1
|
Sigel A, Sigel H, Sigel RKO. Coordination Chemistry of Nucleotides and Antivirally Active Acyclic Nucleoside Phosphonates, including Mechanistic Considerations. Molecules 2022; 27:2625. [PMID: 35565975 PMCID: PMC9103026 DOI: 10.3390/molecules27092625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/17/2022] Open
Abstract
Considering that practically all reactions that involve nucleotides also involve metal ions, it is evident that the coordination chemistry of nucleotides and their derivatives is an essential corner stone of biological inorganic chemistry. Nucleotides are either directly or indirectly involved in all processes occurring in Nature. It is therefore no surprise that the constituents of nucleotides have been chemically altered-that is, at the nucleobase residue, the sugar moiety, and also at the phosphate group, often with the aim of discovering medically useful compounds. Among such derivatives are acyclic nucleoside phosphonates (ANPs), where the sugar moiety has been replaced by an aliphatic chain (often also containing an ether oxygen atom) and the phosphate group has been replaced by a phosphonate carrying a carbon-phosphorus bond to make the compounds less hydrolysis-sensitive. Several of these ANPs show antiviral activity, and some of them are nowadays used as drugs. The antiviral activity results from the incorporation of the ANPs into the growing nucleic acid chain-i.e., polymerases accept the ANPs as substrates, leading to chain termination because of the missing 3'-hydroxyl group. We have tried in this review to describe the coordination chemistry (mainly) of the adenine nucleotides AMP and ATP and whenever possible to compare it with that of the dianion of 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA2- = adenine(N9)-CH2-CH2-O-CH2-PO32) [or its diphosphate (PMEApp4-)] as a representative of the ANPs. Why is PMEApp4- a better substrate for polymerases than ATP4-? There are three reasons: (i) PMEA2- with its anti-like conformation (like AMP2-) fits well into the active site of the enzyme. (ii) The phosphonate group has an enhanced metal ion affinity because of its increased basicity. (iii) The ether oxygen forms a 5-membered chelate with the neighboring phosphonate and favors thus coordination at the Pα group. Research on ANPs containing a purine residue revealed that the kind and position of the substituent at C2 or C6 has a significant influence on the biological activity. For example, the shift of the (C6)NH2 group in PMEA to the C2 position leads to 9-[2-(phosphonomethoxy)ethyl]-2-aminopurine (PME2AP), an isomer with only a moderate antiviral activity. Removal of (C6)NH2 favors N7 coordination, e.g., of Cu2+, whereas the ether O atom binding of Cu2+ in PMEA facilitates N3 coordination via adjacent 5- and 7-membered chelates, giving rise to a Cu(PMEA)cl/O/N3 isomer. If the metal ions (M2+) are M(α,β)-M(γ)-coordinated at a triphosphate chain, transphosphorylation occurs (kinases, etc.), whereas metal ion binding in a M(α)-M(β,γ)-type fashion is relevant for polymerases. It may be noted that with diphosphorylated PMEA, (PMEApp4-), the M(α)-M(β,γ) binding is favored because of the formation of the 5-membered chelate involving the ether O atom (see above). The self-association tendency of purines leads to the formation of dimeric [M2(ATP)]2(OH)- stacks, which occur in low concentration and where one half of the molecule undergoes the dephosphorylation reaction and the other half stabilizes the structure-i.e., acts as the "enzyme" by bridging the two ATPs. In accord herewith, one may enhance the reaction rate by adding AMP2- to the [Cu2(ATP)]2(OH)- solution, as this leads to the formation of mixed stacked Cu3(ATP)(AMP)(OH)- species, in which AMP2- takes over the structuring role, while the other "half" of the molecule undergoes dephosphorylation. It may be added that Cu3(ATP)(PMEA) or better Cu3(ATP)(PMEA)(OH)- is even a more reactive species than Cu3(ATP)(AMP)(OH)-. - The matrix-assisted self-association and its significance for cell organelles with high ATP concentrations is summarized and discussed, as is, e.g., the effect of tryptophanate (Trp-), which leads to the formation of intramolecular stacks in M(ATP)(Trp)3- complexes (formation degree about 75%). Furthermore, it is well-known that in the active-site cavities of enzymes the dielectric constant, compared with bulk water, is reduced; therefore, we have summarized and discussed the effect of a change in solvent polarity on the stability and structure of binary and ternary complexes: Opposite effects on charged O sites and neutral N sites are observed, and this leads to interesting insights.
