1
|
Zeineddine S, Jaber S, Saab SA, Nakhleh J, Dimopoulos G, Osta MA. Late sporogonic stages of Plasmodium parasites are susceptible to the melanization response in Anopheles gambiae mosquitoes. Front Cell Infect Microbiol 2024; 14:1438019. [PMID: 39149419 PMCID: PMC11324593 DOI: 10.3389/fcimb.2024.1438019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
The malaria-causing parasites have to complete a complex infection cycle in the mosquito vector that also involves attack by the insect's innate immune system, especially at the early stages of midgut infection. However, Anopheles immunity to the late Plasmodium sporogonic stages, such as oocysts, has received little attention as they are considered to be concealed from immune factors due to their location under the midgut basal lamina and for harboring an elaborate cell wall comprising an external layer derived from the basal lamina that confers self-properties to an otherwise foreign structure. Here, we investigated whether Plasmodium berghei oocysts and sporozoites are susceptible to melanization-based immunity in Anopheles gambiae. Silencing of the negative regulator of melanization response, CLIPA14, increased melanization prevalence without significantly increasing the numbers of melanized oocysts, while co-silencing CLIPA14 with CLIPA2, a second negative regulator of melanization, resulted in a significant increase in melanized oocysts and melanization prevalence. Only late-stage oocysts were found to be melanized, suggesting that oocyst rupture was a prerequisite for melanization-based immune attack, presumably due to the loss of the immune-evasive features of their wall. We also found melanized sporozoites inside oocysts and in the hemocoel, suggesting that sporozoites at different maturation stages are susceptible to melanization. Silencing the melanization promoting factors TEP1 and CLIPA28 rescued oocyst melanization in CLIPA2/CLIPA14 co-silenced mosquitoes. Interestingly, silencing of CTL4, that protects early stage ookinetes from melanization, had no effect on oocysts and sporozoites, indicating differential regulation of immunity to early and late sporogonic stages. Similar to previous studies addressing ookinete stage melanization, the melanization of Plasmodium falciparum oocysts was significantly lower than that observed for P. berghei. In summary, our results provide conclusive evidence that late sporogonic malaria parasite stages are susceptible to melanization, and we reveal distinct regulatory mechanisms for ookinete and oocyst melanization.
Collapse
Affiliation(s)
- Suheir Zeineddine
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Sana Jaber
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Sally A. Saab
- Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Johnny Nakhleh
- Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - George Dimopoulos
- Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Mike A. Osta
- Department of Biology, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
2
|
Zeineddine S, Jaber S, Saab SA, Nakhleh J, Dimopoulos G, Osta MA. Late sporogonic stages of Plasmodium parasites are susceptible to the melanization response in Anopheles gambiae mosquitoes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596773. [PMID: 38853990 PMCID: PMC11160730 DOI: 10.1101/2024.05.31.596773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The malaria-causing parasites have to complete a complex infection cycle in the mosquito vector that also involves attack by the insect's innate immune system, especially at the early stages of midgut infection. However, Anopheles immunity to the late Plasmodium sporogonic stages, such as oocysts, has received little attention as they are considered to be concealed from immune factors due to their location under the midgut basal lamina and for harboring an elaborate cell wall comprising an external layer derived from the basal lamina that confers self-properties to an otherwise foreign structure. Here, we investigated whether Plasmodium berghei oocysts and sporozoites are susceptible to melanization-based immunity in Anopheles gambiae. Silencing of the negative regulator of melanization response, CLIPA14, increased melanization prevalence without significantly increasing the numbers of melanized oocysts, while co-silencing CLIPA14 with CLIPA2, a second negative regulator of melanization, resulted in a significant increase in melanized oocysts and melanization prevalence. Only late-stage oocysts were found to be melanized, suggesting that oocyst rupture was a prerequisite for melanization-based immune attack, presumably due to the loss of the immune-evasive features of their wall. We also found melanized sporozoites inside oocysts and in the hemocoel, suggesting that sporozoites at different maturation stages are susceptible to melanization. Silencing the melanization promoting factors TEP1 and CLIPA28 rescued oocyst melanization in CLIPA2/CLIPA14 co-silenced mosquitoes. Interestingly, silencing of CTL4, that protects early stage ookinetes from melanization, had no effect on oocysts and sporozoites, indicating differential regulation of immunity to early and late sporogonic stages. Similar to previous studies addressing ookinete stage melanization, the melanization of Plasmodium falciparum oocysts was significantly lower than that observed for P. berghei. In summary, our results provide conclusive evidence that late sporogonic malaria parasite stages are susceptible to melanization, and we reveal distinct regulatory mechanisms for ookinete and oocyst melanization.
