1
|
Zhai Y, Guo W, Li D, Chen B, Xu X, Cao X, Zhao L. Size-dependent influences of nanoplastics on microbial consortium differentially inhibiting 2, 4-dichlorophenol biodegradation. WATER RESEARCH 2024; 249:121004. [PMID: 38101052 DOI: 10.1016/j.watres.2023.121004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/22/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Nanoplastics (NPs), as a type of newly emerging pollutant, are ubiquitous in various environmental systems, one of which is coexistence with organic pollutants in wastewater, potentially influencing the pollutants' biodegradation. A knowledge gap exists regarding the influence of microbial consortium and NPs interactions on biodegradation efficiency. In this work, a 2,4-dichlorophenol (DCP) biodegradation experiment with presence of polystyrene nanoplastics (PS-NPs) with particle sizes of 100 nm (PS100) or 20 nm (PS20) was conducted to verify that PS-NPs had noticeable inhibitory effect on DCP biodegradation in a size-dependent manner. PS100 at 10 mg/L and 100 mg/L both prolonged the microbial stagnation compared to the control without PS-NPs; PS20 exacerbated greater, with PS20 at 100 mg/L causing a noticeable 6-day lag before the start-up of rapid DCP reduction. The ROS level increased to 1.4-fold and 1.8-fold under PS100 and PS20 exposure, respectively, while the elevated LDH under PS20 exposure indicated the mechanical damage to cell membrane by smaller NPs. PS-NPs exposure also resulted in a decrease in microbial diversity and altered the niches of microbial species, e.g., they decreased the abundance of some functional bacteria such as Brevundimonas and Comamonas, while facilitated some minor members to obtain more proliferation. A microbial network with higher complexity and less competition was induced to mediate PS-NPs stress. Functional metabolism responded differentially to PS100 and PS20 exposure. Specifically, PS100 downregulated amino acid metabolism, while PS20 stimulated certain pathways in response to more severe oxidative stress. Our findings give insights into PS-NPs environmental effects concerning microflora and biological degradation.
Collapse
Affiliation(s)
- Ying Zhai
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenbo Guo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Deping Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China.
| |
Collapse
|
2
|
Yadav S, Kumar S, Haritash AK. A comprehensive review of chlorophenols: Fate, toxicology and its treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118254. [PMID: 37295147 DOI: 10.1016/j.jenvman.2023.118254] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/28/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Chlorophenols represent one of the most abundant families of toxic pollutants emerging from various industrial manufacturing units. The toxicity of these chloroderivatives is proportional to the number and position of chlorine atoms on the benzene ring. In the aquatic environment, these pollutants accumulate in the tissues of living organisms, primarily in fishes, inducing mortality at an early embryonic stage. Contemplating the behaviour of such xenobiotics and their prevalence in different environmental components, it is crucial to understand the methods used to remove/degrade the chlorophenol from contaminated environment. The current review describes the different treatment methods and their mechanism towards the degradation of these pollutants. Both abiotic and biotic methods are investigated for the removal of chlorophenols. Chlorophenols are either degraded through photochemical reactions in the natural environment, or microbes, the most diverse communities on earth, perform various metabolic functions to detoxify the environment. Biological treatment is a slow process because of the more complex and stable structure of pollutants. Advanced Oxidation Processes are effective in degrading such organics with enhanced rate and efficiency. Based on their ability to generate hydroxyl radicals, source of energy, catalyst type, etc., different processes such as sonication, ozonation, photocatalysis, and Fenton's process are discussed for the treatment or remediation efficiency towards the degradation of chlorophenols. The review entails both advantages and limitations of treatment methods. The study also focuses on reclamation of chlorophenol-contaminated sites. Different remediation methods are discussed to restore the degraded ecosystem back in its natural condition.
Collapse
Affiliation(s)
- Shivani Yadav
- Department of Environmental Engineering, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India.
| | - Sunil Kumar
- Solaris Chemtech Industries, Bhuj, Gujarat, India
| | - A K Haritash
- Department of Environmental Engineering, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| |
Collapse
|
3
|
Zharikova NV, Korobov VV, Zhurenko EI. Flavin-Dependent Monooxygenases Involved in Bacterial Degradation of Chlorophenols. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822060175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
4
|
Wei J, Wang Y, Li X, Zhang X, Liu Y. Mechanistic Insights into Pyridine Ring Degradation Catalyzed by 2,5-Dihydroxypyridine Dioxygenase NicX. Inorg Chem 2022; 61:2517-2529. [PMID: 35060702 DOI: 10.1021/acs.inorgchem.1c03370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
2,5-Dihydroxypyridine dioxygenase (NicX) from Pseudomonas putida KT2440 is a mononuclear non-heme iron oxygenase that can catalyze the oxidative pyridine ring cleavage. Recently, the reported crystal structure of NicX has lent support to an apical dioxygen catalytic mechanism, while the mechanistic details remain unclear. In this work, we constructed a Fe(II)-O2-substrate complex model and performed a series of combined quantum mechanics/molecular mechanics (QM/MM) calculations to illuminate the catalysis of NicX. Our results reveal that although the substrate does not directly coordinate with the central iron ion, there is an electron transfer from the substrate to the Fe-coordinated dioxygen, and the active form of the reactant complex can be described as DHP•+-Fe(II)-O2•-, which is different from other similar mononuclear non-heme iron. The NicX-catalyzed pyridine ring degradation contains three parts, including the attack of Fe(II)-superoxo on the activated pyridine ring, the dissociation of the Op-Od bond, and the ring-opening of the seven-membered-ring lactone. Owing to the radical characteristic of the pyridine ring, the first attack of Fe(II)-superoxo on the C6 of the pyridine ring was calculated to be quite easy. In the second step of the reaction, the dissociation of the Op-Od bond leads to the incorporation of the first oxygen atom into the substrate, which is the rate-limiting step of the overall reaction with an energy barrier of 18.0 kcal/mol. The resultant intermediate then undergoes an arrangement by the intramolecular attack of Od• on the carbonyl C5, forming the seven-membered-ring lactone. Finally, the Fe(III)-oxo attacks the carbonyl C5 of lactone, accompanied by the ring-opening to generate N-formylmaleamic acid. His105 can promote reactivity by donating a proton to Fe(III)-oxo, but it is not a necessary residue. In addition to the ligated residues of iron, other pocket residues such as Glu177, His189, and His105 mainly play roles in anchoring the substrate.
Collapse
Affiliation(s)
- Jingjing Wei
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yijing Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xinyi Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xue Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
5
|
Yang K, Zhao Y, Ji M, Li Z, Zhai S, Zhou X, Wang Q, Wang C, Liang B. Challenges and opportunities for the biodegradation of chlorophenols: Aerobic, anaerobic and bioelectrochemical processes. WATER RESEARCH 2021; 193:116862. [PMID: 33550168 DOI: 10.1016/j.watres.2021.116862] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Chlorophenols (CPs) are highly toxic and refractory contaminants which widely exist in various environments and cause serious harm to human and environment health and safety. This review provides comprehensive information on typical CPs biodegradation technologies, the most green and benign ones for CPs removal. The known aerobic and anaerobic degradative bacteria, functional enzymes, and metabolic pathways of CPs as well as several improving methods and critical parameters affecting the overall degradation efficiency are systematically summarized and clarified. The challenges for CPs mineralization are also discussed, mainly including the dechlorination of polychlorophenols (poly-CPs) under aerobic condition and the ring-cleavage of monochlorophenols (MCPs) under anaerobic condition. The coupling of functional materials and degraders as well as the operation of sequential anaerobic-aerobic bioreactors and bioelectrochemical system (BES) are promising strategies to overcome some current limitations. Future perspective and research gaps in this field are also proposed, including the further understanding of microbial information and the specific role of materials in CPs biodegradation, the potential application of innovative biotechnologies and new operating modes to optimize and maximize the function of the system, and the scale-up of bioreactors towards the efficient biodegradation of CPs.
Collapse
Affiliation(s)
- Kaichao Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Siyuan Zhai
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xu Zhou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Bin Liang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
6
|
Structure-guided insights into heterocyclic ring-cleavage catalysis of the non-heme Fe (II) dioxygenase NicX. Nat Commun 2021; 12:1301. [PMID: 33637718 PMCID: PMC7910607 DOI: 10.1038/s41467-021-21567-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/11/2021] [Indexed: 01/31/2023] Open
Abstract
Biodegradation of aromatic and heterocyclic compounds requires an oxidative ring cleavage enzymatic step. Extensive biochemical research has yielded mechanistic insights about catabolism of aromatic substrates; yet much less is known about the reaction mechanisms underlying the cleavage of heterocyclic compounds such as pyridine-ring-containing ones like 2,5-hydroxy-pyridine (DHP). 2,5-Dihydroxypyridine dioxygenase (NicX) from Pseudomonas putida KT2440 uses a mononuclear nonheme Fe(II) to catalyze the oxidative pyridine ring cleavage reaction by transforming DHP into N-formylmaleamic acid (NFM). Herein, we report a crystal structure for the resting form of NicX, as well as a complex structure wherein DHP and NFM are trapped in different subunits. The resting state structure displays an octahedral coordination for Fe(II) with two histidine residues (His265 and His318), a serine residue (Ser302), a carboxylate ligand (Asp320), and two water molecules. DHP does not bind as a ligand to Fe(II), yet its interactions with Leu104 and His105 function to guide and stabilize the substrate to the appropriate position to initiate the reaction. Additionally, combined structural and computational analyses lend support to an apical dioxygen catalytic mechanism. Our study thus deepens understanding of non-heme Fe(II) dioxygenases.
