1
|
Zhang Q, Mi C, Wang T. Effects and mechanism of small molecule additives on recombinant protein in CHO cells. Appl Microbiol Biotechnol 2023; 107:2771-2781. [PMID: 36971794 DOI: 10.1007/s00253-023-12486-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
Chinese hamster ovary (CHO) cells can produce proteins with complex structures and post-translational modifications which are similar to human-derived cells, and they have been the ideal host cells for the production of recombinant therapy proteins (RTPs). Nearly 70% of approved RTPs are produced by CHO cells. In recent years, a series of measures have been developed to increase the expression of RTPs to achieve the lower production cost during the process of large-scale industrial production of recombinant protein in CHO cells. Among of them, the addition of small molecule additives in the culture medium can improve the expression and production efficiency of recombinant proteins, and has become an effective and simple method. In this paper, the characteristics of CHO cells, the effect and mechanism of small molecule additives are reviewed. KEY POINTS: • Small molecular additives on the expression of RTPs in CHO cells are reviewed • Small molecular additives improve the yield of RTPs • Small molecular additives provide methods for the optimization of serum-free medium.
Collapse
Affiliation(s)
- Qiuli Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Chunliu Mi
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Tianyun Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| |
Collapse
|
2
|
Villegas-Vázquez EY, Quintas-Granados LI, Cortés H, González-Del Carmen M, Leyva-Gómez G, Rodríguez-Morales M, Bustamante-Montes LP, Silva-Adaya D, Pérez-Plasencia C, Jacobo-Herrera N, Reyes-Hernández OD, Figueroa-González G. Lithium: A Promising Anticancer Agent. Life (Basel) 2023; 13:537. [PMID: 36836894 PMCID: PMC9966411 DOI: 10.3390/life13020537] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Lithium is a therapeutic cation used to treat bipolar disorders but also has some important features as an anti-cancer agent. In this review, we provide a general overview of lithium, from its transport into cells, to its innovative administration forms, and based on genomic, transcriptomic, and proteomic data. Lithium formulations such as lithium acetoacetate (LiAcAc), lithium chloride (LiCl), lithium citrate (Li3C6H5O7), and lithium carbonate (Li2CO3) induce apoptosis, autophagy, and inhibition of tumor growth and also participate in the regulation of tumor proliferation, tumor invasion, and metastasis and cell cycle arrest. Moreover, lithium is synergistic with standard cancer therapies, enhancing their anti-tumor effects. In addition, lithium has a neuroprotective role in cancer patients, by improving their quality of life. Interestingly, nano-sized lithium enhances its anti-tumor activities and protects vital organs from the damage caused by lipid peroxidation during tumor development. However, these potential therapeutic activities of lithium depend on various factors, such as the nature and aggressiveness of the tumor, the type of lithium salt, and its form of administration and dosage. Since lithium has been used to treat bipolar disorder, the current study provides an overview of its role in medicine and how this has changed. This review also highlights the importance of this repurposed drug, which appears to have therapeutic cancer potential, and underlines its molecular mechanisms.
