1
|
Yue H, Ye H, Ruan R, Du H, Li C. Identification of ActivinβA and Gonadotropin Regulation of the Activin System in the Ovary of Chinese Sturgeon Acipenser sinensis. Animals (Basel) 2024; 14:2314. [PMID: 39199851 PMCID: PMC11350771 DOI: 10.3390/ani14162314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Activin is a dimeric growth factor with diverse biological activities in vertebrates. This study aimed to investigate the regulatory role of the activin signaling pathway in the ovary of the endangered, cultured sturgeon species Acipenser sinensis. One activinβA subunit was identified, with a full-length complementary DNA (cDNA) sequence of 1572 base pairs. Multiple sequence alignment suggested that ActivinβA shared high sequence identities with its counterparts in four other sturgeon species. Phylogenetic analysis indicated the conserved evolution of ActivinβA among vertebrates from mammals to fish species. Transcripts of activinβA were distributed ubiquitously in the liver, kidney, intestine, ovary, midbrain, hypothalamus, and pituitary, with the highest transcription found in the pituitary. In Chinese sturgeon ovarian cells, in vitro human recombinant Activin A incubation stimulated the activin system-related gene transcriptions of activinβA, follistatin, its receptors -activinRIIA and activinRIIB, and drosophila mothers against decapentaplegic proteins (smads) smad2, smad3, and smad4. Ovary development-related mRNA levels of cyp19a1a and aromatase receptors of erα and erβ were enhanced by Activin A or human chorionic gonadotropin (hCG) incubation. Furthermore, 15 IU/mL hCG treatment increased the transcription levels of activinβA, follistatin, activinRIIA, and smad2. This suggested that the activin system was functional for the regulation of ovary development in Chinese sturgeon, possibly under the regulation of gonadotropin, by recruiting activinβA, follistatin, activinRIIA, and smad2. These results were helpful for the molecular exploration of activin signaling in fish species, as well as the ovarian maturation regulation of A. sinensis.
Collapse
Affiliation(s)
| | | | | | | | - Chuangju Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (H.Y.)
| |
Collapse
|
2
|
Deng WJ, Li QQ, Shuai HN, Wu RX, Niu SF, Wang QH, Miao BB. Whole-Genome Sequencing Analyses Reveal the Evolution Mechanisms of Typical Biological Features of Decapterus maruadsi. Animals (Basel) 2024; 14:1202. [PMID: 38672351 PMCID: PMC11047736 DOI: 10.3390/ani14081202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Decapterus maruadsi is a typical representative of small pelagic fish characterized by fast growth rate, small body size, and high fecundity. It is a high-quality marine commercial fish with high nutritional value. However, the underlying genetics and genomics research focused on D. maruadsi is not comprehensive. Herein, a high-quality chromosome-level genome of a male D. maruadsi was assembled. The assembled genome length was 716.13 Mb with contig N50 of 19.70 Mb. Notably, we successfully anchored 95.73% contig sequences into 23 chromosomes with a total length of 685.54 Mb and a scaffold N50 of 30.77 Mb. A total of 22,716 protein-coding genes, 274.90 Mb repeat sequences, and 10,060 ncRNAs were predicted, among which 22,037 (97%) genes were successfully functionally annotated. The comparative genome analysis identified 459 unique, 73 expanded, and 52 contracted gene families. Moreover, 2804 genes were identified as candidates for positive selection, of which some that were related to the growth and development of bone, muscle, cardioid, and ovaries, such as some members of the TGF-β superfamily, were likely involved in the evolution of typical biological features in D. maruadsi. The study provides an accurate and complete chromosome-level reference genome for further genetic conservation, genomic-assisted breeding, and adaptive evolution research for D. maruadsi.
Collapse
Affiliation(s)
| | | | | | | | - Su-Fang Niu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (W.-J.D.); (Q.-Q.L.); (H.-N.S.); (R.-X.W.); (Q.-H.W.); (B.-B.M.)
| | | | | |
Collapse
|
3
|
Cruz-Cano N, Sánchez-Rivera U, Álvarez-Rodríguez C, Loya-Zurita R, Castro-Camacho Y, Martínez-Torres M. Immunolocalization of activin and inhibin at different stages of follicular development in the lizard Sceloporus torquatus. Heliyon 2023; 9:e19333. [PMID: 37681184 PMCID: PMC10481300 DOI: 10.1016/j.heliyon.2023.e19333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 08/06/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
The activins and inhibins are glycoproteins with a role in the follicular development of vertebrates, that are found in follicular fluid and somatic follicular cells, with a different pattern among taxa. The principal function of activin (Act) is to modulate the follicle-stimulating hormone (FSH) synthesis and secretion, whereas inhibin (Inh) downregulates it. Both factors are modulators of intraovarian follicular recruitment, oocyte maturation, cell proliferation, and steroidogenic activity. Our aim was to characterize the immunolocalization of Act and Inh in the ovarian follicles during the reproductive cycle of the lizard Sceloporus torquatus. Act was detected in the granulosa cells and oocyte cortex in the different stages of follicular development. On the other hand, we identified Inh in the oocyte cortex and the cytoplasm of pyriform and small cells of previtellogenic follicles. Also, we found immunoreactivity in the oocyte cortex, theca, and small cells of vitellogenic and preovulatory follicles. Our data provide evidence that Act and Inh have changes related to the stage of follicular development. This dynamic appears to be conserved among vertebrates and is fundamental to ensure an adequate follicular development in this specie.
