1
|
Gujar G, Tiwari M, Yadav N, Monika D. Heat stress adaptation in cows - Physiological responses and underlying molecular mechanisms. J Therm Biol 2023; 118:103740. [PMID: 37976864 DOI: 10.1016/j.jtherbio.2023.103740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/04/2023] [Accepted: 10/15/2023] [Indexed: 11/19/2023]
Abstract
Heat stress is a key abiotic stressor for dairy production in the tropics which is further compounded by the ongoing climate change. Heat stress not only adversely impacts the production and welfare of dairy cows but severely impacts the economics of dairying due to production losses and increased cost of rearing. Over the years, selection has ensured development of high producing breeds, however, the thermotolerance ability of animals has been largely overlooked. In the past decade, the ill effects of climate change have made it pertinent to rethink the selection strategies to opt for climate resilient breeds, to ensure optimum production and reproduction. This has led to renewed interest in evaluation of the impacts of heat stress on cows and the underlying mechanisms that results in their acclimatization and adaptation to varied thermal ambience. The understanding of heat stress and associated responses at various level of animal is crucial to device amelioration strategies to secure optimum production and welfare of cows. With this review, an effort has been made to provide an overview on temperature humidity index as an important indicator of heat stress, general effect of heat stress in dairy cows, and impact of heat stress and subsequent response at physiological, haematological, molecular and genetic level of dairy cows.
Collapse
Affiliation(s)
- Gayatri Gujar
- Livestock Production Management, Bikaner, Rajasthan, 334001, India.
| | - Manish Tiwari
- Animal Biotechnology, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Nistha Yadav
- Department of Animal Genetics and Breeding, College of Veterinary and Animal Science, Bikaner, Rajasthan, 334001, India
| | - Dr Monika
- Veterinary Parasitology, Jaipur, Rajasthan, 302012, India
| |
Collapse
|
2
|
De Bakshi D, Chen YC, Wuerzberger-Davis SM, Ma M, Waters BJ, Li L, Suzuki A, Miyamoto S. Ectopic CH60 mediates HAPLN1-induced cell survival signaling in multiple myeloma. Life Sci Alliance 2023; 6:e202201636. [PMID: 36625202 PMCID: PMC9748848 DOI: 10.26508/lsa.202201636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
Multiple myeloma (MM), the second most common hematological malignancy, is generally considered incurable because of the development of drug resistance. We previously reported that hyaluronan and proteoglycan link protein 1 (HAPLN1) produced by stromal cells induces activation of NF-κB, a tumor-supportive transcription factor, and promotes drug resistance in MM cells. However, the identity of the cell surface receptor that detects HAPLN1 and thereby engenders pro-tumorigenic signaling in MM cells remains unknown. Here, we performed an unbiased cell surface biotinylation assay and identified chaperonin 60 (CH60) as the direct binding partner of HAPLN1 on MM cells. Cell surface CH60 specifically interacted with TLR4 to evoke HAPLN1-induced NF-κB signaling, transcription of anti-apoptotic genes, and drug resistance in MM cells. Collectively, our findings identify a cell surface CH60-TLR4 complex as a HAPLN1 receptor and a potential molecular target to overcome drug resistance in MM cells.
Collapse
Affiliation(s)
- Debayan De Bakshi
- Cellular and Molecular Biology Graduate Program, University of Wisconsin, Madison, WI, USA
- McArdle Laboratory of Cancer Research, University of Wisconsin, Madison, WI, USA
- Department of Oncology, University of Wisconsin, Madison, WI, USA
| | - Yu-Chia Chen
- McArdle Laboratory of Cancer Research, University of Wisconsin, Madison, WI, USA
- Department of Oncology, University of Wisconsin, Madison, WI, USA
| | - Shelly M Wuerzberger-Davis
- McArdle Laboratory of Cancer Research, University of Wisconsin, Madison, WI, USA
- Department of Oncology, University of Wisconsin, Madison, WI, USA
| | - Min Ma
- School of Pharmacy, University of Wisconsin, Madison, WI, USA
| | - Bayley J Waters
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin, Madison, WI, USA
- Department of Chemistry, University of Wisconsin, Madison, WI, USA
| | - Aussie Suzuki
- McArdle Laboratory of Cancer Research, University of Wisconsin, Madison, WI, USA
- Department of Oncology, University of Wisconsin, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Shigeki Miyamoto
- McArdle Laboratory of Cancer Research, University of Wisconsin, Madison, WI, USA
- Department of Oncology, University of Wisconsin, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
3
|
Lakhotia SC. Delayed discovery of Hsp60 and subsequent characterization of moonlighting functions of multiple Hsp60 genes in Drosophila: a personal historical perspective. J Genet 2022. [DOI: 10.1007/s12041-022-01389-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Djhsp60 Is Required for Planarian Regeneration and Homeostasis. Biomolecules 2022; 12:biom12060808. [PMID: 35740934 PMCID: PMC9221281 DOI: 10.3390/biom12060808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
HSP60, a well-known mitochondrial chaperone, is essential for mitochondrial homeostasis. HSP60 deficiency causes dysfunction of the mitochondria and is lethal to animal survival. Here, we used freshwater planarian as a model system to investigate and uncover the roles of HSP60 in tissue regeneration and homeostasis. HSP60 protein is present in all types of cells in planarians, but it is relatively rich in stem cells and head neural cells. Knockdown of HSP60 by RNAi causes head regression and the loss of regenerating abilities, which is related to decrease in mitotic cells and inhibition of stem cell-related genes. RNAi-HSP60 disrupts the structure of the mitochondria and inhibits the mitochondrial-related genes, which mainly occur in intestinal tissues. RNAi-HSP60 also damages the integrity of intestinal tissues and downregulates intestine-expressed genes. More interestingly, RNAi-HSP60 upregulates the expression of the cathepsin L-like gene, which may be the reason for head regression and necrotic-like cell death. Taking these points together, we propose a model illustrating the relationship between neoblasts and intestinal cells, and also highlight the essential role of the intestinal system in planarian regeneration and tissue homeostasis.