Collapse
|
7
|
Cloning, overexpression, purification, characterization and structural modelling of a metabolically active Fe 2+ dependent 2,6-dichloro-p-hydroquinone 1,2-dioxygenase (CpsA) from Bacillus cereus strain AOA-CPS_1. Int J Biol Macromol 2020; 161:247-257. [PMID: 32512093 DOI: 10.1016/j.ijbiomac.2020.05.268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 05/24/2020] [Accepted: 05/30/2020] [Indexed: 11/23/2022]
Abstract
2,6-Dichloro-p-hydroquinone (DiCHQ) aromatic-ring cleavage by DiCHQ 1,2-dioxygenase (CpsA) is very crucial for complete transformation of pentachlorophenol (PCP) to 2-chloromaleylacetate in Bacillus cereus AOA-CPS_1 (BcAOA). The 978 bp gene (cpsA) was detected and amplified in the genome of BcAOA; cloned, overexpressed and purified to homogeneity. CpsA showed a single ≅36.9 kDa protein band on SDS-PAGE and exhibited optimum activity at 30 °C and pH 9.0. CpsA was stable between 20 °C and 40 °C, and also retained about 90% of its activity at 60 °C for 120 min. The enzyme retained about 90% activity between pH 9.0 and 11.5 and 60% activity at pH 13.0. CpsA was found to be Fe2+ dependent as about 90% increased activity was observed in the presence of FeSO4. CpsA showed apparent vmax, Km, kcat and kcat/Km of 27.77 ± 0.9 μMs-1, 0.990 ± 0.03 mM, 4.20 ± 0.04 s-1 and 4.24 ± 0.03 s-1 mM-1, respectively at pH 9.0. Analysis of the reaction products via GC-MS confirmed 2-chloromaleylacetate as the ring-cleavage product. CpsA 3D structure revealed a conserved 2-His-1-carboxylate facial triad motif (His 9, His 244 and Thr 11), with Fe3+ at the centre. Findings from this study provide new insights into the involvement of this enzyme in PCP degradation and suggests alternate possible mechanism of ring-cleavage by dioxygenases.
Collapse
|
8
|
Glasner ME, Truong DP, Morse BC. How enzyme promiscuity and horizontal gene transfer contribute to metabolic innovation. FEBS J 2020; 287:1323-1342. [PMID: 31858709 DOI: 10.1111/febs.15185] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/22/2019] [Accepted: 12/18/2019] [Indexed: 01/12/2023]
Abstract
Promiscuity is the coincidental ability of an enzyme to catalyze its native reaction and additional reactions that are not biological functions in the same active site. Promiscuity plays a central role in enzyme evolution and is thus a useful property for protein and metabolic engineering. This review examines enzyme evolution holistically, beginning with evaluating biochemical support for four enzyme evolution models. As expected, there is strong biochemical support for the subfunctionalization and innovation-amplification-divergence models, in which promiscuity is a central feature. In many cases, however, enzyme evolution is more complex than the models indicate, suggesting much is yet to be learned about selective pressures on enzyme function. A complete understanding of enzyme evolution must also explain the ability of metabolic networks to integrate new enzyme activities. Hidden within metabolic networks are underground metabolic pathways constructed from promiscuous activities. We discuss efforts to determine the diversity and pervasiveness of underground metabolism. Remarkably, several studies have discovered that some metabolic defects can be repaired via multiple underground routes. In prokaryotes, metabolic innovation is driven by connecting enzymes acquired by horizontal gene transfer (HGT) into the metabolic network. Thus, we end the review by discussing how the combination of promiscuity and HGT contribute to evolution of metabolism in prokaryotes. Future studies investigating the contribution of promiscuity to enzyme and metabolic evolution will need to integrate deeper probes into the influence of evolution on protein biophysics, enzymology, and metabolism with more complex and realistic evolutionary models. ENZYMES: lactate dehydrogenase (EC 1.1.1.27), malate dehydrogenase (EC 1.1.1.37), OSBS (EC 4.2.1.113), HisA (EC 5.3.1.16), TrpF, PriA (EC 5.3.1.24), R-mandelonitrile lyase (EC 4.1.2.10), Maleylacetate reductase (EC 1.3.1.32).
Collapse
Affiliation(s)
- Margaret E Glasner
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Dat P Truong
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Benjamin C Morse
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| |
Collapse
|
9
|
Burrows JE, Paulson MQ, Altman ER, Vukovic I, Machonkin TE. The role of halogen substituents and substrate pK a in defining the substrate specificity of 2,6-dichlorohydroquinone 1,2-dioxygenase (PcpA). J Biol Inorg Chem 2019; 24:575-589. [PMID: 31089822 DOI: 10.1007/s00775-019-01663-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/07/2019] [Indexed: 12/01/2022]
Abstract
2,6-Dichlorohydroquinone 1,2-dioxygenase (PcpA) is a non-heme Fe(II) enzyme that is specific for ortho-dihalohydroquinones. Here we deconvolute the role of halogen polarizability vs. substrate pKa in defining this specificity, and show how substrate binding compares to the structurally homologous catechol extradiol dioxygenases. The substrates 2,6-dichloro- and 2,6-dibromohydroquinone (polarizable halogens, pKa1 = 7.3), 2,6-difluorohydroquinone (nonpolarizable halogens, pKa1 = 7.5), and 2-chloro-6-methylhydroquinone (polarizable halogen, pKa1 = 9.0) were examined through spectrophotometric titrations and steady-state kinetics. The results show that binding of the substrates to the enzyme decreased [Formula: see text] by about 0.5, except for 2,6-difluorohydroquinone, which showed no change. Additionally, the Kd values of 2,6-dichloro- and 2,6-dibromohydroquinone are about equal to their respective [Formula: see text]. For comparison, with catechol 2,3-dioxygenase (XylE), the substrates 4-methyl- and 3-bromocatechol are bound to the enzyme exclusively in the monoanion form over a wide pH range, indicating a [Formula: see text] of at least - 2.9 and - 1.2, respectively. The steady-state kinetic studies showed that 2,6-difluorohydroquinone is a poor substrate, with [Formula: see text] approximately 40-fold lower and [Formula: see text] 20-fold higher than 2,6-dichlorohydroquinone, despite its similar pKa1. Likewise, the pH dependence of [Formula: see text] for 2-chloro-6-methylhydroquinone is nearly identical to that of 2,6-dichlorohydroquinone, despite its very different pKa1. These results show that (1) it is clearly the halogen polarizability and not the lower substrate pKa that determines the substrate specificity of PcpA, and (2) that PcpA, unlike the catechol extradiol dioxygenases, lacks an active site base that assists with substrate deprotonation, highlighting a key functional difference in what are otherwise similar active sites that defines their different reactivity.
Collapse
Affiliation(s)
- Julia E Burrows
- Department of Chemistry, Whitman College, 345 Boyer Ave, Walla Walla, WA, 99362, USA
| | - Monica Q Paulson
- Department of Chemistry, Whitman College, 345 Boyer Ave, Walla Walla, WA, 99362, USA
| | - Emma R Altman
- Department of Chemistry, Whitman College, 345 Boyer Ave, Walla Walla, WA, 99362, USA
| | - Ivana Vukovic
- Department of Chemistry, Whitman College, 345 Boyer Ave, Walla Walla, WA, 99362, USA
| | - Timothy E Machonkin
- Department of Chemistry, Whitman College, 345 Boyer Ave, Walla Walla, WA, 99362, USA.
| |
Collapse
|
10
|
Min J, Chen W, Wang J, Hu X. Genetic and Biochemical Characterization of 2-Chloro-5-Nitrophenol Degradation in a Newly Isolated Bacterium, Cupriavidus sp. Strain CNP-8. Front Microbiol 2017; 8:1778. [PMID: 28959252 PMCID: PMC5604080 DOI: 10.3389/fmicb.2017.01778] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/31/2017] [Indexed: 11/13/2022] Open
Abstract
Compound 2-chloro-5-nitrophenol (2C5NP) is a typical chlorinated nitroaromatic pollutant. To date, the bacteria with the ability to degrade 2C5NP are rare, and the molecular mechanism of 2C5NP degradation remains unknown. In this study, Cupriavidus sp. strain CNP-8 utilizing 2-chloro-5-nitrophenol (2C5NP) and meta-nitrophenol (MNP) via partial reductive pathways was isolated from pesticide-contaminated soil. Biodegradation kinetic analysis indicated that 2C5NP degradation by this strain was concentration dependent, with a maximum specific degradation rate of 21.2 ± 2.3 μM h−1. Transcriptional analysis showed that the mnp genes are up-regulated in both 2C5NP- and MNP-induced strain CNP-8. Two Mnp proteins were purified to homogeneity by Ni-NTA affinity chromatography. In addition to catalyzing the reduction of MNP, MnpA, a NADPH-dependent nitroreductase, also catalyzes the partial reduction of 2C5NP to 2-chloro-5-hydroxylaminophenol via 2-chloro-5-nitrosophenol, which was firstly identified as an intermediate of 2C5NP catabolism. MnpC, an aminohydroquinone dioxygenase, is likely responsible for the ring-cleavage reaction of 2C5NP degradation. Gene knockout and complementation indicated that mnpA is necessary for both 2C5NP and MNP catabolism. To our knowledge, strain CNP-8 is the second 2C5NP-utilizing bacterium, and this is the first report of the molecular mechanism of microbial 2C5NP degradation.
