1
|
Zhang W, Chen X, Deng H, Yang X, Cai S, Yang H, Ren H, Yan Y. Thioether functionalized degradable poly(amino acids) and its calcium sulfate/calcium hydrogen phosphate composites: Reducing oxidative stress and promoting osteogenesis. Colloids Surf B Biointerfaces 2025; 248:114485. [PMID: 39754887 DOI: 10.1016/j.colsurfb.2024.114485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025]
Abstract
The imbalance of redox homeostasis, especially the abnormal levels of reactive oxygen species (ROS), is a key obstacle in the bone repair process. Therefore, developing materials capable of scavenging ROS and modulating the microenvironment of bone defects is crucial for promoting bone repair. In this study, to endow poly(amino acids) (PAA) and its composites with anti-oxidative stress properties and enhanced osteogenic differentiation, we designed and prepared a calcium sulfate/calcium hydrogen phosphate/poly(amino acids) (PCDM) composite material with a thioether structure (-S-) in the molecular chain of PAA matrix through situ polymerization and physical blending method. The results showed that the thioether was successfully introduced into the polymer, and the intrinsic viscosities of the poly(amino acids) ranged from 0.27 to 0.73 dL/g. PCDM materials exhibited good mechanical properties, with a compressive strength ranging from 16.28 to 33.83 MPa. The degradation performance results showed that the composite materials had a weight loss of 23.9-35.3 % after four weeks. The antioxidant stress results showed that the PCDM composite materials scavenged 67.6 %-78.3 % of DPPH radicals after 24 h and 61.4 %-93.6 % of ABTS radicals after 4 h, effectively reducing ROS levels in mouse bone mesenchymal stem cells. The cytotoxicity and osteogenic differentiation results showed that the materials had cytocompatibility and could promote alkaline phosphatase secretion and mineralized nodule formation. In conclusion, PCDM materials might broaden the application of poly(amino acids) composites in bone defect repair by regulating the ROS microenvironment and promoting the osteogenic differentiation of stem cells.
Collapse
Affiliation(s)
- Wei Zhang
- College of Physical, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Xiaolu Chen
- College of Physical, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Hao Deng
- College of Physical, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Xinyue Yang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Shijie Cai
- College of Physical, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Hulin Yang
- College of Physical, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Haohao Ren
- College of Physical, Sichuan University, Chengdu, Sichuan 610065, PR China.
| | - Yonggang Yan
- College of Physical, Sichuan University, Chengdu, Sichuan 610065, PR China.
| |
Collapse
|
2
|
Tan B, Cheng Y, Li J, Zheng Y, Xiao C, Guo H, Wang B, Ouyang J, Wang W, Wang J. Combining untargeted and targeted metabolomic profiling reveals principal differences between osteopenia, Osteoporosis and healthy controls. Aging Clin Exp Res 2025; 37:28. [PMID: 39833609 PMCID: PMC11746959 DOI: 10.1007/s40520-024-02923-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 12/27/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Osteopenia (ON) and osteoporosis (OP) are highly prevalent among postmenopausal women and poses a challenge for early diagnosis. Therefore, identifying reliable biomarkers for early prediction using metabolomics is critically important. METHODS Initially, non-targeted metabolomics was employed to identify differential metabolites in plasma samples from cohort 1, which included healthy controls (HC, n = 23), osteonecrosis (ON, n = 36), and osteoporosis (OP, n = 37). Subsequently, we performed targeted metabolomic validation of 37 amino acids and their derivatives in plasma samples from cohort 2, consisting of healthy controls (HC, n = 10), osteonecrosis (ON, n = 10), and osteoporosis (OP, n = 10). RESULTS The non-targeted metabolomic analysis revealed an increase in differential metabolites with the progression of the disease, showing abnormalities in lipid and organic acid metabolism in ON and OP patients. Several substances were found to correlate positively or negatively with bone mineral density (BMD), for example, N-undecanoylglycine, sphingomyelins, and phosphatidylinositols exhibited positive correlations with BMD, while acetic acid, phenylalanine, taurine, inosine, and pyruvic acid showed negative correlations with BMD. Subsequently, targeted validation of 37 amino acids and their metabolites revealed six amino acids related to ON and OP. CONCLUSION Significant metabolomic features were identified between HC and patients with ON/OP, with multiple metabolites correlating positively or negatively with BMD. Integrating both targeted and non-targeted metabolomic results suggests that lipid, organic acid, and amino acid metabolism may represent important metabolomic characteristics of patients with OP, offering new insights into the development of metabolomic applications in OP.
