1
|
Ren X, Zhang J, Wang L, Wang Z, Wang Y. Diel variation in cortisol, glucose, lactic acid and antioxidant system of black sea bass Centropristis striata under natural photoperiod. Chronobiol Int 2020; 37:176-188. [PMID: 31948265 DOI: 10.1080/07420528.2019.1675684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Diel rhythm in activity of antioxidant enzymes, as well as contents of glutathione and lipid peroxides, has been intensively investigated in Mammalia and Aves, however, the relevant studies about fish are few. In the present study, we examined variation in contents of cortisol, glucose and lactic acid in plasma of black sea bass Centropristis striata under natural photoperiod during a 24-h period. In addition, variation in activity of antioxidant enzymes, such as superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), catalase (CAT) and glutathione reductase (GR) as well as contents of total glutathione (T-GSH), reduced glutathione (GSH), oxidized glutathione (GSSG) and malondialdehyde (MDA) in liver and plasma of the fish were also determined. The plasma and liver samples were collected from the test fish at 3 h intervals during a 24-h cycle, with the first sampling time set at 03:00 h. No significant differences were found in glucose content and activities of GSH-PX and GR in plasma, as well as activities of SOD and GR in liver among different sampling times. In contrast, apparent variation was observed in contents of cortisol, lactic acid and MDA in plasma, activities of SOD and CAT in plasma, contents of MDA, T-GSH, GSH and GSSG in liver and activities of GSH-PX and CAT in liver between different sampling times. Moreover, contents of cortisol and MDA in plasma, SOD activity in plasma, and contents of MDA, GSH and GSSG in liver exhibited circadian rhythm, and their acrophases occurred at 06:08 h, 18:38 h, 15:09 h, 09:57 h, 23:36 h and 07:30 h, respectively. The present study indicates that some physiological parameters relating to stress response, such as cortisol and MDA contents in plasma, MDA, GSH and GSSG contents in liver and SOD activity in plasma changed at different time throughout a day in black sea bass. Therefore, caution should be taken when evaluating stress response in fish with these physiological parameters measured at different times.
Collapse
Affiliation(s)
- Xing Ren
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, P.R. China
| | - Jingya Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, P.R. China
| | - Li Wang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, P.R. China
| | - Zhi Wang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, P.R. China
| | - Yan Wang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, P.R. China
| |
Collapse
|
2
|
Cao Q, Gu J, Wang D, Liang F, Zhang H, Li X, Yin S. Physiological mechanism of osmoregulatory adaptation in anguillid eels. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:423-433. [PMID: 29344774 PMCID: PMC5862950 DOI: 10.1007/s10695-018-0464-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 01/03/2018] [Indexed: 06/07/2023]
Abstract
In recent years, the production of eel larvae has dramatic declines due to reductions in spawning stocks, overfishing, growth habitat destruction and access reductions, and pollution. Therefore, it is particularly important and urgent for artificial production of glass eels. However, the technique of artificial hatching and rearing larvae is still immature, which has long been regarded as an extremely difficult task. One of the huge gaps is artificial condition which is far from the natural condition to develop their capability of osmoregulation. Thus, understanding their osmoregulatory mechanisms will help to improve the breed and adapt to the changes in the environment. In this paper, we give a general review for a study progress of osmoregulatory mechanisms in eels from five aspects including tissues and organs, ion transporters, hormones, proteins, and high throughput sequencing methods.
Collapse
Affiliation(s)
- Quanquan Cao
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu Province, 210023, China
| | - Jie Gu
- Institute of Life Science, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Dan Wang
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu Province, 210023, China
| | - Fenfei Liang
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu Province, 210023, China
| | - Hongye Zhang
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu Province, 210023, China
| | - Xinru Li
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu Province, 210023, China
| | - Shaowu Yin
- College of Life Sciences, Key Laboratory of Biodiversity and Biotechnology of Jiangsu Province, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu Province, 210023, China.
