI 3-kinase-independent signaling cascades.
Collapse
Affiliation(s)
- C Leloup
- Department of Neurobiochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | | | | | | | | | | |
Collapse
|
23
|
Kawakami A, Matsuoka N, Tsuboi M, Koji T, Urayama S, Sera N, Hida A, Usa T, Kimura H, Yokoyama N, Nakashima T, Ishikawa N, Ito K, Kawabe Y, Eguchi K. CD4+ T cell-mediated cytotoxicity toward thyrocytes: the importance of Fas/Fas ligand interaction inducing apoptosis of thyrocytes and the inhibitory effect of thyroid-stimulating hormone. J Transl Med 2000; 80:471-84. [PMID: 10780664 DOI: 10.1038/labinvest.3780053] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The accumulation of activated CD4+ T cells and antigen (Ag)-dependent cellular interactions between thyrocytes and CD4+ T cells have been determined in thyroid gland from patients with Graves' disease. The Fas/Fas ligand (FasL) interaction between antigen-presenting cells and T cells regulates the apoptosis of the former cells triggered by the latter cells. The inhibition of Fas-mediated apoptosis in thyrocytes could be a underlying mechanism of hyperplasia of thyrocytes in patients with Graves' disease. We investigated the potential role of Fas/FasL interaction between thyrocytes and CD4+ T cells in the induction of Fas-mediated apoptosis of the former cells induced by the latter cells. The presence of only a few specific T cells responsive to a putative autoantigen has hampered the investigation of specific T cell activation toward antigen-presenting cells (APCs). Therefore, we used a superantigen, staphylococcal enterotoxin B (SEB), to examine specific T cell activation toward thyrocytes in vitro since it stimulates a large proportion of T cells with particular Vbeta elements. Spontaneous apoptosis of thyrocytes in culture was not found even in the presence of various kinds of cytokines. In contrast, a clear induction of Fas-mediated apoptosis by anti-Fas IgM was determined in interferon-gamma (IFN-gamma)-stimulated thyrocytes. In addition, a significant cytotoxicity of purified CD4+ T cells toward IFN-gamma-stimulated thyrocytes in the presence of SEB was induced, and the addition of anti-HLA-DR and -DQ monoclonal antibodies (mAbs) or blockade of the Fas/FasL interaction reduced this cytotoxicity. FasL expression of CD4+ T cells cocultured with IFN-gamma-stimulated thyrocytes in the presence of SEB was clearly induced. Furthermore, the addition of mAbs against CD54 and CD58 inhibited both cytotoxicity and FasL expression of CD4+ T cells. The cytotoxicity of CD4+ T cells toward IFN-gamma-stimulated, SEB-pulsed thyrocytes was markedly inhibited when we used thyrocytes cultured with IFN-gamma in the presence of thyroid-stimulating hormone (TSH) as target cells. Our results suggest that 1) CD4+ T cells were activated by thyrocytes expressing MHC class II molecules in an SEB-dependent manner and then expressed FasL. 2) These activated FasL+ CD4+ T cells killed thyrocytes by interacting with Fas on thyrocytes and FasL on activated CD4+ T cells. The presence of costimulating molecules such as CD54 and CD58 on thyrocytes was also necessary to generate activated FasL+ CD4+ T cells. 3) Since the actions of thyroid stimulating antibody (TSAb) toward thyrocytes are similar to those of TSH, one goitrogenic activity of TSAb may, in part, be due to the inhibitory effect on Fas-mediated apoptosis of thyrocytes triggered by activated CD4+ T cells.
Collapse
Affiliation(s)
- A Kawakami
- The First Department of Internal Medicine, Nagasaki University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abe K, Saito H. The mitogen-activated protein kinase cascade mediates neurotrophic effect of epidermal growth factor in cultured rat hippocampal neurons. Neurosci Lett 2000; 282:89-92. [PMID: 10713403 DOI: 10.1016/s0304-3940(00)00867-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Epidermal growth factor (EGF) has been reported to support the survival of cultured brain neurons. In the present study, we investigated whether the neurotrophic effect of EGF is mediated by the mitogen-activated protein kinase (MAPK) cascade in cultured rat hippocampal neurons. Recombinant human EGF (0.1-10 ng/ml) induced phosphorylation of p44/42 MAPK (ERK1/2) in a concentration-and time-dependent manner. EGF-induced ERK1/2 phosphorylation and promotion of neuronal survival were both blocked by U0126 and PD98059, inhibitors of the MAPK-activating enzyme MEK. These results suggest that the MEK/ERK signal transduction cascade is involved in the neurotrophic effect of EGF.
