1
|
Yang M, Lu Y, Jin S, Liu W, Yao M, Jiang Z, Shu Y. Postoperative Tongqi Formula ameliorates postoperative ileus via p38 MAPK signaling pathway and metabolic disorder. Heliyon 2025; 11:e41217. [PMID: 39811334 PMCID: PMC11732544 DOI: 10.1016/j.heliyon.2024.e41217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Aim of the study This study investigated the mechanism by which the Postoperative Tongqi Formula (PTQF) treats postoperative ileus (POI) through regulation of the p38 MAPK signaling pathway, Zona occludens 1 (ZO-1) protein, and metabolism. Methods The primary components of PTQF were characterized using UHPLC-Q-TOF-MS/MS. The identified compounds subsequently employed network pharmacology to predict the signaling pathways associated with the inflammatory phase of POI. The anti-inflammatory effects of PTQF were evaluated in vitro using RAW264.7 cells. A rat model of POI was used to assess efficacy based on the spleen index and charcoal powder propulsion rat in the small intestine. Furthermore, pathological damage to the small intestine was analyzed using hematoxylin and eosin (HE) staining as well as immunofluorescence to evaluate ZO-1 protein expression. Inflammatory cytokine levels were quantified using enzyme-linked immunosorbent assay (ELISA). Subsequently, Western blot analysis was performed to examine the p38 MAPK signaling pathway. Finally, a metabolomics approach was employed to analyze serum samples to identify potential metabolic pathways. Results A total of 130 chemical constituents were identified in PTQF. Following the network pharmacology analysis of these compounds, the p38 MAPK signaling pathway was chosen for further investigation. In vitro, PTQF effectively inhibited inflammatory responses in RAW264.7 cells. Results from the spleen index and charcoal powder propulsion rate indicated that PTQF alleviated the inflammatory phase of POI in rats by mitigating systemic and intestinal inflammation. This was supported by reduced levels of inflammatory factors, modulation of ZO-1 protein expression, and a decrease in p38 MAPK phosphorylation levels. Furthermore, serum metabolomics revealed nine differential metabolites linked to intestinal inflammation. Conclusion PTQF mitigates inflammation and intestinal damage in POI rats by modulating inflammatory factors, ZO-1 protein expression, the p38 MAPK signaling pathway, and metabolic disturbances.
Collapse
Affiliation(s)
- Mengmeng Yang
- Affiliated Hospital of Nanjing University of Chinese Medicine & Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuxuan Lu
- Affiliated Hospital of Nanjing University of Chinese Medicine & Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Shufan Jin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Wanqiu Liu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Miaoshi Yao
- Affiliated Hospital of Nanjing University of Chinese Medicine & Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Zhiwei Jiang
- Affiliated Hospital of Nanjing University of Chinese Medicine & Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Yachun Shu
- Affiliated Hospital of Nanjing University of Chinese Medicine & Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| |
Collapse
|
2
|
He B, Zhu Z, Tian Z, Wang D, Li Y, Luan X, Ma L. Fucoidan improves intestinal peristaltic function in rats with postoperative ileus. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03587-6. [PMID: 39508874 DOI: 10.1007/s00210-024-03587-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
The effect of fucoidan on postoperative ileus (POI) has not been studied. In this study, how fucoidan ameliorates POI in a rat POI model was investigated. The results showed that in the model animals, when the first defecation time was prolonged, the amount of food consumed decreased, the small intestinal propulsion rate dramatically slowed, and the motility index (MI%) of the small intestine decreased. In vitro experiments revealed that the contractile response of small intestinal smooth muscle strips to carbachol (CCh) was reduced. Immunohistochemistry revealed evident macrophage infiltration in the intestinal muscularis. However, after oral pretreatment with fucoidan, the time to first defecation decreased, and food intake, the small intestinal propulsion rate, and MI% of the small intestine increased. Additionally, the contractile response of the intestinal strips to CCh became stronger, and macrophage infiltration decreased. Mechanistically, fucoidan alleviated POI by exerting anti-inflammatory and antioxidant effects as well as likely through the TrkB/ERK1/2/Akt signalling pathways. When POI occurred, the expression levels of inflammatory factors in the intestines significantly increased while the phosphorylation of TrkB, ERK1/2, and Akt significantly decreased; malondialdehyde (MDA) levels in the intestines increased but the levels of superoxide dismutase (SOD) and glutathione (GSH) decreased. In contrast, after pretreatment with fucoidan, the expression levels of inflammatory factors decreased; the phosphorylation levels of TrkB, ERK1/2, and Akt increased; the MDA level decreased; and SOD and GSH levels increased. Thus, fucoidan alleviated POI-induced impairment of rat intestinal motility through anti-inflammatory and antioxidant effects possibly associated with the TrkB/ERK1/2 and Akt signalling pathways.
Collapse
Affiliation(s)
- Baoguo He
- Department of Gastroenterology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Zhenming Zhu
- Department of Gastroenterology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Zibin Tian
- Department of Gastroenterology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Dandan Wang
- Department of Clinical Nutrition, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Yijing Li
- Department of Clinical Nutrition, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Xiao Luan
- Biomedical Center of Qingdao University, Qingdao, Shandong, 266000, China.
| | - Li Ma
- Department of Clinical Nutrition, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China.
| |
Collapse
|
3
|
Wang Z, Stakenborg N, Boeckxstaens G. Postoperative ileus-Immune mechanisms and potential therapeutic interventions. Neurogastroenterol Motil 2024:e14951. [PMID: 39462772 DOI: 10.1111/nmo.14951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 09/23/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Postoperative ileus (POI) is a condition marked by a temporary suppression of gastrointestinal motility following abdominal surgery. The mechanism of POI encompasses various factors and is characterized by two phases: the early neurogenic phase involving both adrenergic and non-adrenergic neural pathways; the later immune-mediated phase is characterized by a sterile inflammatory response that lasts several days. Activation of muscularis macrophages triggers a sterile inflammatory process that results in dysfunction of the enteric nervous system (ENS) and a reversible inhibition of gastrointestinal motility. PURPOSE In this minireview, recent insights in the pathophysiological mechanisms underlying POI and potential new therapeutic strategies are described.
Collapse
Affiliation(s)
- Zheng Wang
- Center of Intestinal Neuro-Immune Interactions, Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven-University of Leuven, Leuven, Belgium
| | - Nathalie Stakenborg
- Center of Intestinal Neuro-Immune Interactions, Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven-University of Leuven, Leuven, Belgium
| | - Guy Boeckxstaens
- Center of Intestinal Neuro-Immune Interactions, Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven-University of Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Kong Q, Chen LM, Liu CY, Li W, Yin PH. The effect of acupuncture on gastrointestinal recovery after abdominal surgery: a narrative review from clinical trials. Int J Surg 2024; 110:5713-5721. [PMID: 38759698 PMCID: PMC11392097 DOI: 10.1097/js9.0000000000001641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
Abdominal surgery is a critical surgery, with more and more attention being paid to postoperative life quality and associated complications in recent years. Among these complications, postoperative gastrointestinal dysfunction is the most common complication of abdominal surgery. Acupuncture therapy is a treatment approach based on the Traditional Chinese Medicine theory, and its feasibility in aiding gastrointestinal recovery after abdominal surgery is supported by both Traditional Chinese Medicine theory and animal experiments. A lot of clinical research has been conducted to evaluate its efficacy, albeit with limitations, and at preliminary stages. Moreover, intervention timing, acupoint selection, and patient benefits should also be considered in clinical practices. This article summarizes the progress of clinical research on acupuncture therapy in gastrointestinal recovery after abdominal surgery and discusses related issues and operations, with the aim to provide new insights and prospects for the incorporation of acupuncture into the Enhanced Recovery After Surgery protocol.
Collapse
Affiliation(s)
- Qi Kong
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Interventional Cancer Institute of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li-Ming Chen
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chu-Yu Liu
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Li
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Interventional Cancer Institute of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pei-Hao Yin
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Interventional Cancer Institute of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Duan WQ, Cai MC, Ma QQ, Huang P, Zhang JH, Wei TF, Shang D, Leng AJ, Qu JL. Exploring the chemical components of Kuanchang-Shu granule and its protective effects of postoperative ileus in rats by regulating AKT/HSP90AA1/eNOS pathway. Chin Med 2024; 19:29. [PMID: 38383512 PMCID: PMC10880223 DOI: 10.1186/s13020-024-00892-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/21/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Postoperative ileus (POI) is a common obstruction of intestinal content passage caused by almost all abdominal operations that seriously strokes the quality of life of patients. Kuanchang-Shu granule (KCSG), a classic modified prescription based on "Da-Cheng-Qi Decoction", has obtained satisfactory efficacy in the clinical therapeutics of POI. However, its material basis and holistic molecular mechanism against POI have not been revealed. METHODS The chemical ingredients of KCSG were first characterized by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS). Subsequently, an integration strategy of the network pharmacology and molecular docking based on above identified ingredients was performed to unveil the potential targets involved in the treatment of KCSG on POI. Finally, intestinal manipulation induced rat POI model was constructed to verify the efficacy and predicted mechanism of KCSG against POI. RESULTS In total, 246 ingredients mainly including organic acids, flavonoids, quinones, alkaloids, terpenoids, phenylpropanoids and phenols were identified. 41 essential ingredients, 24 crucial targets as well as 15 relevant signaling pathways were acquired based on network pharmacology analysis. Pharmacodynamic research showed that KCSG treatment could protect intestinal histological damage, promote the recovery of measurement of gastrointestinal transit disorder and inhibit the secretion of myeloperoxidase in the distal ileum tissues. The up-regulated expression of p-AKT and down-regulated expression of p-eNOS and HSP9OAA1 predicted by molecular docking and validated by western blotting showed that AKT/eNOS/HSP90AA1 pathway may be one of the crucial mechanisms that mediates the protective effect of KCSG.
Collapse
Affiliation(s)
- Wen-Qian Duan
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian, 116044, China
| | - Ming-Chen Cai
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China
| | - Qi-Qi Ma
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China
| | - Peng Huang
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian, 116044, China
| | - Jia-Hui Zhang
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian, 116044, China
| | - Tian-Fu Wei
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian, 116044, China
| | - Dong Shang
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian, 116044, China
| | - Ai-Jing Leng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China.
| | - Jia-Lin Qu
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China.
- Institute (College) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian, 116044, China.
| |
Collapse
|
6
|
Sun A, Hu A, Lin J, Wang L, Xie C, Shi Y, Hong Q, Zhao G. Involvement of iNOS-induced reactive enteric glia cells in gastrointestinal motility disorders of postoperative Ileus mice. J Chem Neuroanat 2023; 133:102312. [PMID: 37459999 DOI: 10.1016/j.jchemneu.2023.102312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/02/2023] [Accepted: 07/14/2023] [Indexed: 09/05/2023]
Abstract
Postoperative ileus (POI) is the cessation or reduction of gastrointestinal (GI) motility after surgery. Reactive enteric glial cells (EGCs) are critical for maintaining bowel function. However, the triggering mechanisms and downstream effects of reactive EGCs in POI were poorly understood. The goal of this current study was to investigate whether the inducible nitric oxide synthase (iNOS)-driven reactive EGCs participated in GI motility disorders and mechanisms underlying altered GI motility in POI. Intestinal manipulation (IM)-induced POI mice and iNOS-/- mice were used in the study. Longitudinal muscle and myenteric plexuses (LMMPs) from the distal small intestine were stained by immunofluorescence. Our results found that the GI motility disorders occurred in the IM-induced POI mice, and reactive EGCs were observed in LMMPs. Glial metabolic inhibitor gliotoxin fluorocitrate (FC) treatment or iNOS gene knockout attenuated GI motility dysfunction. In addition, we also found that FC treatment or iNOS gene knockout significantly inhibited the fluorescence intensity macrophage colony-stimulating factor (M-CSF), which reduced M2 phenotype macrophages activation in LMMPs of IM-induced POI mice. Our findings demonstrated that iNOS-driven reactive EGCs played a key role and were tightly linked to the MMs homeostasis in the POI mice. EGCs are emerging as a new frontier in neurogastroenterology and a potential therapeutic target.