Collapse
Affiliation(s)
- Bing Tan
- The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, 621000, China
| | - Yan Cheng
- The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, 621000, China
| | - Junfeng Li
- The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, 621000, China
| | - Yuhao Zheng
- The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, 621000, China
| | - Cong Xiao
- The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, 621000, China
| | - Haoning Guo
- The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, 621000, China
| | - Bing Wang
- The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, 621000, China
| | - Jianyuan Ouyang
- The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, 621000, China
| | - Wenmin Wang
- The Yangtze River Delta Biological Medicine Research and Development Center of Zhejiang Province, Yangtze Delta Region Institution of Tsinghua University, Hangzhou, Zhejiang, 314006, China
| | - Jisheng Wang
- The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, 621000, China.
| |
Collapse
|
3
|
Yi B, Li Z, Zhao Y, Yan H, Xiao J, Zhou Z, Cui Y, Yang S, Bi J, Yang H, Guo N, Zhao M. Serum metabolomics analyses reveal biomarkers of osteoporosis and the mechanism of Quanduzhong capsules. J Pharm Biomed Anal 2024; 246:116198. [PMID: 38754154 DOI: 10.1016/j.jpba.2024.116198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
With the aging of the population, the prevalence of osteoporosis (OP) is rising rapidly, making it an important public health concern. Early screening and effective treatment of OP are the primary challenges facing the management of OP today. Quanduzhong capsule (QDZ) is a single preparation composed of Eucommia ulmoides Oliv., which is included in the Pharmacopoeia of the People's Republic of China. It is used to treat OP in clinical practice, but its mechanisms are unclear. This study involved 30 patients with OP, 30 healthy controls (HC), and 28 OP patients treated with QDZ to identify potential biomarkers for the early diagnosis of OP and to investigate the potential mechanism of QDZ in treating OP. The serum samples were analyzed using targeted amino acid metabolomics. Significant differences in amino acid metabolism were identified between the OP cohort and the HC group, as well as between OP patients before and after QDZ treatment. Compared with HC, the serum levels of 14 amino acids in OP patients changed significantly. Kynurenine, arginine, citrulline, methionine, and their combinations are expected to be potential biomarkers for OP diagnosis. Notably, QDZ reversed the changes in levels of 10 amino acids in the serum of OP patients and significantly impacted numerous metabolic pathways during the treatment of OP. This study focuses on screening potential biomarkers for the early detection of OP, which offers a new insight into the mechanism study of QDZ in treating OP.
Collapse
Affiliation(s)
- Bojiao Yi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zeyu Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yurou Zhao
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Han Yan
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junping Xiao
- Jiangxi Puzheng Pharmaceutical Co, Ltd., Jiangxi, China
| | - Zhigang Zhou
- Jiangxi Puzheng Pharmaceutical Co, Ltd., Jiangxi, China
| | - Yu Cui
- Jiangxi Puzheng Pharmaceutical Co, Ltd., Jiangxi, China
| | - Shuyin Yang
- Jiangxi Puzheng Pharmaceutical Co, Ltd., Jiangxi, China
| | - Jingbo Bi
- Jiangxi Puzheng Pharmaceutical Co, Ltd., Jiangxi, China
| | - Hongjun Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Na Guo
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Min Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
4
|
Role of Essential Amino Acids in Age-Induced Bone Loss. Int J Mol Sci 2022; 23:ijms231911281. [PMID: 36232583 PMCID: PMC9569615 DOI: 10.3390/ijms231911281] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Age-induced osteoporosis is a global problem. Essential amino acids (EAAs) work as an energy source and a molecular pathway modulator in bone, but their functions have not been systematically reviewed in aging bone. This study aimed to discuss the contribution of EAAs on aging bone from in vitro, in vivo, and human investigations. In aged people with osteoporosis, serum EAAs were detected changing up and down, without a well-established conclusion. The supply of EAAs in aged people either rescued or did not affect bone mineral density (BMD) and bone volume. In most signaling studies, EAAs were proven to increase bone mass. Lysine, threonine, methionine, tryptophan, and isoleucine can increase osteoblast proliferation, activation, and differentiation, and decrease osteoclast activity. Oxidized L-tryptophan promotes bone marrow stem cells (BMSCs) differentiating into osteoblasts. However, the oxidation product of tryptophan called kynurenine increases osteoclast activity, and enhances the differentiation of adipocytes from BMSCs. Taken together, in terms of bone minerals and volume, more views consider EAAs to have a positive effect on aging bone, but the function of EAAs in bone metabolism has not been fully demonstrated and more studies are needed in this area in the future.