Collapse
Affiliation(s)
- Jun Min
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of SciencesYantai, China
| | - Weiwei Chen
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of SciencesYantai, China
| | - Jinpei Wang
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of SciencesWuhan, China
| | - Xiaoke Hu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of SciencesYantai, China
| |
Collapse
|
11
|
Bacterial Biotransformation of Pentachlorophenol and Micropollutants Formed during Its Production Process. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13111146. [PMID: 27869691 PMCID: PMC5129356 DOI: 10.3390/ijerph13111146] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 11/17/2022]
Abstract
Pentachlorophenol (PCP) is a toxic and persistent wood and cellulose preservative extensively used in the past decades. The production process of PCP generates polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) as micropollutants. PCDD/Fs are also known to be very persistent and dangerous for human health and ecosystem functioning. Several physico-chemical and biological technologies have been used to remove PCP and PCDD/Fs from the environment. Bacterial degradation appears to be a cost-effective way of removing these contaminants from soil while causing little impact on the environment. Several bacteria that cometabolize or use these pollutants as their sole source of carbon have been isolated and characterized. This review summarizes current knowledge on the metabolic pathways of bacterial degradation of PCP and PCDD/Fs. PCP can be successfully degraded aerobically or anaerobically by bacteria. Highly chlorinated PCDD/Fs are more likely to be reductively dechlorinated, while less chlorinated PCDD/Fs are more prone to aerobic degradation. The biochemical and genetic basis of these pollutants’ degradation is also described. There are several documented studies of effective applications of bioremediation techniques for the removal of PCP and PCDD/Fs from soil and sediments. These findings suggest that biodegradation can occur and be applied to treat these contaminants.
Collapse
|
12
|
A Two-Component para-Nitrophenol Monooxygenase Initiates a Novel 2-Chloro-4-Nitrophenol Catabolism Pathway in Rhodococcus imtechensis RKJ300. Appl Environ Microbiol 2015; 82:714-23. [PMID: 26567304 DOI: 10.1128/aem.03042-15] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/09/2015] [Indexed: 11/20/2022] Open
Abstract
Rhodococcus imtechensis RKJ300 (DSM 45091) grows on 2-chloro-4-nitrophenol (2C4NP) and para-nitrophenol (PNP) as the sole carbon and nitrogen sources. In this study, by genetic and biochemical analyses, a novel 2C4NP catabolic pathway different from those of all other 2C4NP utilizers was identified with hydroxyquinol (hydroxy-1,4-hydroquinone or 1,2,4-benzenetriol [BT]) as the ring cleavage substrate. Real-time quantitative PCR analysis indicated that the pnp cluster located in three operons is likely involved in the catabolism of both 2C4NP and PNP. The oxygenase component (PnpA1) and reductase component (PnpA2) of the two-component PNP monooxygenase were expressed and purified to homogeneity, respectively. The identification of chlorohydroquinone (CHQ) and BT during 2C4NP degradation catalyzed by PnpA1A2 indicated that PnpA1A2 catalyzes the sequential denitration and dechlorination of 2C4NP to BT and catalyzes the conversion of PNP to BT. Genetic analyses revealed that pnpA1 plays an essential role in both 2C4NP and PNP degradations by gene knockout and complementation. In addition to catalyzing the oxidation of CHQ to BT, PnpA1A2 was also found to be able to catalyze the hydroxylation of hydroquinone (HQ) to BT, revealing the probable fate of HQ that remains unclear in PNP catabolism by Gram-positive bacteria. This study fills a gap in our knowledge of the 2C4NP degradation mechanism in Gram-positive bacteria and also enhances our understanding of the genetic and biochemical diversity of 2C4NP catabolism.
Collapse
|
13
|
Schofield JA, Brennessel WW, Urnezius E, Rokhsana D, Boshart MD, Juers DH, Holland PL, Machonkin TE. Metal-Halogen Secondary Bonding in a 2,5-Dichlorohydroquinonate Cobalt(II) Complex: Insight into Substrate Coordination in the Chlorohydroquinone Dioxygenase PcpA. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Liu S, Su T, Zhang C, Zhang WM, Zhu D, Su J, Wei T, Wang K, Huang Y, Guo L, Xu S, Zhou NY, Gu L. Crystal structure of PnpCD, a two-subunit hydroquinone 1,2-dioxygenase, reveals a novel structural class of Fe2+-dependent dioxygenases. J Biol Chem 2015; 290:24547-60. [PMID: 26304122 DOI: 10.1074/jbc.m115.673558] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Indexed: 11/06/2022] Open
Abstract
Aerobic microorganisms have evolved a variety of pathways to degrade aromatic and heterocyclic compounds. However, only several classes of oxygenolytic fission reaction have been identified for the critical ring cleavage dioxygenases. Among them, the most well studied dioxygenases proceed via catecholic intermediates, followed by noncatecholic hydroxy-substituted aromatic carboxylic acids. Therefore, the recently reported hydroquinone 1,2-dioxygenases add to the diversity of ring cleavage reactions. Two-subunit hydroquinone 1,2-dioxygenase PnpCD, the key enzyme in the hydroquinone pathway of para-nitrophenol degradation, catalyzes the ring cleavage of hydroquinone to γ-hydroxymuconic semialdehyde. Here, we report three PnpCD structures, named apo-PnpCD, PnpCD-Fe(3+), and PnpCD-Cd(2+)-HBN (substrate analog hydroxyenzonitrile), respectively. Structural analysis showed that both the PnpC and the C-terminal domains of PnpD comprise a conserved cupin fold, whereas PnpC cannot form a competent metal binding pocket as can PnpD cupin. Four residues of PnpD (His-256, Asn-258, Glu-262, and His-303) were observed to coordinate the iron ion. The Asn-258 coordination is particularly interesting because this coordinating residue has never been observed in the homologous cupin structures of PnpCD. Asn-258 is proposed to play a pivotal role in binding the iron prior to the enzymatic reaction, but it might lose coordination to the iron when the reaction begins. PnpD also consists of an intriguing N-terminal domain that might have functions other than nucleic acid binding in its structural homologs. In summary, PnpCD has no apparent evolutionary relationship with other iron-dependent dioxygenases and therefore defines a new structural class. The study of PnpCD might add to the understanding of the ring cleavage of dioxygenases.
Collapse
Affiliation(s)
- Shiheng Liu
- From the State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong 250100
| | - Tiantian Su
- From the State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong 250100
| | - Cong Zhang
- From the State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong 250100
| | - Wen-Mao Zhang
- the Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071
| | - Deyu Zhu
- From the State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong 250100
| | - Jing Su
- the College of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong 250353, and
| | - Tiandi Wei
- From the State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong 250100
| | - Kang Wang
- From the State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong 250100
| | - Yan Huang
- From the State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong 250100
| | - Liming Guo
- the Rizhao Center for Diseases Prevention and Control, Rizhao Health Bureau, Rizhao, Shandong 276826, China
| | - Sujuan Xu
- From the State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong 250100
| | - Ning-Yi Zhou
- the Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, the State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240,
| | - Lichuan Gu
- From the State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong 250100,
| |
Collapse
|
15
|
Mancini S, Abicht HK, Gonskikh Y, Solioz M. A copper-induced quinone degradation pathway provides protection against combined copper/quinone stress inLactococcus lactis IL1403. Mol Microbiol 2014; 95:645-59. [DOI: 10.1111/mmi.12889] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2014] [Indexed: 01/26/2023]
Affiliation(s)
- Stefano Mancini
- Department Clinical Research; University of Bern; Murtenstrasse 35 3010 Bern Switzerland
| | - Helge K. Abicht
- Department Clinical Research; University of Bern; Murtenstrasse 35 3010 Bern Switzerland
| | - Yulia Gonskikh
- Department Clinical Research; University of Bern; Murtenstrasse 35 3010 Bern Switzerland
- Department of Plant Physiology and Biotechnology; Tomsk State University; Prospect Lenina 36 634050 Tomsk Russia
| | - Marc Solioz
- Department Clinical Research; University of Bern; Murtenstrasse 35 3010 Bern Switzerland
- Department of Plant Physiology and Biotechnology; Tomsk State University; Prospect Lenina 36 634050 Tomsk Russia
| |
Collapse
|
16
|
Hayes RP, Moural TW, Lewis KM, Onofrei D, Xun L, Kang C. Structures of the inducer-binding domain of pentachlorophenol-degrading gene regulator PcpR from Sphingobium chlorophenolicum. Int J Mol Sci 2014; 15:20736-52. [PMID: 25397598 PMCID: PMC4264193 DOI: 10.3390/ijms151120736] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 11/16/2022] Open
Abstract
PcpR is a LysR-type transcription factor from Sphingobium chlorophenolicum L-1 that is responsible for the activation of several genes involved in polychlorophenol degradation. PcpR responds to several polychlorophenols in vivo. Here, we report the crystal structures of the inducer-binding domain of PcpR in the apo-form and binary complexes with pentachlorophenol (PCP) and 2,4,6-trichlorophenol (2,4,6-TCP). Both X-ray crystal structures and isothermal titration calorimetry data indicated the association of two PCP molecules per PcpR, but only one 2,4,6-TCP molecule. The hydrophobic nature and hydrogen bonds of one binding cavity allowed the tight association of both PCP (Kd = 110 nM) and 2,4,6-TCP (Kd = 22.8 nM). However, the other cavity was unique to PCP with much weaker affinity (Kd = 70 μM) and thus its significance was not clear. Neither phenol nor benzoic acid displayed any significant affinity to PcpR, indicating a role of chlorine substitution in ligand specificity. When PcpR is compared with TcpR, a LysR-type regulator controlling the expression of 2,4,6-trichlorophenol degradation in Cupriavidus necator JMP134, most of the residues constituting the two inducer-binding cavities of PcpR are different, except for their general hydrophobic nature. The finding concurs that PcpR uses various polychlorophenols as long as it includes 2,4,6-trichlorophenol, as inducers; whereas TcpR is only responsive to 2,4,6-trichlorophenol.