Collapse
Affiliation(s)
- Astrid Sigel
- Department of Chemistry, University of Basel, St. Johannsring 19, CH-4056 Basel, Switzerland;
| | - Helmut Sigel
- Department of Chemistry, University of Basel, St. Johannsring 19, CH-4056 Basel, Switzerland;
| | - Roland K. O. Sigel
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
2
|
Jastrzab R, Nowak M, Zabiszak M, Odani A, Kaczmarek MT. Significance and properties of the complex formation of phosphate and polyphosphate groups in particles present in living cells. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Blindauer CA, Griesser R, Holý A, Operschall BP, Sigel A, Song B, Sigel H. Intramolecular π-stacks in mixed-ligand copper(II) complexes formed by heteroaromatic amines and antivirally active acyclic nucleotide analogs carrying a hydroxy-2-(phosphonomethoxy)propyl residue ‡. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1490019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Claudia A. Blindauer
- Department of Chemistry, Inorganic Chemistry, University of Basel, Basel, Switzerland
- Department of Chemistry, University of Warwick, Coventry, UK
| | - Rolf Griesser
- Department of Chemistry, Inorganic Chemistry, University of Basel, Basel, Switzerland
| | - Antonín Holý
- Institute of Organic Chemistry and Biochemistry, Centre of Novel Antivirals and Antineoplastics, Academy of Sciences, Prague, Czech Republic
| | - Bert P. Operschall
- Department of Chemistry, Inorganic Chemistry, University of Basel, Basel, Switzerland
| | - Astrid Sigel
- Department of Chemistry, Inorganic Chemistry, University of Basel, Basel, Switzerland
| | - Bin Song
- Department of Chemistry, Inorganic Chemistry, University of Basel, Basel, Switzerland
- Vertex Pharmaceuticals Inc., Boston, MA, USA
| | - Helmut Sigel
- Department of Chemistry, Inorganic Chemistry, University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Copper (II) and zinc (II) complexes with flavanone derivatives: Identification of potential cholinesterase inhibitors by on-flow assays. J Inorg Biochem 2016; 164:141-149. [DOI: 10.1016/j.jinorgbio.2016.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 11/21/2022]
|
5
|
Kataev EA, Shumilova TA, Fiedler B, Anacker T, Friedrich J. Understanding Stacking Interactions between an Aromatic Ring and Nucleobases in Aqueous Solution: Experimental and Theoretical Study. J Org Chem 2016; 81:6505-14. [PMID: 27314892 DOI: 10.1021/acs.joc.6b01130] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Stacking interactions between aromatic compounds and nucleobases are crucial in recognition of nucleotides and nucleic acids, but a comprehensive understanding of the strength and selectivity of these interactions in aqueous solution has been elusive. To this end, model complexes have been designed and analyzed by experiment and theory. For the first time, stacking free energies between five nucleobases and anthracene were determined experimentally from thermodynamic double mutant cycles. Three different experimental methods were proposed and evaluated. The dye prefers to bind nucleobases in the order (kcal/mol): G (1.3) > T (0.9) > U (0.8) > C (0.5) > A (0.3). The respective trend of interaction free energies extracted from DFT calculations correlates to that obtained experimentally. Analysis of the data suggests that stacking interactions dominate over hydrophobic effects in an aqueous solution and can be predicted with DFT calculations.