Collapse
Affiliation(s)
- Ailing Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510000, China
| | - An Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510000, China
| | - Jialing Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510000, China
| | - Linan Wang
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510000, China
| | - Chuangbo Xie
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510000, China
| | - Yongyong Shi
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510000, China.
| | - Qingxiong Hong
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510000, China.
| | - Gaofeng Zhao
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510000, China.
| |
Collapse
|
7
|
Alkan S, Cakir M, Sentiurk M, Varman A, Duyan AG. The efficacy and results of medical treatment in postoperative ileus. Niger J Clin Pract 2023; 26:497-501. [PMID: 37203116 DOI: 10.4103/njcp.njcp_618_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Background Postoperative paralytic ileus refers to the disruption of the normal coordinated propulsive motor activity of the gastrointestinal system following surgery. Surgery causes inflammation in the muscle walls of organs with an intestinal lumen that, in turn, leads to a decrease in intestinal motility. Aim The aim of this study was to investigate the efficacy of gastrografin, neostigmine, and their combined administration in patients diagnosed with paralytic ileus in the postoperative period. Patients and Methods One-hundred twelve patients were included from January 2017 and November 2019. The retrospective study is involving prolonged postoperative ileus cases following colorectal surgery. The effect of gastrografin, neostigmine, and gastrografin neostigmine combination was compared retrospectively in the treatment of prolonged ileus after surgery. Results The study covered 112 patients. Gastrografin was administered to 63 patients; neostigmine was administered to 29, while 20 patients received the combination of the two. Data pertaining to the comparison of the two groups revealed that patients in the gastrografin group were discharged earlier than those in the neostigmine group. Further, patients in the combined group had earlier gas and/or stool discharge and were also discharged from the hospital earlier than those in the neostigmine group. Conclusion Gastrografin and combined use of gastrografin and neostigmine are effective and viable methods for postoperative ileus cases. Gastrografin can safely be used in patients with anastomoses.
Collapse
Affiliation(s)
- S Alkan
- Department of General Surgery, Necmettin Erbakan University, Meram Medical Faculty, Turkey
| | - M Cakir
- Department of General Surgery, Necmettin Erbakan University, Meram Medical Faculty, Turkey
| | - M Sentiurk
- Department of General Surgery, Necmettin Erbakan University, Meram Medical Faculty, Turkey
| | - A Varman
- Department of General Surgery, Necmettin Erbakan University, Meram Medical Faculty, Turkey
| | - A G Duyan
- Department of General Surgery, Necmettin Erbakan University, Meram Medical Faculty, Turkey
| |
Collapse
|
8
|
Zou X, Wang L, Xiao L, Wang S, Zhang L. Gut microbes in cerebrovascular diseases: Gut flora imbalance, potential impact mechanisms and promising treatment strategies. Front Immunol 2022; 13:975921. [PMID: 36389714 PMCID: PMC9659965 DOI: 10.3389/fimmu.2022.975921] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/12/2022] [Indexed: 07/28/2023] Open
Abstract
The high morbidity, mortality, and disability rates associated with cerebrovascular disease (CeVD) pose a severe danger to human health. Gut bacteria significantly affect the onset, progression, and prognosis of CeVD. Gut microbes play a critical role in gut-brain interactions, and the gut-brain axis is essential for communication in CeVD. The reflection of changes in the gut and brain caused by gut bacteria makes it possible to investigate early warning biomarkers and potential treatment targets. We primarily discussed the following three levels of brain-gut interactions in a systematic review of the connections between gut microbiota and several cerebrovascular conditions, including ischemic stroke, intracerebral hemorrhage, intracranial aneurysm, cerebral small vessel disease, and cerebral cavernous hemangioma. First, we studied the gut microbes in conjunction with CeVD and examined alterations in the core microbiota. This enabled us to identify the focus of gut microbes and determine the focus for CeVD prevention and treatment. Second, we discussed the pathological mechanisms underlying the involvement of gut microbes in CeVD occurrence and development, including immune-mediated inflammatory responses, variations in intestinal barrier function, and reciprocal effects of microbial metabolites. Finally, based on the aforementioned proven mechanisms, we assessed the effectiveness and potential applications of the current therapies, such as dietary intervention, fecal bacterial transplantation, traditional Chinese medicine, and antibiotic therapy.
Collapse
Affiliation(s)
- Xuelun Zou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Leiyun Wang
- Department of Pharmacy, Wuhan First Hospital, Wuhan, China
| | - Linxiao Xiao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sai Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Le Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Multi-Modal Monitoring Technology for Severe Cerebrovascular Disease of Human Engineering Research Center, Changsha, Hunan, China
| |
Collapse
|
9
|
Hussain Z, Park H. Inflammation and Impaired Gut Physiology in Post-operative Ileus: Mechanisms and the Treatment Options. J Neurogastroenterol Motil 2022; 28:517-530. [PMID: 36250359 PMCID: PMC9577567 DOI: 10.5056/jnm22100] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/08/2022] [Accepted: 08/31/2022] [Indexed: 11/20/2022] Open
Abstract
Post-operative ileus (POI) is the transient cessation of coordinated gastrointestinal motility after abdominal surgical intervention. It decreases quality of life, prolongs length of hospital stay, and increases socioeconomic costs. The mechanism of POI is complex and multifactorial, and has been broadly categorized into neurogenic and inflammatory phase. Neurogenic phase mediated release of corticotropin-releasing factor (CRF) plays a central role in neuroinflammation, and affects both central autonomic response as well hypothalamic-pituitary-adrenal (HPA) axis. HPA-stress axis associated cortisol release adversely affects gut microbiota and permeability. Peripheral CRF (pCRF) is a key player in stress induced gastric emptying and colonic transit. It functions as a local effector and interacts with the CRF receptors on the mast cell to release chemical mediators of inflammation. Mast cells proteases disrupt epithelial barrier via protease activated receptor-2 (PAR-2). PAR-2 facilitates cytoskeleton contraction to reorient tight junction proteins such as occludin, claudins, junctional adhesion molecule, and zonula occludens-1 to open epithelial barrier junctions. Barrier opening affects the selectivity, and hence permeation of luminal antigens and solutes in the gastrointestinal tract. Translocation of luminal antigens perturbs mucosal immune system to further exacerbate inflammation. Stress induced dysbiosis and decrease in production of short chain fatty acids add to the inflammatory response and barrier disintegration. This review discusses potential mechanisms and factors involved in the pathophysiology of POI with special reference to inflammation and interlinked events such as epithelial barrier dysfunction and dysbiosis. Based on this review, we recommend CRF, mast cells, macrophages, and microbiota could be targeted concurrently for efficient POI management.
Collapse
Affiliation(s)
- Zahid Hussain
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hyojin Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
10
|
KIMURA H, YAMAZAKI T, MIHARA T, KAJI N, KISHI K, HORI M. Purinergic P2X7 receptor antagonist ameliorates intestinal inflammation in postoperative ileus. J Vet Med Sci 2022; 84:610-617. [PMID: 35249909 PMCID: PMC9096048 DOI: 10.1292/jvms.22-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/22/2022] [Indexed: 11/22/2022] Open
Abstract
Postoperative ileus (POI) is a postsurgical gastrointestinal motility dysfunction caused by mechanical stress to the intestine during abdominal surgery. POI leads to nausea and vomiting reduced patient quality of life, as well as high medical costs and extended hospitalization. Intestinal inflammation caused by macrophages and neutrophils is thought to be important in the mechanism of POI. Surgery-associated tissue injury and inflammation induce the release of adenosine triphosphate (ATP) from injured cells. Released ATP binds the purinergic P2X7 receptor (P2X7R) expressed on inflammatory cells, inducing the secretion of inflammatory mediators. P2X7R antagonists are thought to be important mediators of the first step in the inflammation process, and studies in chemically induced colitis models confirmed that P2X7R antagonists exhibit anti-inflammatory effects. Therefore, we hypothesized that P2X7R plays an important role in POI. POI models were generated from C57BL/6J mice. Mice were treated with P2X7R antagonist A438079 (34 mg/kg) 30 min before and 2 hr after intestinal manipulation (IM). Inflammatory cell infiltration and gastrointestinal transit were measured. A438079 ameliorated macrophage and neutrophil infiltration in the POI model. Impaired intestinal transit improved following A438079 treatment. P2X7R was expressed on both infiltrating and resident macrophages in the inflamed ileal muscle layer. The P2X7R antagonist A438079 exhibits anti-inflammatory effects via P2X7R expressed on macrophages and therefore could be a target in the treatment of POI.
Collapse
Affiliation(s)
- Hitomi KIMURA
- Department of Veterinary Pharmacology, Graduate School of
Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takako YAMAZAKI
- Department of Veterinary Pharmacology, Graduate School of
Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Taiki MIHARA
- Department of Veterinary Pharmacology, Graduate School of
Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Noriyuki KAJI
- Department of Pharmacology, School of Veterinary Medicine,
Azabu University, Kanagawa, Japan
| | - Kazuhisa KISHI
- Department of Veterinary Pharmacology, Graduate School of
Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masatoshi HORI
- Department of Veterinary Pharmacology, Graduate School of
Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Fabulas F, Paisant P, Dinomais M, Mucci S, Casa C, Le Naoures P, Hamel JF, Perrot J, Venara A. Pre-habilitation before colorectal cancer surgery could improve postoperative gastrointestinal function recovery: a case-matched study. Langenbecks Arch Surg 2022; 407:1595-1603. [PMID: 35260942 DOI: 10.1007/s00423-022-02487-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE While its effect is controverted, multimodal pre-habilitation could be used to improve the postoperative course following colorectal cancer surgery. However, by increasing lean body mass, pre-habilitation could reduce the time needed to recover gastrointestinal (GI) functions. The aim was to assess the impact of pre-habilitation before colorectal cancer surgery on postoperative GI motility recovery. METHODS This is a matched retrospective study based on a prospective database including patients undergoing colorectal surgery without pre-habilitation (NPH) (2016-2018) and with pre-habilitation (PH group) (2018-2019). The main outcome measure was the time to GI-3 recovery (tolerance to solid food and flatus and/or stools). RESULTS One hundred thirteen patients were included, 37 underwent pre-habilitation (32.7%). The patient's age, the surgical procedure, the surgical access, the rate of synchronous metastasis, the rate of preoperative chemoradiotherapy, and the rate of stoma were more important in the PH group. Conversely, the rate of patients with an ASA score of > 2 was higher in the NPH group. By matching patients according to age, gender and surgical procedure, 84 patients were compared (61 in the NPH group and 23 in the PH group). The mean of GI-3 recovery was significantly lower in the PH group. The other endpoints were not significantly different but time to GI function recovery and medical morbidity tended to be higher in the NPH group. Compliance with the enhanced recovery program was significantly higher in the PH group. CONCLUSION Pre-habilitation before colorectal cancer surgery reduced time to GI function recovery and may increase compliance with the enhanced recovery program.
Collapse
Affiliation(s)
- F Fabulas
- Department of Visceral Surgery, CHU Angers, 4 rue Larrey, 49933 ANGERS Cedex 9, Angers, France.,Department of Medicine, Faculty of Health of Angers, Angers, France
| | | | - M Dinomais
- Department of Medicine, Faculty of Health of Angers, Angers, France.,CRRRF, Angers, France
| | - S Mucci
- Department of Visceral Surgery, CHU Angers, 4 rue Larrey, 49933 ANGERS Cedex 9, Angers, France
| | - C Casa
- Department of Visceral Surgery, CHU Angers, 4 rue Larrey, 49933 ANGERS Cedex 9, Angers, France
| | - P Le Naoures
- Department of Visceral Surgery, CHU Angers, 4 rue Larrey, 49933 ANGERS Cedex 9, Angers, France
| | - J F Hamel
- Department of Medicine, Faculty of Health of Angers, Angers, France.,Department of Biostatistics, CHU Angers, La Maison de la Recherche4 rue Larrey, 49933 ANGERS Cedex 9, Angers, France
| | - J Perrot
- Department of Medicine, Faculty of Health of Angers, Angers, France.,Department of Biostatistics, CHU Angers, La Maison de la Recherche4 rue Larrey, 49933 ANGERS Cedex 9, Angers, France
| | - Aurélien Venara
- Department of Visceral Surgery, CHU Angers, 4 rue Larrey, 49933 ANGERS Cedex 9, Angers, France. .,Department of Medicine, Faculty of Health of Angers, Angers, France. .,HIFIH, UPRES, Angers, France.