Collapse
|
5
|
Anantanawat K, Papanicolaou A, Hill K, Xu W. Molecular Response of the Mediterranean Fruit Fly (Diptera: Tephritidae) to Heat. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:2495-2504. [PMID: 32725189 DOI: 10.1093/jee/toaa147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Indexed: 06/11/2023]
Abstract
Tephritid fruit flies are highly successful invaders and some-such as the Mediterranean fruit fly, Ceratitis capitata (Wiedemann)-are able to adapt to a large range of crops. Biosecurity controls require that shipments of produce are ensured to be pest-free, which is increasingly difficult due to the ban of key pesticides. Instead, stress-based strategies including controlled atmosphere, temperature, and irradiation can be used to eradicate flies inside products. However, unlike pesticide science, we do not yet have a robust scientific approach to measure cost-effectively whether a sufficiently lethal stress has been delivered and understand what this stress does to the biology of the pest. The latter is crucial as it would enable a combination of stresses targeting multiple molecular pathways and thus allow for lower doses of each to achieve higher lethality and reduce the development of resistance. Using heat as an example, this is the first study investigating the molecular stress response to heat in Tephritidae. Using a novel setup delivering measured doses of heat on C. capitata larvae and a high-density 11 timepoint gene expression experiment, we identified key components of lethal heat-stress response. While unraveling the complete molecular mechanism of fruit fly response to lethal stress would be a long-term project, this work curates and develops 31 potential biomarkers to assess whether sufficient lethal stress has been delivered. Further, as these protocols are straightforward and less expensive than other-omic approaches, our studies and approach will assist other researchers working on stress response.
Collapse
Affiliation(s)
- Kay Anantanawat
- Agricultural Sciences, Murdoch University, Murdoch, WA, Australia
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, Australia
- South Australian Research and Development Institute, Hartley Grove, Urrbrae, SA, Australia
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, Australia
| | - Kelly Hill
- South Australian Research and Development Institute, Hartley Grove, Urrbrae, SA, Australia
| | - Wei Xu
- Agricultural Sciences, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
6
|
Rodriguez A, Von Salzen D, Holguin BA, Bernal RA. Complex Destabilization in the Mitochondrial Chaperonin Hsp60 Leads to Disease. Front Mol Biosci 2020; 7:159. [PMID: 32766281 PMCID: PMC7381220 DOI: 10.3389/fmolb.2020.00159] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/24/2020] [Indexed: 01/21/2023] Open
Abstract
Several neurological disorders have been linked to mutations in chaperonin genes and more specifically to the HSPD1 gene. In humans, HSPD1 encodes the mitochondrial Heat Shock Protein 60 (mtHsp60) chaperonin, which carries out essential protein folding reactions that help maintain mitochondrial and cellular homeostasis. It functions as a macromolecular complex that provides client proteins an environment that favors proper folding in an ATP-dependent manner. It has been established that mtHsp60 plays a crucial role in the proper folding of mitochondrial proteins involved in ATP producing pathways. Recently, various single-point mutations in the mtHsp60 encoding gene have been directly linked to neuropathies and paraplegias. Individuals who harbor mtHsp60 mutations that negatively impact its folding ability display phenotypes with highly compromised muscle and neuron cells. Carriers of these mutations usually develop neuropathies and paraplegias at different stages of their lives mainly characterized by leg stiffness and weakness as well as degeneration of spinal cord nerves. These phenotypes are likely due to hindered energy producing pathways involved in cellular respiration resulting in ATP deprived cells. Although the complete protein folding mechanism of mtHsp60 is not well understood, recent work suggests that several of these mutations act by destabilizing the oligomeric stability of mtHsp60. Here, we discuss recent studies that highlight key aspects of the mtHsp60 mechanism with a focus on some of the known disease-causing point mutations, D29G and V98I, and their effect on the protein folding reaction cycle.
Collapse
Affiliation(s)
| | | | | | - Ricardo A. Bernal
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX, United States
| |
Collapse
|
7
|
Bie AS, Cömert C, Körner R, Corydon TJ, Palmfeldt J, Hipp MS, Hartl FU, Bross P. An inventory of interactors of the human HSP60/HSP10 chaperonin in the mitochondrial matrix space. Cell Stress Chaperones 2020; 25:407-416. [PMID: 32060690 PMCID: PMC7192978 DOI: 10.1007/s12192-020-01080-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/14/2020] [Accepted: 02/10/2020] [Indexed: 10/25/2022] Open
Abstract
The HSP60/HSP10 chaperonin assists folding of proteins in the mitochondrial matrix space by enclosing them in its central cavity. The chaperonin forms part of the mitochondrial protein quality control system. It is essential for cellular survival and mutations in its subunits are associated with rare neurological disorders. Here we present the first survey of interactors of the human mitochondrial HSP60/HSP10 chaperonin. Using a protocol involving metabolic labeling of HEK293 cells, cross-linking, and immunoprecipitation of HSP60, we identified 323 interacting proteins. As expected, the vast majority of these proteins are localized to the mitochondrial matrix space. We find that approximately half of the proteins annotated as mitochondrial matrix proteins interact with the HSP60/HSP10 chaperonin. They cover a broad spectrum of functions and metabolic pathways including the mitochondrial protein synthesis apparatus, the respiratory chain, and mitochondrial protein quality control. Many of the genes encoding HSP60 interactors are annotated as disease genes. There is a correlation between relative cellular abundance and relative abundance in the HSP60 immunoprecipitates. Nineteen abundant matrix proteins occupy more than 60% of the HSP60/HSP10 chaperonin capacity. The reported inventory of interactors can form the basis for interrogating which proteins are especially dependent on the chaperonin.