Collapse
Affiliation(s)
- Evgeny A Kataev
- Institute of Chemistry, Faculty of Natural Sciences, Technische Universität Chemnitz , 09107 Chemnitz, Germany
| | - Tatiana A Shumilova
- Institute of Chemistry, Faculty of Natural Sciences, Technische Universität Chemnitz , 09107 Chemnitz, Germany
| | - Benjamin Fiedler
- Institute of Chemistry, Faculty of Natural Sciences, Technische Universität Chemnitz , 09107 Chemnitz, Germany
| | - Tony Anacker
- Institute of Chemistry, Faculty of Natural Sciences, Technische Universität Chemnitz , 09107 Chemnitz, Germany
| | - Joachim Friedrich
- Institute of Chemistry, Faculty of Natural Sciences, Technische Universität Chemnitz , 09107 Chemnitz, Germany
| |
Collapse
|
6
|
Blindauer CA, Sigel A, Operschall BP, Griesser R, Holý A, Sigel H. Extent of intramolecular π stacks in aqueous solution in mixed-ligand copper(II) complexes formed by heteroaromatic amines and the anticancer and antivirally active 9-[2-(phosphonomethoxy)ethyl]guanine (PMEG). A comparison with related acyclic nucleotide analogues. Polyhedron 2016. [DOI: 10.1016/j.poly.2015.02.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Blindauer CA, Sigel A, Operschall BP, Holý A, Sigel H. Extent of Intramolecular π Stacks in Aqueous Solution in Mixed-Ligand Copper(II) Complexes Formed by Heteroaromatic Amines and 1-[2-(Phosphonomethoxy)ethyl]cytosine (PMEC), a Relative of Antivirally Active Acyclic Nucleotide Analogues (Part 72) [1, 2]. Z Anorg Allg Chem 2013. [DOI: 10.1002/zaac.201300095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Gómez-Coca RB, Blindauer CA, Sigel A, Operschall BP, Holý A, Sigel H. Extent of intramolecular π-stacks in aqueous solution in mixed-ligand copper(II) complexes formed by heteroaromatic amines and several 2-aminopurine derivatives of the antivirally active nucleotide analog 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA). Chem Biodivers 2013; 9:2008-34. [PMID: 22976988 DOI: 10.1002/cbdv.201200022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The acidity constants of twofold protonated, antivirally active, acyclic nucleoside phosphonates (ANPs), H(2)(PE)(±), where PE(2-)=9-[2-(phosphonomethoxy)ethyl]adenine (PMEA(2-)), 2-amino-9-[2-(phosphonomethoxy)ethyl]purine (PME2AP(2-)), 2,6-diamino-9-[2-(phosphonomethoxy)ethyl]purine (PMEDAP(2-)), or 2-amino-6-(dimethylamino)-9-[2-(phosphonomethoxy)ethyl]purine (PME(2A6DMAP)(2-)), as well as the stability constants of the corresponding ternary Cu(Arm)(H;PE)(+) and Cu(Arm)(PE) complexes, where Arm=2,2'-bipyridine (bpy) or 1,10-phenanthroline (phen), are compared. The constants for the systems containing PE(2-)=PMEDAP(2-) and PME(2A6DMAP)(2-) have been determined now by potentiometric pH titrations in aqueous solution at I=0.1M (NaNO(3)) and 25°; the corresponding results for the other ANPs were taken from our earlier work. The basicity of the terminal phosphonate group is very similar for all the ANP(2-) species, whereas the addition of a second amino substituent at the pyrimidine ring of the purine moiety significantly increases the basicity of the N(1) site. Detailed stability-constant comparisons reveal that, in the monoprotonated ternary Cu(Arm)(H;PE)(+) complexes, the proton is at the phosphonate group, that the ether O-atom of the -CH(2)-O-CH(2)-P(O)(2)(-)(OH) residue participates, next to the P(O)(2)(-)(OH) group, to some extent in Cu(Arm)(2+) coordination, and that π-π stacking between the aromatic rings of Cu(Arm)(2+) and the purine moiety is rather important, especially for the H·PMEDAP(-) and H·PME(2A6DMAP)(-) ligands. There are indications that ternary Cu(Arm)(2+)-bridged stacks as well as unbridged (binary) stacks are formed. The ternary Cu(Arm)(PE) complexes are considerably more stable than the corresponding Cu(Arm)(R-PO(3)) species, where R-PO(3)(2-) represents a phosph(on)ate ligand with a group R that is unable to participate in any kind of intramolecular interaction within the complexes. The observed stability enhancements are mainly attributed to intramolecular-stack formation in the Cu(Arm)(PE) complexes and also, to a smaller extent, to the formation of five-membered chelates involving the ether O-atom present in the -CH(2)-O-CH(2)-PO(3)(2-) residue of the PE(2-) species. The quantitative analysis of the intramolecular equilibria involving three structurally different Cu(Arm)(PE) isomers shows that, e.g., ca. 1.5% of the Cu(phen)(PMEDAP) system exist with Cu(phen)(2+) solely coordinated to the phosphonate group, 4.5% as a five-membered chelate involving the ether O-atom of the -CH(2)-O-CH(2)-PO(3)(2-) residue, and 94% with an intramolecular π-π stack between the purine moiety of PMEDAP(2-) and the aromatic rings of phen. Comparison of the various formation degrees of the species formed reveals that, in the Cu(phen)(PE) complexes, intramolecular-stack formation is more pronounced than in the Cu(bpy)(PE) species. Within a given Cu(Arm)(2+) series the stacking intensity increases in the order PME2AP(2-) <PMEA(2-) <PMEDAP(2-) <PME(2A6DMAP)(2-). One could speculate that the reduced stacking intensity of PME2AP(2-), together with a different H-bonding pattern, could well lead to a different orientation of the 2-aminopurine moiety (compared to the adenine residue) in the active site of nucleic acid polymerases and thus be responsible for the reduced antiviral activity of PME2AP compared with that of PMEA and the other ANPs containing a 6-amino substituent.