| |
Collapse
|
12
|
Brandlhuber M, Benhaqi P, Brandlhuber B, Koliogiannis V, Kasparek MS, Mueller MH, Kreis ME. The role of vagal innervation on the early development of postoperative ileus in mice. Neurogastroenterol Motil 2022; 34:e14308. [PMID: 34962331 DOI: 10.1111/nmo.14308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/30/2021] [Accepted: 10/27/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Postoperative ileus (POI) involves an intestinal inflammatory response that is modulated by afferent and efferent vagal activation. We aimed to identify the potential influence of the vagus nerve on POI by tracking central vagal activation and its role for peripheral inflammatory changes during the early hours after surgery. METHODS C57BL6 mice were vagotomized (V) 3-4 days prior to experiments, while control animals received sham vagotomy (SV). Subgroups underwent either laparotomy (sham operation; S-POI) or laparotomy followed by standardized small bowel manipulation to induce postoperative ileus (POI). Three hours and 9 h later, respectively, a jejunal segment was harvested and infiltration of inflammatory cells in intestinal muscularis was evaluated by fluorescein isothiocyanate (FITC) avidin and myeloperoxidase (MPO) staining. Moreover, the brain stem was harvested, and central nervous activation was investigated by Fos immunochemistry in both the nucleus of the solitary tract (NTS) and the area postrema (AP). Data are presented as mean ± SEM, and a p < 0.05 was considered statistically significant. KEY RESULTS Three hour experiments revealed no significant differences between all experimental groups, except MPO staining: 3 h after abdominal surgery, there were significantly more MPO-positive cells in vagotomized S-POI animals compared to sham-vagotomized S-POI animals (26.7 ± 7.1 vs. 5.1 ± 2.4, p < 0.01). Nine hour postoperatively intramuscular mast cells (IMMC) were significantly decreased in the intestinal muscularis of V/POI animals compared to SV/POI animals (1.5 ± 0.3 vs. 5.9 ± 0.2, p < 0.05), while MPO-positive cells were increased in V/POI animals compared to SV/POI animals (713.2 ± 99.4 vs. 46.9 ± 5.8, p < 0.05). There were less Fos-positive cells in the NTS of V/POI animals compared to SV/POI animals (64.7 ± 7.8 vs. 132.8 ± 23.9, p < 0.05) and more Fos-positive cells in the AP of V/POI animals compared to SV/POI animals 9 h postoperatively (38.0 ± 2.0 vs. 13.7 ± 0.9, p < 0.001). CONCLUSIONS AND INTERFERENCES Afferent nerve signaling to the central nervous system during the development of early POI seems to be mediated mainly via the vagus nerve and to a lesser degree via systemic circulation. During the early hours of POI, the intestinal immune response may be attenuated by vagal modulation, suggesting interactions between the central nervous system and the intestine.
Collapse
Affiliation(s)
- Martina Brandlhuber
- Department of Radiology, Grosshadern Clinic, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Petra Benhaqi
- Center for Human Genetics and Laboratory Diagnostics, Medical Labs Martinsried, Martinsried, Germany
| | | | - Vanessa Koliogiannis
- Department of Radiology, Grosshadern Clinic, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Mario H Mueller
- Department of Surgery and Minimal-Invasive Surgery, Vivantes Klinikum Neukölln, Berlin, Germany
| | - Martin E Kreis
- Department of General and Visceral Surgery, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
13
|
Buscail E, Deraison C. Postoperative Ileus: a Pharmacological Perspective. Br J Pharmacol 2022; 179:3283-3305. [PMID: 35048360 DOI: 10.1111/bph.15800] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 11/29/2022] Open
Abstract
Post-operative ileus (POI) is a frequent complication after abdominal surgery. The consequences of POI can be potentially serious such as bronchial inhalation or acute functional renal failure. Numerous advances in peri-operative management, particularly early rehabilitation, have made it possible to decrease POI. Despite this, the rate of prolonged POI ileus remains high and can be as high as 25% of patients in colorectal surgery. From a pathophysiological point of view, POI has two phases, an early neurological phase and a later inflammatory phase, to which we could add a "pharmacological" phase during which analgesic drugs, particularly opiates, play a central role. The aim of this review article is to describe the phases of the pathophysiology of POI, to analyse the pharmacological treatments currently available through published clinical trials and finally to discuss the different research areas for potential pharmacological targets.
Collapse
Affiliation(s)
- Etienne Buscail
- IRSD, INSERM, INRAE, ENVT, University of Toulouse, CHU Purpan (University Hospital Centre), Toulouse, France.,Department of digestive surgery, colorectal surgery unit, Toulouse University Hospital, Toulouse, France
| | - Céline Deraison
- IRSD, INSERM, INRAE, ENVT, University of Toulouse, CHU Purpan (University Hospital Centre), Toulouse, France
| |
Collapse
|
14
|
Müller MH. Mechanische Obstruktion, paralytischer Ileus, postoperativer Ileus, Ileuskrankheit. SPRINGER REFERENCE MEDIZIN 2022:1-10. [DOI: 10.1007/978-3-662-61724-3_59-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 09/02/2023]
|
15
|
Endo M, Oikawa T, Tonooka M, Hanawa T, Odaguchi H, Hori M. Hangekobokuto, a traditional Japanese herbal medicine, ameliorates postoperative ileus through its anti-inflammatory action. J Smooth Muscle Res 2022; 58:78-88. [PMID: 36216552 PMCID: PMC9537061 DOI: 10.1540/jsmr.58.78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Background/Aims: Gastroprokinetic agents are used for patients with
postoperative ileus (POI), and the Japanese traditional herbal medicine daikenchuto (DKT)
is one such agent used in the clinical setting. POI is caused by inflammation. DKT and
rikkunshito have anti-inflammatory abilities in addition to their gastroprokinetic
effects. The efficacy of Kampo formulations, including hangekobokuto (HKT), in patients
with POI has been reported recently. Several authors have described the efficacy of
honokiol, the primary component of Magnoliae Cortex, in HKT in mouse
models of POI. We therefore analyzed the effect of HKT on POI model mice to determine the
similarities in the mechanism of action between HKT and DKT. Methods: HKT was administered orally to each mouse before and after
intestinal manipulation was performed on the distal ileum. The gastrointestinal transit
in vivo, leukocyte infiltration, and levels of inflammatory mediators,
such as cytokines and chemokines, were analyzed. Results: HKT significantly inhibited the infiltration of neutrophils and
macrophages and led to the recovery of delayed intestinal transit. In addition, it
significantly decreased inducible nitric oxide synthase (iNOS) as well as honokiol levels,
suggesting anti-inflammatory activity. However, it did not inhibit the increase in levels
of interleukin (IL)-1beta and IL-6, which are related to iNOS induction. In contrast, HKT
increased levels of nerve growth factor (NGF) and suppressed those of nuclear factor-κB
(NFκB), which are related to iNOS induction, suggesting the possibility of a neuronal
anti-inflammatory mechanism. Conclusions: HKT exerted a POI-relieving effect similar to DKT in a murine
POI model, and findings suggest that it may exert its anti-inflammatory activity through
NGF.
Collapse
Affiliation(s)
- Mari Endo
- Department of Clinical Research, Oriental Medicine Research
Center, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8642, Japan
| | - Tetsuro Oikawa
- Center for Kampo Medicine, Tokyo Medical University Hospital,
6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Miki Tonooka
- Graduate School of Infection Control Sciences, Kitasato
University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8642, Japan
| | - Toshihiko Hanawa
- Department of Clinical Research, Oriental Medicine Research
Center, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8642, Japan
| | - Hiroshi Odaguchi
- Department of Clinical Research, Oriental Medicine Research
Center, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8642, Japan,Oriental Medicine, Doctoral Program of Medical Science,
Kitasato University Graduate School, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8642,
Japan
| | - Masatoshi Hori
- Department of Veterinary Pharmacology, Graduate School of
Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo
113-8657, Japan
| |
Collapse
|
16
|
Kim GM, Sohn HJ, Choi WS, Sohn UD. Improved motility in the gastrointestinal tract of a postoperative ileus rat model with ilaprazole. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:507-515. [PMID: 34697261 PMCID: PMC8552821 DOI: 10.4196/kjpp.2021.25.6.507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/06/2021] [Accepted: 08/02/2021] [Indexed: 11/15/2022]
Abstract
Postoperative ileus (POI), a symptom that occurs after abdominal surgery, reduces gastrointestinal motility. Although its mechanism is unclear, POI symptoms are known to be caused by inflammation 6 to 72 h after surgery. As proton pump inhibitors exhibit protective effect against acute inflammation, the purpose of this study was to determine the effect of ilaprazole on a POI rat model. POI was induced in rats by abdominal surgery. Rats were divided into six groups: control: normal rat + 0.5% CMC-Na, vehicle: POI rat + 0.5% CMC-Na, mosapride: POI rat + mosapride 2 mg/kg, ilaprazole 1 mg/kg: POI rat + ilaprazole 1 mg/kg, ilaprazole 3 mg/kg: POI rat + ilaprazole 3 mg/kg, and ilaprazole 10 mg/kg: POI rat + ilaprazole 10 mg/kg. Gastrointestinal motility was confirmed by measuring gastric emptying (GE) and gastrointestinal transit (GIT). In the small intestine, inflammation was confirmed by measuring TNF-α and IL-1β; oxidative stress was confirmed by SOD, GSH, and MDA levels; and histological changes were observed by H&E staining. Based on the findings, GE and GIT were decreased in the vehicle group and improved in the ilaprazole 10 mg/kg group. In the ilaprazole 10 mg/kg group, TNF-α and IL-1β levels were decreased, SOD and GSH levels were increased, and MDA levels were decreased. Histological damage was also reduced in the ilaprazole-treated groups. These findings suggest that ilaprazole prevents the decrease in gastrointestinal motility, a major symptom of postoperative ileus, and reduces inflammation and oxidative stress.
Collapse
Affiliation(s)
- Geon Min Kim
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Hee Ju Sohn
- Department of Surgery, Chung-Ang University Hospital, Chung-Ang University, Seoul 06973, Korea
| | - Won Seok Choi
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Uy Dong Sohn
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
17
|
Park JH. Are Peri-operative Inflammatory Markers Useful in Predicting Post-operative Ileus? J Neurogastroenterol Motil 2021; 27:451-452. [PMID: 34642266 PMCID: PMC8521474 DOI: 10.5056/jnm21174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 09/17/2021] [Indexed: 12/05/2022] Open
Affiliation(s)
- Jung Ho Park
- Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University College of Medicine, Seoul, Korea
| |
Collapse
|
18
|
Hellstrom EA, Ziegler AL, Blikslager AT. Postoperative Ileus: Comparative Pathophysiology and Future Therapies. Front Vet Sci 2021; 8:714800. [PMID: 34589533 PMCID: PMC8473635 DOI: 10.3389/fvets.2021.714800] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/19/2021] [Indexed: 12/11/2022] Open
Abstract
Postoperative ileus (POI), a decrease in gastrointestinal motility after surgery, is an important problem facing human and veterinary patients. 37.5% of horses that develop POI following small intestinal (SI) resection will not survive to discharge. The two major components of POI pathophysiology are a neurogenic phase which is then propagated by an inflammatory phase. Perioperative care has been implicated, namely the use of opioid therapy, inappropriate fluid therapy and electrolyte imbalances. Current therapy for POI variably includes an early return to feeding to induce physiological motility, reducing the inflammatory response with agents such as non-steroidal anti-inflammatory drugs (NSAIDs), and use of prokinetic therapy such as lidocaine. However, optimal management of POI remains controversial. Further understanding of the roles of the gastrointestinal microbiota, intestinal barrier function, the post-surgical inflammatory response, as well as enteric glial cells, a component of the enteric nervous system, in modulating postoperative gastrointestinal motility and the pathogenesis of POI may provide future targets for prevention and/or therapy of POI.
Collapse
Affiliation(s)
| | | | - Anthony T. Blikslager
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
19
|
Dora D, Ferenczi S, Stavely R, Toth VE, Varga ZV, Kovacs T, Bodi I, Hotta R, Kovacs KJ, Goldstein AM, Nagy N. Evidence of a Myenteric Plexus Barrier and Its Macrophage-Dependent Degradation During Murine Colitis: Implications in Enteric Neuroinflammation. Cell Mol Gastroenterol Hepatol 2021; 12:1617-1641. [PMID: 34246810 PMCID: PMC8551790 DOI: 10.1016/j.jcmgh.2021.07.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Neuroinflammation in the gut is associated with many gastrointestinal (GI) diseases, including inflammatory bowel disease. In the brain, neuroinflammatory conditions are associated with blood-brain barrier (BBB) disruption and subsequent neuronal injury. We sought to determine whether the enteric nervous system is similarly protected by a physical barrier and whether that barrier is disrupted in colitis. METHODS Confocal and electron microscopy were used to characterize myenteric plexus structure, and FITC-dextran assays were used to assess for presence of a barrier. Colitis was induced with dextran sulfate sodium, with co-administration of liposome-encapsulated clodronate to deplete macrophages. RESULTS We identified a blood-myenteric barrier (BMB) consisting of extracellular matrix proteins (agrin and collagen-4) and glial end-feet, reminiscent of the BBB, surrounded by a collagen-rich periganglionic space. The BMB is impermeable to the passive movement of 4 kDa FITC-dextran particles. A population of macrophages is present within enteric ganglia (intraganglionic macrophages [IGMs]) and exhibits a distinct morphology from muscularis macrophages, with extensive cytoplasmic vacuolization and mitochondrial swelling but without signs of apoptosis. IGMs can penetrate the BMB in physiological conditions and establish direct contact with neurons and glia. Dextran sulfate sodium-induced colitis leads to BMB disruption, loss of its barrier integrity, and increased numbers of IGMs in a macrophage-dependent process. CONCLUSIONS In intestinal inflammation, macrophage-mediated degradation of the BMB disrupts its physiological barrier function, eliminates the separation of the intra- and extra-ganglionic compartments, and allows inflammatory stimuli to access the myenteric plexus. This suggests a potential mechanism for the onset of neuroinflammation in colitis and other GI pathologies with acquired enteric neuronal dysfunction.