| |
Collapse
|
3
|
Cowan M, Azpeleta C, López-Olmeda JF. Rhythms in the endocrine system of fish: a review. J Comp Physiol B 2017; 187:1057-1089. [DOI: 10.1007/s00360-017-1094-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 03/20/2017] [Accepted: 04/06/2017] [Indexed: 12/20/2022]
|
4
|
Takei Y, Hiroi J, Takahashi H, Sakamoto T. Diverse mechanisms for body fluid regulation in teleost fishes. Am J Physiol Regul Integr Comp Physiol 2014; 307:R778-92. [PMID: 24965789 DOI: 10.1152/ajpregu.00104.2014] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Teleost fishes are the major group of ray-finned fishes and represent more than one-half of the total number of vertebrate species. They have experienced in their evolution an additional third-round whole genome duplication just after the divergence of their lineage, which endowed them with an extra adaptability to invade various aquatic habitats. Thus their physiology is also extremely diverse compared with other vertebrate groups as exemplified by the many patterns of body fluid regulation or osmoregulation. The key osmoregulatory organ for teleosts, whose body fluid composition is similar to mammals, is the gill, where ions are absorbed from or excreted into surrounding waters of various salinities against concentration gradients. It has been shown that the underlying molecular physiology of gill ionocytes responsible for ion regulation is highly variable among species. This variability is also seen in the endocrine control of osmoregulation where some hormones have distinct effects on body fluid regulation in different teleost species. A typical example is atrial natriuretic peptide (ANP); ANP is secreted in response to increased blood volume and acts on various osmoregulatory organs to restore volume in rainbow trout as it does in mammals, but it is secreted in response to increased plasma osmolality, and specifically decreases NaCl, and not water, in the body of eels. The distinct actions of other osmoregulatory hormones such as growth hormone, prolactin, angiotensin II, and vasotocin among teleost species are also evident. We hypothesized that such diversity of ionocytes and hormone actions among species stems from their intrinsic differences in body fluid regulation that originated from their native habitats, either fresh water or seawater. In this review, we summarized remarkable differences in body fluid regulation and its endocrine control among teleost species, although the number of species is still limited to substantiate the hypothesis.
Collapse
Affiliation(s)
- Yoshio Takei
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan;
| | - Junya Hiroi
- Department of Anatomy, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan; and
| | - Hideya Takahashi
- Ushimado Marine Institute (UMI), Faculty of Science, Okayama University, Setouchi, Okayama, Japan
| | - Tatsuya Sakamoto
- Ushimado Marine Institute (UMI), Faculty of Science, Okayama University, Setouchi, Okayama, Japan
| |
Collapse
|
5
|
Ellis T, Yildiz HY, López-Olmeda J, Spedicato MT, Tort L, Øverli Ø, Martins CIM. Cortisol and finfish welfare. FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:163-188. [PMID: 22113503 DOI: 10.1007/s10695-011-9568-y] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 10/24/2011] [Indexed: 05/31/2023]
Abstract
Previous reviews of stress, and the stress hormone cortisol, in fish have focussed on physiology, due to interest in impacts on aquaculture production. Here, we discuss cortisol in relation to fish welfare. Cortisol is a readily measured component of the primary (neuroendocrine) stress response and is relevant to fish welfare as it affects physiological and brain functions and modifies behaviour. However, we argue that cortisol has little value if welfare is viewed purely from a functional (or behavioural) perspective-the cortisol response itself is a natural, adaptive response and is not predictive of coping as downstream impacts on function and behaviour are dose-, time- and context-dependent and not predictable. Nevertheless, we argue that welfare should be considered in terms of mental health and feelings, and that stress in relation to welfare should be viewed as psychological, rather than physiological. We contend that cortisol can be used (with caution) as a tractable indicator of how fish perceive (and feel about) their environment, psychological stress and feelings in fish. Cortisol responses are directly triggered by the brain and fish studies do indicate cortisol responses to psychological stressors, i.e., those with no direct physicochemical action. We discuss the practicalities of using cortisol to ask the fish themselves how they feel about husbandry practices and the culture environment. Single time point measurements of cortisol are of little value in assessing the stress level of fish as studies need to account for diurnal and seasonal variations, and environmental and genetic factors. Areas in need of greater clarity for the use of cortisol as an indicator of fish feelings are the separation of (physiological) stress from (psychological) distress, the separation of chronic stress from acclimation, and the interactions between feelings, cortisol, mood and behaviour.