Collapse
Affiliation(s)
- Raquel B Gómez-Coca
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel
| | | | | | | | | | | |
Collapse
|
9
|
EPR and potentiometric studies of copper(II) binding to nicotinamide adenine dinucleotide (NAD+) in water solution. J Inorg Biochem 2012; 111:18-24. [PMID: 22484248 DOI: 10.1016/j.jinorgbio.2012.02.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/23/2012] [Accepted: 02/23/2012] [Indexed: 11/24/2022]
Abstract
Coordination of Cu(II) by nicotinamide adenine dinucleotide (NAD(+)) molecule has been studied in water solutions of various pH by potentiometry and electron paramagnetic resonance (EPR) and electron spin echo (ESE) spectroscopy. Potentiometric results indicate Cu(II) coordination by protonated NAD(+) at low pH and by deprotonated NAD(+) at high pH. At medium pH value (around pH=7) NAD(+) is not able to coordinate Cu(II) ions effectively and mainly the Cu(H(2)O)(6) complexes exist in the studied solution. This has been confirmed by EPR results. Electronic structure of Cu(II)-NAD complex and coordination sites is determined from EPR and ESE measurements in frozen solutions (at 77K and 6K). EPR spectra exclude coordination with nitrogen atoms. Detailed analysis of EPR parameters (g(||)=2.420, g(perpendicular)==2.080, A(||)=-131×10(-4)cm(-1) and A(perpendicular)=8×10(-4)cm(-1)) performed in terms of molecular orbital (MO) theory shows that Cu(II)NAD complex has elongated axial octahedral symmetry with a relatively strong delocalization of unpaired electron density on in-plane and axial ligands. The distortion of octahedron is analyzed using A(||) vs. g(||) diagram for various CuO(x) complexes. Electron spin echo decay modulation excludes the coordination by oxygen atoms of phosphate groups. We postulate a coordination of Cu(II) by two hydroxyl oxygen atoms of two ribose moieties of the NAD molecules and four solvated water molecules both at low and high pH values with larger elongation of the octahedron at higher pH.