Collapse
Affiliation(s)
- Edgar Yebrán Villegas-Vázquez
- Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
| | | | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico
| | | | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Miguel Rodríguez-Morales
- Licenciatura en Médico Cirujano, Facultad de Ciencias de la Salud Universidad Anáhuac Norte, Academia de Genética Médica, Naucalpan de Juárez 52786, Mexico
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | | | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico
| | - Carlos Pérez-Plasencia
- Laboratorio de Genómica, Instituto Nacional de Cancerología (INCan), Ciudad de México 14080, Mexico
- Laboratorio de Genómica, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Nadia Jacobo-Herrera
- Unidad de Bioquímica, Instituto Nacional de Ciencias Medicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
| | - Octavio Daniel Reyes-Hernández
- Laboratorio de Biología Molecular del Cáncer, Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
| | - Gabriela Figueroa-González
- Laboratorio de Farmacogenética, Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
| |
Collapse
|
3
|
Predicted Cellular and Molecular Actions of Lithium in the Treatment of Bipolar Disorder: An In Silico Study. CNS Drugs 2020; 34:521-533. [PMID: 32306228 DOI: 10.1007/s40263-020-00723-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Lithium remains the first-line treatment for bipolar disorder (BD), but patients respond to it variably. While a myriad of studies have attributed many genes and signaling pathways to lithium responsiveness, a comprehensive study with an integrated conclusion is still lacking. OBJECTIVE We aim to present an integrated mechanism for the therapeutic actions of lithium in BD. METHODS First, a list of lithium responsiveness-associated genes (LRAGs) was collected by searching in the literature. Thereafter, gene set enrichment analysis together with gene-gene interaction network analysis was performed, in order to find the cellular and molecular events related to the LRAGs. RESULTS Gene set enrichment analyses showed that the chromosomal regions 3p26, 4p21, 5q34 and 7p13 could be novel associated loci for lithium responsiveness in BD. Also, expression pattern analysis of the LRAGs showed their enrichment in adulthood stages and different cell lineages of brain, blood and immune system. Most of the LRAGs exhibited enriched expression in central parts of human brain, suggesting major contribution of these parts in lithium responsiveness. Beside the prediction of several biological processes and signaling pathways related to lithium responsiveness, an interaction network between these processes was constructed that was found to be regulated by a set of microRNAs. Proteins of the network were mainly classified as transcription factors and kinases, which also highlighted the crucial role of glycogen synthase kinase 3β (GSK3β) in lithium responsiveness. CONCLUSIONS The predicted cellular and molecular events in this study could be considered as mechanisms and also determinants of lithium responsiveness in BD.
Collapse
|
4
|
Bello SA, Torres-Gutiérrez V, Rodríguez-Flores EJ, Toledo-Román EJ, Rodríguez N, Díaz-Díaz LM, Vázquez-Figueroa LD, Cuesta JM, Grillo-Alvarado V, Amador A, Reyes-Rivera J, García-Arrarás JE. Insights into intestinal regeneration signaling mechanisms. Dev Biol 2019; 458:12-31. [PMID: 31605680 DOI: 10.1016/j.ydbio.2019.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 12/31/2022]
Abstract
The cellular mechanisms underlying the amazing ability of sea cucumbers to regenerate their autotomized intestines have been widely described by us and others. However, the signaling pathways that control these mechanisms are unknown. Previous studies have shown that Wnt homologs are upregulated during early intestinal regenerative stages, suggesting that the Wnt/β-catenin pathway is active during this process. Here, we used small molecules, putative disruptors of the Wnt pathway, to determine the potential role of the canonical Wnt pathway on intestine regeneration in the sea cucumber Holothuria glaberrima. We evaluated their effects in vivo by using histological analyses for cell dedifferentiation, cell proliferation and apoptosis. We found that iCRT14, an alleged Wnt pathway inhibitor, decreased the size of the regenerating intestine, while LiCl, a presumed Wnt pathway activator, increased its size. The possible cellular mechanisms by which signaling pathway disruptors affect the gut rudiment size were further studied in vitro, using cultures of tissue explants and additional pharmacological agents. Among the tested signaling activators, those that act through GSK-3 inhibition, LiCl, 1-Azakenpaullone, and CHIR99021 were found to increase muscle cell dedifferentiation, while the inhibitor iCRT14 blocked cell dedifferentiation. Differently, cell proliferation was reduced by all GSK-3 inhibitors, as well as by iCRT14 and C59, which interferes with Wnt ligand secretion. The in vivo temporal and spatial pattern of β-catenin activity was determined using an antibody against phosphorylated β-catenin and shown to correlate with cell proliferative activity. In vitro treatment using C59 decreased the number of cells immunostained for nuclear phosphorylated β-catenin. Our results showed that the cell dedifferentiation observed during intestinal regeneration can be decoupled from the cell proliferation event and that these cellular processes can be modulated by particular signaling pathway inhibitors and activators. These results open the door for future studies where the cellular signaling pathways involved at each regeneration stage can be determined.