Collapse
Affiliation(s)
- Anne Sigaard Bie
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Cagla Cömert
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Roman Körner
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany
| | - Thomas J Corydon
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, 8000, Aarhus C, Denmark
- Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Mark S Hipp
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany
| | - Peter Bross
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.
| |
Collapse
|
8
|
Duan Y, Tang H, Mitchell-Silbaugh K, Fang X, Han Z, Ouyang K. Heat Shock Protein 60 in Cardiovascular Physiology and Diseases. Front Mol Biosci 2020; 7:73. [PMID: 32426370 PMCID: PMC7203681 DOI: 10.3389/fmolb.2020.00073] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/31/2020] [Indexed: 01/01/2023] Open
Abstract
Heat shock protein 60 (HSP60) is a highly conserved protein abundantly expressed in both prokaryotic and eukaryotic cells. In mammals, HSP60 has been primarily considered to reside in the mitochondria, where HSP60 and HSP10 form a complex and facilitate mitochondrial protein folding. However, HSP60 is also observed in the cytoplasm, the plasma membrane, and the extracellular space. HSP60 regulates a broad spectrum of cellular events including protein trafficking, peptide hormone signaling, cell survival, cell proliferation, inflammation, and immunization. In the cardiovascular system, growing evidence indicates that HSP60 could not only play an important role under physiological conditions, but also regulate the initiation and progression of heart failure and atherosclerosis. In this review, we focus on recent progress in understanding the function of HSP60 in cardiomyocytes, endothelial cells, and vascular smooth muscle cells (VSMCs), respectively, and discuss the related signaling pathways that have been found in these cells, so as to illustrate the role of HSP60 in the development of cardiovascular disease.
Collapse
Affiliation(s)
- Yaoyun Duan
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Huayuan Tang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Kali Mitchell-Silbaugh
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Xi Fang
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Zhen Han
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Kunfu Ouyang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
9
|
Heat shock protein 60 regulates yolk sac erythropoiesis in mice. Cell Death Dis 2019; 10:766. [PMID: 31601784 PMCID: PMC6786998 DOI: 10.1038/s41419-019-2014-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/22/2019] [Accepted: 09/26/2019] [Indexed: 12/14/2022]
Abstract
The yolk sac is the first site of blood-cell production during embryonic development in both murine and human. Heat shock proteins (HSPs), including HSP70 and HSP27, have been shown to play regulatory roles during erythropoiesis. However, it remains unknown whether HSP60, a molecular chaperone that resides mainly in mitochondria, could also regulate early erythropoiesis. In this study, we used Tie2-Cre to deactivate the Hspd1 gene in both hematopoietic and vascular endothelial cells, and found that Tie2-Cre+Hspd1f/f (HSP60CKO) mice were embryonic lethal between the embryonic day 10.5 (E10.5) and E11.5, exhibiting growth retardation, anemia, and vascular defects. Of these, anemia was observed first, independently of vascular and growth phenotypes. Reduced numbers of erythrocytes, as well as an increase in cell apoptosis, were found in the HSP60CKO yolk sac as early as E9.0, indicating that deletion of HSP60 led to abnormality in yolk sac erythropoiesis. Deletion of HSP60 was also able to reduce mitochondrial membrane potential and the expression of the voltage-dependent anion channel (VDAC) in yolk sac erythrocytes. Furthermore, cyclosporine A (CsA), which is a well-recognized modulator in regulating the opening of the mitochondrial permeability transition pore (mPTP) by interacting with Cyclophilin D (CypD), could significantly decrease cell apoptosis and partially restore VDAC expression in mutant yolk sac erythrocytes. Taken together, we demonstrated an essential role of HSP60 in regulating yolk sac cell survival partially via a mPTP-dependent mechanism.
Collapse
|
10
|
Fan F, Duan Y, Yang F, Trexler C, Wang H, Huang L, Li Y, Tang H, Wang G, Fang X, Liu J, Jia N, Chen J, Ouyang K. Deletion of heat shock protein 60 in adult mouse cardiomyocytes perturbs mitochondrial protein homeostasis and causes heart failure. Cell Death Differ 2019; 27:587-600. [PMID: 31209364 PMCID: PMC7205885 DOI: 10.1038/s41418-019-0374-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/10/2019] [Accepted: 06/05/2019] [Indexed: 01/22/2023] Open
Abstract
To maintain healthy mitochondrial enzyme content and function, mitochondria possess a complex protein quality control system, which is composed of different endogenous sets of chaperones and proteases. Heat shock protein 60 (HSP60) is one of these mitochondrial molecular chaperones and has been proposed to play a pivotal role in the regulation of protein folding and the prevention of protein aggregation. However, the physiological function of HSP60 in mammalian tissues is not fully understood. Here we generated an inducible cardiac-specific HSP60 knockout mouse model, and demonstrated that HSP60 deletion in adult mouse hearts altered mitochondrial complex activity, mitochondrial membrane potential, and ROS production, and eventually led to dilated cardiomyopathy, heart failure, and lethality. Proteomic analysis was performed in purified control and mutant mitochondria before mutant hearts developed obvious cardiac abnormalities, and revealed a list of mitochondrial-localized proteins that rely on HSP60 (HSP60-dependent) for correctly folding in mitochondria. We also utilized an in vitro system to assess the effects of HSP60 deletion on mitochondrial protein import and protein stability after import, and found that both HSP60-dependent and HSP60-independent mitochondrial proteins could be normally imported in mutant mitochondria. However, the former underwent degradation in mutant mitochondria after import, suggesting that the protein exhibited low stability in mutant mitochondria. Interestingly, the degradation could be almost fully rescued by a non-specific LONP1 and proteasome inhibitor, MG132, in mutant mitochondria. Therefore, our results demonstrated that HSP60 plays an essential role in maintaining normal cardiac morphology and function by regulating mitochondrial protein homeostasis and mitochondrial function.