Collapse
|
10
|
García-Ramos JC, Tovar-Tovar A, Hernández-Lima J, Cortés-Guzmán F, Moreno-Esparza R, Ruiz-Azuara L. A new kind of intermolecular stacking interaction between copper (II) mixed chelate complex (Casiopeína III-ia) and adenine. Polyhedron 2011. [DOI: 10.1016/j.poly.2011.07.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Fernández-Botello A, Holý A, Moreno V, Operschall BP, Sigel H. Intramolecular π–π stacking interactions in aqueous solution in mixed-ligand copper(II) complexes formed by heteroaromatic amines and the nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]-2-aminopurine (PME2AP), an isomer of the antivirally active 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA). Inorganica Chim Acta 2009. [DOI: 10.1016/j.ica.2008.02.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Operschall BP, Bianchi EM, Griesser R, Sigel H. Influence of decreasing solvent polarity (1,4-dioxane/water mixtures) on the stability and structure of complexes formed by copper(II), 2,2′-bipyridine or 1,10-phenanthroline and guanosine 5′-diphosphate: evaluation of isomeric equilibria. J COORD CHEM 2008. [DOI: 10.1080/00958970802474888] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Bert P. Operschall
- a Department of Chemistry, Inorganic Chemistry , University of Basel , Spitalstrasse 51, CH-4056 Basel, Switzerland
| | - Emanuela M. Bianchi
- a Department of Chemistry, Inorganic Chemistry , University of Basel , Spitalstrasse 51, CH-4056 Basel, Switzerland
| | - Rolf Griesser
- a Department of Chemistry, Inorganic Chemistry , University of Basel , Spitalstrasse 51, CH-4056 Basel, Switzerland
| | - Helmut Sigel
- a Department of Chemistry, Inorganic Chemistry , University of Basel , Spitalstrasse 51, CH-4056 Basel, Switzerland
| |
Collapse
|
13
|
Sigel H, Massoud SS, Song B, Griesser R, Knobloch B, Operschall BP. Acid-base and metal-ion-binding properties of xanthosine 5'-monophosphate (XMP) in aqueous solution: complex stabilities, isomeric equilibria, and extent of macrochelation. Chemistry 2007; 12:8106-22. [PMID: 16888737 DOI: 10.1002/chem.200600160] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The four acidity constants of threefold protonated xanthosine 5'-monophosphate, H3(XMP)+, reveal that at the physiological pH of 7.5 (XMP-H)(3-) strongly dominates (and not XMP(2-) as given in textbooks); this is in contrast to the related inosine (IMP(2-)) and guanosine 5'-monophosphate (GMP(2-)) and it means that XMP should better be named as xanthosinate 5'-monophosphate. In addition, evidence is provided for a tautomeric (XMP-HN1)(3-)/(XMP-HN3)(3-) equilibrium. The stability constants of the M(H;XMP)+ species were estimated and those of the M(XMP) and M(XMP-H)- complexes (M2+=Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+) measured potentiometrically in aqueous solution. The primary M2+ binding site in M(XMP) is (mostly) N7 of the monodeprotonated xanthine residue, the proton being at the phosphate group. The corresponding macrochelates involving P(O)2(OH)- (most likely outer-sphere) are formed to approximately 65% for nearly all M2+. In M(XMP-H)- the primary M2+ binding site is (mostly) the phosphate group; here the formation degree of the N7 macrochelates varies widely from close to zero for the alkaline earth ions, to approximately 50% for Mn2+, and approximately 90% or more for Co2+, Ni2+, Cu2+, Zn2+, and Cd2+. Because for (XMP-H)(3-) the micro stability constants quantifying the M2+ affinity of the xanthosinate and PO3(2-) residues are known, one may apply a recently developed quantification method for the chelate effect to the corresponding macrochelates; this chelate effect is close to zero for the alkaline earth ions and it amounts to about one log unit for Co2+, Ni2+, Cu2+. This method also allows calculation of the formation degrees of the monodentatally coordinated isomers; this information is of relevance for biological systems because it demonstrates how metal ions can switch from one site to another through macrochelate formation. These insights are meaningful for metal-ion-dependent reactions of XMP in metabolic pathways; previous mechanistic proposals based on XMP(2-) need revision.