Collapse
|
5
|
Panahi N, Fahimfar N, Roshani S, Arjmand B, Gharibzadeh S, Shafiee G, Migliavacca E, Breuille D, Feige JN, Grzywinski Y, Corthesy J, Razi F, Heshmat R, Nabipour I, Farzadfar F, Soltani A, Larijani B, Ostovar A. Association of amino acid metabolites with osteoporosis, a metabolomic approach: Bushehr elderly health program. Metabolomics 2022; 18:63. [PMID: 35915271 DOI: 10.1007/s11306-022-01919-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 07/07/2022] [Indexed: 11/25/2022]
Abstract
INTRODUCTION AND OBJECTIVES Amino acids are the most frequently reported metabolites associated with low bone mineral density (BMD) in metabolomics studies. We aimed to evaluate the association between amino acid metabolic profile and bone indices in the elderly population. METHODS 400 individuals were randomly selected from 2384 elderly men and women over 60 years participating in the second stage of the Bushehr elderly health (BEH) program, a population-based prospective cohort study that is being conducted in Bushehr, a southern province of Iran. Frozen plasma samples were used to measure 29 amino acid and derivatives metabolites using the UPLC-MS/MS-based targeted metabolomics platform. We conducted Elastic net regression analysis to detect the metabolites associated with BMD of different sites and lumbar spine trabecular bone score, and also to examine the ability of the measured metabolites to differentiate osteoporosis. RESULTS We adjusted the analysis for possible confounders (age, BMI, diabetes, smoking, physical activity, vitamin D level, and sex). Valine, leucine, isoleucine, and alanine in women and tryptophan in men were the most important amino acids inversely associated with osteoporosis (OR range from 0.77 to 0.89). Sarcosine, followed by tyrosine, asparagine, alpha aminobutyric acid, and ADMA in women and glutamine in men and when both women and men were considered together were the most discriminating amino acids detected in individuals with osteoporosis (OR range from 1.15 to 1.31). CONCLUSION We found several amino acid metabolites associated with possible bone status in elderly individuals. Further studies are required to evaluate the utility of these metabolites as clinical biomarkers for osteoporosis prediction and their effect on bone health as dietary supplements.
Collapse
Affiliation(s)
- Nekoo Panahi
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Noushin Fahimfar
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahin Roshani
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Babak Arjmand
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Safoora Gharibzadeh
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Gita Shafiee
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Eugenia Migliavacca
- Nestlé Institute of Health Sciences, Nestlé Research, CH-1015, Lausanne, Switzerland
| | - Denis Breuille
- Nestlé Institute of Health Sciences, Nestlé Research, CH-1015, Lausanne, Switzerland
| | - Jerome N Feige
- Nestlé Institute of Health Sciences, Nestlé Research, CH-1015, Lausanne, Switzerland
| | - Yohan Grzywinski
- Institute of Food Safety and Analytical Science, Nestlé Research, CH-1015, Lausanne, Switzerland
| | - John Corthesy
- Institute of Food Safety and Analytical Science, Nestlé Research, CH-1015, Lausanne, Switzerland
| | - Farideh Razi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farshad Farzadfar
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akbar Soltani
- Evidence-Based Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Afshin Ostovar
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Lademann F, Mayerl S, Tsourdi E, Verrey F, Leitch VD, Williams GR, Bassett JHD, Hofbauer LC, Heuer H, Rauner M. The Thyroid Hormone Transporter MCT10 Is a Novel Regulator of Trabecular Bone Mass and Bone Turnover in Male Mice. Endocrinology 2022; 163:bqab218. [PMID: 34669927 PMCID: PMC8598386 DOI: 10.1210/endocr/bqab218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Indexed: 11/19/2022]
Abstract
Thyroid hormones (TH) are essential for skeletal development and adult bone homeostasis. Their bioavailability is determined by specific transporter proteins at the cell surface. The TH-specific transporter monocarboxylate transporter 8 (MCT8) was recently reported as a regulator of bone mass in mice. Given that high systemic triiodothyronine (T3) levels in Mct8 knockout (KO) mice are still able to cause trabecular bone loss, alternative TH transporters must substitute for MCT8 function in bone. In this study, we analyzed the skeletal phenotypes of male Oatp1c1 KO and Mct10 KO mice, which are euthyroid, and male Mct8/Oatp1c1 and Mct8/Mct10 double KO mice, which have elevated circulating T3 levels, to unravel the role of TH transport in bone. MicroCT analysis showed no significant trabecular bone changes in Oatp1c1 KO mice at 4 weeks and 16 weeks of age compared with wild-type littermate controls, whereas 16-week-old Mct8/Oatp1c1 double KO animals displayed trabecular bone loss. At 12 weeks, Mct10 KO mice, but not Mct8/Mct10 double KO mice, had decreased trabecular femoral bone volume with reduced osteoblast numbers. By contrast, lack of Mct10 in 24-week-old mice led to trabecular bone gain at the femur with increased osteoblast numbers and decreased osteoclast numbers whereas Mct8/Mct10 double KO did not alter bone mass. Neither Mct10 nor Mct8/Mct10 deletion affected vertebral bone structures at both ages. In vitro, osteoblast differentiation and activity were impaired by Mct10 and Mct8/Mct10-deficiency. These data demonstrate that MCT10, but not OATP1C1, is a site- and age-dependent regulator of bone mass and turnover in male mice.