Collapse
Affiliation(s)
- Tim Ellis
- Cefas Weymouth Laboratory, Weymouth, Dorset, UK.
| | | | | | | | | | | | | |
Collapse
|
6
|
|
7
|
Ventura A, Kusakabe M, Takei Y. Salinity-dependent in vitro effects of homologous natriuretic peptides on the pituitary-interrenal axis in eels. Gen Comp Endocrinol 2011; 173:129-38. [PMID: 21624369 DOI: 10.1016/j.ygcen.2011.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 04/20/2011] [Accepted: 05/16/2011] [Indexed: 11/22/2022]
Abstract
We examined the effects of atrial, B-type, ventricular and C-type natriuretic peptides (ANP, BNP, VNP and CNP1, 3, 4) on cortisol secretion from interrenal tissue in vitro in both freshwater (FW) and seawater (SW)-acclimated eels. We first localized the interrenal and chromaffin cells in the eel head kidney using cell specific markers (cholesterol side-chain cleavage enzyme (P450ssc) and tyrosine hydroxylase (TH), respectively) and established the in vitro incubation system for eel interrenal tissue. Unexpectedly, none of the NPs given alone to the interrenal tissue of FW and SW eels stimulated cortisol secretion. However, ANP and VNP, but not BNP and three CNPs, enhanced the steroidogenic action of ACTH in SW interrenal preparations, while CNP1 and CNP4, but not ANP, BNP, VNP and CNP3, potentiated the ACTH action in FW preparations. These salinity dependent effects of NPs are consistent with the previous in vivo study in the eel where endogenous ACTH can act with the injected NPs. 8-Br-cGMP also enhanced the ACTH action in both FW and SW eel preparations, suggesting that the NP actions were mediated by the guanylyl cyclase-coupled NP receptors (GC-A and B) that were localized in the eel interrenal. Further, ANP and CNP1 stimulated ACTH secretion from isolated pituitary glands of SW and/or FW eels. In summary, the present study revealed complex mechanisms of NP action on corticosteroidogenesis through the pituitary-interrenal axis in eels, thereby providing a deeper insight into the role of the NP family in the acclimation of this euryhaline teleost to diverse salinity environments.
Collapse
Affiliation(s)
- Albert Ventura
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan.
| | | | | |
Collapse
|
8
|
Takei Y, Inoue K, Trajanovska S, Donald JA. B-type natriuretic peptide (BNP), not ANP, is the principal cardiac natriuretic peptide in vertebrates as revealed by comparative studies. Gen Comp Endocrinol 2011; 171:258-66. [PMID: 21362425 DOI: 10.1016/j.ygcen.2011.02.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2010] [Revised: 02/08/2011] [Accepted: 02/20/2011] [Indexed: 12/31/2022]
Abstract
The natriuretic peptide (NP) family consists of at least seven members; cardiac ANP, BNP and VNP and brain CNPs (CNP1-4). Phylogenetic and comparative genomic analyses showed that CNP4 is the ancestral molecule of the family, from which CNP3 and CNP1/2 were duplicated in this order, and that the three cardiac NPs were generated from CNP3 by tandem duplication. Seven members existed at the divergence of ray-finned fishes and lobe-finned fishes (tetrapods), but some of the NP genes have disappeared during the course of evolution. In ray-finned fishes, all three cardiac NPs exist in chondrostei and some migratory teleost species, but VNP is generally absent and ANP is absent in a group of teleosts (Beloniformes). In tetrapods, ANP and BNP are present in mammals and amphibians, but ANP is usually absent in reptiles and birds. Thus, BNP is a ubiquitous cardiac NP in bony fishes and tetrapods though elasmobranchs and cyclostomes have only CNP3/4 as a cardiac NP. Functional studies indicate that cardiac NPs are essential Na(+)-extruding hormones throughout vertebrates; they play critical roles in seawater (SW) adaptation in teleosts, while they are important volume-depleting hormones in mammals as water and Na(+) are regulated in parallel in terrestrial animals. In mammals, cardiac NPs become prominent in pathological conditions such as heart failure where they are used in diagnosis and treatment. Although the functional role of BNP has not yet been fully elucidated compared with ANP in non-mammalian vertebrates, it appears that BNP plays pivotal roles in the cardiovascular and body fluid regulation as shown in mammals. ANP has previously been recognized as the principal cardiac NP in mammals and teleosts, but comparative studies have revealed that BNP is the only cardiac NP that exists in all tetrapods and teleosts. This is an excellent example showing that comparative studies have created new insights into the molecular and functional evolution of a hormone family.