Collapse
Affiliation(s)
- N.B. Cruz-Cano
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, C.P. 04510, Ciudad de México, Mexico
- Laboratorio de Biología de La Reproducción, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de Los Barrios s/n, Los Reyes Iztacala, Tlalnepantla Estado de México, C.P. 54110, Mexico
| | - U.Á. Sánchez-Rivera
- Laboratorio de Biología de La Reproducción, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de Los Barrios s/n, Los Reyes Iztacala, Tlalnepantla Estado de México, C.P. 54110, Mexico
| | - C. Álvarez-Rodríguez
- Laboratorio de Biología de La Reproducción, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de Los Barrios s/n, Los Reyes Iztacala, Tlalnepantla Estado de México, C.P. 54110, Mexico
| | - R.E. Loya-Zurita
- Laboratorio de Biología de La Reproducción, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de Los Barrios s/n, Los Reyes Iztacala, Tlalnepantla Estado de México, C.P. 54110, Mexico
| | - Y.J. Castro-Camacho
- Laboratorio de Biología de La Reproducción, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de Los Barrios s/n, Los Reyes Iztacala, Tlalnepantla Estado de México, C.P. 54110, Mexico
| | - M. Martínez-Torres
- Laboratorio de Biología de La Reproducción, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de Los Barrios s/n, Los Reyes Iztacala, Tlalnepantla Estado de México, C.P. 54110, Mexico
| |
Collapse
|
4
|
Genetic analysis of activin/inhibin β subunits in zebrafish development and reproduction. PLoS Genet 2022; 18:e1010523. [DOI: 10.1371/journal.pgen.1010523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 12/15/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Activin and inhibin are both dimeric proteins sharing the same β subunits that belong to the TGF-β superfamily. They are well known for stimulating and inhibiting pituitary FSH secretion, respectively, in mammals. In addition, activin also acts as a mesoderm-inducing factor in frogs. However, their functions in development and reproduction of other species are poorly defined. In this study, we disrupted all three activin/inhibin β subunits (βAa, inhbaa; βAb, inhbab; and βB, inhbb) in zebrafish using CRISPR/Cas9. The loss of βAa/b but not βB led to a high mortality rate in the post-hatching stage. Surprisingly, the expression of fshb but not lhb in the pituitary increased in the female βA mutant together with aromatase (cyp19a1a) in the ovary. The single mutant of βAa/b showed normal folliculogenesis in young females; however, their double mutant (inhbaa-/-;inhbab-/-) showed delayed follicle activation, granulosa cell hypertrophy, stromal cell accumulation and tissue fibrosis. The ovary of inhbaa-/- deteriorated progressively after 180 dpf with reduced fecundity and the folliculogenesis ceased completely around 540 dpf. In addition, tumor- or cyst-like tissues started to appear in the inhbaa-/- ovary after about one year. In contrast to females, activin βAa/b mutant males showed normal spermatogenesis and fertility. As for activin βB subunit, the inhbb-/- mutant exhibited normal folliculogenesis, spermatogenesis and fertility in both sexes; however, the fecundity of mutant females decreased dramatically at 270 dpf with accumulation of early follicles. In summary, the activin-inhibin system plays an indispensable role in fish reproduction, in particular folliculogenesis and ovarian homeostasis.
Collapse
|
5
|
Tenugu S, Pranoty A, Mamta SK, Senthilkumaran B. Development and organisation of gonadal steroidogenesis in bony fishes - A review. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2020.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Functional expression and characterization of grass carp IL-10: An essential mediator of TGF-β1 immune regulation in peripheral blood lymphocytes. Mol Immunol 2013; 53:313-20. [DOI: 10.1016/j.molimm.2012.08.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 08/14/2012] [Accepted: 08/18/2012] [Indexed: 11/20/2022]
|
7
|
Chen J, Zhang Y, Tang Z, Mao J, Kuang Z, Qin C, Li W. Production of recombinant orange-spotted grouper (Epinephelus coioides) follicle-stimulating hormone (FSH) in single-chain form and dimer form by Pichia pastoris and their biological activities. Gen Comp Endocrinol 2012; 178:237-49. [PMID: 22684083 DOI: 10.1016/j.ygcen.2012.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 05/24/2012] [Accepted: 05/29/2012] [Indexed: 11/21/2022]
Abstract
FSH is a key regulator of steroidogenesis and gonadal growth in teleosts. However, function of FSH is elusive in grouper due to the lack of purified and native FSH. In the present study, we reported production of bioactive orange-spotted grouper (Epinephelus coioides) FSH in dimer form and single-chain form by Pichia pastoris. Dimer form of recombinant grouper FSH (rgFSHba) was accomplished by co-expressing mature FSHb-subunit and a-subunit genes. Fusion of mature FSHb-subunit and a-subunit genes together linking with a polypeptide (4×(Gly-Ser)-Gly-Thr) gene generated single-chain form of recombinant grouper FSH (rgFSHb-a). Recombinant grouper common α-subunit (rgCga) and FSHb-subunit (rgFSHb) were also separately produced. Recombinant proteins were verified by Western blot and mass spectrometry assays, and characterized by deglycosylation analysis. Deglycosylation assay suggested that glycosylation of recombinant FSH mainly occurred on common a-subunit. Bioactivities of recombinant proteins were initially evaluated by activating grouper FSH receptor, and further demonstrated by incubating ovarian fragments of adult grouper and intraperitoneal injection in juvenile female grouper. Two forms of recombinant FSH presented similar biological activities of activating FSH receptor and stimulating in vitro testosterone (T) and estradiol-17β (E2) secretion, though the dimer form functioned slightly weaker than the single-chain form. However, injections of rgFSHb-a or rgFSHba could significantly increase serum T and E2 levels, induce early ovarian development, reduce hypothalamic gnrh1 mRNA level, and increase hypothalamic cyp19a1b mRNA level. Data in this study suggested that recombinant gonadotropin could be produced in dimer form or single-chain form by P. pastoris, and FSH could regulate steroidogenesis and early ovarian development in juvenile grouper.
Collapse
Affiliation(s)
- Jun Chen
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou 510275, China
| | | | | | | | | | | | | |
Collapse
|
8
|
Martyniuk CJ, Alvarez S, Lo BP, Elphick JR, Marlatt VL. Hepatic protein expression networks associated with masculinization in the female fathead minnow (Pimephales promelas). J Proteome Res 2012; 11:4147-61. [PMID: 22734619 DOI: 10.1021/pr3002468] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Endocrine disruptors that act via the androgen receptor (AR) are less well studied than environmental estrogens, and there is evidence that treatment with AR agonists can result in masculinization of female fish. In this study, female fathead minnows (FHM) were exposed to the model nonaromatizable androgen 5-alpha dihydrotestosterone (DHT) (100 μg/L), the ureic-based herbicide linuron (LIN) (100 μg/L), and a mixture of DHT and LIN (100 μg/L each) to better characterize androgen action in females. LIN was used because of reports that this chemical has an antiandrogenic mode of action in fish. After 21d, DHT and LIN treatments resulted in a significant depression of plasma vitellogenin (Vtg) and DHT and DHT+LIN increased the prevalence of nuptial tubercles in female FHMs indicating masculinization. Using iTRAQ and an LTQ Orbitrap Velos, ∼2000 proteins were identified in the FHM liver and the number of proteins quantified after exposures was >1200. Proteins that significantly and consistently changed in abundance across biological replicates included prostaglandin E synthase 3, programmed cell death 4a, glutathione S transferases, canopy, selenoprotein U, and ribosomal proteins. Subnetwork enrichment analysis identified that interferon and epidermal growth factor signaling were regulated by DHT and LIN, suggesting that these signaling pathways are correlated to depressed plasma vitellogenin. These data provide novel insight into hepatic protein networks that are associated with the process of masculinization in teleosts.