Collapse
Affiliation(s)
- David Dora
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Szilamer Ferenczi
- Institute of Experimental Medicine, Laboratory of Molecular Neuroendocrinology, Budapest, Hungary
| | - Rhian Stavely
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Viktoria E. Toth
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary,HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary
| | - Zoltan V. Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary,HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary
| | - Tamas Kovacs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Ildiko Bodi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Krisztina J. Kovacs
- Institute of Experimental Medicine, Laboratory of Molecular Neuroendocrinology, Budapest, Hungary
| | - Allan M. Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts,Allan M. Goldstein, MD, Massachusetts General Hospital, 55 Fruit Street, WRN 1151, Boston, Massachusetts 02114. fax: (617) 726-2167.
| | - Nandor Nagy
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary,Correspondence Address correspondence to: Nandor Nagy, PhD, Semmelweis University, Tuzolto st. 58, Budapest 1094, Hungary. fax: (36) 1-2153064.
| |
Collapse
|
20
|
Lisowski ZM, Lefevre L, Mair TS, Clark EL, Hudson NPH, Hume DA, Pirie RS. Use of quantitative real-time PCR to determine the local inflammatory response in the intestinal mucosa and muscularis of horses undergoing small intestinal resection. Equine Vet J 2021; 54:52-62. [PMID: 33524178 DOI: 10.1111/evj.13429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 11/30/2020] [Accepted: 01/22/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Studies in rodents and humans have demonstrated that intestinal manipulation or surgical trauma initiates an inflammatory response in the intestine which results in leucocyte recruitment to the muscularis externa causing smooth muscle dysfunction. OBJECTIVES To examine the intestinal inflammatory response in horses undergoing colic surgery by measuring relative differential gene expression in intestinal tissues harvested from surgical colic cases and control horses. STUDY DESIGN Prospective case-control study. METHODS Mucosa and muscularis externa were harvested from healthy margins of resected small intestine from horses undergoing colic surgery (n = 12) and from intestine derived from control horses euthanised for reasons unrelated to the gastrointestinal tract (n = 6). Tissue was analysed for genes encoding proteins involved in the inflammatory response: interleukin (IL) 6 and IL1β, C-C motif chemokine ligand 2 (CCL2), tumour necrosis factor (TNF), prostaglandin-endoperoxide synthase 2 (PTGS2) and indoleamine 2,3-dioxygenase (IDO1). Relative expression of these genes was compared between the two groups. Further analysis was applied to the colic cases to determine whether the magnitude of relative gene expression was associated with the subsequent development of post-operative reflux (POR). RESULTS Samples obtained from colic cases had increased relative expression of IL1β, IL6, CCL2 and TNF in the mucosa and muscularis externa when compared with the control group. There was no difference in relative gene expression between proximal and distal resection margins and no association between duration of colic, age, resection length, short-term survival and the presence of pre-operative reflux and the relative expression of the genes of interest. Horses that developed POR had significantly greater relative gene expression of TNF in the mucosa compared with horses that did not develop POR. MAIN LIMITATIONS Small sample size per group and variation within the colic cases. CONCLUSIONS These preliminary data support an upregulation of inflammatory genes in the intestine of horses undergoing colic surgery.
Collapse
Affiliation(s)
- Zofia M Lisowski
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, UK
| | - Lucas Lefevre
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, UK
| | - Tim S Mair
- The Bell Equine Veterinary Clinic, Maidstone, UK
| | - Emily L Clark
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, UK
| | - Neil P H Hudson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, UK
| | - David A Hume
- Mater Research Institute-University of Queensland, South Brisbane, QLD, Australia
| | - R Scott Pirie
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, UK
| |
Collapse
|
21
|
Pozios I, Seeliger H, Lauscher JC, Stroux A, Weixler B, Kamphues C, Beyer K, Kreis ME, Lehmann KS, Seifarth C. Risk factors for upper and lower type prolonged postoperative ileus following surgery for Crohn's disease. Int J Colorectal Dis 2021; 36:2165-2175. [PMID: 34142229 PMCID: PMC8426236 DOI: 10.1007/s00384-021-03969-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/30/2021] [Indexed: 02/04/2023]
Abstract
PURPOSE Prolonged postoperative ileus (PPOI) is common after bowel resections, especially in Crohn's disease (CD). The pathophysiology of PPOI is not fully understood. PPOI could affect only the upper or lower gastrointestinal (GI) tract. The aim of this study was to assess risk factors for diverse types of PPOI, particularly to differentiate PPOI of upper and lower GI tract. METHODS A retrospective analysis of 163 patients with CD undergoing ileocecal resection from 2015 to 2020 in a single center was performed. PPOI of the upper GI tract was predefined as the presence of vomiting or use of nasogastric tube longer than the third postoperative day. Lower PPOI was predefined as the absence of defecation for more than three days. Independent risk factors were identified by multivariable logistic regression analysis. RESULTS Overall incidence of PPOI was 42.7%. PPOI of the upper GI tract was observed in 30.7% and lower PPOI in 20.9% of patients. Independent risk factors for upper PPOI included older age, surgery by a resident surgeon, hand-sewn anastomosis, prolonged opioid analgesia, and reoperation, while for lower PPOI included BMI ≤ 25 kg/m2, preoperative anemia, and absence of ileostomy. CONCLUSION This study identified different risk factors for upper and lower PPOI after ileocecal resection in patients with CD. A differentiated upper/lower type approach should be considered in future research and clinical practice. High-risk patients for each type of PPOI should be closely monitored, and modifiable risk factors, such as preoperative anemia and opioids, should be avoided if possible.
Collapse
Affiliation(s)
- Ioannis Pozios
- Department of General and Visceral Surgery, Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Hendrik Seeliger
- Department of General and Visceral Surgery, Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Johannes C. Lauscher
- Department of General and Visceral Surgery, Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Andrea Stroux
- Institute of Biometry and Clinical Epidemiology, Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117 Berlin, Germany ,Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Benjamin Weixler
- Department of General and Visceral Surgery, Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Carsten Kamphues
- Department of General and Visceral Surgery, Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Katharina Beyer
- Department of General and Visceral Surgery, Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Martin E. Kreis
- Department of General and Visceral Surgery, Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Kai S. Lehmann
- Department of General and Visceral Surgery, Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Claudia Seifarth
- Department of General and Visceral Surgery, Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| |
Collapse
|
22
|
Sommer NP, Schneider R, Wehner S, Kalff JC, Vilz TO. State-of-the-art colorectal disease: postoperative ileus. Int J Colorectal Dis 2021; 36:2017-2025. [PMID: 33977334 PMCID: PMC8346406 DOI: 10.1007/s00384-021-03939-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/21/2021] [Indexed: 02/04/2023]
Abstract
PURPOSE Postoperative Ileus (POI) remains an important complication for patients after abdominal surgery with an incidence of 10-27% representing an everyday issue for abdominal surgeons. It accounts for patients' discomfort, increased morbidity, prolonged hospital stays, and a high economic burden. This review outlines the current understanding of POI pathophysiology and focuses on preventive treatments that have proven to be effective or at least show promising effects. METHODS Pathophysiology and recommendations for POI treatment are summarized on the basis of a selective literature review. RESULTS While a lot of therapies have been researched over the past decades, many of them failed to prove successful in meta-analyses. To date, there is no evidence-based treatment once POI has manifested. In the era of enhanced recovery after surgery or fast track regimes, a few approaches show a beneficial effect in preventing POI: multimodal, opioid-sparing analgesia with placement of epidural catheters or transverse abdominis plane block; μ-opioid-receptor antagonists; and goal-directed fluid therapy and in general the use of minimally invasive surgery. CONCLUSION The results of different studies are often contradictory, as a concise definition of POI and reliable surrogate endpoints are still absent. These will be needed to advance POI research and provide clinicians with consistent data to improve the treatment strategies.
Collapse
Affiliation(s)
- Nils P. Sommer
- Department of Surgery, University Hospital Bonn, Bonn, Germany
| | | | - Sven Wehner
- Department of Surgery, University Hospital Bonn, Bonn, Germany
| | - Jörg C. Kalff
- Department of Surgery, University Hospital Bonn, Bonn, Germany
| | - Tim O. Vilz
- Department of Surgery, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
23
|
Gan Y, Liang J, Diao W, Zhou X, Mu J, Pang L, Tan F, Zhao X. Lactobacillus plantarum KSFY06 and geniposide counteract montmorillonite-induced constipation in Kunming mice. Food Sci Nutr 2020; 8:5128-5137. [PMID: 32994973 PMCID: PMC7500764 DOI: 10.1002/fsn3.1814] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 12/17/2022] Open
Abstract
Constipation is a common clinical manifestation of digestive system disorders and occurs worldwide. This study investigated the ability of Lactobacillus plantarum KSFY06 (LP-KSFY06) to promote the action of geniposide in preventing montmorillonite-induced constipation in Kunming mice, with the aim of providing a successful solution. The effects of LP-KSFY06 and geniposide on constipation were measured, and the results showed that the protective effect of geniposide on constipation was enhanced by LP-KSFY06 and that the combination resulted in increased weight, moisture content, and particle number of feces. The first black stool defecation time was decreased from 182 min to 87 min, which clearly indicates that defecating difficulty was alleviated in constipated mice. The synergic intervention of LP-KSFY06 and geniposide (LP + G) assisted in maintaining the body weight of constipated mice. The LP + G intervention significantly increased serum levels of motilin (MTL, 167.8 pg/ml), acetylcholinesterase (AChE, 45.3 pg/ml), substance P (SP, 61.0 pg/ml), vasoactive intestinal peptide (VIP, 70.5 pg/ml), endothelin-1 (ET-1, 16.1 pg/ml), and gastrin (73.0 pg/ml) and remarkably decreased somatostatin (SS, 35.2 pg/ml) when compared to those indexes in the LP-KSFY06 group and geniposide group. The LP + G treatment also significantly increased the mRNA expression of cluster of differentiation 117 (c-Kit), stem cell factor (SCF), glial cell-derived neurotrophic factor (GDNF), and remarkably downregulated the expression of inducible nitric oxide synthase (iNOS), transient receptor potential vanilloid-1 (TRPV1), and cyclooxygenase-2 (COX-2). The experimental results showed that the combination treatment has the strongest prevention effect against constipation, and LP-KSFY06 promotes the ability of geniposide to prevent constipation. Therefore, LP-KSFY06 is a potential probiotic strain with the capacity to prevent montmorillonite-induced constipation.
Collapse
Affiliation(s)
- Yi Gan
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Laboratory for Research and Development of Functional FoodChongqing University of EducationChongqingChina
| | - Jie Liang
- Department of PediatricsChongqing Traditional Chinese Medicine HospitalChongqingChina
| | - Wenjing Diao
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Laboratory for Research and Development of Functional FoodChongqing University of EducationChongqingChina
| | - Xianrong Zhou
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Laboratory for Research and Development of Functional FoodChongqing University of EducationChongqingChina
| | - Jianfei Mu
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Laboratory for Research and Development of Functional FoodChongqing University of EducationChongqingChina
| | - Liang Pang
- Department of Oral and Maxillofacial SurgeryThe Affiliated Hospital of StomatologyChongqing Medical UniversityChongqingChina
| | - Fang Tan
- Department of Public HealthOur Lady of Fatima UniversityValenzuelaPhilippines
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Laboratory for Research and Development of Functional FoodChongqing University of EducationChongqingChina
| |
Collapse
|
24
|
Rhubarb-Aconite Decoction (RAD) Drug-Containing Serum Alleviated Endotoxin-Induced Oxidative Stress Injury and Inflammatory Response in Caco-2 Cells In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5834502. [PMID: 32714409 PMCID: PMC7355342 DOI: 10.1155/2020/5834502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/25/2020] [Indexed: 11/17/2022]
Abstract
Rhubarb-Aconite Decoction (RAD), a famous Chinese medicine prescription, has been widely used for treating intestinal injury. However, the effect of RAD on intestinal epithelial cells is unclear. The aim of this study was to investigate the effects of RAD drug-containing serum on the oxidative stress injury and inflammatory response induced by endotoxin (ET) in Caco-2 cells in vitro. Lipid peroxide malondialdehyde (MDA), lactate dehydrogenase (LDH), caspase-11, tumor necrosis factor-α(TNF-α), interleukin-3(IL-3), and cytokeratin (CK)18, adenosine triphosphate (ATP) activity, and intracellular free calcium ion levels were measured. The results showed that ET triggered the activation of caspase-11 and the massive release of TNF-α, increased the inhibitory rate of cell growth, MDA, and LDH expressions in Caco-2 cells. Moreover, RAD drug-containing serum could inhibit caspase-11 activation, decrease the release of TNF-α and IL-3, reduce intracellular free calcium ion, and enhance CK 18 expression and ATP activity. These novel findings demonstrated that ET-induced oxidative stress injury and inflammatory response of Caco-2 cells were improved by RAD drug-containing serum, indicating that RAD may be a good choice for the treatment of intestinal injury.