Collapse
Affiliation(s)
- Yoshio Takei
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, Chiba 277-8564, Japan.
| | | | | | | |
Collapse
|
9
|
Huang TS, Ruoff P, Fjelldal PG. Diurnal expression of clock genes in pineal gland and brain and plasma levels of melatonin and cortisol in Atlantic salmon parr and smolts. Chronobiol Int 2011; 27:1697-714. [PMID: 20969518 DOI: 10.3109/07420528.2010.514630] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In Atlantic salmon, the preadaptation to a marine life, i.e., parr-smolt transformation, and melatonin production in the pineal gland are regulated by the photoperiod. However, the clock genes have never been studied in the pineal gland of this species. The aim of the present study was to describe the diurnal expression of clock genes (Per1-like, Cry2, and Clock) in the pineal gland and brain of Atlantic salmon parr and smolts in freshwater, as well as plasma levels of melatonin and cortisol. By employing an out-of-season smolt production model, the parr-smolt transformation was induced by subjecting triplicate groups of parr to 6 wks (wks 0 to 6) under a 12 h:12 h light-dark (LD) regime followed by 6 wks (wks 6 to 12) of continuous light (LL). The measured clock genes in both pineal gland and brain and the plasma levels of melatonin and cortisol showed significant daily variations in parr under LD in wk 6, whereas these rhythms were abolished in smolts under LL in wk 12. In parr, the pineal Per1-like and Cry2 expression peaked in the dark phase, whereas the pineal Clock expression was elevated during the light phase. Although this study presents novel findings on the clock gene system in the teleost pineal gland, the role of this system in the regulation of smoltification needs to be studied in more detail.
Collapse
Affiliation(s)
- Tien-sheng Huang
- National Institute of Nutrition and Seafood Research, Bergen, Norway.
| | | | | |
Collapse
|
10
|
Huang TS, Ruoff P, Fjelldal PG. Effect of continuous light on daily levels of plasma melatonin and cortisol and expression of clock genes in pineal gland, brain, and liver in atlantic salmon postsmolts. Chronobiol Int 2011; 27:1715-34. [PMID: 20969519 DOI: 10.3109/07420528.2010.521272] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Continuous light is a common practice in salmon farming, where it is used to enhance growth, induce smoltification, and regulate puberty. However, knowledge about how different tissues receive information about daylength is limited. The aim of the present study was to evaluate the daily expression of clock (Per1-like, Cry2, and Clock), the nuclear transcription factor (peroxisome proliferator-activated receptor, PPAR; CCAAT/enhancer binding protein, C/EBP), and the endoplasmic reticulum (ER) stress (protein disulfide isomerase associated 3, PDIA3) genes in the pineal gland, brain, and liver of Atlantic salmon postsmolts reared under 12-h light:12-h dark (LD) regimes or under continuous light (LL) for 6 wks following transfer to seawater. All measured clock mRNAs displayed daily variations in one or more organs under LD, as well as plasma levels of melatonin. Similar variations were noted in the liver c/ebpα, pineal c/ebpδ, and pdia3 mRNAs. Under LL, the clock and nuclear transcription factor mRNAs did not show any daily variation in the studied organs, with the exception of pineal pdia3. Furthermore, LL had the opposite effect on the levels of melatonin and cortisol, as observed by the increase in pineal Clock, Per2, pparα, and c/ebpα and c/ebpδ mRNAs and decrease in liver Clock, Per2, and pparα mRNAs compared to those under LD. The present findings show that the expression of clock genes is affected by the light across organs and that there is a relation between PPAR, C/EBP, and clock mRNAs; however, the functional role of the individual nuclear transcription factors related to this observation remains to be established in the pineal gland and liver. (Author correspondence: Tihu@nifes.no ).