Collapse
Affiliation(s)
- Feifei Fan
- School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Yaoyun Duan
- School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Feili Yang
- School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Christa Trexler
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Hong Wang
- School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Lei Huang
- Shenzhen Peking University Hospital, 518055, Shenzhen, China
| | - Yali Li
- School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Huayuan Tang
- School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Gang Wang
- Department of Pathophysiology, School of Medicine, Shenzhen University, 518055, Shenzhen, China
| | - Xi Fang
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jie Liu
- Department of Pathophysiology, School of Medicine, Shenzhen University, 518055, Shenzhen, China
| | - Nan Jia
- Shenzhen People's Hospital, 518055, Shenzhen, China
| | - Ju Chen
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Kunfu Ouyang
- School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China.
| |
Collapse
|
11
|
Bross P, Fernandez-Guerra P. Disease-Associated Mutations in the HSPD1 Gene Encoding the Large Subunit of the Mitochondrial HSP60/HSP10 Chaperonin Complex. Front Mol Biosci 2016; 3:49. [PMID: 27630992 PMCID: PMC5006179 DOI: 10.3389/fmolb.2016.00049] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 08/22/2016] [Indexed: 01/01/2023] Open
Abstract
Heat shock protein 60 (HSP60) forms together with heat shock protein 10 (HSP10) double-barrel chaperonin complexes that are essential for folding to the native state of proteins in the mitochondrial matrix space. Two extremely rare monogenic disorders have been described that are caused by missense mutations in the HSPD1 gene that encodes the HSP60 subunit of the HSP60/HSP10 chaperonin complex. Investigations of the molecular mechanisms underlying these disorders have revealed that different degrees of reduced HSP60 function produce distinct neurological phenotypes. While mutations with deleterious or strong dominant negative effects are not compatible with life, HSPD1 gene variations found in the human population impair HSP60 function and depending on the mechanism and degree of HSP60 dys- and mal-function cause different phenotypes. We here summarize the knowledge on the effects of disturbances of the function of the HSP60/HSP10 chaperonin complex by disease-associated mutations.
Collapse
Affiliation(s)
- Peter Bross
- Research Unit for Molecular Medicine, Department of Molecular Medicine, Aarhus University and Aarhus University Hospital Aarhus, Denmark
| | - Paula Fernandez-Guerra
- Research Unit for Molecular Medicine, Department of Molecular Medicine, Aarhus University and Aarhus University Hospital Aarhus, Denmark
| |
Collapse
|
12
|
Magnoni R, Palmfeldt J, Christensen JH, Sand M, Maltecca F, Corydon TJ, West M, Casari G, Bross P. Late onset motoneuron disorder caused by mitochondrial Hsp60 chaperone deficiency in mice. Neurobiol Dis 2013; 54:12-23. [PMID: 23466696 DOI: 10.1016/j.nbd.2013.02.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 01/29/2013] [Accepted: 02/22/2013] [Indexed: 01/07/2023] Open
Abstract
Cells rely on efficient protein quality control systems (PQCs) to maintain proper activity of mitochondrial proteins. As part of this system, the mitochondrial chaperone Hsp60 assists folding of matrix proteins and it is an essential protein in all organisms. Mutations in Hspd1, the gene encoding Hsp60, are associated with two human inherited diseases of the nervous system, a dominantly inherited form of spastic paraplegia (SPG13) and an autosomal recessively inherited white matter disorder termed MitCHAP60 disease. Although the connection between mitochondrial failure and neurodegeneration is well known in many neurodegenerative disorders, such as Huntington's disease, Parkinson's disease, and hereditary spastic paraplegia, the molecular basis of the neurodegeneration associated with these diseases is still ill-defined. Here, we investigate mice heterozygous for a knockout allele of the Hspd1 gene encoding Hsp60. Our results demonstrate that Hspd1 haploinsufficiency is sufficient to cause a late onset and slowly progressive deficit in motor functions in mice. We furthermore emphasize the crucial role of the Hsp60 chaperone in mitochondrial function by showing that the motor phenotype is associated with morphological changes of mitochondria, deficient ATP synthesis, and in particular, a defect in the assembly of the respiratory chain complex III in neuronal tissues. In the current study, we propose that our heterozygous Hsp60 mouse model is a valuable model system for the investigation of the link between mitochondrial dysfunction and neurodegeneration.
Collapse
Affiliation(s)
- Raffaella Magnoni
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Health Aarhus University Hospital and Aarhus University, Aarhus, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Christensen JH, Nielsen MN, Hansen J, Füchtbauer A, Füchtbauer EM, West M, Corydon TJ, Gregersen N, Bross P. Inactivation of the hereditary spastic paraplegia-associated Hspd1 gene encoding the Hsp60 chaperone results in early embryonic lethality in mice. Cell Stress Chaperones 2010; 15:851-63. [PMID: 20393889 PMCID: PMC3024079 DOI: 10.1007/s12192-010-0194-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 03/19/2010] [Accepted: 03/23/2010] [Indexed: 12/16/2022] Open
Abstract
The mitochondrial Hsp60 chaperonin plays an important role in sustaining cellular viability. Its dysfunction is related to inherited forms of the human diseases spastic paraplegia and hypomyelinating leukodystrophy. However, it is unknown whether the requirement for Hsp60 is neuron specific or whether a complete loss of the protein will impair mammalian development and postnatal survival. In this study, we describe the generation and characterization of a mutant mouse line bearing an inactivating gene-trap insertion in the Hspd1 gene encoding Hsp60. We found that heterozygous mice were born at the expected ratio compared to wild-type mice and displayed no obvious phenotype deficits. Using quantitative reverse transcription PCR, we found significantly decreased levels of the Hspd1 transcript in all of the tissues examined, demonstrating that the inactivation of the Hspd1 gene is efficient. By Western blot analysis, we found that the amount of Hsp60 protein, compared to either cytosolic tubulin or mitochondrial voltage-dependent anion-selective channel protein 1/porin, was decreased as well. The expression of the nearby Hspe1 gene, which encodes the Hsp10 co-chaperonin, was concomitantly down regulated in the liver, and the protein levels in all tissues except the brain were reduced. Homozygous Hspd1 mutant embryos, however, died shortly after implantation (day 6.5 to 7.5 of gestation, Theiler stages 9–10). Our results demonstrate that Hspd1 is an essential gene for early embryonic development in mice, while reducing the amount of Hsp60 by inactivation of one allele of the gene is compatible with survival to term as well as postnatal life.