Collapse
Affiliation(s)
- Christopher J Martyniuk
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada.
| | | | | | | | | |
Collapse
|
9
|
Karve TM, Preet A, Sneed R, Salamanca C, Li X, Xu J, Kumar D, Rosen EM, Saha T. BRCA1 regulates follistatin function in ovarian cancer and human ovarian surface epithelial cells. PLoS One 2012; 7:e37697. [PMID: 22685544 PMCID: PMC3365892 DOI: 10.1371/journal.pone.0037697] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 04/26/2012] [Indexed: 11/19/2022] Open
Abstract
Follistatin (FST), a folliculogenesis regulating protein, is found in relatively high concentrations in female ovarian tissues. FST acts as an antagonist to Activin, which is often elevated in human ovarian carcinoma, and thus may serve as a potential target for therapeutic intervention against ovarian cancer. The breast cancer susceptibility gene 1 (BRCA1) is a known tumor suppressor gene in human breast cancer; however its role in ovarian cancer is not well understood. We performed microarray analysis on human ovarian carcinoma cell line SKOV3 that stably overexpress wild-type BRCA1 and compared with the corresponding empty vector-transfected clones. We found that stable expression of BRCA1 not only stimulates FST secretion but also simultaneously inhibits Activin expression. To determine the physiological importance of this phenomenon, we further investigated the effect of cellular BRCA1 on the FST secretion in immortalized ovarian surface epithelial (IOSE) cells derived from either normal human ovaries or ovaries of an ovarian cancer patient carrying a mutation in BRCA1 gene. Knock-down of BRCA1 in normal IOSE cells demonstrates down-regulation of FST secretion along with the simultaneous up-regulation of Activin expression. Furthermore, knock-down of FST in IOSE cell lines as well as SKOV3 cell line showed significantly reduced cell proliferation and decreased cell migration when compared with the respective controls. Thus, these findings suggest a novel function for BRCA1 as a regulator of FST expression and function in human ovarian cells.
Collapse
Affiliation(s)
- Tejaswita M. Karve
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C., United States of America
- Department of Biochemistry and Cellular and Molecular Biology, Georgetown University School of Medicine, Washington, D.C., United States of America
| | - Anju Preet
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Rosie Sneed
- University of District of Columbia, Washington, D.C., United States of America
| | - Clara Salamanca
- Canadian Ovarian Tissue Bank, BC Cancer Research Centre, Vancouver, B.C., Canada
| | - Xin Li
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University School of Medicine, Washington, D.C., United States of America
| | - Jingwen Xu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Deepak Kumar
- University of District of Columbia, Washington, D.C., United States of America
| | - Eliot M. Rosen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Tapas Saha
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C., United States of America
- * E-mail: (TS)
| |
Collapse
|
10
|
Jin Q, Gao G, Mulder KM. Requirement of a dynein light chain in transforming growth factor β signaling in zebrafish ovarian follicle cells. Mol Cell Endocrinol 2012; 348:233-40. [PMID: 21920407 PMCID: PMC3205241 DOI: 10.1016/j.mce.2011.08.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 08/15/2011] [Accepted: 08/19/2011] [Indexed: 01/30/2023]
Abstract
We have previously reported that the dynein light chains km23-1 and km23-2 are required for TGFβ signaling in mammalian cells. Here we describe another member of the km23/DYNLRB/LC7/robl family of dynein light chains in zebrafish, termed zkm23, which is also involved in TGFβ signaling. zkm23 was rapidly phosphorylated after TGFβ stimulation. TGFβ RII kinase activity was absolutely required for zkm23 phosphorylation, whereas a constitutively active TGFβ RI did not induce phosphorylation. Further, TGFβ stimulated a rapid recruitment of the zkm23 dynein light chain to the dynein intermediate chain of the dynein complex, and the TGFβ RII kinase was required for this interaction. Finally, blockade of zkm23 using morpholino oligos resulted in an inhibition of TGFβ-mediated transcriptional responses. Thus, our results demonstrate for the first time that the dynein light chain zkm23 is required for TGFβ signaling in cultured zebrafish ovarian follicle cells.
Collapse
Affiliation(s)
| | | | - Kathleen M. Mulder
- To whom correspondence should be addressed: Department of Biochemistry and Molecular Biology-MC H171, Penn State Hershey College of Medicine, 500 University Drive, Hershey, PA 17033, Telephone: 717-531-6789; FAX: 717-531-0939,
| |
Collapse
|
11
|
Corporeau C, Groisillier A, Jeudy A, Barbeyron T, Fleury E, Fabioux C, Czjzek M, Huvet A. A functional study of transforming growth factor-beta from the gonad of Pacific oyster Crassostrea gigas. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:971-980. [PMID: 21271272 DOI: 10.1007/s10126-010-9361-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 12/25/2010] [Indexed: 05/30/2023]
Abstract
The transforming growth factor (TGF)-β superfamily is a group of important growth factors involved in multiple processes such as differentiation, cell proliferation, apoptosis and cellular growth. In the Pacific oyster Crassostrea gigas, the oyster gonadal (og) TGF-β gene was recently characterized through genome-wide expression profiling of oyster lines selected to be resistant or susceptible to summer mortality. Og TGF-β appeared specifically expressed in the gonad to reach a maximum when gonads are fully mature, which singularly contrasts with the pleiotropic roles commonly ascribed to most TGF-β family members. The function of og TGF-β protein in oysters is unknown, and defining its role remains challenging. In this study, we develop a rapid bacterial production system to obtain recombinant og TGF-β protein, and we demonstrate that og TGF-β is processed by furin to a mature form of the protein. This mature form can be detected in vivo in the gonad. Functional inhibition of mature og TGF-β in the gonad was conducted by inactivation of the protein using injection of antibodies. We show that inhibition of og TGF-β function tends to reduce gonadic area. We conclude that mature og TGF-β probably functions as an activator of germ cells development in oyster.