Collapse
Affiliation(s)
- Samir A Bello
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, USA
| | | | | | | | - Natalia Rodríguez
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, USA
| | - Lymarie M Díaz-Díaz
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, USA
| | | | - José M Cuesta
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, USA
| | | | - Alexandra Amador
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, USA
| | - Josean Reyes-Rivera
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, USA
| | - José E García-Arrarás
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, USA.
| |
Collapse
|
5
|
Kim CL, Ha TK, Lee GM. Combinatorial treatment with lithium chloride enhances recombinant antibody production in transiently transfected CHO and HEK293E cells. BIOTECHNOL BIOPROC E 2016. [DOI: 10.1007/s12257-016-0434-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Effect of lithium chloride on the production and sialylation of Fc-fusion protein in Chinese hamster ovary cell culture. Appl Microbiol Biotechnol 2014; 98:9239-48. [DOI: 10.1007/s00253-014-6012-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/01/2014] [Accepted: 08/02/2014] [Indexed: 10/24/2022]
|
7
|
Inhibition of caudal fin regeneration in Corydoras aeneus by lithium chloride. Micron 2013; 46:66-75. [DOI: 10.1016/j.micron.2012.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 12/17/2012] [Accepted: 12/27/2012] [Indexed: 12/29/2022]
|
8
|
Porcine proximal tubular cells (LLC-PK1) are able to tolerate high levels of lithium chloride in vitro: assessment of the influence of 1-20 mM LiCl on cell death and alterations in cell biology and biochemistry. Cell Biol Int 2010; 34:225-33. [PMID: 19947924 DOI: 10.1042/cbi20090042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lithium, a prophylactic drug for the treatment of bipolar disorder, is prescribed with caution due to its side effects, including renal damage. In this study porcine LLC-PK1 renal tubular cells were used to establish the direct toxicity of lithium on proximal cells and gain insights into the molecular mechanisms involved. In the presence of LiCl, cell proliferation exhibited insignificant decreases in a concentration-dependent manner, but once confluent, constant cell numbers were observed. Cell cycle studies indicated a small dose-dependent accumulation of cells in the G2/M stage after 24 h, as well as an increase in cells in the G0/G1 phase after treatment with 1-10 mM LiCl, but not at 20 mM LiCl. No evidence of apoptosis was observed based on cell morphology or DNA fragmentation studies, or evidence of protein expression changes for Bax, Bcl-2, and p53 proteins using immunocytochemistry. In addition caspases 3, 8 and 9 activity remained unaltered between control and lithium-treated cultures. To conclude, exposure to high concentrations of lithium did not result in overt toxic effects to LLC-PK1 renal cells, although LiCl did alter some aspects of cell behaviour, which could potentially influence function over time.
Collapse
|
9
|
Néel BD, Lopez J, Chabadel A, Gillet G. Lithium suppresses motility and invasivity of v-src-transformed cells by glutathione-dependent activation of phosphotyrosine phosphatases. Oncogene 2009; 28:3246-60. [DOI: 10.1038/onc.2009.190] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Wang XM, Li J, Feng XC, Wang Q, Guan DY, Shen ZH. Involvement of the role of Chk1 in lithium-induced G2/M phase cell cycle arrest in hepatocellular carcinoma cells. J Cell Biochem 2008; 104:1181-91. [PMID: 18247328 DOI: 10.1002/jcb.21693] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Lithium, a therapeutic agent for bipolar disorder, can induce G2/M arrest in various cells, but the mechanism is unclear. In this article, we demonstrated that lithium arrested hepatocellular carcinoma cell SMMC-7721 at G2/M checkpoint by inducing the phosphorylation of cdc2 (Tyr-15). This effect was p53 independent and not concerned with the inhibition of glycogen synthase kinase-3 and inositol monophosphatase, two well-documented targets of lithium. Checkpoint kinase 1 (Chk1), a critical enzyme in DNA damage-induced G2/M arrest, was at least partially responsible for the lithium action. The lithium-induced phosphorylation of cdc2 and G2/M arrest was abrogated largely by SB218078, a potent Chk1 inhibitor, as well as by Chk1 siRNA or the over-expression of kinase dead Chk1. Furthermore, lithium-induced cdc25C phosphorylation in 7721 cells and in vitro kinase assay showed that the activity of Chk1 was enhanced after lithium treatment. Interestingly, the increase of Chk1 activity by lithium may be independent of ataxia telangiectasia mutated (ATM)/ATM and Rad3-related (ATR) kinase. This is because no elevated phosphorylation on Chk1 (Ser-317 and Ser-345) was observed after lithium treatment. Moreover, caffeine, a known ATM/ATR kinase inhibitor, relieved the phosphorylation of cdc2 (Tyr-15) by hydroxyurea, but not that by lithium. Our study's results revealed the role of Chk1 in lithium-induced G2/M arrest. Given that Chk1 has been proposed to be a novel tumor suppressor, we suggest that the effect of lithium on Chk1 and cell cycle is useful in tumor prevention and therapy.