Collapse
Affiliation(s)
- Helmut Sigel
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, 4056 Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
14
|
Sigel H, Operschall BP, Massoud SS, Song B, Griesser R. Evidence for intramolecular aromatic-ring stacking in the physiological pH range of the monodeprotonated xanthine residue in mixed-ligand complexes containing xanthosinate 5′-monophosphate (XMP). Dalton Trans 2006:5521-9. [PMID: 17117222 DOI: 10.1039/b610082a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The stability constants of the mixed-ligand complexes formed between Cu(Arm)2+ [Arm = 2,2'-bipyridine (Bpy) or 1,10-phenanthroline (Phen)], and the di- or trianion of xanthosine 5'-monophosphoric acid [= XMP(2-) or (XMP - H)(3-)] were determined by potentiometric pH titration in aqueous solution (25 degrees C; I = 0.1 M, NaNO3). Those for the monoanion, i.e., the Cu(Arm)(H;XMP)+ complexes, could only be estimated; for these species it is concluded that the metal ion is overwhelmingly bound at N7 and the proton resides at the phosphate group. Similarly, in the Cu(Arm)(XMP)+/- [= Cu(Arm)(X - H.MP.H)+/-] complexes Cu(Arm)2+ is also at N7 but the xanthine residue has lost a proton whereas the phosphate group still carries one, i.e., stacking plays, if at all, only a very minor role, yet, the N7-bound Cu(Arm)2+ appears to form an outer-sphere macrochelate with P(O)2(OH)-, its formation degree being about 60%. All this is different in the Cu(Arm)(XMP - H)- complexes, which are formed by the (XMP - H)(3-) species, that occur at the physiological pH of 7.5 and for which previously evidence has been provided that in a tautomeric equilibrium the xanthine moiety loses a proton either from (N1)H or (N3)H. In Cu(Arm)(XMP - H)- the phosphate group is the primary binding site for Cu(Arm)2+ and the observed increased complex stability is mainly due to intramolecular stack (st) formation between the aromatic-ring systems of Phen or Bpy and the monodeprotonated xanthine residue of (XMP - H)(3-); e.g., the stacked Cu(Phen)(XMP - H) isomer occurs with approximately 76%. Regarding biological systems the most important result is that at physiological pH the xanthine moiety has lost a proton from the (N1)H/(N3)H sites forming (XMP - H)(3-) and that its anionic xanthinate residue is able to undergo aromatic-ring stacking.
Collapse
Affiliation(s)
- Helmut Sigel
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, CH-4056, Basel, Switzerland.
| | | | | | | | | |
Collapse
|
15
|
Sigel H, Griesser R. Nucleoside 5'-triphosphates: self-association, acid-base, and metal ion-binding properties in solution. Chem Soc Rev 2005; 34:875-900. [PMID: 16172677 DOI: 10.1039/b505986k] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adenosine 5'-triphosphate (ATP(4-)) and related nucleoside 5'-triphosphates (NTP(4-)) serve as substrates in the form of metal ion complexes in enzymic reactions taking part thus in central metabolic processes. With this in mind, the coordination chemistry of NTPs is critically reviewed and the conditions are defined for studies aiming to describe the properties of monomeric complexes because at higher concentrations (>1 mM) self-stacking may take place. The metal ion (M(2+)) complexes of purine-NTPs are more stable than those of pyrimidine-NTPs; this stability enhancement is attributed, in accord with NMR studies, to macrochelate formation of the phosphate-coordinated M(2+) with N7 of the purine residue and the formation degrees of the resulting isomeric complexes are listed. Furthermore, the formation of mixed-ligand complexes (including also those with buffer molecules), the effect of a reduced solvent polarity on complex stability and structure (giving rise to selectivity), the use of nucleotide analogues as antiviral agents, and the effect of metal ions on group transfer reactions are summarized.
Collapse
Affiliation(s)
- Helmut Sigel
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland.