Collapse
Affiliation(s)
- Robert P Hayes
- Department of Chemistry, Washington State University, Pullman, WA 99164-4630, USA.
| | - Timothy W Moural
- Department of Chemistry, Washington State University, Pullman, WA 99164-4630, USA.
| | - Kevin M Lewis
- Department of Chemistry, Washington State University, Pullman, WA 99164-4630, USA.
| | - David Onofrei
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4660, USA.
| | - Luying Xun
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4660, USA.
| | - ChulHee Kang
- Department of Chemistry, Washington State University, Pullman, WA 99164-4630, USA.
| |
Collapse
|
17
|
Machonkin TE, Boshart MD, Schofield JA, Rodriguez MM, Grubel K, Rokhsana D, Brennessel WW, Holland PL. Structural and spectroscopic characterization of iron(II), cobalt(II), and nickel(II) ortho-dihalophenolate complexes: insights into metal-halogen secondary bonding. Inorg Chem 2014; 53:9837-48. [PMID: 25167329 DOI: 10.1021/ic501424e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal complexes incorporating the tris(3,5-diphenylpyrazolyl)borate ligand (Tp(Ph2)) and ortho-dihalophenolates were synthesized and characterized in order to explore metal-halogen secondary bonding in biorelevant model complexes. The complexes Tp(Ph2)ML were synthesized and structurally characterized, where M was Fe(II), Co(II), or Ni(II) and L was either 2,6-dichloro- or 2,6-dibromophenolate. All six complexes exhibited metal-halogen secondary bonds in the solid state, with distances ranging from 2.56 Å for the Tp(Ph2)Ni(2,6-dichlorophenolate) complex to 2.88 Å for the Tp(Ph2)Fe(2,6-dibromophenolate) complex. Variable temperature NMR spectra of the Tp(Ph2)Co(2,6-dichlorophenolate) and Tp(Ph2)Ni(2,6-dichlorophenolate) complexes showed that rotation of the phenolate, which requires loss of the secondary bond, has an activation barrier of ~30 and ~37 kJ/mol, respectively. Density functional theory calculations support the presence of a barrier for disruption of the metal-halogen interaction during rotation of the phenolate. On the other hand, calculations using the spectroscopically calibrated angular overlap method suggest essentially no contribution of the halogen to the ligand-field splitting. Overall, these results provide the first quantitative measure of the strength of a metal-halogen secondary bond and demonstrate that it is a weak noncovalent interaction comparable in strength to a hydrogen bond. These results provide insight into the origin of the specificity of the enzyme 2,6-dichlorohydroquinone 1,2-dioxygenase (PcpA), which is specific for ortho-dihalohydroquinone substrates and phenol inhibitors.
Collapse
Affiliation(s)
- Timothy E Machonkin
- Department of Chemistry, Whitman College , Walla Walla, Washington 99362, United States
| | | | | | | | | | | | | | | |
Collapse
|
18
|
The gene cluster for para-nitrophenol catabolism is responsible for 2-chloro-4-nitrophenol degradation in Burkholderia sp. strain SJ98. Appl Environ Microbiol 2014; 80:6212-22. [PMID: 25085488 DOI: 10.1128/aem.02093-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia sp. strain SJ98 (DSM 23195) utilizes 2-chloro-4-nitrophenol (2C4NP) or para-nitrophenol (PNP) as a sole source of carbon and energy. Here, by genetic and biochemical analyses, a 2C4NP catabolic pathway different from those of all other 2C4NP utilizers was identified with chloro-1,4-benzoquinone (CBQ) as an intermediate. Reverse transcription-PCR analysis showed that all of the pnp genes in the pnpABA1CDEF cluster were located in a single operon, which is significantly different from the genetic organization of all other previously reported PNP degradation gene clusters, in which the structural genes were located in three different operons. All of the Pnp proteins were purified to homogeneity as His-tagged proteins. PnpA, a PNP 4-monooxygenase, was found to be able to catalyze the monooxygenation of 2C4NP to CBQ. PnpB, a 1,4-benzoquinone reductase, has the ability to catalyze the reduction of CBQ to chlorohydroquinone. Moreover, PnpB is also able to enhance PnpA activity in vitro in the conversion of 2C4NP to CBQ. Genetic analyses indicated that pnpA plays an essential role in the degradation of both 2C4NP and PNP by gene knockout and complementation. In addition to being responsible for the lower pathway of PNP catabolism, PnpCD, PnpE, and PnpF were also found to be likely involved in that of 2C4NP catabolism. These results indicated that the catabolism of 2C4NP and that of PNP share the same gene cluster in strain SJ98. These findings fill a gap in our understanding of the microbial degradation of 2C4NP at the molecular and biochemical levels.
Collapse
|
19
|
Arora PK, Bae H. Bacterial degradation of chlorophenols and their derivatives. Microb Cell Fact 2014; 13:31. [PMID: 24589366 PMCID: PMC3975901 DOI: 10.1186/1475-2859-13-31] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/20/2014] [Indexed: 12/02/2022] Open
Abstract
Chlorophenols (CPs) and their derivatives are persistent environmental pollutants which are used in the manufacture of dyes, drugs, pesticides and other industrial products. CPs, which include monochlorophenols, polychlorophenols, chloronitrophenols, chloroaminophenols and chloromethylphenols, are highly toxic to living beings due to their carcinogenic, mutagenic and cytotoxic properties. Several physico-chemical and biological methods have been used for removal of CPs from the environment. Bacterial degradation has been considered a cost-effective and eco-friendly method of removing CPs from the environment. Several bacteria that use CPs as their sole carbon and energy sources have been isolated and characterized. Additionally, the metabolic pathways for degradation of CPs have been studied in bacteria and the genes and enzymes involved in the degradation of various CPs have been identified and characterized. This review describes the biochemical and genetic basis of the degradation of CPs and their derivatives.
Collapse
Affiliation(s)
- Pankaj Kumar Arora
- School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Hanhong Bae
- School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| |
Collapse
|
20
|
Hydroquinone: environmental pollution, toxicity, and microbial answers. BIOMED RESEARCH INTERNATIONAL 2013; 2013:542168. [PMID: 23936816 PMCID: PMC3727088 DOI: 10.1155/2013/542168] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 06/20/2013] [Indexed: 12/12/2022]
Abstract
Hydroquinone is a major benzene metabolite, which is a well-known haematotoxic and carcinogenic agent associated with malignancy in occupational environments. Human exposure to hydroquinone can occur by dietary, occupational, and environmental sources. In the environment, hydroquinone showed increased toxicity for aquatic organisms, being less harmful for bacteria and fungi. Recent pieces of evidence showed that hydroquinone is able to enhance carcinogenic risk by generating DNA damage and also to compromise the general immune responses which may contribute to the impaired triggering of the host immune reaction. Hydroquinone bioremediation from natural and contaminated sources can be achieved by the use of a diverse group of microorganisms, ranging from bacteria to fungi, which harbor very complex enzymatic systems able to metabolize hydroquinone either under aerobic or anaerobic conditions. Due to the recent research development on hydroquinone, this review underscores not only the mechanisms of hydroquinone biotransformation and the role of microorganisms and their enzymes in this process, but also its toxicity.
Collapse
|
21
|
Hayes RP, Green AR, Nissen MS, Lewis KM, Xun L, Kang C. Structural characterization of 2,6-dichloro-p-hydroquinone 1,2-dioxygenase (PcpA) from Sphingobium chlorophenolicum, a new type of aromatic ring-cleavage enzyme. Mol Microbiol 2013; 88:523-36. [PMID: 23489289 DOI: 10.1111/mmi.12204] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2013] [Indexed: 11/28/2022]
Abstract
PcpA (2,6-dichloro-p-hydroquinone 1,2-dioxygenase) from Sphingobium chlorophenolicum, a non-haem Fe(II) dioxygenase capable of cleaving the aromatic ring of p-hydroquinone and its substituted variants, is a member of the recently discovered p-hydroquinone 1,2-dioxygenases. Here we report the 2.6 Å structure of PcpA, which consists of four βαβββ motifs, a hallmark of the vicinal oxygen chelate superfamily. The secondary co-ordination sphere of the Fe(II) centre forms an extensive hydrogen-bonding network with three solvent exposed residues, linking the catalytic Fe(II) to solvent. A tight hydrophobic pocket provides p-hydroquinones access to the Fe(II) centre. The p-hydroxyl group is essential for the substrate-binding, thus phenols and catechols, lacking a p-hydroxyl group, do not bind to PcpA. Site-directed mutagenesis and kinetic analysis confirm the critical catalytic role played by the highly conserved His10, Thr13, His226 and Arg259. Based on these results, we propose a general reaction mechanism for p-hydroquinone 1,2-dioxygenases.
Collapse
Affiliation(s)
- Robert P Hayes
- Department of Chemistry, Washington State University, Pullman, WA 99164-4630, USA
| | | | | | | | | | | |
Collapse
|
22
|
Baum AE, Park H, Wang D, Lindeman SV, Fiedler AT. Structural, spectroscopic, and electrochemical properties of nonheme Fe(II)-hydroquinonate complexes: synthetic models of hydroquinone dioxygenases. Dalton Trans 2012; 41:12244-53. [PMID: 22930005 PMCID: PMC3891569 DOI: 10.1039/c2dt31504a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using the tris(3,5-diphenylpyrazol-1-yl)borate ((Ph2)Tp) supporting ligand, a series of mono- and dinuclear ferrous complexes containing hydroquinonate (HQate) ligands have been prepared and structurally characterized with X-ray crystallography. The monoiron(II) complexes serve as faithful mimics of the substrate-bound form of hydroquinone dioxygenases (HQDOs) - a family of nonheme Fe enzymes that catalyze the oxidative cleavage of 1,4-dihydroxybenzene units. Reflecting the variety of HQDO substrates, the synthetic complexes feature both mono- and bidentate HQate ligands. The bidentate HQates cleanly provide five-coordinate, high-spin Fe(II) complexes with the general formula [Fe((Ph2)Tp)(HL(X))] (1X), where HL(X) is a HQate(1-) ligand substituted at the 2-position with a benzimidazolyl (1A), acetyl (1B and 1C), or methoxy (1D) group. In contrast, the monodentate ligand 2,6-dimethylhydroquinone (H(2)L(F)) exhibited a greater tendency to bridge between two Fe(II) centers, resulting in formation of [Fe(2)((Ph2)Tp)(2)(μ-L(F))(MeCN)]·[2F(MeCN)]. However, addition of one equivalent of "free" pyrazole ((Ph2)pz) ligand provided the mononuclear complex, [Fe((Ph2)Tp)(HL(F))((Ph2)pz)]·[1F((Ph2)pz)], which is stabilized by an intramolecular hydrogen bond between the HL(F) and (Ph2)pz donors. Complex 1F((Ph2)pz) represents the first crystallographically-characterized example of a monoiron complex bound to an untethered HQate ligand. The geometric and electronic structures of the Fe/HQate complexes were further probed with spectroscopic (UV-vis absorption, (1)H NMR) and electrochemical methods. Cyclic voltammograms of complexes in the 1X series revealed an Fe-based oxidation between 0 and -300 mV (vs. Fc(+/0)), in addition to irreversible oxidation(s) of the HQate ligand at higher potentials. The one-electron oxidized species (1X(OX)) were examined with UV-vis absorption and electron paramagnetic resonance (EPR) spectroscopies.