Collapse
Affiliation(s)
- Suheir Zeineddine
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Sana Jaber
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Sally A. Saab
- Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Johnny Nakhleh
- Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - George Dimopoulos
- Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Mike A. Osta
- Department of Biology, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
3
|
Evolutionary insights into the microneme-secreted, chitinase-containing high molecular weight protein complexes involved in Plasmodium invasion of the mosquito midgut. Infect Immun 2021; 90:e0031421. [PMID: 34606368 DOI: 10.1128/iai.00314-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While general mechanisms by which Plasmodium ookinetes invade the mosquito midgut have been studied, details remain to be understood regarding the interface of the ookinete, specifically its barriers to invasion, such as the proteolytic milieu, the chitin-containing, protein cross-linked peritrophic matrix, and the midgut epithelium. Here we review knowledge of Plasmodium chitinases and the mechanisms by which they mediate the ookinete crossing the peritrophic matrix. The integration of new genomic insights into previous findings advances our understanding of Plasmodium evolution. Recently obtained Plasmodium spp. genomic data enable identification of the conserved residues in the experimentally demonstrated hetero-multimeric, high molecular weight complex comprised of a short chitinase covalently linked to binding partners, von Willebrand factor A domain-related protein (WARP) and secreted ookinete adhesive protein (SOAP). Artificial intelligence-based high-resolution structural modeling using the DeepMind AlphaFold algorithm yielded highly informative 3D structures and insights into how short chitinases, WARP, and SOAP may interact at the atomic level to form the ookinete-secreted peritrophic matrix invasion complex. Elucidating the significance of the divergence of ookinete-secreted micronemal proteins among Plasmodium species could lead to a better understanding of ookinete invasion machinery and the co-evolution of Plasmodium-mosquito interactions.
Collapse
|
4
|
Additional Feeding Reveals Differences in Immune Recognition and Growth of Plasmodium Parasites in the Mosquito Host. mSphere 2021; 6:6/2/e00136-21. [PMID: 33789941 PMCID: PMC8546690 DOI: 10.1128/msphere.00136-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mosquitoes may feed multiple times during their life span in addition to those times needed to acquire and transmit malaria. To determine the impact of subsequent blood feeding on parasite development in Anopheles gambiae, we examined Plasmodium parasite infection with or without an additional noninfected blood meal. We found that an additional blood meal significantly reduced Plasmodium berghei immature oocyst numbers, yet had no effect on the human parasite Plasmodium falciparum. These observations were reproduced when mosquitoes were fed an artificial protein meal, suggesting that parasite losses are independent of blood ingestion. We found that feeding with either a blood or protein meal compromises midgut basal lamina integrity as a result of the physical distention of the midgut, enabling the recognition and lysis of immature P. berghei oocysts by mosquito complement. Moreover, we demonstrate that additional feeding promotes P. falciparum oocyst growth, suggesting that human malaria parasites exploit host resources provided with blood feeding to accelerate their growth. This is in contrast to experiments with P. berghei, where the size of surviving oocysts is independent of an additional blood meal. Together, these data demonstrate distinct differences in Plasmodium species in evading immune detection and utilizing host resources at the oocyst stage, representing an additional, yet unexplored component of vectorial capacity that has important implications for the transmission of malaria. IMPORTANCE Mosquitoes must blood feed multiple times to acquire and transmit malaria. However, the impact of an additional mosquito blood meal following malaria parasite infection has not been closely examined. Here, we demonstrate that additional feeding affects mosquito vector competence; namely, additional feeding significantly limits Plasmodium berghei infection, yet has no effect on infection of the human parasite P. falciparum. Our experiments support that these killing responses are mediated by the physical distension of the midgut and by temporary damage to the midgut basal lamina that exposes immature P. berghei oocysts to mosquito complement, while human malaria parasites are able to evade these killing mechanisms. In addition, we provide evidence that additional feeding promotes P. falciparum oocyst growth. This is in contrast to P. berghei, where oocyst size is independent of an additional blood meal. This suggests that human malaria parasites are able to exploit host resources provided by an additional feeding to accelerate their growth. In summary, our data highlight distinct differences in malaria parasite species in evading immune recognition and adapting to mosquito blood feeding. These observations have important, yet previously unexplored, implications for the impact of multiple blood meals on the transmission of malaria.