Collapse
Affiliation(s)
- Franziska Lademann
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Steffen Mayerl
- Department of Endocrinology, University of Duisburg-Essen, University Hospital Essen, D-45147 Essen, Germany
| | - Elena Tsourdi
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Francois Verrey
- Institute of Physiology, University of Zurich, CH-8057 Zurich, Switzerland
| | - Victoria D Leitch
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK
| | - J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK
| | - Lorenz C Hofbauer
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Heike Heuer
- Department of Endocrinology, University of Duisburg-Essen, University Hospital Essen, D-45147 Essen, Germany
| | - Martina Rauner
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, D-01307 Dresden, Germany
| |
Collapse
|
7
|
Panahi N, Arjmand B, Ostovar A, Kouhestani E, Heshmat R, Soltani A, Larijani B. Metabolomic biomarkers of low BMD: a systematic review. Osteoporos Int 2021; 32:2407-2431. [PMID: 34309694 DOI: 10.1007/s00198-021-06037-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022]
Abstract
Due to the metabolic nature of osteoporosis, this study was conducted to identify metabolomic studies investigating the metabolic profile of low bone mineral density (BMD) and osteoporosis. A comprehensive systematic literature search was conducted through PubMed, Web of Science, Scopus, and Embase databases up to April 08, 2020, to identify observational studies with cross-sectional or case-control designs investigating the metabolic profile of low BMD in adults using biofluid specimen via metabolomic platform. The quality assessment panel specified for the "omics"-based diagnostic research (QUADOMICS) tool was used to estimate the methodologic quality of the included studies. Ten untargeted and one targeted approach metabolomic studies investigating biomarkers in different biofluids through mass spectrometry or nuclear magnetic resonance platforms were included in the systematic review. Some metabolite panels, rather than individual metabolites, showed promising results in differentiating low BMD from normal. Candidate metabolites were of different categories including amino acids, followed by lipids and carbohydrates. Besides, certain pathways were suggested by some of the studies to be involved. This systematic review suggested that metabolic profiling could improve the diagnosis of low BMD. Despite valuable findings attained from each of these studies, there was great heterogeneity regarding the ethnicity and age of participants, samples, and the metabolomic platform. Further longitudinal studies are needed to validate the results and confirm the predictive role of metabolic profile on low BMD and fracture. It is also mandatory to address and minimize the heterogeneity in future studies by using reliable quantitative methods. Summary: Due to the metabolic nature of osteoporosis, researchers have considered metabolomic studies recently. This systematic review showed that metabolic profiling including different categories of metabolites could improve the diagnosis of low BMD. However, great heterogeneity was observed and it is mandatory to address and minimize the heterogeneity in future studies.
Collapse
Affiliation(s)
- N Panahi
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - B Arjmand
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - A Ostovar
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - E Kouhestani
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - R Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - A Soltani
- Evidence Based Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - B Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
A facile surface modification of poly(dimethylsiloxane) with amino acid conjugated self-assembled monolayers for enhanced osteoblast cell behavior. Colloids Surf B Biointerfaces 2020; 196:111343. [PMID: 32896827 DOI: 10.1016/j.colsurfb.2020.111343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 01/09/2023]
Abstract
Polydimethylsiloxane (PDMS) is a biocompatible synthetic polymer and used in various applications due to its low toxicity and tunable surface properties. However, PDMS does not have any chemical cues for cell binding. Plasma treatment, protein coating or surface modification with various molecules have been used to improve its surface characteristics. Still, these techniques are either last for a very limited time or have very complicated experimental procedures. In the present study, simple and one-step surface modification of PDMS is successfully accomplished by the preparation of hydrophilic and hydrophobic amino acid conjugated self-assembled monolayers (SAMs) for enhanced interactions at the cell-substrate interface. Synthesis of histidine and leucine conjugated (3-aminopropyl)-triethoxysilane (His-APTES and Leu-APTES) were confirmed with proton nuclear magnetic resonance spectroscopy (1H NMR) and optimum conditions for the modification of PDMS with SAMs were investigated by X-ray photoelectron spectroscopy (XPS) analysis, combined with water contact angle (WCA) measurements. Results indicated that both SAMs enhanced cellular behavior in vitro. Furthermore, hydrophilic His-APTES modification provides a superior environment for the osteoblast maturation with higher alkaline phosphatase activity and mineralization. As histidine, leucine, and functional groups of these SAMs are naturally found in biological systems, modification of PDMS with them increases its cell-substrate surface biomimetic properties. This study establishes a successful modification of PDMS for in vitro cell studies, offering a biomimetic and easy procedure for potential applications in microfluidics, cell-based therapies, or drug investigations.