Collapse
Affiliation(s)
- Amanda E. Baum
- Department of Chemistry, Marquette University, Milwaukee, WI 53201-1881
| | - Heaweon Park
- Department of Chemistry, Marquette University, Milwaukee, WI 53201-1881
| | - Denan Wang
- Department of Chemistry, Marquette University, Milwaukee, WI 53201-1881
| | | | - Adam T. Fiedler
- Department of Chemistry, Marquette University, Milwaukee, WI 53201-1881
| |
Collapse
|
23
|
Arora PK, Jain RK. Metabolism of 2-chloro-4-nitrophenol in a gram negative bacterium, Burkholderia sp. RKJ 800. PLoS One 2012; 7:e38676. [PMID: 22701692 PMCID: PMC3368897 DOI: 10.1371/journal.pone.0038676] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 05/10/2012] [Indexed: 11/19/2022] Open
Abstract
A 2-Chloro-4-nitrophenol (2C4NP) degrading bacterial strain designated as RKJ 800 was isolated from a pesticide contaminated site of India by enrichment method and utilized 2C4NP as sole source of carbon and energy. The stoichiometric amounts of nitrite and chloride ions were detected during the degradation of 2C4NP. On the basis of thin layer chromatography, high performance liquid chromatography and gas chromatography-mass spectrometry, chlorohydroquinone (CHQ) and hydroquinone (HQ) were identified as major metabolites of the degradation pathway of 2C4NP. Manganese dependent HQ dioxygenase activity was observed in the crude extract of 2C4NP induced cells of the strain RKJ 800 that suggested the cleavage of the HQ to γ-hydroxymuconic semialdehyde. On the basis of the 16S rRNA gene sequencing, strain RKJ 800 was identified as a member of genus Burkholderia. Our studies clearly showed that Burkholderia sp. RKJ 800 degraded 2-chloro-4-nitrophenol via hydroquinone pathway. The pathway identified in a gram negative bacterium, Burkholderia sp. strain RKJ 800 was differed from previously reported 2C4NP degradation pathway in another gram-negative Burkholderia sp. SJ98. This is the first report of the formation of CHQ and HQ in the degradation of 2C4NP by any gram-negative bacteria. Laboratory-scale soil microcosm studies showed that strain RKJ 800 is a suitable candidate for bioremediation of 2C4NP contaminated sites.
Collapse
Affiliation(s)
- Pankaj Kumar Arora
- Environmental Biotechnology, Institute of Microbial Technology (CSIR), Chandigarh, India.
| | | |
Collapse
|
24
|
Hlouchova K, Rudolph J, Pietari JMH, Behlen LS, Copley SD. Pentachlorophenol hydroxylase, a poorly functioning enzyme required for degradation of pentachlorophenol by Sphingobium chlorophenolicum. Biochemistry 2012; 51:3848-60. [PMID: 22482720 DOI: 10.1021/bi300261p] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several strains of Sphingobium chlorophenolicum have been isolated from soil that was heavily contaminated with pentachlorophenol (PCP), a toxic pesticide introduced in the 1930s. S. chlorophenolicum appears to have assembled a poorly functioning pathway for degradation of PCP by patching enzymes recruited via two independent horizontal gene transfer events into an existing metabolic pathway. Flux through the pathway is limited by PCP hydroxylase. PCP hydroxylase is a dimeric protein that belongs to the family of flavin-dependent phenol hydroxylases. In the presence of NADPH, PCP hydroxylase converts PCP to tetrachlorobenzoquinone (TCBQ). The k(cat) for PCP (0.024 s(-1)) is very low, suggesting that the enzyme is not well evolved for turnover of this substrate. Structure-activity studies reveal that substrate binding and activity are enhanced by a low pK(a) for the phenolic proton, increased hydrophobicity, and the presence of a substituent ortho to the hydroxyl group of the phenol. PCP hydroxylase exhibits substantial uncoupling; the C4a-hydroxyflavin intermediate, instead of hydroxylating the substrate, can decompose to produce H(2)O(2) in a futile cycle that consumes NADPH. The extent of uncoupling varies from 0 to 100% with different substrates. The extent of uncoupling is increased by the presence of bulky substituents at position 3, 4, or 5 and decreased by the presence of a chlorine in the ortho position. The effectiveness of PCP hydroxylase is additionally hindered by its promiscuous activity with tetrachlorohydroquinone (TCHQ), a downstream metabolite in the degradation pathway. The conversion of TCHQ to TCBQ reverses flux through the pathway. Substantial uncoupling also occurs during the reaction with TCHQ.
Collapse
Affiliation(s)
- Klara Hlouchova
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | | | | | | | | |
Collapse
|
25
|
Copley SD, Rokicki J, Turner P, Daligault H, Nolan M, Land M. The whole genome sequence of Sphingobium chlorophenolicum L-1: insights into the evolution of the pentachlorophenol degradation pathway. Genome Biol Evol 2011; 4:184-98. [PMID: 22179583 PMCID: PMC3318906 DOI: 10.1093/gbe/evr137] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Sphingobium chlorophenolicum Strain L-1 can mineralize the toxic pesticide pentachlorophenol (PCP). We have sequenced the genome of S. chlorophenolicum Strain L-1. The genome consists of a primary chromosome that encodes most of the genes for core processes, a secondary chromosome that encodes primarily genes that appear to be involved in environmental adaptation, and a small plasmid. The genes responsible for degradation of PCP are found on chromosome 2. We have compared the genomes of S. chlorophenolicum Strain L-1 and Sphingobium japonicum, a closely related Sphingomonad that degrades lindane. Our analysis suggests that the genes encoding the first three enzymes in the PCP degradation pathway were acquired via two different horizontal gene transfer events, and the genes encoding the final two enzymes in the pathway were acquired from the most recent common ancestor of these two bacteria.
Collapse
Affiliation(s)
- Shelley D Copley
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, CO, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Pathway for degradation of 2-chloro-4-nitrophenol in Arthrobacter sp. SJCon. Curr Microbiol 2011; 63:568-73. [PMID: 21960016 DOI: 10.1007/s00284-011-0022-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Accepted: 09/12/2011] [Indexed: 10/17/2022]
Abstract
Degradation of 2-Chloro-4-nitrophenol (2C4NP) was studied by Arthrobacter sp. SJCon, isolated from the soil of a pesticide contaminated site. This strain utilized 2C4NP as sole source of carbon and energy and degraded 2C4NP with stoichiometric release of nitrite and chloride ions. A metabolite was detected during the study of 2C4NP degradation and identified as chlorohydroquinone (CHQ) by thin layer chromatography (TLC), high performance liquid chromatography (HPLC), and gas chromatography-mass spectrometry (GC-MS). Inhibition study using 2,2'-dipyridyl showed that CHQ is a terminal aromatic compound in degradation pathway of 2C4NP. CHQ dioxygenase activity was observed in the crude extract of 2C4NP induced cells of the strain SJCon that suggested the cleavage of the CHQ to maleylacetate (MA). Our study clearly showed that Arthrobacter sp. SJCon degraded 2C4NP via formation of CHQ that further cleaved to MA by CHQ dioxygenase. This mechanism of degradation of 2C4NP differs from previously reported degradation pathways of 2C4NP.