Collapse
Affiliation(s)
- Xiao-Ming Wang
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, 130 Dong an Road, Shanghai 200032, China
| | | | | | | | | | | |
Collapse
|
11
|
Wang JS, Wang CL, Wen JF, Wang YJ, Hu YB, Ren HZ. Lithium inhibits proliferation of human esophageal cancer cell line Eca-109 by inducing a G 2/M cell cycle arrest. World J Gastroenterol 2008; 14:3982-9. [PMID: 18609681 PMCID: PMC2725336 DOI: 10.3748/wjg.14.3982] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of lithium on proliferation of esophageal cancer (EC) cells and its preliminary mechanisms.
METHODS: Eca-109 cells were treated with lithium chloride, a highly selective inhibitor of glycogen synthase kinase 3β (GSK-3β), at different concen-trations (2-30 mmol/L) and time points (0, 2, 4, 6 and 24 h). Cell proliferative ability was evaluated by 3-(4,5-dimethylthiazole-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, and cell cycle distribution was examined by flow cytometry. Expressions of p-GSK-3β, β-catenin, cyclin B1, cdc2 and cyclin D1 protein were detected by Western blotting, and the subcellular localization of β-catenin was determined by immunofluorescence. The mRNA level of cyclin B1 was detected by reverse transcription polymerase chain reaction (RT-PCR).
RESULTS: Lithium could inhibit the proliferation of Eca-109 cells. Lithium at a concentration of 20 mmol/L lithium for 24 h produced obvious changes in the distribution of cell cycle, and increased the number of cells in G2/M phase (P < 0.05 vs control group). Western blotting showed that lithium inhibited GSK-3β by Ser-9 phosphorylation and stabilized free β-catenin in the cytoplasm. Immunofluorescence further confirmed that free β-catenin actively translocated to the nucleus. Moreover, lithium slightly elevated cyclin D1 protein expression, whereas lowered the cyclin B1 expression after 24 h lithium exposure and no obvious change was observed for cdc2 protein.
CONCLUSION: Lithium can inhibit the proliferation of human esophageal cancer cell line Eca-109 by inducing a G2/M cell cycle arrest, which is mainly mediated through the inhibition of lithium-sensitive molecule, GSK-3β, and reduction of cyclin B1 expression.
Collapse
|
12
|
Pizarro JG, Folch J, Esparza JL, Jordan J, Pallàs M, Camins A. A molecular study of pathways involved in the inhibition of cell proliferation in neuroblastoma B65 cells by the GSK-3 inhibitors lithium and SB-415286. J Cell Mol Med 2008; 13:3906-17. [PMID: 18624766 PMCID: PMC4516538 DOI: 10.1111/j.1582-4934.2008.00389.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Pharmacological GSK-3 inhibitors are potential drugs for the treatment of neurodegenerative diseases, cancer and diabetes. We examined the antiproliferative effects of two GSK-3 inhibitors, lithium and SB-415286, on B65 neuroblastoma cell line. Treatment of B65 cells with either drug administered separately caused a decrease in cell proliferation that was associated with G2/M cell cycle arrest. Cell-cycle proteins such as cyclins D, E, A, cdk4 and cdk2 were up-regulated. Since lithium and SB-415286-induced G2/M arrest we studied changes in the expression of proteins involved in this phase, specifically cyclin B, cdc2 and the phosphorylated form of this protein (tyr15-cdc2). Both drugs increased the expression of tyr15-cdc2, thus inhibiting mitosis. On the other hand, SB-415286 increased the expression of SIRT2, involved in the regulation of proliferation. Moreover, cell-cycle arrest mediated by SB-415286 was accompanied by apoptosis that was not prevented by 100 μM of zVAD-fmk (benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone), a pan-caspase inhibitor. Likewise, GSK-3 inhibitors did not affect the mitochondrial release of apoptosis inducing factor (AIF). We conclude that inhibitors of GSK-3 induced cell-cycle arrest, mediated by the phosphorylation of cdc2 and, in the case of SB-415286, SIRT2 expression, which induced apoptosis in a caspase-independent manner.