Collapse
Affiliation(s)
- Jane H Christensen
- Research Unit for Molecular Medicine, Aarhus University Hospital, Skejby, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Arya R, Lakhotia SC. Hsp60D is essential for caspase-mediated induced apoptosis in Drosophila melanogaster. Cell Stress Chaperones 2008; 13:509-26. [PMID: 18506601 PMCID: PMC2673934 DOI: 10.1007/s12192-008-0051-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 04/30/2008] [Accepted: 04/30/2008] [Indexed: 01/27/2023] Open
Abstract
Apart from their roles as chaperones, heat shock proteins are involved in other vital activities including apoptosis with mammalian Hsp60 being ascribed proapoptotic as well as antiapoptotic roles. Using conditional RNAi or overexpression of Hsp60D, a member of the Hsp60 family in Drosophila melanogaster, we show that the downregulation of this protein blocks caspase-dependent induced apoptosis. GMR-Gal4-driven RNAi for Hsp60D in developing eyes dominantly suppressed cell death caused by expression of Reaper, Hid, or Grim (RHG), the key activators of canonical cell death pathway. Likewise, Hsp60D-RNAi rescued cell death induced by GMR-Gal4-directed expression of full-length and activated DRONC. Overexpression of Hsp60D enhanced cell death induced either by directed expression of RHG or DRONC. However, the downregulation of Hsp60D failed to suppress apoptosis caused by unguarded caspases in DIAP1-RNAi flies. Furthermore, in DIAP1-RNAi background, Hsp60D-RNAi also failed to inhibit apoptosis induced by RHG expression. The Hsp60 and DIAP1 show diffuse and distinct granular overlapping distributions in the photoreceptor cells with the bulk of both proteins being outside the mitochondria. Depletion of either of these proteins disrupts the granular distribution of the other. We suggest that in the absence of Hsp60D, DIAP1 is unable to dissociate from effecter and executioner caspases, which thus remain inactive.
Collapse
Affiliation(s)
- Richa Arya
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221 005 India
| | - S. C. Lakhotia
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221 005 India
| |
Collapse
|
15
|
Baena-López LA, Alonso J, Rodriguez J, Santarén JF. The expression of heat shock protein HSP60A reveals a dynamic mitochondrial pattern in Drosophila melanogaster embryos. J Proteome Res 2008; 7:2780-8. [PMID: 18549261 DOI: 10.1021/pr800006x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The evolutionarily conserved hsp60 ( heat-shock protein 60) family of molecular chaperones ensures the correct folding of nuclear-encoded proteins after their translocation across the mitochondrial membrane during development as well as after heat-shock treatment. Although the overexpression of HSP60 proteins and their localization in the cytoplasm have been linked with many humans pathologies, the detailed pattern of their expression in different animal models and their subcellular localization during normal development and in stress conditions are little-known. In this report, we have used two-dimensional gel electrophoresis followed by MALDI-TOF to identify and purify heat shock protein HSP60A of Drosophila melanoagaster. We demonstrate that it is heat-shock inducible and describe two novel antisera, specifically designed to recognize the denatured and native polypeptide, respectively, in Drosophila. Immunoelectron microscopy and immunostaining of Drosophila cells with these antibodies reveals that HSP60A is always localized to the inner membrane of mitochondria. Expression of HSP60A is post-transcriptionally regulated in a highly dynamic pattern during embryogenesis, even under heat-shock conditions. In contrast, in very stressful situations, its expression is upregulated transcriptionally over the entire embryo. These findings suggest novel roles for HSP60 family proteins during normal Drosophila development.
Collapse
Affiliation(s)
- Luis Alberto Baena-López
- Centro de Biología Molecular "Severo Ochoa", CSIC-UAM, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | |
Collapse
|
16
|
Bross P, Naundrup S, Hansen J, Nielsen MN, Christensen JH, Kruhøffer M, Palmfeldt J, Corydon TJ, Gregersen N, Ang D, Georgopoulos C, Nielsen KL. The Hsp60-(p.V98I) mutation associated with hereditary spastic paraplegia SPG13 compromises chaperonin function both in vitro and in vivo. J Biol Chem 2008; 283:15694-700. [PMID: 18400758 DOI: 10.1074/jbc.m800548200] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously reported the association of a mutation (c.292G > A/p.V98I) in the human HSPD1 gene that encodes the mitochondrial Hsp60 chaperonin with a dominantly inherited form of hereditary spastic paraplegia. Here, we show that the purified Hsp60-(p.V98I) chaperonin displays decreased ATPase activity and exhibits a strongly reduced capacity to promote folding of denatured malate dehydrogenase in vitro. To test its in vivo functions, we engineered a bacterial model system that lacks the endogenous chaperonin genes and harbors two plasmids carrying differentially inducible operons with human Hsp10 and wild-type Hsp60 or Hsp10 and Hsp60-(p.V98I), respectively. Ten hours after shutdown of the wild-type chaperonin operon and induction of the Hsp60-(p.V98I)/Hsp10 mutant operon, bacterial cell growth was strongly inhibited. No globally increased protein aggregation was observed, and microarray analyses showed that a number of genes involved in metabolic pathways, some of which are essential for robust aerobic growth, were strongly up-regulated in Hsp60-(p.V98I)-expressing bacteria, suggesting that the growth arrest was caused by defective folding of some essential proteins. Co-expression of Hsp60-(p.V98I) and wild-type Hsp60 exerted a dominant negative effect only when the chaperonin genes were expressed at relatively low levels. Based on our in vivo and in vitro data, we propose that the major effect of heterozygosity for the Hsp60-(p.V98I) mutation is a moderately decreased activity of chaperonin complexes composed of mixed wild-type and Hsp60-(p.V98I) mutant subunits.