Collapse
|
27
|
Machonkin TE, Doerner AE. Substrate Specificity of Sphingobium chlorophenolicum 2,6-Dichlorohydroquinone 1,2-Dioxygenase. Biochemistry 2011; 50:8899-913. [DOI: 10.1021/bi200855m] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Timothy E. Machonkin
- Department of Chemistry, Whitman College, 345 Boyer Avenue, Walla Walla, Washington
99362, United States
| | - Amy E. Doerner
- Department of Chemistry, Whitman College, 345 Boyer Avenue, Walla Walla, Washington
99362, United States
| |
Collapse
|
28
|
An unexpected gene cluster for downstream degradation of alkylphenols in Sphingomonas sp. strain TTNP3. Appl Microbiol Biotechnol 2011; 93:1315-24. [DOI: 10.1007/s00253-011-3451-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/14/2011] [Accepted: 06/15/2011] [Indexed: 10/18/2022]
|
29
|
Rocks SS, Brennessel WW, Machonkin TE, Holland PL. Solution and Structural Characterization of Iron(II) Complexes with Ortho-Halogenated Phenolates: Insights Into Potential Substrate Binding Modes in Hydroquinone Dioxygenases. Inorg Chem 2010; 49:10914-29. [DOI: 10.1021/ic101377u] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sara S. Rocks
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - William W. Brennessel
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Timothy E. Machonkin
- Department of Chemistry, Whitman College, Walla Walla, Washington 99362, United States
| | - Patrick L. Holland
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
30
|
Determination of the active site of Sphingobium chlorophenolicum 2,6-dichlorohydroquinone dioxygenase (PcpA). J Biol Inorg Chem 2009; 15:291-301. [DOI: 10.1007/s00775-009-0602-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 10/09/2009] [Indexed: 10/20/2022]
|
31
|
Sharma A, Thakur IS, Dureja P. Enrichment, isolation and characterization of pentachlorophenol degrading bacterium Acinetobacter sp. ISTPCP-3 from effluent discharge site. Biodegradation 2009; 20:643-50. [DOI: 10.1007/s10532-009-9251-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 01/28/2009] [Indexed: 11/30/2022]
|
32
|
Maintenance role of a glutathionyl-hydroquinone lyase (PcpF) in pentachlorophenol degradation by Sphingobium chlorophenolicum ATCC 39723. J Bacteriol 2008; 190:7595-600. [PMID: 18820023 DOI: 10.1128/jb.00489-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pentachlorophenol (PCP) is a toxic pollutant. Its biodegradation has been extensively studied in Sphingobium chlorophenolicum ATCC 39723. All enzymes required to convert PCP to a common metabolic intermediate before entering the tricarboxylic acid cycle have been characterized. One of the enzymes is tetrachloro-p-hydroquinone (TeCH) reductive dehalogenase (PcpC), which is a glutathione (GSH) S-transferase (GST). PcpC catalyzes the GSH-dependent conversion of TeCH to trichloro-p-hydroquinone (TriCH) and then to dichloro-p-hydroquinone (DiCH) in the PCP degradation pathway. PcpC is susceptible to oxidative damage, and the damaged PcpC produces glutathionyl (GS) conjugates, GS-TriCH and GS-DiCH, which cannot be further metabolized by PcpC. The fate and effect of GS-hydroquinone conjugates were unknown. A putative GST gene (pcpF) is located next to pcpC on the bacterial chromosome. The pcpF gene was cloned, and the recombinant PcpF was purified. The purified PcpF was able to convert GS-TriCH and GS-DiCH conjugates to TriCH and DiCH, respectively. The GS-hydroquinone lyase reactions catalyzed by PcpF are rather unusual for a GST. The disruption of pcpF in S. chlorophenolicum made the mutant lose the GS-hydroquinone lyase activities in the cell extracts. The mutant became more sensitive to PCP toxicity and had a significantly decreased PCP degradation rate, likely due to the accumulation of the GS-hydroquinone conjugates inside the cell. Thus, PcpF played a maintenance role in PCP degradation and converted the GS-hydroquinone conjugates back to the intermediates of the PCP degradation pathway.
Collapse
|
33
|
Hydroquinone dioxygenase from pseudomonas fluorescens ACB: a novel member of the family of nonheme-iron(II)-dependent dioxygenases. J Bacteriol 2008; 190:5199-209. [PMID: 18502867 DOI: 10.1128/jb.01945-07] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hydroquinone 1,2-dioxygenase (HQDO), an enzyme involved in the catabolism of 4-hydroxyacetophenone in Pseudomonas fluorescens ACB, was purified to apparent homogeneity. Ligandation with 4-hydroxybenzoate prevented the enzyme from irreversible inactivation. HQDO was activated by iron(II) ions and catalyzed the ring fission of a wide range of hydroquinones to the corresponding 4-hydroxymuconic semialdehydes. HQDO was inactivated by 2,2'-dipyridyl, o-phenanthroline, and hydrogen peroxide and inhibited by phenolic compounds. The inhibition with 4-hydroxybenzoate (K(i) = 14 microM) was competitive with hydroquinone. Online size-exclusion chromatography-mass spectrometry revealed that HQDO is an alpha2beta2 heterotetramer of 112.4 kDa, which is composed of an alpha-subunit of 17.8 kDa and a beta-subunit of 38.3 kDa. Each beta-subunit binds one molecule of 4-hydroxybenzoate and one iron(II) ion. N-terminal sequencing and peptide mapping and sequencing based on matrix-assisted laser desorption ionization--two-stage time of flight analysis established that the HQDO subunits are encoded by neighboring open reading frames (hapC and hapD) of a gene cluster, implicated to be involved in 4-hydroxyacetophenone degradation. HQDO is a novel member of the family of nonheme-iron(II)-dependent dioxygenases. The enzyme shows insignificant sequence identity with known dioxygenases.
Collapse
|
34
|
Elucidation of the 4-hydroxyacetophenone catabolic pathway in Pseudomonas fluorescens ACB. J Bacteriol 2008; 190:5190-8. [PMID: 18502868 DOI: 10.1128/jb.01944-07] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The catabolism of 4-hydroxyacetophenone in Pseudomonas fluorescens ACB is known to proceed through the intermediate formation of hydroquinone. Here, we provide evidence that hydroquinone is further degraded through 4-hydroxymuconic semialdehyde and maleylacetate to beta-ketoadipate. The P. fluorescens ACB genes involved in 4-hydroxyacetophenone utilization were cloned and characterized. Sequence analysis of a 15-kb DNA fragment showed the presence of 14 open reading frames containing a gene cluster (hapCDEFGHIBA) of which at least four encoded enzymes are involved in 4-hydroxyacetophenone degradation: 4-hydroxyacetophenone monooxygenase (hapA), 4-hydroxyphenyl acetate hydrolase (hapB), 4-hydroxymuconic semialdehyde dehydrogenase (hapE), and maleylacetate reductase (hapF). In between hapF and hapB, three genes encoding a putative intradiol dioxygenase (hapG), a protein of the Yci1 family (hapH), and a [2Fe-2S] ferredoxin (hapI) were found. Downstream of the hap genes, five open reading frames are situated encoding three putative regulatory proteins (orf10, orf12, and orf13) and two proteins possibly involved in a membrane efflux pump (orf11 and orf14). Upstream of hapE, two genes (hapC and hapD) were present that showed weak similarity with several iron(II)-dependent extradiol dioxygenases. Based on these findings and additional biochemical evidence, it is proposed that the hapC and hapD gene products are involved in the ring cleavage of hydroquinone.
Collapse
|
35
|
Crawford RL, Jung CM, Strap JL. The recent evolution of pentachlorophenol (PCP)-4-monooxygenase (PcpB) and associated pathways for bacterial degradation of PCP. Biodegradation 2006; 18:525-39. [PMID: 17123025 DOI: 10.1007/s10532-006-9090-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 10/26/2006] [Indexed: 11/27/2022]
Abstract
Man-made polychlorinated phenols such as pentachlorophenol (PCP) have been used extensively since the 1920s as preservatives to prevent fungal attack on wood. During this time, they have become serious environmental contaminants. Despite the recent introduction of PCP in the environment on an evolutionary time scale, PCP-degrading bacteria are present in soils worldwide. The initial enzyme in the PCP catabolic pathway of numerous sphingomonads, PCP-4-monooxygenase (PcpB), catalyzes the para-hydroxylation of PCP to tetrachlorohydroquinone and is encoded by the pcpB gene. This review examines the literature concerning pcpB and supports the suggestion that pcpB/PcpB should be considered a model system for the study of recent evolution of catabolic pathways among bacteria that degrade xenobiotic molecules introduced into the environment during the recent past.
Collapse
Affiliation(s)
- Ronald L Crawford
- Environmental Biotechnology Institute, Food Research Center 202, University of Idaho, Moscow, ID 83844-1052, USA.
| | | | | |
Collapse
|
36
|
Mahmood S, Paton GI, Prosser JI. Cultivation-independent in situ molecular analysis of bacteria involved in degradation of pentachlorophenol in soil. Environ Microbiol 2005; 7:1349-60. [PMID: 16104858 DOI: 10.1111/j.1462-2920.2005.00822.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The central aim of this study was to determine which components of an indigenous bacterial community in pristine grassland soil were capable of degrading pentachlorophenol (PCP) using two cultivation-independent, in situ, molecular techniques. The first involved polymerase chain reaction (PCR) and reverse transcription polymerase chain reaction (RT-PCR) amplification of 16S rRNA genes from DNA and RNA, respectively, extracted from PCP-amended soil. The second involved stable isotope probing (SIP), with incubation of soil with 13C-PCP and molecular analysis of 13C-labelled RNA, derived from cells incorporating PCP or its breakdown products, after separation from 12C-RNA by ultracentrifugation. Bacterial communities were characterized by denaturing gradient gel electrophoresis (DGGE) analysis of amplification products. PCP was degraded at an approximate rate of 1.18+/-0.25 (SEM) mg kg-1 day-1 and 39% of the measurable PCP fraction was degraded after incubation for 63 days. PCP degradation was associated with significant changes in bacterial community structure, leading to the appearance of seven bands in both DNA- and RNA-based DGGE profiles, the latter providing clearer evidence of qualitative shifts in community structure. The majority of novel bands increased in relative intensity during the first 35 days and subsequently decreased in relative intensity as incubation continued. Sequence and phylogenetic analysis of six of these bands indicated most to have closest database relatives that were uncultured bacteria with sequence homologies to reported hydrocarbon degraders. No band could be detected in RNA-SIP-DGGE profiles derived from 13C-RNA fractions at day 0 but several faint bands appeared in these fractions after incubation of soil for 4 days, indicating assimilation of PCP or its degradation products. These bands increased in intensity during subsequent incubation for 21 days and decreased with further incubation. With one exception, RNA-SIP-DGGE and RNA-DGGE profiles were similar, indicating that RNA-targeted DGGE, in this case, provided a good indication of the metabolically active microbial community.