Collapse
|
25
|
Yang NN, Ye Y, Tian ZX, Ma SM, Zheng Y, Huang J, Yang JW, Shao JK, Liu CZ. Effects of electroacupuncture on the intestinal motility and local inflammation are modulated by acupoint selection and stimulation frequency in postoperative ileus mice. Neurogastroenterol Motil 2020; 32:e13808. [PMID: 32114712 DOI: 10.1111/nmo.13808] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/29/2019] [Accepted: 12/22/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Electroacupuncture (EA) is widely used in various gastrointestinal diseases around the world, including POI. Here, we investigated different therapeutic effects of EA using lower limb and abdomen acupoints. METHODS Intestinal manipulation was performed in 88 mice, and eight mice underwent a sham operation. Forty mice were randomly divided into model group and four EA groups receiving stimulation at ST36 (2, 10, 30, 100 Hz). The most effective frequency was then used in the following experiments. Forty-eight mice were randomly divided into six groups receiving EA treatment at ST37, ST39, ST25, CV4, CV12, and a non-acupuncture point. Gastrointestinal motility and plasma TNF-α, IL-6 were evaluated in all mice. The local immune response and α-smooth muscle actin (α-SMA) expression were assessed by immunofluorescence, ELISA, and HE staining. RESULTS ST36 stimulated with 10 or 30 Hz EA significantly increased the gastrointestinal motility and attenuated peripheral inflammation; however, ST36 stimulated with 2 or 100 Hz did not induce any effect. The therapeutic effects on motility and inflammation of 10 Hz EA in the ST36 group were similar in the ST36, ST37, ST39, or CV4 groups, but when applied to ST25, CV12 or non-acupoint had no significant differences. EA at ST36, ST37, ST39, or CV4 significantly inhibited local MPO activity, immune cells infiltration, and increased α-SMA. CONCLUSIONS EA at lower limb and abdomen acupoints with the same stimulation parameters had different therapeutic effects on postoperative dysmotility and inflammation. Furthermore, EA protected SMC to improve gastrointestinal transit by reducing local inflammation in the intestinal musculature in POI.
Collapse
Affiliation(s)
- Na-Na Yang
- School of Acupuncture-Moxibustion and Tunia, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Ye
- Peking University, Beijing, China
| | - Zhong-Xue Tian
- School of Acupuncture-Moxibustion and Tunia, Beijing University of Chinese Medicine, Beijing, China
| | - Si-Ming Ma
- Department of Acupuncture and Moxibustion, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| | - Yang Zheng
- Department of Acupuncture and Moxibustion, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| | - Jin Huang
- Department of Acupuncture and Moxibustion, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| | - Jing-Wen Yang
- School of Acupuncture-Moxibustion and Tunia, Beijing University of Chinese Medicine, Beijing, China
| | - Jia-Kai Shao
- Department of Acupuncture and Moxibustion, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| | - Cun-Zhi Liu
- School of Acupuncture-Moxibustion and Tunia, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
26
|
Guo J, Xu A, Sun X, Zhao X, Xia Y, Rao H, Zhang Y, Zhang R, Chen L, Zhang T, Li G, Xu H, Xu D. Combined Surgery and Extensive Intraoperative Peritoneal Lavage vs Surgery Alone for Treatment of Locally Advanced Gastric Cancer: The SEIPLUS Randomized Clinical Trial. JAMA Surg 2020; 154:610-616. [PMID: 30916742 DOI: 10.1001/jamasurg.2019.0153] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Importance Peritoneal metastasis is the most frequent pattern of postoperative recurrence in patients with gastric cancer. Extensive intraoperative peritoneal lavage (EIPL) is a new prophylactic strategy for treatment of peritoneal metastasis of locally advanced gastric cancer; however, the safety and efficacy of EIPL is currently unknown. Objective To evaluate short-term outcomes of patients with advanced gastric cancer who received combined surgery and EIPL or surgery alone. Design, Setting, and Participants From March 2016 to November 2017, 662 patients with advanced gastric cancer receiving D2 gastrectomy were enrolled in a large, multicenter, randomized clinical trial from 11 centers across China. In total, 329 patients were randomly assigned to receive surgery alone, and 333 patients were randomly assigned to receive surgery plus EIPL. Clinical characteristics, operative findings, and postoperative short-term outcomes were compared between the 2 groups in the intent-to-treat population. Main Outcomes and Measures Short-term postoperative complications and mortality. Results The present analysis included data from 550 patients, 390 men and 160 women, with a mean (SD) age of 60.8 (10.7) years in the surgery alone group and 60.6 (10.8) in the surgery plus EIPL group. Patients assigned to the surgery plus EIPL group exhibited reduced mortality (0 of 279 patients) compared with those assigned to surgery alone (5 of 271 patients [1.9%]) (difference, 1.9%; 95% CI, 0.3%-3.4%; P = .02). A significant difference in the overall postoperative complication rate was observed between patients receiving surgery alone (46 patients [17.0%]) and those receiving surgery plus EIPL (31 patients [11.1%]) (difference, 5.9%; 95% CI, 0.1%-11.6%; P = .04). Postoperative pain occurred more often following surgery alone (48 patients [17.7%]) than following surgery plus EIPL (30 patients [10.8%]) (difference, 7.0%; 95% CI, 0.8%-13.1%; P = .02). Conclusions and Relevance Inclusion of EIPL can increase the safety of D2 gastrectomy and decrease postoperative short-term complications and wound pain. As a new, safe, and simple procedure, EIPL therapy is easily performed anywhere and does not require any special devices or techniques. Our study suggests that patients with advanced gastric cancer appear to be candidates for the EIPL approach. Trial Registration ClinicalTrials.gov identifier: NCT02745509.
Collapse
Affiliation(s)
- Jing Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Department of Gastric Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Aman Xu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical University, HeFei, Anhui, China
| | - Xiaowei Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Department of Gastric Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xuhui Zhao
- Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, Anhui, China
| | - Yabin Xia
- Department of General Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Huamin Rao
- Department of Abdominal Surgery, Jiangxi Provincial Cancer Hospital, Nanchang, Jiangxi, China
| | - Yaming Zhang
- Department of Surgical Oncology, Anqing Municipal Hospital, Anqing, Anhui, China
| | - Rupeng Zhang
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Tianjin, China
| | - Li Chen
- Department of General Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tao Zhang
- Department of Gastrointestinal Surgery, Yuebei People's Hospital, Shaoguan, Guangdong, China
| | - Gang Li
- Department of General Surgery, Jiangsu Cancer Hospital, Nanjing, Jiangsu, China
| | - Hongtao Xu
- Department of General Surgery, Lishui Municipal Central Hospital, Lishui, Zhejiang, China
| | - Dazhi Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Department of Gastric Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|
27
|
Wuda granule, a traditional Chinese herbal medicine, ameliorates postoperative ileus by anti-inflammatory action. Pathol Res Pract 2020; 216:152605. [PMID: 31974003 DOI: 10.1016/j.prp.2019.152605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/04/2019] [Accepted: 08/18/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Postoperative ileus (POI) is a temporary disturbance in gastrointestinal motility following surgery, and intestinal inflammatory response plays a critical role in the pathogenesis of POI. Wuda granule (WDG), a gastrointestinal prokinetic Chinese herbal medicine, is prescribed to promote recovery of gastrointestinal function after abdominal surgery. However, it has remained unclear whether WDG shows anti-inflammatory effects in POI. In the present study, we investigated the effects of WDG in a rat POI model and attempted to clarify the detailed mechanisms of action. METHOD Experimental POI was induced in adult male SD rats by intestinal manipulation (IM). WDG were orally administered after surgery at the same points (6 h, 12 h, 18 h, 24 h). Histological changes of mesenterium, levels of cytokines, and CD68 and iNOS expression were determined in rats treated or not with WDG. We also investigated the transcriptome profile of rats treated with WDG in a POI model. RESULTS Experimental POI in rats was characterized by a marked intestinal and systemic inflammatory response. WDG significantly inhibited the infiltration of neutrophils and macrophages, reduced the levels of IL-6, and CRP, and inhibited protein expressions of CD68 and iNOS in mesentery. Comparison analysis showed that there are 1432 differentially expressed genes (DEGs) between the POI and CON sample, whereas 331 DEGs between the WDG -treated sample and the POI group. And 16 DEGs were shared by the POI vs CON and WDG vs POI groups, among which 6 hub genes associated with immune system processes were identified and verified. CONCLUSIONS WDG treatment ameliorates the impaired gastrointestinal motility in the rat model of POI through inhibiting the inflammatory response of mesentery.
Collapse
|
28
|
Kimura H, Yoneya Y, Mikawa S, Kaji N, Ito H, Tsuchida Y, Komatsu H, Murata T, Ozaki H, Uchida R, Nishida K, Hori M. A new zinc chelator, IPZ-010 ameliorates postoperative ileus. Biomed Pharmacother 2019; 123:109773. [PMID: 31862476 DOI: 10.1016/j.biopha.2019.109773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 12/26/2022] Open
Abstract
Zinc was discovered to be a novel second messenger in immunoreactive cells. We synthesized a novel free zinc chelator, IPZ-010. Here, we investigated the effects of IPZ-010 in a mouse postoperative ileus model and determined the effects of zinc signal inhibition as a new therapeutic strategy against postoperative ileus. Zinc waves were measured in bone marrow-derived mast cells (BMMCs) loaded with a zinc indicator, Newport green. Degranulation and cytokine expression were measured in BMMCs and bone marrow-derived macrophages (BMDMs). Postoperative ileus model mice were established with intestinal manipulation. Mice were treated with IPZ-010 (30 mg/kg, s.c. or p.o.) 1 h before and 2 h and 4 h after intestinal manipulation. Gastrointestinal transit, inflammatory cell infiltration, and expression of inflammatory mediators were measured. Free zinc waves occurred following antigen stimulation in BMMCs and were blocked by IPZ-010. IPZ-010 inhibited interleukin-6 secretion and degranulation in BMMCs. IPZ-010 inhibited tumor necrosis factor-α mRNA expression in BMMCs stimulated with lipopolysaccharide or adenosine triphosphate, whereas IPZ-010 had no effects on tumor necrosis factor-α mRNA expression in BMDMs stimulated with lipopolysaccharide or adenosine triphosphate. In postoperative ileus model mice, IPZ-010 inhibited leukocyte infiltration and cytokine expression, which ameliorated gastrointestinal transit. Furthermore, ketotifen (1 mg/kg) induced similar effects as IPZ-010. These effects were not amplified by co-administration of IPZ-010 and ketotifen. IPZ-010 inhibited zinc waves, resulting in inhibition of inflammatory responses in activated BMMCs in vitro. Targeting zinc waves in inflammatory cells may be a novel therapeutic strategy for treating postoperative ileus.