Collapse
Affiliation(s)
- Peter Bross
- Research Unit for Molecular Medicine, Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, Arhus 8200, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hao X, Zhang S, Timakov B, Zhang P. The Hsp27 gene is not required for Drosophila development but its activity is associated with starvation resistance. Cell Stress Chaperones 2008; 12:364-72. [PMID: 18229455 DOI: 10.1379/csc-308.1] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Heat shock proteins are induced under stress conditions and they act as molecular chaperones to refold denatured polypeptides. Stress resistances including thermotolerance generally are correlated with levels of the heat shock proteins. We investigated a fruit fly gene encoding a small heat shock protein, Hsp27, to determine if it functions in stress response of Drosophila melanogaster. A knockout Hsp27 allele was generated. Flies homozygous for this allele were viable, without obvious defects, and fertile, indicating Hsp27 is not essential for development. In stress-response tests, loss of the Hsp27 gene caused no defects in resistance to heat shock or oxidative treatments. However, a significant reduction in starvation resistance was associated with the genotype without a functional Hsp27 gene. The data suggest that the Drosophila HSP27 protein acts as a chaperone to provide cellular stress resistance, although its function may be limited to a subset of the stress response such as the starvation resistance.
Collapse
Affiliation(s)
- Xinming Hao
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269-2131, USA
| | | | | | | |
Collapse
|
18
|
Sarkar S, Lakhotia S. Hsp60C is required in follicle as well as germline cells during oogenesis inDrosophila melanogaster. Dev Dyn 2008; 237:1334-47. [DOI: 10.1002/dvdy.21524] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
19
|
Jacq L, Teixeira VH, Garnier S, Michou L, Dieudé P, Rocha D, Pierlot C, Lemaire I, Quillet P, Hilliquin P, Mbarek H, Petit-Teixeira E, Cornélis F. HSPD1 is not a major susceptibility gene for rheumatoid arthritis in the French Caucasian population. J Hum Genet 2007; 52:1036-1039. [PMID: 17925998 DOI: 10.1007/s10038-007-0201-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 09/18/2007] [Indexed: 11/28/2022]
Abstract
The heat shock 60-kDa protein 1 (HSP60) is involved in immune and inflammatory reactions, which are hallmarks of rheumatoid arthritis (RA). HSP60 is encoded by the HSPD1 gene located on 2q33, one of the suggested RA susceptibility loci in the French Caucasian population. Our aim was to test whether HSPD1 is a major susceptibility gene by studing families from the French Caucasian population. Three single nucleotide polymorphisms (SNPs) were studied in 100 RA trio families, and 100 other families were used for replication. Genetic analyses were performed by comparing allelic frequencies, by applying the transmission disequilibrium test, and by assessing the genotype relative risk. We observed a significant RA association for the C/C genotype of rs2340690 in the first sample. However, this association was not confirmed when the second sample was added. The two other SNPs and the haplotype analysis did not give any significant results. We conclude that HSPD1 is not a major RA susceptibility gene in the French Caucasian population.
Collapse
Affiliation(s)
- Laurent Jacq
- GenHotel-EA3886, Evry-Paris VII Universities, 2 rue Gaston Crémieux, 91057, Evry-Genopole cedex, France. .,Hôpital Sud Francilien, 59 bd Henri Dunant, 91100, Corbeil-Essonnes, France.
| | - Vitor Hugo Teixeira
- GenHotel-EA3886, Evry-Paris VII Universities, 2 rue Gaston Crémieux, 91057, Evry-Genopole cedex, France.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Sophie Garnier
- GenHotel-EA3886, Evry-Paris VII Universities, 2 rue Gaston Crémieux, 91057, Evry-Genopole cedex, France
| | - Laëtitia Michou
- GenHotel-EA3886, Evry-Paris VII Universities, 2 rue Gaston Crémieux, 91057, Evry-Genopole cedex, France
| | - Philippe Dieudé
- GenHotel-EA3886, Evry-Paris VII Universities, 2 rue Gaston Crémieux, 91057, Evry-Genopole cedex, France.,Hôpital Bichat, AP-HP, 46 rue Henri Huchart, 75018, Paris, France
| | - Dominique Rocha
- GenHotel-EA3886, Evry-Paris VII Universities, 2 rue Gaston Crémieux, 91057, Evry-Genopole cedex, France
| | - Céline Pierlot
- GenHotel-EA3886, Evry-Paris VII Universities, 2 rue Gaston Crémieux, 91057, Evry-Genopole cedex, France
| | - Isabelle Lemaire
- GenHotel-EA3886, Evry-Paris VII Universities, 2 rue Gaston Crémieux, 91057, Evry-Genopole cedex, France.,Hôpital Sud Francilien, 59 bd Henri Dunant, 91100, Corbeil-Essonnes, France
| | - Patrick Quillet
- GenHotel-EA3886, Evry-Paris VII Universities, 2 rue Gaston Crémieux, 91057, Evry-Genopole cedex, France.,Hôpital Sud Francilien, 59 bd Henri Dunant, 91100, Corbeil-Essonnes, France
| | - Pascal Hilliquin
- Hôpital Sud Francilien, 59 bd Henri Dunant, 91100, Corbeil-Essonnes, France
| | - Hamdi Mbarek
- GenHotel-EA3886, Evry-Paris VII Universities, 2 rue Gaston Crémieux, 91057, Evry-Genopole cedex, France
| | - Elisabeth Petit-Teixeira
- GenHotel-EA3886, Evry-Paris VII Universities, 2 rue Gaston Crémieux, 91057, Evry-Genopole cedex, France
| | - François Cornélis
- GenHotel-EA3886, Evry-Paris VII Universities, 2 rue Gaston Crémieux, 91057, Evry-Genopole cedex, France.,Hôpital Sud Francilien, 59 bd Henri Dunant, 91100, Corbeil-Essonnes, France.,Hôpital Lariboisière, AP-HP, 2 rue Ambroise Paré, 75010, Paris, France
| |
Collapse
|
20
|
Bross P, Li Z, Hansen J, Hansen JJ, Nielsen MN, Corydon TJ, Georgopoulos C, Ang D, Lundemose JB, Niezen-Koning K, Eiberg H, Yang H, Kølvraa S, Bolund L, Gregersen N. Single-nucleotide variations in the genes encoding the mitochondrial Hsp60/Hsp10 chaperone system and their disease-causing potential. J Hum Genet 2006; 52:56-65. [PMID: 17072495 DOI: 10.1007/s10038-006-0080-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 09/29/2006] [Indexed: 10/24/2022]