Collapse
|
12
|
Lankford SE, Weber GM. The maturation-inducing hormone 17alpha,20beta-dihydroxy-4-pregnen-3-one regulates gene expression of inhibin betaA and bambi (bone morphogenetic protein and activin-membrane-bound inhibitor) in the rainbow trout ovary. Gen Comp Endocrinol 2010; 168:369-76. [PMID: 20471981 DOI: 10.1016/j.ygcen.2010.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 04/28/2010] [Accepted: 05/03/2010] [Indexed: 02/06/2023]
Abstract
Transforming growth factor-beta (TGFbeta) superfamily members are important paracrine and autocrine regulators of ovarian development and steroidogenesis in mammals and birds, but their reproductive roles in fish are not well understood. The activin system, Tgfb, and bone morphogenetic protein 15 (Bmp15) participate in the regulation of follicle maturation in some fish species. In addition, transcript levels of TGFbeta superfamily members and their inhibitor, bambi (bmp and activin-membrane-bound inhibitor), change in the rainbow trout (Oncorhynchus mykiss) ovary during reproductive development including the transition from vitellogenesis to follicle maturation. The objective of the present study was to determine if the maturation-inducing hormone (MIH) in trout, 17alpha,20beta-dihydroxy-4-pregnen-3-one, regulates gene expression of TGFbeta superfamily members and their inhibitors. Transcript levels of inhibin beta(A) subunit (inhba) were increased and bambi decreased in isolated follicles incubated overnight without hormones compared to abundance in freshly excised tissues from the same fish, suggesting systemic factors influenced transcript abundance. Incubation with MIH decreased inhba and increased bambi expression in a dose-dependant manner and MIH was the most potent steroid examined. The transcripts' responses to incubation with and without MIH were observed in maturationally competent follicles, which are follicles competent to resume meiosis in response to MIH, and incompetent follicles, although the responses to MIH were greater in competent follicles. In summary, MIH regulates inhba and bambi expression in a stage specific manner supporting a role for MIH regulation of the TGFbeta superfamily system and participation of the TGFbeta superfamily system in the regulation of follicle maturation in rainbow trout.
Collapse
Affiliation(s)
- Scott E Lankford
- National Center for Cool and Cold Water Aquaculture, ARS, USDA, 11861 Leetown Road, Leetown, WV 25430-1861, USA.
| | | |
Collapse
|
13
|
Lubzens E, Young G, Bobe J, Cerdà J. Oogenesis in teleosts: how eggs are formed. Gen Comp Endocrinol 2010; 165:367-89. [PMID: 19505465 DOI: 10.1016/j.ygcen.2009.05.022] [Citation(s) in RCA: 552] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 05/07/2009] [Accepted: 05/29/2009] [Indexed: 11/25/2022]
Abstract
One of the major objectives of the aquaculture industry is the production of a large number of viable eggs with high survival. Major achievements have been made in recent years in improving protocols for higher efficiency of egg production and viability of progeny. Main gaps remain, however, in understanding the dynamic processes associated with oogenesis, the formation of an egg, from the time that germ cells turn into oogonia, until the release of ova during spawning in teleosts. Recent studies on primordial germ-cells, yolk protein precursors and their processing within the developing oocyte, the deposition of vitamins in eggs, structure and function of egg envelopes and oocyte maturation processes, further reveal the complexity of oogenesis. Moreover, numerous circulating endocrine and locally-acting paracrine and autocrine factors regulate the various stages of oocyte development and maturation. Though it is clear that the major regulators during vitellogenesis and oocyte maturation are the pituitary gonadotropins (LH and FSH) and sex steroids, the picture emerging from recent studies is of complex hormonal cross-talk at all stages between the developing oocyte and its surrounding follicle layers to ensure coordination of the various processes that are involved in the production of a fertilizable egg. In this review we aim at highlighting recent advances on teleost fish oocyte differentiation, maturation and ovulation, including those involved in the degeneration and reabsorption of ovarian follicles (atresia). The role of blood-borne and local ovarian factors in the regulation of the key steps of development reveal new aspects associated with egg formation.
Collapse
Affiliation(s)
- Esther Lubzens
- Department of Marine Biology, Israel Oceanographic and Limnological Research, 81080 Haifa, Israel.
| | | | | | | |
Collapse
|
14
|
Tan Q, Zagrodny A, Bernaudo S, Peng C. Regulation of membrane progestin receptors in the zebrafish ovary by gonadotropin, activin, TGF-beta and BMP-15. Mol Cell Endocrinol 2009; 312:72-9. [PMID: 19773085 DOI: 10.1016/j.mce.2009.03.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 02/19/2009] [Accepted: 03/19/2009] [Indexed: 01/26/2023]
Abstract
Progestin hormones are vital for inducing oocyte maturation in fish by binding to membrane progestin receptors (mPRs). The aim of this study was to examine the expression and regulation of mPRalpha and mPRbeta in zebrafish follicles. First, defolliculated fully grown oocytes were subjected to immunofluorescent staining using anti-mPRalpha and mPRbeta antibodies, and their expression on the oocyte membrane was confirmed. Second, total protein was collected from zebrafish follicles and Western blotting revealed that the level of mPRalpha and mPRbeta increased with follicle development. We have previously shown that several members of the transforming growth factor-beta (TGF-beta) superfamily, including TGF-beta1, activin-A, and bone morphogenetic protein (BMP)-15, regulate oocyte maturation in zebrafish. Therefore, the third major focus of this study was to test if these growth factors, as well as gonadotropins, regulate the expression of mPRs. Overexpression of BMP-15 significantly reduced, while knockdown of BMP-15 increased, mPRbeta levels. However, mPRalpha expression level remained unchanged with BMP-15 overexpression or knockdown. Treatment of follicles with human chorionic gonadotropin (hCG) resulted in an increased in mPRbeta, but not mPRalpha, expression levels. Activin-A induced the expression of mPRalpha and mPRbeta in a dose- and time-dependent manner. On the other hand, TGF-beta1 treatment suppressed the expression of mPRbeta, but not mPRalpha. Taken together, these findings further support the role of mPRs in oocyte maturation and suggest that gonadotropins, BMP-15, activin-A, and TGF-beta1 exert their regulatory effects on oocyte maturation in part by regulating mPR expression.