Collapse
|
9
|
Pierce JL, Roberts RL, Yu K, Kendall RK, Kaiser H, Davis C, Johnson MH, Hill WD, Isales CM, Bollag WB, Hamrick MW, McGee-Lawrence ME. Kynurenine suppresses osteoblastic cell energetics in vitro and osteoblast numbers in vivo. Exp Gerontol 2020; 130:110818. [PMID: 31862422 PMCID: PMC7003726 DOI: 10.1016/j.exger.2019.110818] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022]
Abstract
Aging is a progressive process associated with declining tissue function over time. Kynurenine, an oxidized metabolite of the essential amino acid tryptophan that increases in abundance with age, drives cellular processes of aging and dysfunction in many tissues, and recent work has focused on understanding the pathways involved in the harmful effects of kynurenine on bone. In this study, we sought to investigate the effects of controlled kynurenine administration on osteoblast bioenergetics, in vivo osteoblast abundance, and marrow fat accumulation. Additionally, as an extension of earlier studies with dietary administration of kynurenine, we investigated the effects of kynurenine on Hdac3 and NCoR1 expression and enzymatic deacetylase activity as potential mechanistic contributors to the effects of kynurenine on osteoblasts. Kynurenine administration suppressed cellular metabolism in osteoblasts at least in part through impaired mitochondrial respiration, and suppressed osteoblastic numbers in vivo with no concurrent effects on marrow adiposity. Deleterious effects of kynurenine treatment on osteoblasts were more pronounced in female models as compared to males. However, kynurenine treatment did not inhibit Hdac3's enzymatic deacetylase activity nor its repression of downstream glucocorticoid signaling. As such, future work will be necessary to determine the mechanisms by which increased kynurenine contributes to aging bone bioenergetics. The current study provides novel further support for the idea that kynurenine contributes to impaired osteoblastic function, and suggests that impaired matrix production by kynurenine-affected osteoblasts is attributed in part to impaired osteoblastic bioenergetics. As circulating kynurenine levels in increase with age, and human bone density inversely correlates with the serum kynurenine to tryptophan ratio, these mechanisms may have important relevance in the etiology and pathogenesis of osteoporosis in humans.
Collapse
Affiliation(s)
- Jessica L Pierce
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Rachel L Roberts
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Kanglun Yu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Riley K Kendall
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Helen Kaiser
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Colleen Davis
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | - Maribeth H Johnson
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, USA
| | - William D Hill
- Department of Pathology and Laboratory Medicine, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Carlos M Isales
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, USA; Department of Orthopaedic Surgery, Augusta University, Augusta, GA, USA; Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Augusta University, Augusta, GA, USA
| | - Wendy B Bollag
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA, USA; Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA; Charlie Norwood Veterans' Affairs Medical Center, Augusta, GA, USA
| | - Mark W Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Orthopaedic Surgery, Augusta University, Augusta, GA, USA
| | - Meghan E McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Orthopaedic Surgery, Augusta University, Augusta, GA, USA.
| |
Collapse
|
10
|
Qiu C, Yu F, Su K, Zhao Q, Zhang L, Xu C, Hu W, Wang Z, Zhao L, Tian Q, Wang Y, Deng H, Shen H. Multi-omics Data Integration for Identifying Osteoporosis Biomarkers and Their Biological Interaction and Causal Mechanisms. iScience 2020; 23:100847. [PMID: 32058959 PMCID: PMC6997862 DOI: 10.1016/j.isci.2020.100847] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/22/2019] [Accepted: 01/13/2020] [Indexed: 12/31/2022] Open
Abstract
Osteoporosis is characterized by low bone mineral density (BMD). The advancement of high-throughput technologies and integrative approaches provided an opportunity for deciphering the mechanisms underlying osteoporosis. Here, we generated genomic, transcriptomic, methylomic, and metabolomic datasets from 119 subjects with high (n = 61) and low (n = 58) BMDs. By adopting sparse multiple discriminative canonical correlation analysis, we identified an optimal multi-omics biomarker panel with 74 differentially expressed genes (DEGs), 75 differentially methylated CpG sites (DMCs), and 23 differential metabolic products (DMPs). By linking genetic data, we identified 199 targeted BMD-associated expression/methylation/metabolite quantitative trait loci (eQTLs/meQTLs/metaQTLs). The reconstructed networks/pathways showed extensive biomarker interactions, and a substantial proportion of these biomarkers were enriched in RANK/RANKL, MAPK/TGF-β, and WNT/β-catenin pathways and G-protein-coupled receptor, GTP-binding/GTPase, telomere/mitochondrial activities that are essential for bone metabolism. Five biomarkers (FADS2, ADRA2A, FMN1, RABL2A, SPRY1) revealed causal effects on BMD variation. Our study provided an innovative framework and insights into the pathogenesis of osteoporosis.