Collapse
Affiliation(s)
- Tien-Sheng Huang
- National Institute of Nutrition and Seafood Research (NIFES), Nordnes, Bergen, Norway
| | | | | |
Collapse
|
11
|
Montoya A, López-Olmeda JF, Garayzar ABS, Sánchez-Vázquez FJ. Synchronization of daily rhythms of locomotor activity and plasma glucose, cortisol and thyroid hormones to feeding in Gilthead seabream (Sparus aurata) under a light-dark cycle. Physiol Behav 2010; 101:101-7. [PMID: 20434474 DOI: 10.1016/j.physbeh.2010.04.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 04/16/2010] [Accepted: 04/21/2010] [Indexed: 11/29/2022]
Abstract
Food availability is far from constant but tends to be cyclic, and fish therefore show a variety of circadian rhythms which can be entrained to feeding time. The aim of this study was to investigate the synchronization to mealtimes of behavioral (locomotor activity), metabolic (glucose) and endocrine (cortisol and thyroid hormones) daily rhythms in gilthead seabream. To this end, fish were reared under a 12:12 LD cycle and fed 1% of their body weight once a day either at mid-light (ML) or at mid-dark (MD) of the LD cycle. Fish synchronized their locomotor activity to the phase in which food was delivered, ML and MD fish displaying 86+/-3% and 81+/-1% of their total daily activity during daytime and nighttime, respectively. Daily variations of blood glucose were strongly synchronized to feeding time in both experimental groups, peaking 8h after the meal. A postprandial cortisol peak was observed in both groups. In fish fed at MD the cortisol values were high during the 8h following feeding, whereas in fish fed at ML cortisol levels returned to basal values within 4h. In addition, MD fish showed a higher average daily cortisol value (24.75+/-2.65 ng/ml) than ML fish (10.30+/-2.18 ng/ml). Feeding time affected the magnitude of daily variations in the thyroid hormones. When the time of feeding was delayed by 12h, a shift of the same magnitude could be observed in the glucose daily rhythm and a dramatic change in the cortisol levels of the ML-fed group compared with results mentioned above. In summary, gilthead seabream synchronized their locomotor activity to the phase when food was provided and showed different degrees of synchronization of their behavioral, metabolic and endocrine rhythms to feeding time. Since these parameters are used to evaluate stress responses and welfare in seabream, their daily rhythm and synchronization to light and feeding time should be taken into account.
Collapse
Affiliation(s)
- A Montoya
- Department of Physiology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | | | | | | |
Collapse
|
12
|
López-Olmeda JF, Montoya A, Oliveira C, Sánchez-Vázquez FJ. SYNCHRONIZATION TO LIGHT AND RESTRICTED-FEEDING SCHEDULES OF BEHAVIORAL AND HUMORAL DAILY RHYTHMS IN GILTHEAD SEA BREAM(SPARUS AURATA). Chronobiol Int 2009; 26:1389-408. [DOI: 10.3109/07420520903421922] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Johnson KR, Olson KR. Comparative physiology of the piscine natriuretic peptide system. Gen Comp Endocrinol 2008; 157:21-6. [PMID: 18472099 DOI: 10.1016/j.ygcen.2008.03.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 03/19/2008] [Accepted: 03/26/2008] [Indexed: 10/22/2022]
Abstract
The natriuretic peptide (NP) family is a seemingly ubiquitous sodium and volume reducing endocrine system of predominantly cardiac origin. Members of the NP system include ANP, BNP, CNP, VNP, their guanylate cyclase (GC)-linked receptors (NPR-A and NPR-B), and clearance receptor (NPR-C). Through the activation of their membrane-bound GC receptors, these small peptides modulate cellular functions that affect both salt and water balance. The elucidation of piscine NP sequences, structure, and functions has steadily advanced over the past 15 years spearheaded by research from Dr. Yoshio Takei's laboratory. The development of these homologous NPs has led to extensive research into both the evolutionary and physiological significance of NPs in fishes. One outcome has been the development of two seemingly disparate hypotheses of NP function; a role in salt excretion, the osmoregulatory hypothesis, versus a role in protecting the heart, the cardioprotective hypotheses. In the osmoregulatory hypothesis NPs are released in response to elevated ambient salinity and inhibit drinking and intestinal uptake of salt, thereby effectively reducing plasma sodium levels. In contrast, the cardioprotective theory depicts NPs acting to prevent debilitating cardiodilation from an excess of either venous or arterial pressure through vasodilation and a reduction of blood volume. These seemingly distinct hypotheses may be elements of a more general regulatory system and certainly require further investigation. Undoubtedly their resolution will not only give us a better perspective of the evolutionary basis of the NP system but will provide us with a greater appreciation of salt and water homeostasis in vertebrates.