Collapse
Affiliation(s)
- Q Tan
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | | | | | | |
Collapse
|
15
|
Peng C, Clelland E, Tan Q. Potential role of bone morphogenetic protein-15 in zebrafish follicle development and oocyte maturation. Comp Biochem Physiol A Mol Integr Physiol 2009; 153:83-7. [DOI: 10.1016/j.cbpa.2008.09.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2008] [Revised: 09/26/2008] [Accepted: 09/27/2008] [Indexed: 11/29/2022]
|
16
|
Baron D, Houlgatte R, Fostier A, Guiguen Y. Expression profiling of candidate genes during ovary-to-testis trans-differentiation in rainbow trout masculinized by androgens. Gen Comp Endocrinol 2008; 156:369-78. [PMID: 18299129 DOI: 10.1016/j.ygcen.2008.01.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2007] [Revised: 01/14/2008] [Accepted: 01/15/2008] [Indexed: 11/25/2022]
Abstract
Fish gonadal phenotype is very sensitive to sex steroid and functional masculinizations can be obtained in most species using androgen treatments. To gain insight into the molecular effects of androgen-induced masculinization we characterized, in the rainbow trout, the gonadal expression profiles of 103 candidate genes involved in sex differentiation and early gametogenesis. The androgen treatment (11beta-hydroxyandrostenedione, 10 mg/kg of food for 3 months) was administered in a genetic all-female population. Gonads were sampled at different time points in genetic all-male and all-female control populations and in the androgen-treated group. Gene expression profiles were recorded by real-time RT-PCR and biological samples and gene expressions were compared using a global clustering analysis. This analysis revealed that masculinization with androgens acts firstly by repressing granulosa cell related genes, including genes involved in ovarian differentiation (foxl2a, fst, cyp19a1a), and subsequently by repressing genes important for early oogenesis (gdf9, bcl2lb, fancl, gcl, fshb, lhb, sox23, sox24, nup62 and vtgr). However, this masculinizing treatment did not induce a testicular differentiation similar to what was observed in the control male population. This was especially noticeable for many Leydig cell genes encoding proteins involved in steroidogenesis or its control (hsd3b1, star, cyp17a1, cyp11b2.1 and nr5a1b) that were down-regulated in the androgen-treated group. Concomitantly some Sertoli cells marker genes were up-regulated by the androgen treatment (sox9a.1, nr0b1, cldn11, dmrt1) whereas others were down-regulated (amh, sox9a.2), suggesting a partial differentiation of the Sertoli cell lineage. Overall, this suggests that the crucial step of this masculinization process is the de-differentiation of the granulosa cells.
Collapse
Affiliation(s)
- Daniel Baron
- INRA, UR1037 SCRIBE, IFR140, Ouest-Genopole, Rennes, France
| | | | | | | |
Collapse
|
17
|
Clelland ES, Tan Q, Balofsky A, Lacivita R, Peng C. Inhibition of premature oocyte maturation: a role for bone morphogenetic protein 15 in zebrafish ovarian follicles. Endocrinology 2007; 148:5451-8. [PMID: 17656459 DOI: 10.1210/en.2007-0674] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bone morphogenetic protein-15 (BMP-15) is a member of the TGF-beta superfamily known to regulate ovarian functions in mammals. Recently, we cloned zebrafish BMP-15 (zfBMP-15) cDNA and demonstrated that it may play a role in oocyte maturation. In this study, we further investigated the role of BMP-15 in zebrafish follicular development and oocyte maturation using an antiserum developed for zfBMP-15 and by microinjection of follicles with antisense zfBMP-15 N-morpholino oligonucleotides or an expression construct containing zfBMP-15 cDNA. Injection with antiserum caused a significant decrease in maturation-incompetent [insensitive to maturation-inducing hormone (MIH)] early growth phase follicles and a concomitant increase in mature follicles in vivo. In vitro maturation assays showed that incubation with antiserum resulted in a significant increase in oocyte maturation as compared with follicles incubated in preimmune serum or media control. Next, early growth phase follicles were collected and preincubated with either antiserum, preimmune serum, or medium control before treatment with MIH or human chorionic gonadotropin (hCG). Antiserum significantly increased oocyte maturation in response to MIH, but not to hCG, and enhanced basal maturation rate in longer-term incubations. Knockdown of BMP-15 in early growth stage follicles with a BMP-15 antisense oligonucleotide resulted in increased oocyte maturation, whereas microinjection of BMP-15 cDNA into oocytes significantly reduced MIH- and hCG-induced oocyte maturation in normally competent, mid-growth-phase follicles. Collectively, these findings suggest that BMP-15 modulates follicular growth and prevents premature oocyte maturation in zebrafish, in part, by suppressing the sensitivity of follicles to MIH.