Collapse
Affiliation(s)
- Hitomi Kimura
- Department of Veterinary Pharmacology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yutaka Yoneya
- Department of Veterinary Pharmacology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shoma Mikawa
- Department of Veterinary Pharmacology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Noriyuki Kaji
- Department of Veterinary Pharmacology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroki Ito
- Interprotein Corporation, 3-10-2 Toyosaki, Kita-ku, Osaka-city, Osaka 531-0072, Japan
| | - Yasuaki Tsuchida
- Department of Surgical Pathology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya-city, Hyogo 663-8501, Japan
| | - Hirotsugu Komatsu
- Interprotein Corporation, 3-10-2 Toyosaki, Kita-ku, Osaka-city, Osaka 531-0072, Japan
| | - Takahisa Murata
- Department of Animal Radiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroshi Ozaki
- Department of Veterinary Pharmacology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryota Uchida
- Laboratory of Immune Regulation, Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki-cho, Suzuka-city, Mie 513-8607, Japan
| | - Keigo Nishida
- Laboratory for Homeostatic Network, RCAI, RIKEN Research Center for Integrative Medical Sciences (IMS-RCAI), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama-city, Kanagawa 230-0045, Japan; Laboratory of Immune Regulation, Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki-cho, Suzuka-city, Mie 513-8607, Japan
| | - Masatoshi Hori
- Department of Veterinary Pharmacology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
29
|
Sun Y, Shi H, Hong Z, Chi P. Inhibition of JAK1 mitigates postoperative ileus in mice. Surgery 2019; 166:1048-1054. [DOI: 10.1016/j.surg.2019.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/02/2019] [Accepted: 07/22/2019] [Indexed: 12/31/2022]
|
30
|
Intestinal gases: influence on gut disorders and the role of dietary manipulations. Nat Rev Gastroenterol Hepatol 2019; 16:733-747. [PMID: 31520080 DOI: 10.1038/s41575-019-0193-z] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2019] [Indexed: 02/06/2023]
Abstract
The inner workings of the intestines, in which the body and microbiome intersect to influence gut function and systemic health, remain elusive. Carbon dioxide, hydrogen, methane and hydrogen sulfide, as well as a variety of trace gases, are generated by the chemical interactions and microbiota within the gut. Profiling of these intestinal gases and their responses to dietary changes can reveal the products and functions of the gut microbiota and their influence on human health. Indeed, different tools for measuring these intestinal gases have been developed, including newly developed gas-sensing capsule technology. Gases can, according to their type, concentration and volume, induce or relieve abdominal symptoms, and might also have physiological, pathogenic and therapeutic effects. Thus, profiling and modulating intestinal gases could be powerful tools for disease prevention and/or therapy. As the interactions between the microbiota, chemical constituents and fermentative substrates of the gut are principally influenced by dietary intake, altering the diet, which, in turn, changes gas profiles, is the main therapeutic approach for gastrointestinal disorders. An improved understanding of the complex interactions within the intestines that generate gases will enhance our ability to prevent, diagnose, treat and monitor many gastrointestinal disorders.
Collapse
|
31
|
Myosalpinx Contractions Are Essential for Egg Transport Along the Oviduct and Are Disrupted in Reproductive Tract Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1124:265-294. [DOI: 10.1007/978-981-13-5895-1_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
32
|
Neural anti-inflammatory action mediated by two types of acetylcholine receptors in the small intestine. Sci Rep 2019; 9:5887. [PMID: 30971711 PMCID: PMC6458176 DOI: 10.1038/s41598-019-41698-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 03/15/2019] [Indexed: 12/14/2022] Open
Abstract
Gastrointestinal prokinetic agents function as serotonin-4 receptor (5-HT4R) agonists to activate myenteric plexus neurons to release acetylcholine (ACh), which then induce anti-inflammatory action. Details of this pathway, however, remain unknown. The aim of this study is to clarify the anti-inflammatory mechanism underlying the 5-HT4R agonist, mosapride citrate (MOS)-induced anti-inflammatory action on postoperative ileus (POI). POI models were generated from wild-type C57BL6/J (WT), 5-HT4R knock-out (S4R KO), α7 nicotinic AChR KO (α7 R KO), and M2 muscarinic ACh receptor KO (M2R KO) mice. MOS attenuated leukocyte infiltration in WT. MOS-induced anti-inflammatory action was completely abolished in both S4R KO and S4R KO mice upon wild-type bone marrow transplantation. MOS-induced anti-inflammatory action against macrophage infiltration, but not neutrophil infiltration, was attenuated in α7 R KO mice. Selective α7nAChR agonists (PNU-282987 and AR-R17779) also inhibited only macrophage infiltration in POI. MOS-mediated inhibition of neutrophil infiltration was diminished by atropine, M2AChR antagonist, methoctramine, and in M2R KO mice. Stimulation with 5-HT4R inhibits leukocyte infiltration in POI, possibly through myenteric plexus activation. Released ACh inhibited macrophage and neutrophil infiltration likely by activation of α7nAChR on macrophages and M2AChR. Thus, macrophage and neutrophil recruitment into inflamed sites is regulated by different types of AChR in the small intestine.
Collapse
|
33
|
Van Dingenen J, Pieters L, Vral A, Lefebvre RA. The H 2S-Releasing Naproxen Derivative ATB-346 and the Slow-Release H 2S Donor GYY4137 Reduce Intestinal Inflammation and Restore Transit in Postoperative Ileus. Front Pharmacol 2019; 10:116. [PMID: 30842737 PMCID: PMC6391894 DOI: 10.3389/fphar.2019.00116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/30/2019] [Indexed: 12/21/2022] Open
Abstract
Objective: Intestinal inflammation triggers postoperative ileus (POI), commonly seen after abdominal surgery and characterized by impaired gastrointestinal transit; when prolonged, this leads to increased morbidity. Hydrogen sulfide (H2S) is recognized as an important mediator of many (patho)physiological processes, including inflammation, and is now investigated for anti-inflammatory application. Therefore, the aim of this study was to investigate the effect of the H2S-releasing naproxen derivative ATB-346, developed to reduce gastrointestinal injury by naproxen, and the slow-release H2S donor GYY4137 on intestinal inflammation and delayed gastrointestinal transit in murine POI. Methods: C57Bl6J mice were fasted for 6 h, anesthetized and after laparotomy, POI was induced by compressing the small intestine with two cotton applicators for 5 min (intestinal manipulation; IM). GYY4137 (50 mg/kg, intraperitoneally), ATB-346 (16 mg/kg, intragastrically) or naproxen (10 mg/kg, intragastrically) were administered 1 h before IM. At 24 h postoperatively, gastrointestinal transit was assessed via fluorescent imaging, and mucosa-free muscularis segments were prepared for later analysis. Inflammatory parameters and activity of inducible nitric oxide synthase (iNOS) and cyclo-oxygenase (COX)-2 were measured. Histological examination of whole tissue sections was done on hematoxylin-eosin stained slides. Results: Pre-treatment with GYY4137 (geometric center; GC: 7.6 ± 0.5) and ATB-346 (GC: 8.4 ± 0.3) prevented the delayed transit induced by IM (GC: 3.6 ± 0.5 vs. 9.0 ± 0.4 in non-operated controls) while naproxen only partially did (GC: 5.9 ± 0.5; n = 8 for all groups). GYY4137 and ATB-346 significantly reduced the IM-induced increase in muscular myeloperoxidase (MPO) activity and protein levels of interleukin (IL)-6, IL-1β and monocyte chemotactic protein 1; the reduction by naproxen was less pronounced and only reached significance for MPO activity and IL-6 levels. All treatments significantly reduced the increase in COX-2 activity caused by IM, whereas only GYY4137 significantly reduced the increase in iNOS activity. Naproxen treatment caused significant histological damage of intestinal villi. Conclusion: The study shows that naproxen partially prevents POI, probably through its inhibitory effect on COX-2 activity. Both ATB-346 and GYY4137 were more effective, the result with GYY4137 showing that H2S per se can prevent POI.
Collapse
Affiliation(s)
- Jonas Van Dingenen
- Department of Basic and Applied Medical Sciences, Heymans Institute of Pharmacology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Leen Pieters
- Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Anne Vral
- Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Romain A. Lefebvre
- Department of Basic and Applied Medical Sciences, Heymans Institute of Pharmacology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
34
|
Sanders KM, Ward SM. Nitric oxide and its role as a non-adrenergic, non-cholinergic inhibitory neurotransmitter in the gastrointestinal tract. Br J Pharmacol 2019; 176:212-227. [PMID: 30063800 PMCID: PMC6295421 DOI: 10.1111/bph.14459] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/06/2018] [Accepted: 07/12/2018] [Indexed: 12/19/2022] Open
Abstract
NO is a neurotransmitter released from enteric inhibitory neurons and responsible for modulating gastrointestinal (GI) motor behaviour. Enteric neurons express nNOS (NOS1) that associates with membranes of nerve varicosities. NO released from neurons binds to soluble guanylate cyclase in post-junctional cells to generate cGMP. cGMP-dependent protein kinase type 1 (PKG1) is a major mediator but perhaps not the only pathway involved in cGMP-mediated effects in GI muscles based on gene deletion studies. NOS1+ neurons form close contacts with smooth muscle cells (SMCs), interstitial cells of Cajal (ICC) and PDGFRα+ cells, and these cells are electrically coupled (SIP syncytium). Cell-specific gene deletion studies have shown that nitrergic responses are due to mechanisms in SMCs and ICC. Controversy exists about the ion channels and other post-junctional mechanisms that mediate nitrergic responses in GI muscles. Reduced nNOS expression in enteric inhibitory motor neurons and/or reduced connectivity between nNOS+ neurons and the SIP syncytium appear to be responsible for motor defects that develop in diabetes. An overproduction of NO in some inflammatory conditions also impairs normal GI motor activity. This review summarizes recent findings regarding the role of NO as an enteric inhibitory neurotransmitter. LINKED ARTICLES: This article is part of a themed section on Nitric Oxide 20 Years from the 1998 Nobel Prize. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.2/issuetoc.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell BiologyUniversity of Nevada, Reno, School of MedicineRenoNVUSA
| | - Sean M Ward
- Department of Physiology and Cell BiologyUniversity of Nevada, Reno, School of MedicineRenoNVUSA
| |
Collapse
|
35
|
Huang HH, Lee YC, Chen CY. Effects of burns on gut motor and mucosa functions. Neuropeptides 2018; 72:47-57. [PMID: 30269923 DOI: 10.1016/j.npep.2018.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/16/2018] [Accepted: 09/19/2018] [Indexed: 02/08/2023]
Abstract
This review analyzed the published studies on the effects of thermal injury on gastrointestinal motility and mucosal damage. Our strategy was to integrate all available evidence to provide a complete review on the prokinetic properties of variable reagents and the potential clinical treatment of mucosal damage and gastrointestinal dysmotility after thermal injury. We classified the studies into two major groups: studies on gastrointestinal dysmotility and studies on mucosal damage. We also subclassified the studies into 3 parts: stomach, small intestine, and colon. This review shows evidence that ghrelin can recover burn-induced delay in gastric emptying and small intestinal transit, and can protect the gastric mucosa from burn-induced injury. Oxytocin and β-glucan reduced the serum inflammatory mediators, and histological change and mucosal damage indicators, but did not show evidence of having the ability to recover gastrointestinal motility. Using a combination of different reagents to protect the gastrointestinal mucosa against damage and to recover gastrointestinal motility is an alternative treatment for thermal injury.
Collapse
Affiliation(s)
- Hsien-Hao Huang
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Yu-Chi Lee
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Yen Chen
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Taiwan Association for the Study of Small Intestinal Diseases, Guishan, Taiwan.
| |
Collapse
|
36
|
Cheng Y, Zan J, Song Y, Yang G, Shang H, Zhao W. Evaluation of intestinal injury, inflammatory response and oxidative stress following intracerebral hemorrhage in mice. Int J Mol Med 2018; 42:2120-2128. [PMID: 30015849 DOI: 10.3892/ijmm.2018.3755] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 11/08/2017] [Indexed: 11/06/2022] Open
Abstract
Intestinal injury is a common complication following intracerebral hemorrhage (ICH), which leads to malnutrition, impaired immunity and unsatisfactory prognosis. Previous studies have revealed the pathogenesis of intestinal injury following traumatic brain injury using ischemic stroke models. However, the effects of ICH on intestinal injury remain unknown. The present study aimed to investigate the pathological alterations and molecular mechanism, as well as the time course of intestinal injury following ICH in mice. Male C57BL/6 mice were randomly divided into the following seven groups (n=6 mice/group): Control group, which underwent a sham operation, and six ICH groups (2, 6, 12 and 24 h, and days 3 and 7). The ICH model was induced by stereotactically injecting autologous blood in two stages into the brain. Subsequently, intestinal tissue was stained with hematoxylin and eosin for histopathological examination. Small intestinal motility was measured by charcoal meal test, and gut barrier dysfunction was evaluated by detecting the plasma levels of endotoxin. Quantitative polymerase chain reaction (qPCR), immunohistochemistry and ELISA analysis were performed to evaluate the mRNA and protein expression levels of inflammatory cytokines [interleukin (IL)‑1β, IL‑6, tumor necrosis factor‑α, intercellular adhesion molecule 1, monocyte chemotactic protein 1 and chemokine (C‑C motif) ligand‑5] in intestinal tissue and serum. Furthermore, intestinal leukocyte infiltration was detected by measuring myeloperoxidase activity. Oxidative stress was indirectly detected by measuring reactive oxygen species‑associated markers (malondialdehyde content and superoxide dismutase activity assays) and the mRNA and protein expression levels of antioxidant genes [nuclear factor (erythroid‑derived 2)‑like 2, manganese superoxide dismutase and heme oxygenase 1] by qPCR and western blot analysis. The results demonstrated that significant destruction of the gut mucosa, delayed small intestinal motility, intestinal barrier dysfunction, and increased inflammatory responses and oxidative stress occurred rapidly in response to ICH. These symptoms occurred as early as 2 h after ICH and persisted for 7 days. These findings suggested that ICH may induce immediate and persistent damage to gut structure and barrier function, which may be associated with upregulation of inflammation and oxidative stress markers.