Collapse
Affiliation(s)
- Shahid Mahmood
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | | |
Collapse
|
37
|
Phillips TM, Seech AG, Lee H, Trevors JT. Biodegradation of hexachlorocyclohexane (HCH) by microorganisms. Biodegradation 2005; 16:363-92. [PMID: 15865341 DOI: 10.1007/s10532-004-2413-6] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The organochlorine pesticide Lindane is the gamma-isomer of hexachlorocyclohexane (HCH). Technical grade Lindane contains a mixture of HCH isomers which include not only gamma-HCH, but also large amounts of predominantly alpha-, beta- and delta-HCH. The physical properties and persistence of each isomer differ because of the different chlorine atom orientations on each molecule (axial or equatorial). However, all four isomers are considered toxic and recalcitrant worldwide pollutants. Biodegradation of HCH has been studied in soil, slurry and culture media but very little information exists on in situ bioremediation of the different isomers including Lindane itself, at full scale. Several soil microorganisms capable of degrading, and utilizing HCH as a carbon source, have been reported. In selected bacterial strains, the genes encoding the enzymes involved in the initial degradation of Lindane have been cloned, sequenced, expressed and the gene products characterized. HCH is biodegradable under both oxic and anoxic conditions, although mineralization is generally observed only in oxic systems. As is found for most organic compounds, HCH degradation in soil occurs at moderate temperatures and at near neutral pH. HCH biodegradation in soil has been reported at both low and high (saturated) moisture contents. Soil texture and organic matter appear to influence degradation presumably by sorption mechanisms and impact on moisture retention, bacterial growth and pH. Most studies report on the biodegradation of relatively low (< 500 mg/kg) concentrations of HCH in soil. Information on the effects of inorganic nutrients, organic carbon sources or other soil amendments is scattered and inconclusive. More in-depth assessments of amendment effects and evaluation of bioremediation protocols, on a large scale, using soil with high HCH concentrations, are needed.
Collapse
Affiliation(s)
- Theresa M Phillips
- Department of Environmental Biology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1.
| | | | | | | |
Collapse
|
38
|
Bohuslavek J, Chanama S, Crawford RL, Xun L. Identification and characterization of hydroxyquinone hydratase activities from Sphingobium chlorophenolicum ATCC 39723. Biodegradation 2005; 16:353-62. [PMID: 15865340 DOI: 10.1007/s10532-004-2058-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydroxyquinol, a common metabolite of aromatic compounds, is readily auto-oxidized to hydroxyquinone. Enzymatic activities that metabolized hydroxyquinone were observed from the cell extracts of Sphingobium chlorophenolicum ATCC 39723. An enzyme capable of transforming hydroxyquinone was partially purified, and its activities were characterized. The end product was confirmed to be 2,5-dihydroxyquinone by comparing UV/Vis absorption spectra, electrospray mass spectra, and gas chromatography-mass spectra of the end product and the authentic compound. We have proposed that the enzyme adds a H2O molecule to hydroxyquinone to produce 2,5-dihydroxycyclohex-2-ene-1, 4-dione, which spontaneously rearranges to 1, 2,4,5-tetrahydroxybenzene. The latter is auto-oxidized by O2 to 2,5-dihydroxyquinone. The proposed pathway was supported by the overall reaction stoichiometry. Thus, the transformation of hydroxyquinol to 2,5-dihydroxyquinone involves two auto-oxidation of quinols and one enzymatic reaction catalyzed by a hydratase. The specific enzymatic step did not require O2, further supporting the assignment as a hydratase. To our knowledge, this is the first identification of a quinone hydratase, enhancing the knowledge on microbial metabolism of hydroxyquinone and possibly leading to the development of enzymatic method for the production of 2,5-dihydroxyquinone, a widely used chemical in various industrial applications.
Collapse
Affiliation(s)
- Jan Bohuslavek
- School of Molecular Biosciences, Washington State University, Pullman, WA99164-4234, USA
| | | | | | | |
Collapse
|
39
|
Endo R, Kamakura M, Miyauchi K, Fukuda M, Ohtsubo Y, Tsuda M, Nagata Y. Identification and characterization of genes involved in the downstream degradation pathway of gamma-hexachlorocyclohexane in Sphingomonas paucimobilis UT26. J Bacteriol 2005; 187:847-53. [PMID: 15659662 PMCID: PMC545726 DOI: 10.1128/jb.187.3.847-853.2005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Accepted: 11/02/2004] [Indexed: 11/20/2022] Open
Abstract
Sphingomonas paucimobilis UT26 utilizes gamma-hexachlorocyclohexane (gamma-HCH) as a sole source of carbon and energy. In our previous study, we cloned and characterized genes that are involved in the conversion of gamma-HCH to maleylacetate (MA) via chlorohydroquinone (CHQ) in UT26. In this study, we identified and characterized an MA reductase gene, designated linF, that is essential for the utilization of gamma-HCH in UT26. A gene named linEb, whose deduced product showed significant identity to LinE (53%), was located close to linF. LinE is a novel type of ring cleavage dioxygenase that catalyzes the conversion of CHQ to MA. LinEb expressed in Escherichia coli transformed CHQ and 2,6-dichlorohydroquinone to MA and 2-chloromaleylacetate, respectively. Our previous and present results indicate that UT26 (i) has two gene clusters for degradation of chlorinated aromatic compounds via hydroquinone-type intermediates and (ii) uses at least parts of both clusters for gamma-HCH utilization.
Collapse
Affiliation(s)
- Ryo Endo
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Habash MB, Beaudette LA, Cassidy MB, Leung KT, Hoang TA, Vogel HJ, Trevors JT, Lee H. Characterization of tetrachlorohydroquinone reductive dehalogenase from Sphingomonas sp. UG30. Biochem Biophys Res Commun 2002; 299:634-40. [PMID: 12459186 DOI: 10.1016/s0006-291x(02)02711-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tetrachlorohydroquinone reductive dehalogenase (PcpC) is the second of three enzymes that catalyze the initial degradation of pentachlorophenol in Sphingomonas sp. UG30 and several other bacterial strains. The UG30 PcpC shares a high degree (94%) of primary sequence identity with the well-studied PcpC from Sphingobium chlorophenolicum ATCC 39723. Significant differences, however, were observed between the two PcpC enzymes in some of their functional and kinetic properties. The temperature optimum of the UG30 PcpC is 10 degrees C higher and the pH optimum is approximately 2 units higher than the S. chlorophenolicum PcpC. In addition, the S. chlorophenolicum PcpC is subject to inhibition by the substrate tetrachlorohydroquinone (TCHQ), and this has necessitated the use of a mutant enzyme, which was not inhibited by TCHQ, for kinetic studies. In contrast, the UG30 PcpC was not inhibited by TCHQ and this may allow detailed kinetic and mechanistic studies using the wild-type enzyme.
Collapse
Affiliation(s)
- M B Habash
- Department of Environmental Biology, University of Guelph, Guelph, Ont., Canada N1G 2W1
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Cai M, Xun L. Organization and regulation of pentachlorophenol-degrading genes in Sphingobium chlorophenolicum ATCC 39723. J Bacteriol 2002; 184:4672-80. [PMID: 12169590 PMCID: PMC135293 DOI: 10.1128/jb.184.17.4672-4680.2002] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The first three enzymes of the pentachlorophenol (PCP) degradation pathway in Sphingobium chlorophenolicum (formerly Sphingomonas chlorophenolica) ATCC 39723 have been characterized, and the corresponding genes, pcpA, pcpB, and pcpC, have been individually cloned and sequenced. To search for new genes involved in PCP degradation and map the physical locations of the pcp genes, a 24-kb fragment containing pcpA and pcpC was completely sequenced. A putative LysR-type transcriptional regulator gene, pcpM, and a maleylacetate reductase gene, pcpE, were identified upstream of pcpA. pcpE was found to play a role in PCP degradation. pcpB was not found on the 24-kb fragment. The four gene products PcpB, PcpC, PcpA, and PcpE were responsible for the metabolism of PCP to 3-oxoadipate in ATCC 39723, and inactivational mutation of each gene disrupted the degradation pathway. The organization of the pcp genes is unusual because the four PCP-degrading genes, pcpA, pcpB, pcpC, and pcpE, were found to be located at four discrete locations. Two hypothetical LysR-type regulator genes, pcpM and pcpR, have been identified; pcpM was not required, but pcpR was essential for the induction of pcpB, pcpA, and pcpE. The coinducers of PcpR were PCP and other polychlorinated phenols. The expression of pcpC was constitutive. Thus, the organization and regulation of the genes involved in PCP degradation to 3-oxoadipate were documented.
Collapse
Affiliation(s)
- Mian Cai
- School of Molecular Biosciences, Washington State University, Science Hall 301, Pullman, WA 99164-4233, USA
| | | |
Collapse
|
43
|
Louie TM, Webster CM, Xun L. Genetic and biochemical characterization of a 2,4,6-trichlorophenol degradation pathway in Ralstonia eutropha JMP134. J Bacteriol 2002; 184:3492-500. [PMID: 12057943 PMCID: PMC135155 DOI: 10.1128/jb.184.13.3492-3500.2002] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ralstonia eutropha JMP134 can grow on several chlorinated aromatic pollutants, including 2,4-dichlorophenoxyacetate and 2,4,6-trichlorophenol (2,4,6-TCP). Although a 2,4,6-TCP degradation pathway in JMP134 has been proposed, the enzymes and genes responsible for 2,4,6-TCP degradation have not been characterized. In this study, we found that 2,4,6-TCP degradation by JMP134 was inducible by 2,4,6-TCP and subject to catabolic repression by glutamate. We detected 2,4,6-TCP-degrading activities in JMP134 cell extracts. Our partial purification and initial characterization of the enzyme indicated that a reduced flavin adenine dinucleotide (FADH2)-utilizing monooxygenase converted 2,4,6-TCP to 6-chlorohydroxyquinol (6-CHQ). The finding directed us to PCR amplify a 3.2-kb fragment containing a gene cluster (tcpABC) from JMP134 by using primers designed from conserved regions of FADH2-utilizing monooxygenases and hydroxyquinol 1,2-dioxygenases. Sequence analysis indicated that tcpA, tcpB, and tcpC encoded an FADH2-utilizing monooxygenase, a probable flavin reductase, and a 6-CHQ 1,2-dioxygenase, respectively. The three genes were individually inactivated in JMP134. The tcpA mutant failed to degrade 2,4,6-TCP, while both tcpB and tcpC mutants degraded 2,4,6-TCP to an oxidized product of 6-CHQ. Insertional inactivation of tcpB may have led to a polar effect on downstream tcpC, and this probably resulted in the accumulation of the oxidized form of 6-CHQ. For further characterization, TcpA was produced, purified, and shown to transform 2,4,6-TCP to 6-CHQ when FADH2 was supplied by an Escherichia coli flavin reductase. TcpC produced in E. coli oxidized 6-CHQ to 2-chloromaleylacetate. Thus, our data suggest that JMP134 transforms 2,4,6-TCP to 2-chloromaleylacetate by TcpA and TcpC. Sequence analysis suggests that tcpB may function as an FAD reductase, but experimental data did not support this hypothesis. The function of TcpB remains unknown.