Collapse
Affiliation(s)
- Chuan Qiu
- Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans 70112, LA, USA
| | - Fangtang Yu
- Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans 70112, LA, USA
| | - Kuanjui Su
- Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans 70112, LA, USA
| | - Qi Zhao
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis 38163, TN, USA
| | - Lan Zhang
- Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans 70112, LA, USA
| | - Chao Xu
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City 73104, OK, USA
| | - Wenxing Hu
- Department of Biomedical Engineering, Tulane University, New Orleans 70118, LA, USA
| | - Zun Wang
- Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans 70112, LA, USA; Xiangya Nursing School, Central South University, Changsha 410013, China
| | - Lanjuan Zhao
- Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans 70112, LA, USA
| | - Qing Tian
- Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans 70112, LA, USA
| | - Yuping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans 70118, LA, USA
| | - Hongwen Deng
- Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans 70112, LA, USA; School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Hui Shen
- Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans 70112, LA, USA.
| |
Collapse
|
11
|
Moraes DA, Sibov TT, Pavon LF, Alvim PQ, Bonadio RS, Da Silva JR, Pic-Taylor A, Toledo OA, Marti LC, Azevedo RB, Oliveira DM. A reduction in CD90 (THY-1) expression results in increased differentiation of mesenchymal stromal cells. Stem Cell Res Ther 2016; 7:97. [PMID: 27465541 PMCID: PMC4964048 DOI: 10.1186/s13287-016-0359-3] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/28/2016] [Accepted: 07/04/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) are multipotent progenitor cells used in several cell therapies. MSCs are characterized by the expression of CD73, CD90, and CD105 cell markers, and the absence of CD34, CD45, CD11a, CD19, and HLA-DR cell markers. CD90 is a glycoprotein present in the MSC membranes and also in adult cells and cancer stem cells. The role of CD90 in MSCs remains unknown. Here, we sought to analyse the role that CD90 plays in the characteristic properties of in vitro expanded human MSCs. METHODS We investigated the function of CD90 with regard to morphology, proliferation rate, suppression of T-cell proliferation, and osteogenic/adipogenic differentiation of MSCs by reducing the expression of this marker using CD90-target small hairpin RNA lentiviral vectors. RESULTS The present study shows that a reduction in CD90 expression enhances the osteogenic and adipogenic differentiation of MSCs in vitro and, unexpectedly, causes a decrease in CD44 and CD166 expression. CONCLUSION Our study suggests that CD90 controls the differentiation of MSCs by acting as an obstacle in the pathway of differentiation commitment. This may be overcome in the presence of the correct differentiation stimuli, supporting the idea that CD90 level manipulation may lead to more efficient differentiation rates in vitro.
Collapse
Affiliation(s)
- Daniela A. Moraes
- Departamento de Genética e Morfologia, Universidade de Brasília, Brasília, DF Brazil
- Centro Universitario do Distrito Federal UDF, Brasília, DF Brazil
| | - Tatiana T. Sibov
- Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo, São Paulo, SP Brazil
| | - Lorena F. Pavon
- Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo, São Paulo, SP Brazil
| | - Paula Q. Alvim
- Departamento de Genética e Morfologia, Universidade de Brasília, Brasília, DF Brazil
| | - Raphael S. Bonadio
- Departamento de Genética e Morfologia, Universidade de Brasília, Brasília, DF Brazil
| | - Jaqueline R. Da Silva
- Departamento de Genética e Morfologia, Universidade de Brasília, Brasília, DF Brazil
| | - Aline Pic-Taylor
- Departamento de Genética e Morfologia, Universidade de Brasília, Brasília, DF Brazil
| | - Orlando A. Toledo
- Departamento de Ciências da Saúde, Universidade de Brasília, Brasília, DF Brazil
| | - Luciana C. Marti
- Hospital Israelita Albert Einstein, Instituto de Ensino e Pesquisa - Centro de Pesquisa Experimental São Paulo, São Paulo, SP Brazil
| | - Ricardo B. Azevedo
- Departamento de Genética e Morfologia, Universidade de Brasília, Brasília, DF Brazil
| | - Daniela M. Oliveira
- Departamento de Genética e Morfologia, Universidade de Brasília, Brasília, DF Brazil
- IB-Departamento de Genética e Morfologia, Universidade de Brasília - UNB, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília, CEP 70910-970 Brazil
| |
Collapse
|
12
|
El Refaey M, Watkins CP, Kennedy EJ, Chang A, Zhong Q, Ding KH, Shi XM, Xu J, Bollag WB, Hill WD, Johnson M, Hunter M, Hamrick MW, Isales CM. Oxidation of the aromatic amino acids tryptophan and tyrosine disrupts their anabolic effects on bone marrow mesenchymal stem cells. Mol Cell Endocrinol 2015; 410:87-96. [PMID: 25637715 PMCID: PMC4444384 DOI: 10.1016/j.mce.2015.01.034] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/23/2015] [Accepted: 01/23/2015] [Indexed: 02/06/2023]
Abstract
Age-induced bone loss is associated with greater bone resorption and decreased bone formation resulting in osteoporosis and osteoporosis-related fractures. The etiology of this age-induced bone loss is not clear but has been associated with increased generation of reactive oxygen species (ROS) from leaky mitochondria. ROS are known to oxidize/damage the surrounding proteins/amino acids/enzymes and thus impair their normal function. Among the amino acids, the aromatic amino acids are particularly prone to modification by oxidation. Since impaired osteoblastic differentiation from bone marrow mesenchymal stem cells (BMMSCs) plays a role in age-related bone loss, we wished to examine whether oxidized amino acids (in particular the aromatic amino acids) modulated BMMSC function. Using mouse BMMSCs, we examined the effects of the oxidized amino acids di-tyrosine and kynurenine on proliferation, differentiation and Mitogen-Activated Protein Kinase (MAPK) pathway. Our data demonstrate that amino acid oxides (in particular kynurenine) inhibited BMMSC proliferation, alkaline phosphatase expression and activity and the expression of osteogenic markers (Osteocalcin and Runx2). Taken together, our data are consistent with a potential pathogenic role for oxidized amino acids in age-induced bone loss.