Collapse
Affiliation(s)
- Javier G Pizarro
- Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Institut de Biomedicina and Centros de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Universitat de Barcelona, Nucli Universitari de Pedralbes, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
13
|
Active beta-catenin signaling is an inhibitory pathway for human immunodeficiency virus replication in peripheral blood mononuclear cells. J Virol 2008; 82:2813-20. [PMID: 18199649 DOI: 10.1128/jvi.02498-07] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Wnt/beta-catenin pathway is involved in cell functions governing development and disease. In modeling postentry restriction of human immunodeficiency virus (HIV) replication in astrocytes, we reported that part of this natural resistance to productive replication of HIV in astrocytes involved expression of proteins of the Wnt/beta-catenin signaling pathway. We determined here whether induction of beta-catenin signaling in peripheral blood mononuclear cells (PBMCs) can modulate HIV replication. Given that lithium is an inducer of beta-catenin signaling, we used it as a tool to determine the impact of beta-catenin signaling on HIV replication in PBMCs. We demonstrated that lithium inhibited the replication of T-tropic and primary isolates of HIV by >90% and did so in noncytotoxic/noncytostatic concentrations and in a beta-catenin-dependent manner. Specifically, inhibiting beta-catenin signaling by transfection of dominant-negative mutant constructs to either T-cell factor 4, the downstream effector of Wnt signaling, or beta-catenin, the central mediator of this pathway, abrogated the ability of lithium to inhibit HIV replication. Moreover, when Wnt/beta-catenin signaling was inhibited, the level of HIV replication was enhanced by fourfold. To confirm the in vivo relevance of the beta-catenin pathway in repressing HIV replication, we evaluated HIV-positive antiretroviral therapy-naive patients who were on lithium therapy. These patients demonstrated a reduction in viral load, which increased as the dose of lithium was reduced. Collectively, these data indicate that beta-catenin signaling is an intrinsic molecular pathway restricting HIV replication in PBMCs.
Collapse
|
14
|
Sun A, Shanmugam I, Song J, Terranova PF, Thrasher JB, Li B. Lithium suppresses cell proliferation by interrupting E2F-DNA interaction and subsequently reducing S-phase gene expression in prostate cancer. Prostate 2007; 67:976-88. [PMID: 17440966 DOI: 10.1002/pros.20586] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Lithium is an existing drug for bipolar disorder and its uptake was recently linked to reduced tumor incidence compared to the general population. The major target of lithium action is glycogen synthase kinase 3 (GSK-3). Since GSK-3 expression and activation are associated with prostate cancer progression, the anti-cancer potential of lithium on prostate cancer was investigated in this study. METHODS Multiple prostate cancer cell lines were treated with lithium chloride (LiCl). Cell proliferation and cell cycle distribution were analysed. DNA replication was determined using BrdU labeling assay. Genome-wide screening of gene expression was performed using cDNA microarray assay. GSK-3beta gene-specific silencing was conducted using small interferencing RNA (siRNA) transfection. E2 factor (E2F) transactivation was evaluated using reporter gene assay and E2F-DNA interaction was determined with chromatin-immunoprecipitation assay (ChIP). RESULTS LiCl significantly inhibited cell proliferation, which was associated with reduced DNA replication and S-phase cell cycle arrest. LiCl significantly decreased the expression of multiple DNA replication-related genes, including cell division cycle 6 (cdc6), cyclin A, cyclin E, and cdc25C, which are regulated by E2F factor during cell cycle. A novel GSK-3-specific inhibitor TDZD-8 and GSK-3beta siRNA also suppressed the expression of these E2F target genes, indicating that LiCl-induced anti-cancer effect was associated with GSK-3beta inhibition. Furthermore, LiCl suppressed E2F transactivation by interrupting the interaction of E2F1 factor with its target gene promoter. CONCLUSIONS These data indicated that LiCl suppresses cancer cell proliferation by disrupting E2F-DNA interaction and subsequent E2F-mediated gene expression in prostate cancer.