Collapse
Affiliation(s)
- Eric S Clelland
- Department of Biology, York University, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
18
|
Petrino TR, Toussaint G, Lin YWP. Role of inhibin and activin in the modulation of gonadotropin- and steroid-induced oocyte maturation in the teleost Fundulus heteroclitus. Reprod Biol Endocrinol 2007; 5:21. [PMID: 17550604 PMCID: PMC1891301 DOI: 10.1186/1477-7827-5-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 06/05/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Activin and inhibin are glycoproteins structurally related to the transforming growth factor-beta superfamily. These peptides were first described as factors that regulate the follicle-stimulating hormone (FSH) at the pituitary level. The possible role of inhibin and activin, at the ovarian level, in mediating the stimulatory actions of a Fundulus pituitary extract (FPE) and 17alpha,20beta-dihydroprogesterone (DHP) on oocyte maturation was investigated in this study. METHODS In vitro culture of ovarian follicles and induction of oocyte maturation were carried out in 75% Leibovitz L-15 medium. Follicles or denuded oocytes were exposed to FPE, inhibin, activin, ethanol vehicle (control group), or DHP. The competence of the follicles or denuded oocytes to respond to the hormones was assessed by scoring germinal vesicle breakdown (GVBD) used as an indication of the reinitiation of meiosis or oocyte maturation. DHP level was measured by radioimmunoassay. RESULTS Addition of FPE promoted the synthesis of DHP by the granulose cells of fully grown ovarian follicles and thus stimulated GVBD in the oocyte. Presence of porcine inhibin did not hinder the synthesis of DHP stimulated by FPE, although it did inhibit the subsequent GVBD in a dose-dependent manner, suggesting that the action of inhibin was at the oocyte level. Similarly to the findings with FPE, inhibin also blocked the DHP-induced GVBD in intact follicles, as well as the spontaneous and steroid-induced GVBD of denuded oocyte. Inhibin straightforwardly blocked the response to a low dose of DHP throughout the culture period, while higher doses of the steroid appeared to overcome the inhibitory effect especially at later times. In contrast to inhibin, recombinant human activin A significantly enhanced DHP-induced GVBD in a dose-dependent manner after 48 hr, although activin alone was not able to induce GVBD without the presence of the steroid. CONCLUSION Taking together with our previous studies that demonstrate the presence of activin/inhibin subunits in the ovary of F. heteroclitus, these in vitro findings indicate that inhibin and activin are local regulators in the teleost ovary and have opposing effects in modulating oocyte maturation.
Collapse
Affiliation(s)
- Teresa R Petrino
- Barry University, School of Natural & Health Sciences, Miami Shores, Florida 33161, USA
| | - Gesulla Toussaint
- Barry University, School of Natural & Health Sciences, Miami Shores, Florida 33161, USA
| | - Yu-Wai P Lin
- Barry University, School of Natural & Health Sciences, Miami Shores, Florida 33161, USA
| |
Collapse
|
19
|
Ings JS, Van Der Kraak GJ. Characterization of the mRNA expression of StAR and steroidogenic enzymes in zebrafish ovarian follicles. Mol Reprod Dev 2007; 73:943-54. [PMID: 16700073 DOI: 10.1002/mrd.20490] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The objective of this study was to investigate the levels of expression of steroid biosynthetic enzymes and steroidogenic acute regulatory protein (StAR) at different stages of ovarian follicular development in zebrafish (Danio rerio), and to investigate the sites within the steroid biosynthetic pathway that may be regulated by gonadotropins. Ovarian follicles of sexually mature fish were separated into primary, previtellogenic, vitellogenic, and mature stages and the expression of StAR, P450 side chain cleavage (P450scc), 3beta-hydroxysteroid dehydrogenase (3beta-HSD), P450 hydroxylase/lyase (P450c17), 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1), 17beta-hydroxysteroid dehydrogenase type 3 (17beta-HSD3), and P450 aromatase (P450aromA) was determined by Real time RT-PCR. The expression of all genes changed significantly as follicles grew, with a decrease in the expression of StAR, P450scc, 3beta-HSD and P450c17 with maturation, and an increase in the expression of 17beta-HSD3 during vitellogenesis and 17beta-HSD1 and P450aromA during previtellogenesis. In vitro incubation of vitellogenic follicles demonstrated that the expression of StAR, 17beta-HSD3, and P450aromA increased in response to hCG, and decreased in the absence of hCG. In contrast, the expression of P450scc, 3beta-HSD, P450c17, and 17beta-HSD1 remained constant between treatments and over time. Testosterone and estradiol production in the culture medium was stimulated by human chorionic gonadotropin (hCG). These experiments aid in the characterization of the roles and regulation of steroids throughout ovarian development, and suggest that gonadotropins play a key role in the regulation of StAR, 17beta-HSD3, and P450aromA in zebrafish.
Collapse
Affiliation(s)
- Jennifer S Ings
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | | |
Collapse
|
20
|
Cui M, Li W, Liu W, Yang K, Pang Y, Haoran L. Production of recombinant orange-spotted grouper (Epinephelus coioides) luteinizing hormone in insect cells by the baculovirus expression system and its biological effect. Biol Reprod 2006; 76:74-84. [PMID: 17021348 DOI: 10.1095/biolreprod.105.050484] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The cDNA sequence encoding orange-spotted grouper lhb (LHbeta) and cga (GTHalpha) subunits were cocloned into baculovirus transfer vectors and expressed in insect Sf9 cells. The results showed that two bands of 15.6 kDa and 11.4 kDa could be detected by SDS-PAGE and a band of 30 kDa could be detected by native PAGE. The recombinant grouper Lh (rgLh) could stimulate the secretion of testosterone (T) and estradiol-17beta (E2) from the gonad in a static incubation system in a time-dependent, but not a dose-dependent, manner. Using in vivo bioassay, the mRNA levels of two aromatases (cyp19a1a [P450aromA] and cyp19a1b [P450aromB]), gnrh (GnRH), lhb, and cga in the pituitary, gonad, and hypothalamus were determined in different groups of orange-spotted groupers treated respectively with rgLh, human chorionic gonadotropin (hCG), and a culture medium of insect cells transformed with an expression vector without lhb and cga subunits. The mRNA levels of cyp19a1a and cyp19a1b rose dramatically after injecting rgLh intraperitoneally, which was consistent with the secretion of sex steroid hormones. Interestingly, the mRNA levels of gnrh dropped in the pituitary, hypothalamus, and gonad, and the mRNA levels of lhb and cga in the pituitary of the experimental group expressed at a higher level than that of the hCG group. These results are in accord with the long positive feedback loop of Lh on gonad sex steroid hormones and the short negative feedback loop of Lh on gnrh mRNA levels. These results indicate that the rgLh is successfully expressed by the baculovirus-insect expression system and that the rgLh has biological activity.