Collapse
Affiliation(s)
- Yijun Cheng
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Jieyu Zan
- Department of Pediatrics, Nantong First People's Hospital, Nantong, Jiangsu 226001, P.R. China
| | - Yaying Song
- Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Guoyuan Yang
- Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Hanbing Shang
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Weiguo Zhao
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
37
|
Matsumoto K, Kawanaka H, Hori M, Kusamori K, Utsumi D, Tsukahara T, Amagase K, Horie S, Yamamoto A, Ozaki H, Mori Y, Kato S. Role of transient receptor potential melastatin 2 in surgical inflammation and dysmotility in a mouse model of postoperative ileus. Am J Physiol Gastrointest Liver Physiol 2018; 315:G104-G116. [PMID: 29565641 DOI: 10.1152/ajpgi.00305.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this study, we investigated the role of transient receptor potential melastatin 2 (TRPM2), a nonselective cation channel abundantly expressed in inflammatory cells such as macrophages, in the development of postoperative ileus, a complication of abdominal surgery characterized by gastrointestinal dysmotility. In wild-type mice, we found that intestinal manipulation, a maneuver that elicits symptoms typical of postoperative ileus, delays the transit of fluorescein-labeled dextran, promotes the infiltration of CD68+ macrophages, Ly6B.2+ neutrophils, and MPO+ cells into intestinal muscles, boosts expression of IL-1β, IL-6, TNF-α, iNOS, and CXCL2 in intestinal muscles and peritoneal macrophages, enhances phosphorylation of ERK and p38 MAPK in intestinal muscles, and amplifies IL-1β, IL-6, TNF-α, iNOS, and CXCL2 expression in resident and thioglycolate-elicited peritoneal macrophages following exposure to lipopolysaccharide. Remarkably, TRPM2 deficiency completely blocks or diminishes these effects. Indeed, intestinal manipulation appears to activate TRPM2 in resident muscularis macrophages and elicits release of inflammatory cytokines and chemokines, which, in turn, promote infiltration of macrophages and neutrophils into the muscle, ultimately resulting in dysmotility. NEW & NOTEWORTHY Activation of transient receptor potential melastatin 2 (TRPM2) releases inflammatory cytokines and chemokines, which, in turn, promote the infiltration of inflammatory cells and macrophages into intestinal muscles, ultimately resulting in dysmotility. Thus TRPM2 is a promising target in treating dysmotility due to postoperative ileus, a complication of abdominal surgery.
Collapse
Affiliation(s)
- Kenjiro Matsumoto
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University , Kyoto , Japan
| | - Hiroki Kawanaka
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University , Kyoto , Japan
| | - Masatoshi Hori
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo , Tokyo , Japan
| | - Kosuke Kusamori
- Division of Clinical Pharmaceutical Sciences, Department of Biopharmaceutics, Kyoto Pharmaceutical University , Kyoto , Japan
| | - Daichi Utsumi
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University , Kyoto , Japan
| | - Takuya Tsukahara
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University , Kyoto , Japan
| | - Kikuko Amagase
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University , Kyoto , Japan
| | - Syunji Horie
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Josai International University , Chiba , Japan
| | - Akira Yamamoto
- Division of Clinical Pharmaceutical Sciences, Department of Biopharmaceutics, Kyoto Pharmaceutical University , Kyoto , Japan
| | - Hiroshi Ozaki
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo , Tokyo , Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University , Kyoto , Japan
| | - Shinichi Kato
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University , Kyoto , Japan
| |
Collapse
|
38
|
Evaluation of the Effect of Oral Pyridostigmine on the Ileus after Abdominal Surgery: A Blinded Randomized Clinical Trial. J Clin Med 2018; 7:jcm7050104. [PMID: 29734770 PMCID: PMC5977143 DOI: 10.3390/jcm7050104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 04/29/2018] [Accepted: 05/04/2018] [Indexed: 01/12/2023] Open
Abstract
Postoperative ileus is one of the most important and common complications after abdominal surgery. This single-blind randomized clinical trial study was conducted with the aim of evaluating the effect of oral pyridostigmine (60 mg) on the duration and frequency of response to the treatment of ileus after abdominal surgery on 40 patients in two 20-subject groups of oral pyridostigmine (interventional) and starch (control) in 2015. All 40 people completed the study process and entered the final analysis. In the oral Pyridostigmin group (60 mg) the mean response time for the disposal of gas and stool were 5.4 ± 4.7 h and 4.9 ± 3.4 h, respectively. Most of the participants 10 (50%) (Disposal of stool) responded to treatment 4 h after the administration of oral pyridostigmine. In the starch group, the mean response time for the disposal of gas and stool were 32.4 ± 9.9 h and 36.2 ± 10.3 h, respectively. The mean treatment response time in two groups showed a significant difference between both groups (p = 0.001). Regarding the frequency of response to treatment (disposal of gas or stool) in the 24-h period after the initiation of treatment in the oral pyridostigmine group, 95% (n = 19) of the subjects responded to the treatment in the first 24 h. However, in the starch group, only 50% (n = 10) responded to treatment in the first 24 h, the results showed a significant difference between the two groups (p = 0.001). The results indicate that oral pyridostigmine can be used as a simple and effective treatment for gastrointestinal ileus.
Collapse
|
39
|
Kaji N, Nakayama S, Horiguchi K, Iino S, Ozaki H, Hori M. Disruption of the pacemaker activity of interstitial cells of Cajal via nitric oxide contributes to postoperative ileus. Neurogastroenterol Motil 2018; 30. [PMID: 29542843 DOI: 10.1111/nmo.13334] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 02/11/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Interstitial cells of Cajal (ICC) serve as intestinal pacemakers. Postoperative ileus (POI) is a gastrointestinal motility disorder that occurs following abdominal surgery, which is caused by inflammation-induced dysfunction of smooth muscles and enteric neurons. However, the participation of ICC in POI is not well understood. In this study, we investigated the functional changes of ICC in a mouse model of POI. METHODS Intestinal manipulation (IM) was performed to induce POI. At 24 h or 48 h after IM, the field potential of the intestinal tunica muscularis was investigated. Tissues were also examined by immunohistochemistry and electron microscopic analysis. KEY RESULTS Gastrointestinal transit was significantly decreased with intestinal tunica muscularis inflammation at 24 h after IM, which was ameliorated at 48 h after IM. The generation and propagation of pacemaker potentials were disrupted at 24 h after IM and recovered to the control level at 48 h after IM. ICC networks, detected by c-Kit immunoreactivity, were remarkably disrupted at 24 h after IM. Electron microscopic analysis revealed abnormal vacuoles in the ICC cytoplasm. Interestingly, the ICC networks recovered at 48 h after IM. Administration of aminoguanidine, an inducible nitric oxide synthase inhibitor, suppressed the disruption of ICC networks. Ileal smooth muscle tissue cultured in the presence of nitric oxide donor, showed disrupted ICC networks. CONCLUSIONS AND INFERENCES The generation and propagation of pacemaker potentials by ICC are disrupted via nitric oxide after IM, and this disruption may contribute to POI. When inflammation is ameliorated, ICC can recover their pacemaker function.
Collapse
Affiliation(s)
- N Kaji
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - S Nakayama
- Department of Cell Physiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - K Horiguchi
- Division of Anatomy and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - S Iino
- Division of Anatomy and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - H Ozaki
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - M Hori
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
40
|
Lee YJ, Hussain Z, Huh CW, Lee YJ, Park H. Inflammation, Impaired Motility, and Permeability in a Guinea Pig Model of Postoperative Ileus. J Neurogastroenterol Motil 2018; 24:147-158. [PMID: 29291615 PMCID: PMC5753913 DOI: 10.5056/jnm17012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/23/2017] [Accepted: 08/16/2017] [Indexed: 01/31/2023] Open
Abstract
Background/Aims Postoperative ileus (POI) is characterized by impaired propulsive function of the gastrointestinal tract after surgery. Although inflammation is considered to be an important pathogenesis of POI, significant data are lacking. We aim to correlate the recovery time of postoperative dysmotility with that of inflammation and mucosal permeability. Methods An experimental POI model of guinea pig was used. Contractile activity of the circular muscle of the stomach, jejunum, ileum, and proximal colon was measured through a tissue bath study. Inflammatory cells were counted, and the expression of calprotectin and tryptase were analyzed. The expression of protease-activated receptor 2 (PAR-2), claudin-1, and claudin-2 were analyzed with immunofluorescence. Results The small bowel and colon showed decreased contractile amplitude in the POI groups compared to control. In contrast to the colon, the contractile amplitude of the small bowel significantly recovered in the POI group at 6 hours after the operation compared to the control group. Inflammation was highly significant in the POI groups compared to the control and sham groups, especially in the colon. Immunofluorescence showed increased PAR-2 expression in the POI groups compared to sham. The decreased claudin-1 expression and increased claudin-2 expression may suggest increased mucosal permeability of the small bowel and colon in the POI groups. Conclusions Increased inflammation and mucosal permeability may play an important role in the differential recovery stages in POI. These data may provide further insights into the pathophysiology and potential new therapeutic prospects of POI.
Collapse
Affiliation(s)
- Yoo Jin Lee
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Zahid Hussain
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Cheal Wung Huh
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Young Ju Lee
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyojin Park
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
41
|
Lisowski ZM, Pirie RS, Blikslager AT, Lefebvre D, Hume DA, Hudson NPH. An update on equine post-operative ileus: Definitions, pathophysiology and management. Equine Vet J 2018; 50:292-303. [DOI: 10.1111/evj.12801] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 11/24/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Z. M. Lisowski
- The Roslin Institute and Royal (Dick) School of Veterinary Studies; University of Edinburgh, Easter Bush; Midlothian UK
| | - R. S. Pirie
- The Roslin Institute and Royal (Dick) School of Veterinary Studies; University of Edinburgh, Easter Bush; Midlothian UK
| | - A. T. Blikslager
- Department of Clinical Sciences; College of Veterinary Medicine; North Carolina State University; Raleigh North Carolina USA
| | - D. Lefebvre
- The Roslin Institute and Royal (Dick) School of Veterinary Studies; University of Edinburgh, Easter Bush; Midlothian UK
| | - D. A. Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies; University of Edinburgh, Easter Bush; Midlothian UK
- Mater Research; The University of Queensland; Woolloongabba Queensland Australia
| | - N. P. H. Hudson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies; University of Edinburgh, Easter Bush; Midlothian UK
| |
Collapse
|
42
|
|
43
|
Verheijden S, Boeckxstaens GE. Neuroimmune interaction and the regulation of intestinal immune homeostasis. Am J Physiol Gastrointest Liver Physiol 2018; 314:G75-G80. [PMID: 28912251 DOI: 10.1152/ajpgi.00425.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Many essential gastrointestinal functions, including motility, secretion, and blood flow, are regulated by the autonomic nervous system (ANS), both through intrinsic enteric neurons and extrinsic (sympathetic and parasympathetic) innervation. Recently identified neuroimmune mechanisms, in particular the interplay between enteric neurons and muscularis macrophages, are now considered to be essential for fine-tuning peristalsis. These findings shed new light on how intestinal immune cells can support enteric nervous function. In addition, both intrinsic and extrinsic neural mechanisms control intestinal immune homeostasis in different layers of the intestine, mainly by affecting macrophage activation through neurotransmitter release. In this mini-review, we discuss recent insights on immunomodulation by intrinsic enteric neurons and extrinsic innervation, with a particular focus on intestinal macrophages. In addition, we discuss the relevance of these novel mechanisms for intestinal immune homeostasis in physiological and pathological conditions, mainly focusing on motility disorders (gastroparesis and postoperative ileus) and inflammatory disorders (colitis).