Collapse
Affiliation(s)
- Tai Man Louie
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-4234, USA
| | | | | |
Collapse
|
44
|
Miyauchi K, Lee HS, Fukuda M, Takagi M, Nagata Y. Cloning and characterization of linR, involved in regulation of the downstream pathway for gamma-hexachlorocyclohexane degradation in Sphingomonas paucimobilis UT26. Appl Environ Microbiol 2002; 68:1803-7. [PMID: 11916699 PMCID: PMC123885 DOI: 10.1128/aem.68.4.1803-1807.2002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Sphingomonas paucimobilis UT26, LinD and LinE activities, which are responsible for the degradation of gamma-hexachlorocyclohexane, are inducibly expressed in the presence of their substrates, 2,5-dichlorohydroquinone (2,5-DCHQ) and chlorohydroquinone (CHQ). The nucleotide sequence of the 1-kb upstream region of the linE gene was determined, and an open reading frame (ORF) was found in divergent orientation from linE. Because the putative protein product of the ORF showed similarity to the LysR-type transcriptional regulator (LTTR) family, we named it linR. The fragment containing the putative LTTR recognition sequence (a palindromic TN(11)A sequence), which exists immediately upstream of linE, was ligated with the reporter gene lacZ and was inserted into the plasmid expressing LinR under the control of the lac promoter. When the resultant plasmid was introduced into Escherichia coli, the LacZ activity rose in the presence of 2,5-DCHQ and CHQ. RNA slot blot analysis for the total RNAs of UT26 and UT102, which has an insertional mutation in linR, revealed that the expression of the linD and linE genes was induced in the presence of 2,5-DCHQ, CHQ, and hydroquinone in UT26 but not in UT102. These results indicated that the linR gene is directly involved in the inducible expression of the linD and linE genes.
Collapse
Affiliation(s)
- Keisuke Miyauchi
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | | | | | |
Collapse
|
45
|
Pieper DH, Pollmann K, Nikodem P, Gonzalez B, Wray V. Monitoring key reactions in degradation of chloroaromatics by in situ (1)H nuclear magnetic resonance: solution structures of metabolites formed from cis-dienelactone. J Bacteriol 2002; 184:1466-70. [PMID: 11844781 PMCID: PMC134862 DOI: 10.1128/jb.184.5.1466-1470.2002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A (1)H nuclear magnetic resonance ((1)H NMR) assay was used to study the enzymatic transformation of cis-dienelactone, a central intermediate in the degradation of chloroaromatics. It was shown that the product of the cis-dienelactone hydrolase reaction is maleylacetate, in which there is no evidence for the formation of 3-hydroxymuconate. Under acidic conditions, the product structure was 4-carboxymethyl-4-hydroxybut-2-en-4-olide. Maleylacetate was transformed by maleylacetate reductase into 3-oxoadipate, a reaction competing with spontaneous decarboxylation into cis-acetylacrylate. One-dimensional (1)H NMR in (1)H(2)O could thus be shown to be an excellent noninvasive tool for monitoring enzyme activities and assessing the solution structure of substrates and products.
Collapse
Affiliation(s)
- Dietmar H Pieper
- Division of Microbiology, GBF-German Research Center for Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany.
| | | | | | | | | |
Collapse
|
46
|
Schmidt S, Kirby GW. Dioxygenative cleavage of C-methylated hydroquinones and 2,6-dichlorohydroquinone by Pseudomonas sp. HH35. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1568:83-9. [PMID: 11731089 DOI: 10.1016/s0304-4165(01)00204-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The dioxygenolytic catabolism of five C-methylated hydroquinones and 2,6-dichlorohydroquinone in Pseudomonas sp. strain HH35 was elucidated. This organism, which is known to catabolise 2,6-dimethylhydroquinone by 1,2-cleavage, accumulated metabolites from 2-methyl-, 2,3-dimethyl-, 2,5-dimethyl-, 2,3,5-trimethyl- and 2,3,5,6-tetramethylhydroquinone which we isolated and characterised by mass spectrometry and (1)H NMR and UV spectroscopy. The identification of these metabolites defined the impact of methyl groups present in the hydroquinone and showed how each substitution pattern determined the site of the initial enzymic attack. With the exception of the 2,3,5,6-tetramethylhydroquinone, all C-methylated hydroquinones were catabolised by an initial dioxygenolytic cleavage occurring adjacent (1,2- or 3,4-cleavage) to a hydroxy group. In addition, our results indicated that the 2,6-dichlorohydroquinone is catabolised in a similar way by this strain.
Collapse
Affiliation(s)
- S Schmidt
- Abteilung für Mikrobiologie, Universität Hamburg, Germany.
| | | |
Collapse
|
47
|
Turner MS, Helmann JD. Mutations in multidrug efflux homologs, sugar isomerases, and antimicrobial biosynthesis genes differentially elevate activity of the sigma(X) and sigma(W) factors in Bacillus subtilis. J Bacteriol 2000; 182:5202-10. [PMID: 10960106 PMCID: PMC94670 DOI: 10.1128/jb.182.18.5202-5210.2000] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sigma(X) and sigma(W) extracytoplasmic function sigma factors regulate more than 40 genes in Bacillus subtilis. sigma(W) activates genes which function in detoxification and the production of antimicrobial compounds, while sigma(X) activates functions that modify the cell envelope. Transposon mutagenesis was used to identify loci which negatively regulate sigma(W) or sigma(X) as judged by up-regulation from the autoregulatory promoter site P(W) or P(X). Fourteen insertions that activate P(W) were identified. The largest class of insertions are likely to affect transport. These include insertions in genes encoding two multidrug efflux protein homologs (yqgE and yulE), a component of the oligopeptide uptake system (oppA), and two transmembrane proteins with weak similarity to transporters (yhdP and yueF). Expression from P(W) is also elevated as a result of inactivation of at least one member of the sigma(W) regulon (ysdB), an ArsR homolog (yvbA), a predicted rhamnose isomerase (yulE), and a gene (pksR) implicated in synthesis of difficidin, a polyketide antibiotic. In a parallel screen, we identified seven insertions that up-regulate P(X). Remarkably, these insertions were in functionally similar genes, including a multidrug efflux homolog (yitG), a mannose-6-phosphate isomerase gene (yjdE), and loci involved in antibiotic synthesis (srfAB and possibly yogA and yngK). Significantly, most insertions that activate P(W) have little or no effect on P(X), and conversely, insertions that activate P(X) have no effect on P(W). This suggests that these two regulons respond to distinct sets of molecular signals which may include toxic molecules which are exported, cell density signals, and antimicrobial compounds.
Collapse
Affiliation(s)
- M S Turner
- Department of Microbiology, Cornell University, Ithaca, New York 14853-8101, USA
| | | |
Collapse
|
48
|
Abstract
The treatment of environmental pollution by microorganisms is a promising technology. Various genetic approaches have been developed and used to optimize the enzymes, metabolic pathways and organisms relevant for biodegradation. New information on the metabolic routes and bottlenecks of degradation is still accumulating, enlarging the available toolbox. With molecular methods allowing the characterization of microbial community structure and activities, the performance of microorganisms under in situ conditions and in concert with the indigenous microflora will become predictable.
Collapse
Affiliation(s)
- D H Pieper
- Department of Environmental Biotechnology, Gesellschaft für Biotechnologische Forschung mbH (GBF), Braunschweig, D-38124, Germany.
| | | |
Collapse
|
49
|
Copley SD. Evolution of a metabolic pathway for degradation of a toxic xenobiotic: the patchwork approach. Trends Biochem Sci 2000; 25:261-5. [PMID: 10838562 DOI: 10.1016/s0968-0004(00)01562-0] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The pathway for degradation of the xenobiotic pesticide pentachlorophenol in Sphingomonas chlorophenolica probably evolved in the past few decades by the recruitment of enzymes from two other catabolic pathways. The first and third enzymes in the pathway, pentachlorophenol hydroxylase and 2,6-dichlorohydroquinone dioxygenase, may have originated from enzymes in a pathway for degradation of a naturally occurring chlorinated phenol. The second enzyme, a reductive dehalogenase, may have evolved from a maleylacetoacetate isomerase normally involved in degradation of tyrosine. This apparently recently assembled pathway does not function very well: pentachlorophenol hydroxylase is quite slow, and tetrachlorohydroquinone dehalogenase is subject to severe substrate inhibition.
Collapse
Affiliation(s)
- S D Copley
- Dept of Chemistry and Biochemistry and Cooperative Institute for Research in Environmental Studies, University of Colorado at Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
50
|
van Hylckama Vlieg JE, Poelarends GJ, Mars AE, Janssen DB. Detoxification of reactive intermediates during microbial metabolism of halogenated compounds. Curr Opin Microbiol 2000; 3:257-62. [PMID: 10851165 DOI: 10.1016/s1369-5274(00)00086-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The reactivity and toxicity of metabolic intermediates that are generated by initial biotransformation reactions can be a major limiting factor for biodegradation of halogenated organic compounds. Recent work on the conversion of haloalkanes, chloroaromatics and chloroethenes indicates that microorganisms may become less sensitive to toxic effects either by using novel pathways that circumvent the generation of reactive intermediates or by producing modified enzymes that decrease the toxicity of such compounds.
Collapse
|