Collapse
Affiliation(s)
- Mona El Refaey
- Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, United States; Department of Neuroscience and Regenerative Medicine, Georgia Regents University, Augusta, GA, United States
| | - Christopher P Watkins
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy University of Georgia, Athens, GA 30602, United States
| | - Eileen J Kennedy
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy University of Georgia, Athens, GA 30602, United States
| | - Andrew Chang
- Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, United States
| | - Qing Zhong
- Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, United States; Department of Neuroscience and Regenerative Medicine, Georgia Regents University, Augusta, GA, United States
| | - Ke-Hong Ding
- Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, United States; Department of Neuroscience and Regenerative Medicine, Georgia Regents University, Augusta, GA, United States
| | - Xing-ming Shi
- Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, United States; Department of Neuroscience and Regenerative Medicine, Georgia Regents University, Augusta, GA, United States; Department of Orthopaedic Surgery, Georgia Regents University, Augusta, GA, United States
| | - Jianrui Xu
- Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, United States; Department of Medicine, Georgia Regents University, Augusta, GA, United States
| | - Wendy B Bollag
- Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, United States; Department of Physiology, Georgia Regents University, Augusta, GA, United States; Charlie Norwood VA Medical Center, Augusta, GA 30912, United States
| | - William D Hill
- Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, United States; Department of Orthopaedic Surgery, Georgia Regents University, Augusta, GA, United States; Charlie Norwood VA Medical Center, Augusta, GA 30912, United States; Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA, United States
| | - Maribeth Johnson
- Department of Biostatistics, Georgia Regents University, Augusta, GA, United States
| | - Monte Hunter
- Department of Orthopaedic Surgery, Georgia Regents University, Augusta, GA, United States
| | - Mark W Hamrick
- Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, United States; Department of Orthopaedic Surgery, Georgia Regents University, Augusta, GA, United States; Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA, United States
| | - Carlos M Isales
- Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, United States; Department of Neuroscience and Regenerative Medicine, Georgia Regents University, Augusta, GA, United States; Department of Orthopaedic Surgery, Georgia Regents University, Augusta, GA, United States; Department of Medicine, Georgia Regents University, Augusta, GA, United States; Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA, United States.
| |
Collapse
|
13
|
Chotimah C, Ciptadi G, Setiawan B, Fatchiyah F. CSN1S2 protein of goat milk inhibits the decrease of viability and increases the proliferation of MC3T3E1 pre-osteoblast cell in methyl glyoxal exposure. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2015. [DOI: 10.1016/s2222-1808(14)60657-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Modulatory effects of l-arginine and soy enriched diet on bone homeostasis abnormalities in streptozotocin-induced diabetic rats. Chem Biol Interact 2015; 229:9-16. [DOI: 10.1016/j.cbi.2015.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/23/2014] [Accepted: 01/07/2015] [Indexed: 11/22/2022]
|
15
|
Liu X, Liu Y, Cheng M, Zhang X, Xiao H. A metabolomics study of the inhibitory effect of 17-beta-estradiol on osteoclast proliferation and differentiation. MOLECULAR BIOSYSTEMS 2014; 11:635-46. [PMID: 25474166 DOI: 10.1039/c4mb00528g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Estradiol is a major drug used clinically to alleviate osteoporosis, partly through inhibition of the activity of osteoclasts, which play a crucial role in bone resorption. So far, little is known about the effects of estradiol on osteoclast metabolism. In this study, ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC/MS)-based metabolomics strategy was used to investigate the metabolite response to 17β-estradiol in mouse osteoclast RAW264.7, a commonly used cell model for studying osteoporosis. Our results showed that the application of estradiol altered the levels of 27 intracellular metabolites, including lysophosphatidylcholines (LysoPCs), other lipids and amino acid derivants. The changes of all the 27 metabolites were observed in the study of estradiol induced osteoclast proliferation inhibition (1 μM estradiol applied), while the changes of only 18 metabolites were observed in the study of differentiation inhibition (0.1 μM estradiol applied). Further pathway impact analysis determined glycerophospholipid metabolism as the main potential target pathway of estradiol, which was further confirmed by LCAT (phosphatidylcholine-sterol acyltransferase) activity changes and lipid peroxidative product (MDA, methane dicarboxylic aldehyde) changes caused by estradiol. Additionally, we found that estradiol significantly decreased intracellular oxidative stress during cell proliferation but not during cell differentiation. Our study suggested that estradiol generated a highly condition-dependent influence on osteoclast metabolism.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China.