Collapse
Affiliation(s)
- Simon Verheijden
- Translational Research Center of Gastrointestinal Disorders, KU Leuven, Leuven , Belgium
| | - Guy E Boeckxstaens
- Translational Research Center of Gastrointestinal Disorders, KU Leuven, Leuven , Belgium.,Division of Gastroenterology and Hepatology, University Hospital Leuven , Leuven, Belgium
| |
Collapse
|
44
|
Shi XZ. Mechanical Regulation of Gene Expression in Gut Smooth Muscle Cells. Front Physiol 2017; 8:1000. [PMID: 29259559 PMCID: PMC5723328 DOI: 10.3389/fphys.2017.01000] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/20/2017] [Indexed: 12/15/2022] Open
Abstract
Intraluminal contents and their movement along the gastrointestinal tract create shear stress and mechanical stretch on the gut wall. While the shear stress is important in the initiation of immediate physiological responses, the circumferential mechanical stretch, such as that in obstructive bowel disorders, exerts long-lasting impacts on bowel functions by mainly affecting the deeper muscularis externae. Recent studies demonstrate that mechanical stretch alters gene transcription in gut smooth muscle cells (SMC), and the stretch-altered gene expression (mechano-transcription) may play a critical role in pathogenesis of motility dysfunction and abdominal pain in obstruction. Specifically, stretch-induced cyclo-oxygenase-2 and other pro-inflammatory mediators in gut SMC account for impairments of muscle contractility. Mechano-transcription of pain mediators such as nerve growth factor may contribute to visceral hypersensitivity, by sensitizing primary sensory neurons. This review aims to highlight the novel findings of mechano-transcription in the gut, and to discuss the signaling mechanisms and pathophysiological significance of mechano-transcription.
Collapse
Affiliation(s)
- Xuan-Zheng Shi
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
45
|
Farro G, Stakenborg M, Gomez-Pinilla PJ, Labeeuw E, Goverse G, Di Giovangiulio M, Stakenborg N, Meroni E, D'Errico F, Elkrim Y, Laoui D, Lisowski ZM, Sauter KA, Hume DA, Van Ginderachter JA, Boeckxstaens GE, Matteoli G. CCR2-dependent monocyte-derived macrophages resolve inflammation and restore gut motility in postoperative ileus. Gut 2017; 66:2098-2109. [PMID: 28615302 DOI: 10.1136/gutjnl-2016-313144] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 04/17/2017] [Accepted: 04/17/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Postoperative ileus (POI) is assumed to result from myeloid cells infiltrating the intestinal muscularis externa (ME) in patients undergoing abdominal surgery. In the current study, we investigated the role of infiltrating monocytes in a murine model of intestinal manipulation (IM)-induced POI in order to clarify whether monocytes mediate tissue damage and intestinal dysfunction or they are rather involved in the recovery of gastrointestinal (GI) motility. DESIGN IM was performed in mice with defective monocyte migration to tissues (C-C motif chemokine receptor 2, Ccr2-/ - mice) and wild-type (WT) mice to study the role of monocytes and monocyte-derived macrophages (MΦs) during onset and resolution of ME inflammation. RESULTS At early time points, IM-induced GI transit delay and inflammation were equal in WT and Ccr2 -/- mice. However, GI transit recovery after IM was significantly delayed in Ccr2 -/- mice compared with WT mice, associated with increased neutrophil-mediated immunopathology and persistent impaired neuromuscular function. During recovery, monocyte-derived MΦs acquire pro-resolving features that aided in the resolution of inflammation. In line, bone marrow reconstitution and treatment with MΦ colony-stimulating factor 1 enhanced monocyte recruitment and MΦ differentiation and ameliorated GI transit in Ccr2 -/- mice. CONCLUSION Our study reveals a critical role for monocyte-derived MΦs in restoring intestinal homeostasis after surgical trauma. From a therapeutic point of view, our data indicate that inappropriate targeting of monocytes may increase neutrophil-mediated immunopathology and prolong the clinical outcome of POI, while future therapies should be aimed at enhancing MΦ physiological repair functions.
Collapse
Affiliation(s)
- Giovanna Farro
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Michelle Stakenborg
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Pedro J Gomez-Pinilla
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Evelien Labeeuw
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Gera Goverse
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Martina Di Giovangiulio
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Nathalie Stakenborg
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Elisa Meroni
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Francesca D'Errico
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Yvon Elkrim
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Ghent, Belgium
| | - Damya Laoui
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Ghent, Belgium
| | - Zofia M Lisowski
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Kristin A Sauter
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - David A Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Jo A Van Ginderachter
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Ghent, Belgium
| | - Guy E Boeckxstaens
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Gianluca Matteoli
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
46
|
Stakenborg N, Gomez-Pinilla PJ, Boeckxstaens GE. Postoperative Ileus: Pathophysiology, Current Therapeutic Approaches. Handb Exp Pharmacol 2017; 239:39-57. [PMID: 27999957 DOI: 10.1007/164_2016_108] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Postoperative ileus, which develops after each abdominal surgical procedure, is an iatrogenic disorder characterized by a transient inhibition of gastrointestinal motility. Its pathophysiology is complex involving pharmacological (opioids, anesthetics), neural, and immune-mediated mechanisms. The early neural phase, triggered by activation of afferent nerves during the surgical procedure, is short lasting compared to the later inflammatory phase. The latter starts after 3-6 h and lasts several days, making it a more interesting target for treatment. Insight into the triggers and immune cells involved is of great importance for the development of new therapeutic strategies. In this chapter, the pathogenesis and the current therapeutic approaches to treat postoperative ileus are discussed.
Collapse
Affiliation(s)
- N Stakenborg
- Division of Gastroenterology and Hepatology, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Herestraat 49, Leuven, 3000, Belgium
| | - P J Gomez-Pinilla
- Division of Gastroenterology and Hepatology, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Herestraat 49, Leuven, 3000, Belgium
| | - G E Boeckxstaens
- Division of Gastroenterology and Hepatology, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Herestraat 49, Leuven, 3000, Belgium. .,Division of Gastroenterology and Hepatology, University Hospital Leuven, Herestraat 49, Leuven, 3000, Belgium.
| |
Collapse
|
47
|
Mihara T, Otsubo W, Horiguchi K, Mikawa S, Kaji N, Iino S, Ozaki H, Hori M. The anti-inflammatory pathway regulated via nicotinic acetylcholine receptors in rat intestinal mesothelial cells. J Vet Med Sci 2017; 79:1795-1802. [PMID: 28931778 PMCID: PMC5709555 DOI: 10.1292/jvms.17-0304] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Regulation of inflammation in intestinal mesothelial cells in the abdominal cavity is important for the pathogeny of clinical conditions, such as postoperative ileus, peritonitis and encapsulating peritoneal sclerosis. Here we have examined the inflammatory effect of lipopolysaccharide (LPS) and the anti-inflammatory effect of nicotinic acetylcholine receptor stimulation in rat intestinal mesothelial cells. LPS upregulated mRNA expression of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), monocyte chemotactic protein-1 (MCP-1) and inducible nitric oxide synthase (iNOS). The α7, α9 and α10 subunits of nicotinic acetylcholine receptor were detected in intestinal mesothelial cells. Nicotine (10 nM) significantly inhibited LPS-induced mRNA expression of IL-1β and iNOS, but not TNF-α and MCP-1. In addition, the α7 nicotinic acetylcholine receptor selective agonist, PNU-282987 (10 nM), significantly inhibited LPS-induced mRNA expression of IL-1β but not TNF-α, iNOS and MCP-1. Finally, we found that enteric nerves adhered to intestinal mesothelial cells located under the ileal serosa. In conclusion, intestinal mesothelial cells react to LPS to induce the production of nitric oxide from iNOS. The anti-inflammatory action of intestinal mesothelial cells expressing α7nAChR may be mediated via their connectivity with enteric nerves.
Collapse
Affiliation(s)
- Taiki Mihara
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Wataru Otsubo
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazuhide Horiguchi
- Division of Anatomy, Department of Morphological and Physiological Sciences, University of Fukui Faculty of Medical Sciences, Fukui 910-1193, Japan
| | - Shoma Mikawa
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Noriyuki Kaji
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Satoshi Iino
- Division of Anatomy, Department of Morphological and Physiological Sciences, University of Fukui Faculty of Medical Sciences, Fukui 910-1193, Japan
| | - Hiroshi Ozaki
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masatoshi Hori
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
48
|
Therapeutic Action of Honokiol on Postoperative Ileus via Downregulation of iNOS Gene Expression. Inflammation 2017; 40:1331-1341. [DOI: 10.1007/s10753-017-0576-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
49
|
Wehner S, Engel DR. Resident macrophages in the healthy and inflamed intestinal muscularis externa. Pflugers Arch 2017; 469:541-552. [PMID: 28236119 DOI: 10.1007/s00424-017-1948-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/29/2017] [Accepted: 01/31/2017] [Indexed: 02/07/2023]
Abstract
Macrophages reside in a dense cellular network in the intestinal muscularis externa, and there is emerging evidence that the functionality of these cells determines the local microenvironment. Inflammatory responses during intestinal diseases change the homeostatic functionality of these cells causing inflammation and intestinal dysmotility. Such disturbances are not only induced by a change in the cellular composition in the intestinal muscularis but also by an altered crosstalk with the peripheral and central nervous system. In this review, we summarize the role of muscularis macrophages in the intestine in homeostasis and inflammation. We compare the functionality, the phenotype, and the origin of muscularis macrophages to their neighboring counterparts within the different layers of the intestine. We outline the cellular crosstalk with the enteric and the peripheral nervous system and summarize the current therapeutic approaches to modulate the functionality of these phagocytes.
Collapse
Affiliation(s)
- Sven Wehner
- Department of Surgery/Immune Pathophysiology, University of Bonn, 53121, Bonn, Germany.
| | - Daniel Robert Engel
- Institute for Experimental Immunology and Imaging, Department of Immunodynamics, University Duisburg-Essen and University Hospital Essen, 45147, Essen, Germany.
| |
Collapse
|
50
|
Liu MY, Wang CW, Wu ZP, Li N. Electroacupuncture for the prevention of postoperative gastrointestinal dysfunction in participants undergoing vascular laparotomy under general anesthesia: a randomized controlled trial. Chin Med 2017; 12:5. [PMID: 28105066 PMCID: PMC5240264 DOI: 10.1186/s13020-016-0122-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 12/06/2016] [Indexed: 02/05/2023] Open
Abstract
Background Postoperative gastrointestinal dysfunction (PGD) is a common complication following laparotomy under general anesthesia (GA). Abdominal distension occurs in 8–28% of surgeries within 24 h postoperatively. The present study aimed to analyze the efficacy of electroacupuncture (EA) for the prevention of PGD by applying preoperative EA stimulation of PC6 (Neiguan), ST36 (Zusanli), and ST37 (Shangjuxv) bilaterally twice within 24 h prior to surgery, compared with no acupuncture treatment. Methods The study participants were assessed and selected from participants undergoing vascular laparotomy under GA at the Liver and Vascular Surgery Unit in West China Hospital of Sichuan University. The selected participants were randomly allocated to two groups: routine-treatment (RT) and EA group receiving EA at PC6, ST36, and ST37. A computer-generated list of random numbers was used to determine the allocation of the participants, with numbered opaque sealed envelopes containing the randomization schedule. Eligible participants were all adults aged 18 years or above who were scheduled to undergo vascular laparotomy under GA within 24 h and had no history of EA treatment. The exclusion criteria included participants with serious systemic disease and history of EA treatment. While the RT group received standard treatments, the EA group received additional EA treatments. During each treatment session, EA stimulation was performed for a duration of 20 min at a frequency of 15 Hz with a continuous wave. All such participants received two EA treatments within 24 h before surgery. The outcomes were measured in three metrics: incidence and degree of abdominal distension; first times of flatus and defecation; and duration of hospitalization. Results Forty-three participants were recruited, of whom 42 participants successfully completed the study. Each group contained 21 participants. The incidence of abdominal distension (42.8, 76.2%) and degree of abdominal distension were significantly reduced in the EA group (P = 0.03 and P = 0.03, respectively). In comparisons of the first times of flatus (3.05 ± 0.58, 3.29 ± 0.42 days) and defecation (2.81 ± 0.51, 3.20 ± 0.55 days) and duration of hospitalization (5.33 ± 0.68, 5.75 ± 0.66 days), the EA group was superior to the RT group to some extent (P = 0.13, P = 0.02, and P = 0.04, respectively). Conclusions Preoperative EA at PC6, ST36, and ST37 might be useful for preventing PGD, thereby improving gastrointestinal function recovery. Trial registration This study is registered with the Chinese Clinical Trial Registry: ChiCTR-TRC-13003649 Electronic supplementary material The online version of this article (doi:10.1186/s13020-016-0122-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meng-Yue Liu
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Si-chuan University, Chengdu, Sichuan China
| | - Cheng-Wei Wang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Si-chuan University, Chengdu, Sichuan China
| | - Zhou-Peng Wu
- Department of Liver and Vascular Surgery, West China Hospital of Si-chuan University, Chengdu, Sichuan China
| | - Ning Li
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Si-chuan University, Chengdu, Sichuan China
| |
Collapse
|