Collapse
Affiliation(s)
- Aijing Sun
- Department of Pathology, Shaoxing People's Hospital and the First Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | | | | | | | | | | |
Collapse
|
15
|
Struewing IT, Barnett CD, Tang T, Mao CD. Lithium increases PGC-1alpha expression and mitochondrial biogenesis in primary bovine aortic endothelial cells. FEBS J 2007; 274:2749-65. [PMID: 17451429 DOI: 10.1111/j.1742-4658.2007.05809.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Lithium is a therapeutic agent commonly used to treat bipolar disorder and its beneficial effects are thought to be due to a combination of activation of the Wnt/beta-catenin pathway via inhibition of glycogen synthase kinase-3beta and depletion of the inositol pool via inhibition of the inositol monophosphatase-1. We demonstrated that lithium in primary endothelial cells induced an increase in mitochondrial mass leading to an increase in ATP production without any significant change in mitochondrial efficiency. This increase in mitochondrial mass was associated with an increase in the mRNA levels of mitochondrial biogenesis transcription factors: nuclear respiratory factor-1 and -2beta, as well as mitochondrial transcription factors A and B2, which lead to the coordinated upregulation of oxidative phosphorylation components encoded by either the nuclear or mitochondrial genome. These effects of lithium on mitochondrial biogenesis were independent of the inhibition of glycogen synthase kinase-3beta and independent of inositol depletion. Also, expression of the coactivator PGC-1alpha was increased, whereas expression of the coactivator PRC was not affected. Lithium treatment rapidly induced a decrease in activating Akt-Ser473 phosphorylation and inhibitory Forkhead box class O (FOXO1)-Thr24 phosphorylation, as well as an increase in activating c-AMP responsive element binding (CREB)-Ser133 phosphorylation, two mechanisms known to control PGC-1alpha expression. Together, our results show that lithium induces mitochondrial biogenesis via CREB/PGC-1alpha and FOXO1/PGC-1alpha cascades, which highlight the pleiotropic effects of lithium and reveal also novel beneficial effects via preservation of mitochondrial functions.
Collapse
Affiliation(s)
- Ian T Struewing
- Graduate Center for Nutritional Sciences, University of Kentucky, 900 Limestone Street, Lexington, KY 40536, USA
| | | | | | | |
Collapse
|
16
|
Zmijewski JW, Jope RS. Nuclear accumulation of glycogen synthase kinase-3 during replicative senescence of human fibroblasts. Aging Cell 2004; 3:309-17. [PMID: 15379854 PMCID: PMC1931580 DOI: 10.1111/j.1474-9728.2004.00117.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Activation of the tumor suppressor protein p53 contributes to cellular senescence. As glycogen synthase kinase-3 (GSK3) was recently found to interact with p53 and contribute to the actions of p53, this study examined whether GSK3 accumulated in the nucleus and associated with p53 in senescent cells. Compared with young and middle-aged human WI-38 fibroblasts, senescent cells were found to contain increased nuclear levels of GSK3beta, and also tended to accumulate in the nucleus the other isoform of GSK3, GSK3alpha. Co-immunoprecipitation experiments demonstrated that GSK3beta and p53 formed a complex in the nucleus. Further experiments tested whether inhibition of GSK3 altered the development of senescence using long-term treatment with the selective GSK3 inhibitor lithium. Lithium treatment reduced the senescence-associated accumulation of p53 and caused cells to enter a reversible quiescent state. These results indicate that a portion of the p53 that is activated in senescent cells is modulated by its association with GSK3beta in the nucleus, an association that is known to facilitate the actions of p53 and that may contribute to senescence.
Collapse
Affiliation(s)
- Jaroslaw W Zmijewski
- Department of Psychiatry and Behavioural Neurobiology, Sparks Center 1057, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA
| | | |
Collapse
|
17
|
Chen W, Wu R, Wang X, Li Y, Hao T. Effect of lithium on cell cycle progression of pig airway epithelial cells. Curr Med Sci 2004; 24:318-21. [PMID: 15587388 DOI: 10.1007/bf02861857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2004] [Indexed: 10/19/2022]
Abstract
To investigate the effect of lithium on cell cycle progression of airway epithelial cells, primary pig tracheobronchial epithelial cells were incubated with lithium chloride (LiCl) at different concentrations (0, 5 mmol/L, and 10 mmol/L) and time (12 h, 16 h and 24 h). After the treatment, cells were counted, cell cycle profile was measured by BrdU labeling and flow cytometry, and expression of cyclin D1 and cyclin B1 were detected by Western blotting. The results showed that after 24h of 10mmol/L but not 5mmol/L LiCl treatment, proliferation of cells was slowed down as manifested by delayed confluence and cell number accumulation (P<0.05). Lithium did not change the percentage of cells in S phase (P>0.05), but 24 h incubation with 10 mmol/L LiCl induced a G2/M cell cycle arrest. Furthermore, 10mmol/L LiCl elevated cyclin D1 expression after 12h treatment, while expression of cyclin B1 increased more significantly after 24h incubation. These data demonstrate that lithium inhibits proliferation of pig airway epithelial cells by inhibiting cell cycle progression, and suggest that lithium-sensitive molecule(s) such as glycogen synthase kinase 3 may have a role in the regulation of growth of airway epithelial cells.