Abstract
Molecular chaperones assist protein folding, and variations in their encoding genes may be disease-causing in themselves or influence the phenotypic expression of disease-associated or susceptibility-conferring variations in many different genes. We have screened three candidate patient groups for variations in the HSPD1 and HSPE1 genes encoding the mitochondrial Hsp60/Hsp10 chaperone complex: two patients with multiple mitochondrial enzyme deficiency, 61 sudden infant death syndrome cases (MIM: #272120), and 60 patients presenting with ethylmalonic aciduria carrying non-synonymous susceptibility variations in the ACADS gene (MIM: *606885 and #201470). Besides previously reported variations we detected six novel variations: two in the bidirectional promoter region, and one synonymous and three non-synonymous variations in the HSPD1 coding region. One of the non-synonymous variations was polymorphic in patient and control samples, and the rare variations were each only found in single patients and absent in 100 control chromosomes. Functional investigation of the effects of the variations in the promoter region and the non-synonymous variations in the coding region indicated that none of them had a significant impact. Taken together, our data argue against the notion that the chaperonin genes play a major role in the investigated diseases. However, the described variations may represent genetic modifiers with subtle effects.
Collapse
Affiliation(s)
- Peter Bross
- Research Unit for Molecular Medicine, Skejby Sygehus, Aarhus University Hospital and Faculty of Health Sciences, Brendstrupgaardsvej 100, 8200, Århus N, Denmark.
| | - Zhijie Li
- Bejing Genomics Institute, Chinese Academy of Sciences, Beijing, China
- Institute of Human Genetics, University of Aarhus, Aarhus, Denmark
| | - Jakob Hansen
- Research Unit for Molecular Medicine, Skejby Sygehus, Aarhus University Hospital and Faculty of Health Sciences, Brendstrupgaardsvej 100, 8200, Århus N, Denmark
| | - Jens Jacob Hansen
- Research Unit for Molecular Medicine, Skejby Sygehus, Aarhus University Hospital and Faculty of Health Sciences, Brendstrupgaardsvej 100, 8200, Århus N, Denmark
- Institute of Human Genetics, University of Aarhus, Aarhus, Denmark
| | - Marit Nyholm Nielsen
- Research Unit for Molecular Medicine, Skejby Sygehus, Aarhus University Hospital and Faculty of Health Sciences, Brendstrupgaardsvej 100, 8200, Århus N, Denmark
| | | | - Costa Georgopoulos
- Department of Microbiology and Molecular Medicine, Centre Médical Universitaire, Geneva, Switzerland
| | - Debbie Ang
- Department of Microbiology and Molecular Medicine, Centre Médical Universitaire, Geneva, Switzerland
| | | | - Klary Niezen-Koning
- Institute for Drug Exploration (GUIDE), University Hospital Groningen and Groningen University, Groningen, The Netherlands
| | - Hans Eiberg
- Institute of Medical Genetics, Panum Institute, Copenhagen, Denmark
| | - Huanming Yang
- Bejing Genomics Institute, Chinese Academy of Sciences, Beijing, China
| | - Steen Kølvraa
- Department of Clinical Genetics, Vejle Hospital, 7100, Vejle, Denmark
| | - Lars Bolund
- Bejing Genomics Institute, Chinese Academy of Sciences, Beijing, China
- Institute of Human Genetics, University of Aarhus, Aarhus, Denmark
| | - Niels Gregersen
- Research Unit for Molecular Medicine, Skejby Sygehus, Aarhus University Hospital and Faculty of Health Sciences, Brendstrupgaardsvej 100, 8200, Århus N, Denmark
| |
Collapse
|
21
|
Sarkar S, Lakhotia SC. The Hsp60C gene in the 25F cytogenetic region in Drosophila melanogaster is essential for tracheal development and fertility. J Genet 2005; 84:265-81. [PMID: 16385159 DOI: 10.1007/bf02715797] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Earlier studies have shown that of the four genes (Hsp60A, Hsp60B, Hsp60C, Hsp60D genes) predicted to encode the conserved Hsp60 family chaperones in Drosophila melanogaster, the Hsp60A gene (at the 10A polytene region) is expressed in all cell types of the organism and is essential from early embryonic stages, while the Hsp60B gene (at 21D region) is expressed only in testis, being essential for sperm individualization. In the present study, we characterized the Hsp60C gene (at 25F region), which shows high sequence homology with the other three Hsp60 genes of D. melanogaster. In situ hybridization of Hsp60C-specific riboprobe shows that expression of this gene begins in late embryonic stages (stage 14 onwards), particularly in the developing tracheal system and salivary glands; during larval and adult stages, it is widely expressed in many cell types but much more strongly in tracheae and in developing and differentiating germ cells. A P-insertion mutant (Hsp60C(1)) allele with the P transposon inserted at -251 position of the Hsp60C gene promoter was generated. This early larval recessive lethal mutation significantly reduces levels of Hsp60C transcripts in developing tracheae and this is associated with a variety of defects in the tracheal system, including lack of liquid clearance. About 10% of the homozygotes survive as weak, shortlived and completely sterile adults. Testes of the surviving mutant males are significantly smaller, with fewer spermatocytes, most of which do not develop beyond the round spermatid stage. In situ and Northern hybridizations show significantly reduced levels of the Hsp60C transcripts in Hsp60C(1) homozygous adult males. The absence of early meiotic stages in the Hsp60C(1) homozygous testes contrasts with the effect of testis-specific Hsp60B (21D) gene, whose mutation affects individualization of sperm bundles later in spermiogenesis. In view of the specific effects in tracheal development and in early stages of spermatogenesis, it is likely that, besides its functions as a chaperone, Hsp60C may have signalling functions and may also be involved in cation transport across the developing tracheal epithelial cells.