| | | |
Collapse
|
16
|
Fernández-Botello A, Holý A, Moreno V, Sigel H. Intramolecular stacking interactions in ternary copper(II) complexes formed by a heteroaromatic amine and 9-[2-(2-phosphonoethoxy)ethyl]adenine, a relative of the antiviral nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]adenine☆. J Inorg Biochem 2004; 98:2114-24. [PMID: 15541501 DOI: 10.1016/j.jinorgbio.2004.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Revised: 07/31/2004] [Accepted: 08/03/2004] [Indexed: 11/29/2022]
Abstract
The stability constants of the mixed-ligand complexes formed between Cu(Arm)2+, where Arm=2,2'-bipyridine (Bpy) or 1,10-phenanthroline (Phen), and the dianions of 9-[2-(2-phosphonoethoxy)ethyl]adenine (PEEA2-) and (2-phosphonoethoxy)ethane (PEE2-), also known as [2-(2-ethoxy)ethyl]phosphonate, were determined by potentiometric pH titrations in aqueous solution (25 degrees C; I=0.1 M, NaNO3). The ternary Cu(Arm)(PEEA) complexes are considerably more stable than the corresponding Cu(Arm)(R-PO3) species, where R-PO3(2-) represents a phosph(on)ate ligand with a group R that is unable to participate in any kind of interaction within the complexes. The increased stability is attributed to intramolecular stack formation in the Cu(Arm)(PEEA) complexes and also, to a smaller extent, to the formation of 6-membered chelates involving the ether oxygen atom present in the -CH2-O-CH2-CH2-PO3(2-) residue of PEEA2-. This latter interaction is separately quantified by studying the ternary Cu(Arm)(PEE) complexes which can form the 6-membered chelates but where no intramolecular ligand-ligand stacking is possible. Application of these results allows a quantitative analysis of the intramolecular equilibria involving three structurally different Cu(Arm)(PEEA) species; e.g., of the Cu(Bpy)(PEEA) system about 11% exist with the metal ion solely coordinated to the phosphonate group, 4% as a 6-membered chelate involving the ether oxygen atom of the -CH2-O-CH2CH2-PO3(2-) residue, and 85% with an intramolecular stack between the adenine moiety of PEEA2- and the aromatic rings of Bpy. In addition, the Cu(Arm)(PEEA) complexes may be protonated, leading to Cu(Arm)(H;PEEA)+ species for which it is concluded that the proton is located at the phosphonate group and that the complexes are mainly formed (50 and 70%) by a stacking adduct between Cu(Arm)2+ and the adenine residue of H(PEEA)-. Finally, the stacking properties of adenosine 5'-monophosphate (AMP2-), of the dianion of 9-[2-(phophonomethoxy)ethyl]adenine (PMEA2-) and of several of its analogues (=PA2-) are compared in their ternary Cu(Arm)(AMP) and Cu(Arm)(PA) systems. Conclusions regarding the antiviral properties of several acyclic nucleoside phosphonates are shortly discussed.
Collapse
Affiliation(s)
- Alfonso Fernández-Botello
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
17
|
Guo YH, Ge QC, Lin H, Lin HK, Zhu SR. The recognition and catalytic hydrolysis of ATP by protonated phenanthroline-bridged polyamine and (or) Ca(II), Mg(II), Zn(II), and La(III) ions. CAN J CHEM 2004. [DOI: 10.1139/v04-003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The supramolecular interactions of 2,9-di(((2′-phenylamino)ethyleneamino)methyl)-1,10-phenanthroline (L) and (or) metal ions (M = Ca2+, Mg2+, Zn2+, or La3+) with nucleotides were investigated. Furthermore, the hydrolysis of ATP catalyzed by a protonated ligand and (or) a metal ion (M = Ca2+, Mg2+, Zn2+, or La3+) was studied at pH 7.6 using 31P NMR spectra. Kinetics studies show that at pH 7.6 the protonated ligand, with a rate constant of 2.9 × 104 min1, does not significantly promote ATP hydrolysis. However, in the presence of Ca2+, Mg2+, Zn2+, or La3+ ions, L can accelerate the hydrolysis of ATP, with corresponding rate constants of 5.73, 1.48, 6.76, and 31.7 × 103 min1, respectively, which are about 29-, 7.5-, 34-, and 159-fold faster than the hydrolysis rate of free ATP. By comparison with MATP (M = Ca2+, Mg2+, and La3+) systems, the rates of MLATP were also promoted. This has been achieved through the effective recognition of ATP and the availability of a good intramolecular nucleophile, i.e., a free amino nitrogen atom of L. Compared with the Zn2+ATP system, the decrease in the rate of the Zn2+LATP system at pH 7.6 may be attributed to the competition between the mixed ligands in binding Zn2+. Similar to LATP, the hydrolysis reactions in the Zn2+LATP or MLATP (M = Ca2+, Mg2+, and La3+) systems occur through an additionelimination type mechanism, in which phosphoramidate intermediates were observed at 2.88 and 4.06 parts per million (ppm) in the LATP and Mg2+LATP systems, respectively. Here, metal ions add control or regulation to the hydrolysis reaction. Key words: recognition, ATP hydrolysis, metal ions, phenanthroline-bridged polyamine.