Collapse
Affiliation(s)
- Wenshu Chen
- Department of Pathology, Tongji Medical College, Huazhong University of Science and Technology, and Pulmonary Disease Laboratory, Ministry of Health of China, Wuhan 430030, China
| | | | | | | | | |
Collapse
|
18
|
Mao CD, Hoang P, DiCorleto PE. Lithium inhibits cell cycle progression and induces stabilization of p53 in bovine aortic endothelial cells. J Biol Chem 2001; 276:26180-8. [PMID: 11337498 DOI: 10.1074/jbc.m101188200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lithium affects development of various organisms and cell fate through the inhibition of glycogen synthase kinase-3 beta and induction of the Wnt/beta-catenin signaling pathway. In this study, we investigated the effects of lithium on primary bovine aortic endothelial cells (BAEC). Lithium treatment of BAEC induced beta-catenin stabilization but failed to activate the transcriptional activity of the beta-catenin/T-cell factor complex. Lithium caused a sustained G(2)/M cell cycle arrest without affecting cell viability. Reversibility of this cell cycle arrest occurred up to 3 days after treatment but was reduced thereafter. Lithium-treated BAEC exhibited a senescent-like morphology with an increase in cells positive for the senescence-associated-beta-galactosidase activity. Lithium also increased the expression of p21(Cip), a cyclin-dependent kinase inhibitor, both at the protein and RNA levels. No change in p21(Cip) mRNA stability was observed, whereas the transcriptional activity of a p21(Cip) promoter-luciferase construct containing p53 binding sites was increased after lithium treatment. Furthermore, lithium caused increased transcription of a reporter gene under the control of a promoter containing the p53 consensus binding sites both in transiently transfected BAEC and in a stably transfected fibroblast cell line. Lithium caused accumulation of p53 protein in BAEC without affecting p53 mRNA levels. Finally, up-regulation of p21(Cip) in response to lithium did not occur in mouse embryonic fibroblasts that were null for p53 alleles, confirming the dependence on a p53 pathway for this lithium effect. These findings demonstrate for the first time that lithium induces also stabilization of the tumor suppressor p53 and reveal a new mechanism that may contribute to the neuroprotective effects of lithium.
Collapse
Affiliation(s)
- C D Mao
- Department of Cell Biology, The Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| | | | | |
Collapse
|
19
|
Smits VA, Klompmaker R, Vallenius T, Rijksen G, Mäkela TP, Medema RH. p21 inhibits Thr161 phosphorylation of Cdc2 to enforce the G2 DNA damage checkpoint. J Biol Chem 2000; 275:30638-43. [PMID: 10913154 DOI: 10.1074/jbc.m005437200] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cyclin-dependent kinase inhibitor p21 is required for a sustained G(2) arrest after activation of the DNA damage checkpoint. Here we have addressed the mechanism by which p21 can contribute to this arrest in G(2). We show that p21 blocks the activating phosphorylation of Cdc2 on Thr(161). p21 does not interfere with the dephosphorylation of two inhibitory phosphorylation sites on Cdc2, Thr(14) and Tyr(15), indicating that p21 targets a different event in Cdc2 activation as the well described DNA damage checkpoint pathway involving Chk1 and Cdc25C. Taken together our data show that a cell is equipped with at least two independent pathways to ensure efficient inhibition of Cdc2 activity in response to DNA damage, influencing both positive and negative regulatory phosphorylation events on Cdc2.
Collapse
Affiliation(s)
- V A Smits
- Jordan Laboratory, Department of Hematology, University Medical Center Utrecht G03-647, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|