Collapse
Affiliation(s)
- Keven R Johnson
- Physiology, Indiana University School of Medicine-South Bend Center, 1234 Notre Dame Avenue, South Bend, IN 46617, USA
| | | |
Collapse
|
14
|
Takei Y. Exploring novel hormones essential for seawater adaptation in teleost fish. Gen Comp Endocrinol 2008; 157:3-13. [PMID: 18452919 DOI: 10.1016/j.ygcen.2008.03.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 03/11/2008] [Accepted: 03/12/2008] [Indexed: 12/29/2022]
Abstract
Marine fish are dehydrated in hyperosmotic seawater (SW), but maintain water balance by drinking surrounding SW if they are capable of excreting the excess ions, particularly Na(+) and Cl(-), absorbed with water by the intestine. An integrative approach is essential for understanding the mechanisms for SW adaptation, in which hormones play pivotal roles. Comparative genomic analyses have shown that hormones that have Na(+)-extruding and vasodepressor properties are greatly diversified in teleost fish. Physiological studies at molecular to organismal levels have revealed that these diversified hormones are much more potent and efficacious in teleost fish than in mammals and are important for survival in SW and for maintenance of low arterial pressure in a gravity-free aquatic environment. This is typified by the natriuretic peptide (NP) family, which is diversified into seven members (ANP, BNP, VNP and CNP1, 2, 3 and 4) and exerts potent hyponatremic and vasodepressor actions in marine fish. Another example is the guanylin family, which consists of three paralogs (guanylin, uroguanylin and renoguanylin), and stimulates Cl(-) secretion into the intestinal lumen and activates the absorptive-type Na-K-2Cl cotransporter by local luminocrine actions. The most recent addition is the adrenomedullin (AM) family, which has five members (AM1, 2, 3, 4 and 5), with AM2 and AM5 showing the most potent or efficacious vasodepressor and osmoregulatory effects among known hormones in teleost fish. Accumulating evidence strongly indicates that members of these diversified hormone families play essential roles in SW adaptation in teleost fish. In this short review, the author has attempted to propose a novel approach for identification of new hormones that are important for SW adaptation using comparative genomic and functional studies. The author has also suggested potential hormone families that are diversified in teleost fish and appear to be involved in SW adaptation through their ion-extruding actions.
Collapse
Affiliation(s)
- Yoshio Takei
- Laboratory of Physiology, Ocean Research Institute, The University of Tokyo, 1-15-1 Minamidai, Nakano, Tokyo 164-8639, Japan.
| |
Collapse
|
15
|
Takei Y, Ogoshi M, Inoue K. A 'reverse' phylogenetic approach for identification of novel osmoregulatory and cardiovascular hormones in vertebrates. Front Neuroendocrinol 2007; 28:143-60. [PMID: 17659326 DOI: 10.1016/j.yfrne.2007.05.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2006] [Revised: 04/23/2007] [Accepted: 05/09/2007] [Indexed: 11/20/2022]
Abstract
Vertebrates expanded their habitats from aquatic to terrestrial environments during the course of evolution. In parallel, osmoregulatory and cardiovascular systems evolved to counter the problems of desiccation and gravity on land. In our physiological studies on body fluid and blood pressure regulation in various vertebrate species, we found that osmoregulatory and cardiovascular hormones have changed their structure and function during the transition from aquatic to terrestrial life. In fact, Na(+)-regulating and vasodepressor hormones play essential roles in fishes, while water-regulating and vasopressor hormones are dominant in tetrapods. Accordingly, Na(+)-regulating and vasodepressor hormones, such as natriuretic peptide (NP) and adrenomedullin (AM), are much diversified in teleost fishes compared with mammals. Based on this finding, new NPs and AMs were identified in mammals and other tetrapods. These hormones have only minor roles in the maintenance of normal blood volume and pressure in mammals, but their importance seems to increase when homeostasis is disrupted. Therefore, such hormones can be used for diagnosis and treatment of body fluid and cardiovascular disorders such as cardiac/renal failure and hypertension. In this review, we introduce a new approach for identification of novel Na(+)-regulating and vasodepressor hormones in mammals based on fish studies. Until recently, new hormones were first discovered in mammals, and then identified and applied in fishes. However, chances are increasing in recent years to identify new hormones first in fishes then in mammals, based on the difference in the regulatory systems between fishes and tetrapods. As the direction is opposite from the traditional phylogenetic approach, we added 'reverse' to its name. The 'reverse' phylogenetic approach offers a typical example of how comparative fish studies can contribute to the general and clinical endocrinology.