Collapse
Affiliation(s)
- Surajit Sarkar
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221 005, India
| | | |
Collapse
|
22
|
Birch-Machin I, Gao S, Huen D, McGirr R, White RAH, Russell S. Genomic analysis of heat-shock factor targets in Drosophila. Genome Biol 2005; 6:R63. [PMID: 15998452 PMCID: PMC1175994 DOI: 10.1186/gb-2005-6-7-r63] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 04/07/2005] [Accepted: 05/10/2005] [Indexed: 11/10/2022] Open
Abstract
We have used a chromatin immunoprecipitation-microarray (ChIP-array) approach to investigate the in vivo targets of heat-shock factor (Hsf) in Drosophila embryos. We show that this method identifies Hsf target sites with high fidelity and resolution. Using cDNA arrays in a genomic search for Hsf targets, we identified 141 genes with highly significant ChIP enrichment. This study firmly establishes the potential of ChIP-array for whole-genome transcription factor target mapping in vivo using intact whole organisms.
Collapse
Affiliation(s)
- Ian Birch-Machin
- Department of Anatomy, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Shan Gao
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - David Huen
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Richard McGirr
- Department of Anatomy, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Robert AH White
- Department of Anatomy, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Steven Russell
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| |
Collapse
|
23
|
Shaw PJ, Tononi G, Greenspan RJ, Robinson DF. Stress response genes protect against lethal effects of sleep deprivation in Drosophila. Nature 2002; 417:287-91. [PMID: 12015603 DOI: 10.1038/417287a] [Citation(s) in RCA: 317] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sleep is controlled by two processes: a homeostatic drive that increases during waking and dissipates during sleep, and a circadian pacemaker that controls its timing. Although these two systems can operate independently, recent studies indicate a more intimate relationship. To study the interaction between homeostatic and circadian processes in Drosophila, we examined homeostasis in the canonical loss-of-function clock mutants period (per(01)), timeless (tim(01)), clock (Clk(jrk)) and cycle (cyc(01)). cyc(01) mutants showed a disproportionately large sleep rebound and died after 10 hours of sleep deprivation, although they were more resistant than other clock mutants to various stressors. Unlike other clock mutants, cyc(01) flies showed a reduced expression of heat-shock genes after sleep loss. However, activating heat-shock genes before sleep deprivation rescued cyc(01) flies from its lethal effects. Consistent with the protective effect of heat-shock genes, was the observation that flies carrying a mutation for the heat-shock protein Hsp83 (Hsp83(08445)) showed exaggerated homeostatic response and died after sleep deprivation. These data represent the first step in identifying the molecular mechanisms that constitute the sleep homeostat.
Collapse
Affiliation(s)
- Paul J Shaw
- The Neurosciences Institute, 10640 John J. Hopkins Drive, San Diego, California 92121, USA
| | | | | | | |
Collapse
|
24
|
Timakov B, Zhang P. The hsp60B gene of Drosophila melanogaster is essential for the spermatid individualization process. Cell Stress Chaperones 2001; 6:71-7. [PMID: 11525246 PMCID: PMC434385 DOI: 10.1379/1466-1268(2001)006<0071:thgodm>2.0.co;2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The 60-kDa heat shock protein family (Hsp60) is found in prokaryotes, mitochondria, and chloroplasts. The Hsp60 proteins promote proper protein folding by preventing aggregation. In Drosophila melanogaster, the hsp60 gene is essential for a variety of developmental processes, beginning at early embryogenesis. In this study we show that an additional member of the Drosophila hsp60 gene family, hsp60B, is essential in male fertility. In males homozygous for a mutation of the hsp60B gene, developmental processes appeared normal throughout most of spermatogenesis, including spermatocyte growth, meiosis, and spermatid elongation. At these stages, mitochondria also displayed a differentiation process similar to wild-types. However, we found that the mutation disrupted a late stage of spermatogenesis, the spermatid individualization process. In this process, the individualization complex is assembled at spermatid nuclear heads, traverses along spermatid tails, and generates membranes for each of the spermatids in a cyst. Our analysis further shows that the individualization complex in sterile males displayed abnormal morphology as it was traveling along the spermatid tails. The Drosophila Hsp60 proteins are believed to be exclusively localized in the mitochondria. Our observation that the hsp60B mutation displayed no apparent defect in mitochondrial differentiation during spermatogenesis suggests that the Hsp60B protein may operate in a nonmitochondrial location.
Collapse
Affiliation(s)
- B Timakov
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269-2131, USA
| | | |
Collapse
|