Collapse
Affiliation(s)
- Miao Cui
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | | | | | | | | | | |
Collapse
|
21
|
Campbell B, Dickey J, Beckman B, Young G, Pierce A, Fukada H, Swanson P. Previtellogenic oocyte growth in salmon: relationships among body growth, plasma insulin-like growth factor-1, estradiol-17beta, follicle-stimulating hormone and expression of ovarian genes for insulin-like growth factors, steroidogenic-acute regulatory protein and receptors for gonadotropins, growth hormone, and somatolactin. Biol Reprod 2006; 75:34-44. [PMID: 16554413 DOI: 10.1095/biolreprod.105.049494] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Body growth during critical periods is known to be an important factor in determining the age of maturity and fecundity in fish. However, the endocrine mechanisms controlling oogenesis in fish and the effects of growth on this process are poorly understood. In this study interactions between the growth and reproductive systems were examined by monitoring changes in various components of the FSH-ovary axis, plasma insulin-like growth factor 1 (Igf1), and ovarian gene expression in relation to body and previtellogenic oocyte growth in coho salmon. Samples were collected from females during two hypothesized critical periods when growth influences maturation in this species. Body growth during the fall-spring months was strongly related to the degree of oocyte development, with larger fish possessing more advanced oocytes than smaller, slower growing fish. The accumulation of cortical alveoli in the oocytes was associated with increases in plasma and pituitary FSH, plasma estradiol-17beta, and ovarian steroidogenic acute regulatory protein (star) gene expression, whereas ovarian transcripts for growth hormone receptor and somatolactin receptor decreased. As oocytes accumulated lipid droplets, a general increase occurred in plasma Igf1 and components of the FSH-ovary axis, including plasma FSH, estradiol-17beta, and ovarian mRNAs for gonadotropin receptors, star, igf1, and igf2. A consistent positive relationship between plasma Igf1, estradiol-17beta, and pituitary FSH during growth in the spring suggests that these factors are important links in the mechanism by which body growth influences the rate of oocyte development.
Collapse
Affiliation(s)
- B Campbell
- School of Aquatic and Fishery Sciences, University of Washington, Seattle 98195, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Clelland E, Kohli G, Campbell RK, Sharma S, Shimasaki S, Peng C. Bone morphogenetic protein-15 in the zebrafish ovary: complementary deoxyribonucleic acid cloning, genomic organization, tissue distribution, and role in oocyte maturation. Endocrinology 2006; 147:201-9. [PMID: 16210364 DOI: 10.1210/en.2005-1017] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bone morphogenetic protein-15 (BMP-15) is a member of the TGFbeta family known to regulate ovarian functions in mammals. The structure and function of BMP-15 in lower vertebrates are less known. In this study, we cloned the zebrafish BMP-15 (zfBMP-15) cDNA and depicted its genomic organization. The zfBMP-15 cDNA encodes a protein of 384 amino acids. The mature protein has 46-51% sequence identities to fugu, chicken, and mammalian BMP-15. It also shares 38-46% homology with growth and differentiation factor-9 in fishes, chicken, and mammals. Phylogenetic analysis further confirms that the zfBMP-15 is most closely related to BMP-15 from other species, whereas the growth and differentiation factor-9 peptides from fish to mammals form a distinct branch. Comparison of zfBMP-15 cDNA with zebrafish genome database revealed that zfBMP-15 is encoded by a gene with two exons and one intron, located on chromosome 6. BMP-15 mRNA is expressed in the ovary and testis and, to a lesser extent, brain, liver, gut, heart, and muscle. Real-time PCR revealed that BMP-15 is expressed in follicles at all stages of development with no significant changes over the course of folliculogenesis. Using in situ hybridization and immunocytochemistry, we detected BMP-15 in both oocytes and follicular cells. Incubation of follicles with antiserum against zfBMP15 increased oocyte maturation, whereas incubation with recombinant human BMP-15 suppressed human chorionic gonadotropin-induced oocyte maturation. These findings suggest that BMP-15 plays a role in regulating gonadal functions in fish, in particular oocyte maturation.
Collapse
Affiliation(s)
- Eric Clelland
- Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3
| | | | | | | | | | | |
Collapse
|
23
|
Kohli G, Clelland E, Peng C. Potential targets of transforming growth factor-beta1 during inhibition of oocyte maturation in zebrafish. Reprod Biol Endocrinol 2005; 3:53. [PMID: 16197550 PMCID: PMC1274345 DOI: 10.1186/1477-7827-3-53] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Accepted: 09/30/2005] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND TGF-beta is a multifunctional growth factor involved in regulating a variety of cellular activities. Unlike mammals, the function of TGF-beta in the reproduction of lower vertebrates, such as fish, is not clear. Recently, we showed that TGF-beta1 inhibits gonadotropin- and 17alpha, 20beta-dihydroxyprogesterone (DHP)-induced maturation in zebrafish. The aim of the present study was to investigate the mechanisms underlying this action. METHOD To determine if the effect of TGF-beta1 on oocyte maturation involves transcription and/or translation, ovarian follicles were pre-treated with actinomycin D, a blocker of transcription, and cyclohexamide, an inhibitor of translation, and incubated with hCG or DHP, either alone or in combination with TGF-beta1 and oocyte maturation scored. To determine the effect of TGF-beta1 on mRNA levels of several key effectors of oocyte maturation, three sets of experiments were performed. First, follicles were treated with control medium or TGF-beta1 for 2, 6, 12, and 24 h. Second, follicles were treated with different concentrations of TGF-beta1 (0 to 10 ng/ml) for 18 h. Third, follicles were incubated with hCG in the absence or presence of TGF-beta1 for 18 h. At the end of each experiment, total RNA was extracted and reverse transcribed. PCR using primers specific for 20beta-hydroxysteroid dehydrogenase (20beta-HSD) which is involved in DHP production, follicle stimulating hormone receptor (FSHR), luteinizing hormone receptor (LHR), the two forms of membrane progestin receptor: mPR-alpha and mPR-beta, as well as GAPDH (control), were performed. RESULTS Treatment with actinomycin D, a blocker of transcription, reduced the inhibitory effect of TGF-beta1 on DHP-induced oocyte maturation, indicating that the inhibitory action of TGF-beta1 is in part due to regulation of gene transcription. Treatment with TGF-beta1 caused a dose and time-dependent decrease in mRNA levels of 20beta-HSD, LHR and mPR-beta in follicles. On the other hand, TGF-beta1 had no effect on mPR-alpha mRNA expression and increased FSHR mRNA levels. Furthermore, hCG upregulated 20beta-HSD, LHR and mPR-beta mRNA levels, but this stimulatory effect was blocked by TGF-beta1. CONCLUSION These findings suggest that TGF-beta1 acts at multiple sites, including LHR, 20beta-HSD and mPR-beta, to inhibit zebrafish oocyte maturation.