Collapse
Affiliation(s)
- Yoshio Takei
- Laboratory of Physiology, Ocean Research Institute, University of Tokyo, 1-15-1 Minamidai, Nakano, Tokyo 164-8639, Japan.
| | | | | |
Collapse
|
16
|
Nankervis S, Powell M, McLeod J, Toop T. Identification and expression of natriuretic peptide receptor type-A and -B mRNA in freshwater and seawater rainbow trout. J Comp Physiol B 2006; 177:259-67. [PMID: 17109122 DOI: 10.1007/s00360-006-0127-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2006] [Revised: 09/25/2006] [Accepted: 10/20/2006] [Indexed: 10/23/2022]
Abstract
Natriuretic peptide receptors mediate the physiological response of natriuretic peptide hormones. One of the natriuretic peptide receptor types is the particulate guanylyl cyclase receptors, of which there are two identified: NPR-A and NPR-B. In fishes, these have been sequenced and characterized in eels, medaka, and dogfish shark (NPR-B only). The euryhaline rainbow trout provides an opportunity to further pursue examination of the system in teleosts. In this study, partial rainbow trout NPR-A-like and NPR-B-like mRNA sequences were identified via PCR and cloning. The sequence information was used in real-time PCR to examine mRNA expression in a variety of tissues of freshwater rainbow trout and rainbow trout acclimated to 35 parts per thousand seawater for a period of 10 days. In the excretory kidney and posterior intestine, real-time PCR analysis showed greater expression of NPR-B in freshwater fish than in those adapted to seawater; otherwise, there was no difference in the expression of the individual receptors in fresh water or seawater. In general, the expression of the NPR-A and NPR-B type receptors was quite low. These findings indicate that NPR-A and NPR-B mRNA expression is minimally altered under the experimental regime used in this study.
Collapse
Affiliation(s)
- Scott Nankervis
- Faculty of Science and Technology, School of Life and Environmental Sciences, Deakin University, Pigdons Road, Waurn Ponds, 3217, Geelong, Australia
| | | | | | | |
Collapse
|
17
|
Guerreiro PM, Rotllant J, Fuentes J, Power DM, Canario AVM. Cortisol and parathyroid hormone-related peptide are reciprocally modulated by negative feedback. Gen Comp Endocrinol 2006; 148:227-35. [PMID: 16624313 DOI: 10.1016/j.ygcen.2006.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2005] [Revised: 02/23/2006] [Accepted: 03/10/2006] [Indexed: 10/24/2022]
Abstract
In previous in vitro studies, we have shown that the N-terminal region of parathyroid hormone-related protein (PTHrP) can stimulate cortisol production in sea bream, Sparus auratus, interrenal tissue, possibly through a paracrine action. In the current study, the systemic interaction between cortisol and PTHrP was studied in vivo. Sustained elevated blood cortisol levels, induced either by cortisol injection or confinement stress, suppressed circulating PTHrP 6 and 24-fold, respectively, by comparison to control fish. Dexamethasone treatment reduced cortisol levels, prevented the decrease of plasma PTHrP observed in confined fish and raised plasma PTHrP levels in non-confined fish. In contrast, a single injection of (1-34) PTHrP caused a short-term (within 30 min and up to 2.5 h) decrease in plasma cortisol. The antagonistic effects between PTHrP and cortisol were substantiated by an overall (data pooled from all experiments) highly significant negative correlation (r0=-0.745, p<0.001, n=115) between the plasma levels of the two hormones. Although the underlying mechanism of the interaction still has to be determined, the high levels of PTHrP in circulation and the existence of systemic regulation favour the hypothesis that in fish PTHrP may act as an endocrine factor, although the gland that produces it still remains to be identified.