Collapse
|
18
|
Guo Y, Ge Q, Lin H, Lin HK, Zhu S, Zhou C. The different roles of metal ions and water molecules in the recognition and catalyzed hydrolysis of ATP by phenanthroline-containing polyamines. Biophys Chem 2003; 105:119-31. [PMID: 12932584 DOI: 10.1016/s0301-4622(03)00140-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The phenanthroline bridging polyaza ligands L1, L2 and L3 can selectively and strongly bind nucleotides at physiological pH, and hence accelerate the hydrolysis rate of the bound ATP. It is interesting that a phosphoramidate intermediate at 2.88 ppm (should be added 5.63 ppm when compared with other models) was found in the hydrolysis process of L/ATP. By introduction of metal ions (critical Zn(2+) or hard Mg(2+), Ca(2+)) to the L/ATP system, recognition of the anionic substrates by the protonated ligands was greatly promoted. However, due to the different affinities of metal ions to the receptor and the substrate, ATP hydrolysis in Zn(2+)/L/ATP system and Mg(2+)(Ca(2+))/L/ATP system occurs through different mechanisms. By comparison with the M/ATP (M=Zn(2+), Mg(2+), Ca(2+)) system, the rates of ATP-hydrolysis in the Mg(2+)Ca(2+)/L/ATP system and the Zn(2+)/L/ATP system were enhanced and retarded, respectively. Moreover, the reasons contributing to large rate range of the L/ATP systems and M(2+)/L/ATP systems were given. The results show that metal ions vertically regulate the recognition and hydrolysis of ATP. On the other hand, water molecule participates in the hydrolysis reactions at different steps with different functions in the L/ATP systems and M(Zn(2+), Mg(2+), Ca(2+))L/ATP systems.
Collapse
Affiliation(s)
- Yanhe Guo
- Department of Chemistry, Nankai University, Tianjin 300071, PR China
| | | | | | | | | | | |
Collapse
|
19
|
Guo Y, Ge Q, Lin H, Lin H, Zhu S, Zhou C. Recognition promoted by Zn2+ between phenanthroline bridging polyaza ligands and nucleotides--Zn2+ acts as 'messenger' between the receptor and substrate. J Mol Recognit 2003; 16:102-11. [PMID: 12720279 DOI: 10.1002/jmr.609] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The stability constants of the supramolecular complexes formed between L ((a,b,c,d)) or their Zn(2+) complexes, and adenosine 5'-triphosphate (ATP) in aqueous solution were determined by potentiometric titrations (25 degrees C, I = 0.1 mol dm(-3) KNO(3)). The results show that protonated aliphatic-substituted L (a,d) and aromatic-substituted L (b,c) ligands and/or Zn(II) ion can efficiently recognition the substrate, ATP. All of the equilibrium studies, (1)H and (31)P nuclear magnetic resonance spectra indicate that multiple interactions, including coordination, pi-stacking, ion-pairing, H-bonding, and possible ion-pi-donor, hydrophobic and even van der Waals interactions exist in the Zn(II)-L-ATP systems. On the other hand, the recognition of the substrates by the protonated ligands was significantly promoted by the addition of Zn(II), which leads to coordination competition between the mixed ligands, L and nucleotide. In Zn(II)/L/ATP systems the tendency for phosphate chain to receive proton and metal ion increases, facilitating the cleavage of the phosphate chain of the nucleotide.
Collapse
Affiliation(s)
- Yanhe Guo
- Department of Chemistry of Nankai University, Tianjin 300071, People's Republic of China
| | | | | | | | | | | |
Collapse
|
20
|
Guo YH, Ge QC, Lin H, Lin HK, Zhu SR. Thermodynamic studies on supramolecular interactions of metal ions with nucleotides/tripods ligands. Polyhedron 2002. [DOI: 10.1016/s0277-5387(02)00916-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Sigel H, Kapinos LE. Quantification of isomeric equilibria for metal ion complexes formed in solution by phosphate or phosphonate ligands with a weakly coordinating second site. Coord Chem Rev 2000. [DOI: 10.1016/s0010-8545(00)00307-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Critical evaluation of stability constants for nucleotide complexes with protons and metal ions and the accompanying enthalpy changes. PURE APPL CHEM 1991. [DOI: 10.1351/pac199163071015] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|