Collapse
Affiliation(s)
- Gurneet Kohli
- Department Of Biology, York University, Toronto, Ontario, M3J 1P3, Canada
| | - Eric Clelland
- Department Of Biology, York University, Toronto, Ontario, M3J 1P3, Canada
| | - Chun Peng
- Department Of Biology, York University, Toronto, Ontario, M3J 1P3, Canada
| |
Collapse
|
24
|
DiMuccio T, Mukai ST, Clelland E, Kohli G, Cuartero M, Wu T, Peng C. Cloning of a second form of activin-betaA cDNA and regulation of activin-betaA subunits and activin type II receptor mRNA expression by gonadotropin in the zebrafish ovary. Gen Comp Endocrinol 2005; 143:287-99. [PMID: 15925369 DOI: 10.1016/j.ygcen.2005.04.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 03/22/2005] [Accepted: 04/03/2005] [Indexed: 11/22/2022]
Abstract
Activins are dimeric proteins consisting of two inhibin beta subunits. Homo- and hetero-dimerizations of two isoforms of beta subunits, betaA and betaB, produce three forms of activins, activin-A, -B, and -AB. Recent studies have suggested that activin-A mediates gonadotropin-induced oocyte maturation in the zebrafish. To further understand the physiological role of activin-A in the zebrafish ovary, we have cloned cDNAs for a second isoform of the activin-betaA subunit and the activin type IIA (ActRIIA) receptor and determined their regulation by gonadotropin. Two sequences were obtained during the cloning of activin-betaA subunit, both of which showed high identity to betaA subunits of other species, and were therefore designated as isoform 1 and 2. Real-time PCR quantification was used to measure mRNA levels of activin-betaA1 and -betaA2, as well as two type II receptors, ActRIIA and ActRIIB, in the zebrafish ovary. Activin-betaA1 mRNA levels in stages III and IV follicles were similar and higher than those in stage II while high activin-betaA2 mRNA levels were only found in stage IV follicles. Highest levels of mRNA expression were detected in small and large stage III follicles for ActRIIA and ActRIIB, respectively. Treatment with human chorionic gonadotropin induced dose- and time-dependent increases in mRNA levels of activin-betaA1 and -betaA, as well as ActRIIA and ActRIIB. These findings further support the involvement of the activin signaling cascade in gonadotropin-regulated gonadal activities.
Collapse
Affiliation(s)
- Tamara DiMuccio
- Department of Biology, York University, 4700 Keele St., Toronto, Ont., Canada M3J 1P3
| | | | | | | | | | | | | |
Collapse
|
25
|
Ge W. Intrafollicular paracrine communication in the zebrafish ovary: the state of the art of an emerging model for the study of vertebrate folliculogenesis. Mol Cell Endocrinol 2005; 237:1-10. [PMID: 15921848 DOI: 10.1016/j.mce.2005.03.012] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2005] [Revised: 03/24/2005] [Accepted: 03/30/2005] [Indexed: 11/20/2022]
Abstract
The development and function of vertebrate ovary are primarily controlled by the gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH), from the pituitary. However, most of the activities of FSH and LH are mediated or modulated by a variety of locally produced factors that form an intimate regulatory network within and between the follicles. As a top vertebrate model for genetic and developmental studies, the zebrafish has caught tremendous attention in the past two decades; however, its utility has quickly been extended to other areas including physiology. In the past few years, a variety of peptide growth factors have been identified and characterized in the zebrafish ovary including activin and epidermal growth factor (EGF), and lines of evidence point to the existence of an ovarian network of communication involving these factors. This article provides the state of the art of zebrafish as a model for analyzing ovarian development and its regulation.
Collapse
Affiliation(s)
- Wei Ge
- Department of Biology, The Chinese University of Hong Kong, Shatin, New Territories, China.
| |
Collapse
|
26
|
Zhou H, Wang X, Ko WKW, Wong AOL. Evidence for a novel intrapituitary autocrine/paracrine feedback loop regulating growth hormone synthesis and secretion in grass carp pituitary cells by functional interactions between gonadotrophs and somatotrophs. Endocrinology 2004; 145:5548-59. [PMID: 15331572 DOI: 10.1210/en.2004-0362] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gonadotropin (GTH) and GH released from the pituitary are known to interact at multiple levels to modulate the functions of the gonadotrophic and somatotrophic axes. However, their interactions at the pituitary level have not been fully characterized. In this study, autocrine/paracrine regulation of GH synthesis and secretion by local interactions between gonadotrophs and somatotrophs was examined using grass carp pituitary cells as a cell model. Exogenous GTH and GH induced GH release and GH mRNA expression in carp pituitary cells. Removal of endogenous GTH and GH by immunoneutralization with GTH and GH antisera, respectively, suppressed GH release, GH production, and GH mRNA levels. GH antiserum also blocked the stimulatory effects of exogenous GTH on GH release and GH mRNA levels. In reciprocal experiments, GH release and GH mRNA expression induced by exogenous GH was significantly reduced by GTH antiserum. In addition, exogenous GH was found to be inhibitory to basal GTH release and treatment with GH antiserum elevated GTH secretion at low doses but suppressed GTH production at high doses. These results suggest that local interactions between gonadotrophs and somatotrophs may form an intrapituitary feedback loop to regulate GH release and synthesis. In this model, GTH released from gonadotrophs induces GH release and GH production in neighboring somatotrophs. GH secreted maintains somatotroph sensitivity to GTH stimulation, and at the same time, inhibits basal GTH release in gonadotrophs. This feedback loop may represent a novel mechanism regulating GH release and synthesis in lower vertebrates.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Zoology, University of Hong Kong, Hong Kong SAR, People's Republic of China
| | | | | | | |
Collapse
|