| | | | | | | | | |
Collapse
|
16
|
Tas AC. Grade-1 titanium soaked in a DMEM solution at 37°C. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 36:84-94. [DOI: 10.1016/j.msec.2013.11.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 10/27/2013] [Accepted: 11/28/2013] [Indexed: 10/25/2022]
|
17
|
Silva LMGS, Murakami AE, Fernandes JIM, Dalla Rosa D, Urgnani JF. Effects of dietary arginine supplementation on broiler breeder egg production and hatchability. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2012. [DOI: 10.1590/s1516-635x2012000400006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Yoshikawa M, Shimomura, Y, Kakigi H, Tsuji N, Yabuuchi T, Hayashi H. Effect of L-lysine in culture medium on nodule formation by bone marrow cells. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/jbise.2012.510072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Sosroseno W, Sugiatno E, Samsudin AR, Ibrahim MF. The Role of Nitric Oxide on the Proliferation of a Human Osteoblast Cell Line Stimulated With Hydroxyapatite. J ORAL IMPLANTOL 2008; 34:196-202. [DOI: 10.1563/0.910.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
The aim of the present study was to test the hypothesis that the proliferation of a human osteoblast cell line (HOS cells) stimulated with hydroxyapatite (HA) may be regulated by nitric oxide (NO). The cells were cultured on the surface of HA. Medium or cells alone were used as controls. L-arginine, D-arginine, 7-NI (an nNOS inhibitor), L-NIL (an iNOS inhibitor), L-NIO (an eNOS inhibitor) or carboxy PTIO, a NO scavenger, was added in the HA-exposed cell cultures. The cells were also precoated with anti-human integrin αV antibody. The levels of nitrite were determined spectrophotometrically. Cell proliferation was assessed by colorimetric assay. The results showed increased nitrite production and cell proliferation by HA-stimulated HOS cells up to day 3 of cultures. Anti-integrin αV antibody, L-NIO, or carboxy PTIO suppressed, but L-arginine enhanced, nitrite production and cell proliferation of HA-stimulated HOS cells. The results of the present study suggest, therefore, that interaction between HA and HOS cell surface integrin αV molecule may activate eNOS to catalyze NO production which, in turn, may regulate the cell proliferation in an autocrine fashion.
Collapse
|
20
|
Torricelli P, Fini M, Giavaresi G, Giardino R. Human osteopenic bone-derived osteoblasts: essential amino acids treatment effects. ARTIFICIAL CELLS, BLOOD SUBSTITUTES, AND IMMOBILIZATION BIOTECHNOLOGY 2003; 31:35-46. [PMID: 12602815 DOI: 10.1081/bio-120018002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The development of in vitro cell culture methods has made it possible to study bone cell metabolism and growth and obtain a deeper insight into the pathophysiology of common orthopedic diseases such as osteoporosis. After analyzing the effect of two essential amino acids, L-arginine (Arg) and L-lysine (Lys), in previous in vitro and in vivo studies, the present authors investigated the administration of Arg and Lys in osteoblasts derived from human osteopenic bone. After isolation, osteoblasts were cultured in DMEM supplemented with either Arg (0.625 mg/ml/day, Arg Group) or Lys (0.587 mg/ml/day, Lys Group), or both of them (Arg-Lys Group), whereas the Control Group was sham-treated. After 7 days the following parameters were tested in all groups: MTT proliferation test, Alkaline Phosphatase (ALP), Nitric Oxide (NO), Calcium (Ca), Phosphorus (P), Osteocalcin (OC), C-Terminal Procollagen type I (PICP), Interleukin-6 (IL-6), Transforming Growth Factor-beta 1 (TGF-beta 1), Platelet Derived Growth Factor (PDGF) and Insulin-Like Growth Factor-I (IGF-I). Results were compared with those obtained from human healthy bone to verify the effect of the amino acids on osteoblasts derived from pathological tissue. In addition, a comparison was also made with the results obtained from rat osteopenic bone to assess reliability of the in vitro model. The current results support previous findings and indicate that Arg and Lys stimulation has a positive effect on osteoblast proliferation, activation and differentiation. Therefore, administration of these amino acids may be useful in clinical treatment and prevention of osteoporosis.
Collapse
Affiliation(s)
- Paola Torricelli
- Experimental Surgery Department, Research Institute Codivilla-Putti, Rizzoli Orthopedic Institute, Bologna, Italy.
| | | | | | | |
Collapse
|