Collapse
Affiliation(s)
- K Abe
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| | | |
Collapse
|
25
|
Kawakami A, Nakashima T, Sakai H, Hida A, Urayama S, Yamasaki S, Nakamura H, Ida H, Ichinose Y, Aoyagi T, Furuichi I, Nakashima M, Migita K, Kawabe Y, Eguchi K. Regulation of synovial cell apoptosis by proteasome inhibitor. ARTHRITIS AND RHEUMATISM 1999; 42:2440-8. [PMID: 10555040 DOI: 10.1002/1529-0131(199911)42:11<2440::aid-anr23>3.0.co;2-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Recent studies have shown the importance of proteasome function in the regulation of apoptosis. This study examined whether inhibition of proteasome function mediates apoptosis of synovial cells, and whether cytokines modulate this process. METHODS Type B synovial cells (fibroblast-like synovial cells) were cultured with tumor necrosis factor alpha (TNF alpha) or transforming growth factor beta1 (TGFbeta1), and further incubated in the presence of variable concentrations of Z-Leu-Leu-Leu-aldehyde (LLL-CHO), a proteasome inhibitor. During this process, apoptosis of synovial cells was determined by Hoechst 33258 dye staining and 51Cr release assay. The involvement of caspase cascade was examined using enzyme activity assay and blocking experiments by peptide inhibitors. The expression of pro-caspases, Bcl-2-related proteins, and X chromosome-linked inhibitor of apoptosis (XIAP) in synovial cells was examined by Western blot analysis. RESULTS Apoptosis of cultured synovial cells was induced in a dose-dependent manner by LLL-CHO. Activation of caspase cascade through caspase-8 to caspase-3 was essential during this process. Pretreatment of synovial cells with TNF alpha significantly augmented both the activation of caspases and the proportion of apoptosis in synovial cells induced by LLL-CHO, whereas TGFbeta1 pretreatment markedly suppressed these phenomena. The ratio of the expression of Bcl-2 to Bax or Bcl-xL to Bax, and XIAP expression in synovial cells may not be directly associated with the susceptibility of synovial cells to apoptosis by LLL-CHO. CONCLUSION Apoptosis of synovial cells was induced by inhibition of proteasome function through the activation of caspase cascade, and this process was clearly modulated by cytokines. These data provide new insight into the regulatory mechanisms controlling synovial cells in rheumatoid synovitis by proteasome inhibitors, and might be useful for the design of new therapeutic strategies in rheumatoid arthritis.
Collapse
Affiliation(s)
- A Kawakami
- Nagasaki University School of Dentistry, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Shima Y, Nakao K, Nakashima T, Kawakami A, Nakata K, Hamasaki K, Kato Y, Eguchi K, Ishii N. Activation of caspase-8 in transforming growth factor-beta-induced apoptosis of human hepatoma cells. Hepatology 1999; 30:1215-22. [PMID: 10534343 DOI: 10.1002/hep.510300503] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Transforming growth factor-beta1 (TGF-beta1) has been shown to induce apoptosis in normal or transformed hepatocytes. To elucidate the biochemical pathways leading to apoptosis induced by TGF-beta1 in human hepatoma cells (HuH-7), we examined the expression of Bcl-2-related proteins and X-chromosome-linked inhibitor of apoptosis (XIAP), and activation of the caspase cascade following TGF-beta1 treatment. Bcl-xL expression began to decline at 12 hours after TGF-beta1 treatment and progressively decreased to very low levels in a time-dependent manner. Bax expression showed a little change throughout the experiment. On the other hand, activation of caspase-8 was clearly observed at 36 hours after TGF-beta1 treatment, followed by activation of caspase-9, and caspase-3 was activated at 48 hours after treatment at which time apoptosis of HuH-7 cells was observed. TGF-beta1 significantly decreased XIAP expression in HuH-7 cells. Addition of an inhibitor of caspase-8 or caspase-3 (IETD-FMK or DEVD-CHO) markedly inhibited TGF-beta1-induced apoptosis of HuH-7 cells. Fas/Fas ligand (FasL) interactions in HuH-7 cells were not involved in the apoptotic process. Furthermore, epidermal growth factor (EGF) also completely inhibited TGF-beta1-induced apoptosis of HuH-7 cells by inhibiting activation of the caspase cascade. Our results suggested that activation of caspase-3 initiated through caspase-8 activation is involved in the apoptotic process induced by TGF-beta1 in HuH-7 cells. Our results also showed that down-regulation of the expression of Bcl-xL and XIAP by TGF-beta1 may facilitate activation of caspase-3 in these cells.
Collapse
Affiliation(s)
- Y Shima
- Department of Clinical Pharmacology, Nagasaki University School of Medicine, Nagasaki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|