Collapse
Affiliation(s)
- Pedro M Guerreiro
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | | | | | | | | |
Collapse
|
18
|
Tsukada T, Takei Y. Integrative approach to osmoregulatory action of atrial natriuretic peptide in seawater eels. Gen Comp Endocrinol 2006; 147:31-8. [PMID: 16243325 DOI: 10.1016/j.ygcen.2005.09.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 08/20/2005] [Accepted: 09/01/2005] [Indexed: 11/24/2022]
Abstract
Atrial natriuretic peptide (ANP) reduces plasma Na+ concentration and promotes seawater (SW) adaptation in SW eels. However, little is known about the mechanisms for the hyponatremic effect of ANP. In order to evaluate the role of ANP in the whole-body Na+ homeostasis of marine teleost, we reviewed previous in vivo experiments using exogenously administered ANP and present additional experiments to assess the role of endogenous ANP in Na+ homeostasis in conscious SW eels. The Na+ influx and efflux rate across the body surfaces including the gills measured with isotopic 22Na were not altered by the hyponatremic dose (5 pmol kg-1 min-1) of ANP infusion in SW eels. ANP infusion also had no effect on renal Na+ excretion in SW eels. In contrast, ANP strongly inhibited drinking, and the inhibition was quantitatively correlated with the hyponatremic effect of ANP. Further, intestinal absorption of Na+ was inhibited by ANP as examined in situ using intestinal sac in conscious SW eels. The combined inhibitory actions of ANP on drinking and intestinal absorption were sufficient to explain the decrease in plasma Na+ concentration. In addition, removal of endogenous circulating ANP by immunoneutralization increased plasma Na+ concentration with a concomitant increase in drinking rate in SW eels. These results strongly suggest that endogenous ANP is involved in the hyponatremic regulation through actions on drinking, and probably on intestine, in SW eels.
Collapse
Affiliation(s)
- Takehiro Tsukada
- Ocean Research Institute, The University of Tokyo, Tokyo 164-8639, Japan.
| | | |
Collapse
|
19
|
Toop T, Donald JA. Comparative aspects of natriuretic peptide physiology in non-mammalian vertebrates: a review. J Comp Physiol B 2004; 174:189-204. [PMID: 14735307 DOI: 10.1007/s00360-003-0408-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2003] [Indexed: 10/26/2022]
Abstract
The natriuretic peptide system is a complex family of peptides and receptors that is primarily linked to the maintenance of osmotic and cardiovascular homeostasis. A natriuretic peptide system is present in each vertebrate class but there are varying degrees of complexity in the system. In agnathans and chondrichthyians, only one natriuretic peptide has been identified, while new data has revealed that multiple types of natriuretic peptides are present in bony fish. However, it seems in tetrapods that there has been a reduction in the number of natriuretic peptide genes, such that only three natriuretic peptides are present in mammals. The peptides act via a family of guanylyl cyclase receptors to generate the second messenger cGMP, which mediates a range of physiological effects at key targets such as the gills, kidney and the cardiovascular system. This review summarises the current knowledge of the natriuretic peptide system in non-mammalian vertebrates and discusses the physiological actions of the peptides.
Collapse
Affiliation(s)
- T Toop
- School of Biological and Chemical Sciences, Deakin University, 3217, Geelong, Victoria, Australia.
| | | |
Collapse
|
20
|
Agnisola C, Masullo P, Mustafa T. Short-term responses of coronary circulation to cortisol and estrogen in trout (Oncorhynchus mykiss). Gen Comp Endocrinol 2004; 135:210-6. [PMID: 14697307 DOI: 10.1016/j.ygcen.2003.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This study was designed to investigate the short-term effects of cortisol and 17-beta-estradiol on the intact coronary tree of rainbow trout (Oncorhynchus mykiss). A non-working, isolated, and perfused heart preparation was used. The coronary pressure was monitored together with the coronary flow in order to calculate the coronary resistance. The drug effects were expressed as percent change in coronary resistance. At concentrations higher than 10(-5) mol l(-1), cortisol elicited a significant vasoconstriction (p<0.001) within 10 min of perfusion. The simultaneous administration of cortisol and adenosine (both at 10(-4) mol l(-1)) induced a significant reduction (p<0.001) of the coronary tree response elicited by each drug alone. The perfusion of the intact coronary trout system with 20 ng ml(-1) of 17-beta-estradiol elicited a significant vasodilative response (p<0.001) within 5-15 min of perfusion. This vasodilation did not involve nitric oxide, because no significant effect of Nomega-nitro-L-arginine (L-NA, a nitric oxide synthase inhibitor) in presence of the estrogen was observed. 17-beta-estradiol was also able to reduce the vasoconstriction induced by 10(-3) mol l(-1) acetylcholine. From these results it is possible to suggest that the steroid hormones, cortisol and 17-beta-estradiol, expound their action on the trout coronary tree through a non-genomic mechanism.
Collapse
Affiliation(s)
- C Agnisola
- Dipartimento di Fisiologia Generale ed Ambientale, Università degli studi di Napoli Federico II, via Mezzocannone 8, 80134 Naples, Italy.
| | | | | |
Collapse
|