Collapse
|
5
|
Recio-Tótoro B, Condé R, Claudio-Piedras F, Lanz-Mendoza H. Affinity purification of Plasmodium ookinetes from in vitro cultures using extracellular matrix gel. Parasitol Int 2020; 80:102242. [PMID: 33152548 DOI: 10.1016/j.parint.2020.102242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/19/2020] [Accepted: 10/31/2020] [Indexed: 12/26/2022]
Abstract
Malaria transmission depends on the parasites' successful invasion of the mosquito. This is achieved by the ookinete, a motile zygote that forms in the blood bolus after the mosquito takes an infectious blood meal. The ookinete invades the midgut epithelium and strongly attaches to the basal lamina, differentiating into an oocyst that produces the vertebrate-invasive sporozoites. Despite their importance, the ookinete and the oocyst are the least studied stages of the parasite. Much of what we know about the ookinete comes from in vitro experiments, which are hindered by the concomitant contamination with blood cells and other parasite stages. Although methods to purify them exist, they vary in terms of yield, costs, and difficulty to perform. A method for ookinete purification taking advantage of their adhesive properties was herein developed. The method consists of covering any culture-suitable surface with extracellular matrix gel, after which the ookinete culture is incubated on the gel to allow for ookinete attachment. The contaminant cells are then simply washed away. This procedure results in purer and less stressed ookinete preparations, which, by the nature of the method, are ready for oocyst production. Furthermore, it allows for micro-purifications using only 1 μl of blood, opening the possibility to make axenic ookinete cultures without sacrificing mice.
Collapse
Affiliation(s)
- Benito Recio-Tótoro
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, 62100 Cuernavaca, Morelos, Mexico; Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Morelos, Mexico
| | - Renaud Condé
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, 62100 Cuernavaca, Morelos, Mexico
| | - Fabiola Claudio-Piedras
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, 62100 Cuernavaca, Morelos, Mexico
| | - Humberto Lanz-Mendoza
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, 62100 Cuernavaca, Morelos, Mexico.
| |
Collapse
|
6
|
McCaffery JN, Fonseca JA, Singh B, Cabrera-Mora M, Bohannon C, Jacob J, Arévalo-Herrera M, Moreno A. A Multi-Stage Plasmodium vivax Malaria Vaccine Candidate Able to Induce Long-Lived Antibody Responses Against Blood Stage Parasites and Robust Transmission-Blocking Activity. Front Cell Infect Microbiol 2019; 9:135. [PMID: 31119106 PMCID: PMC6504793 DOI: 10.3389/fcimb.2019.00135] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/15/2019] [Indexed: 12/13/2022] Open
Abstract
Malaria control and interventions including long-lasting insecticide-treated nets, indoor residual spraying, and intermittent preventative treatment in pregnancy have resulted in a significant reduction in the number of Plasmodium falciparum cases. Considerable efforts have been devoted to P. falciparum vaccines development with much less to P. vivax. Transmission-blocking vaccines, which can elicit antibodies targeting Plasmodium antigens expressed during sexual stage development and interrupt transmission, offer an alternative strategy to achieve malaria control. The post-fertilization antigen P25 mediates several functions essential to ookinete survival but is poorly immunogenic in humans. Previous clinical trials targeting this antigen have suggested that conjugation to a carrier protein could improve the immunogenicity of P25. Here we report the production, and characterization of a vaccine candidate composed of a chimeric P. vivax Merozoite Surface Protein 1 (cPvMSP1) genetically fused to P. vivax P25 (Pvs25) designed to enhance CD4+ T cell responses and its assessment in a murine model. We demonstrate that antibodies elicited by immunization with this chimeric protein recognize both the erythrocytic and sexual stages and are able to block the transmission of P. vivax field isolates in direct membrane-feeding assays. These findings provide support for the continued development of multi-stage transmission blocking vaccines targeting the life-cycle stage responsible for clinical disease and the sexual-stage development accountable for disease transmission simultaneously.
Collapse
Affiliation(s)
- Jessica N. McCaffery
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Jairo A. Fonseca
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Balwan Singh
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Monica Cabrera-Mora
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Caitlin Bohannon
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Joshy Jacob
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Myriam Arévalo-Herrera
- Caucaseco Scientific Research Center, Malaria Vaccine and Drug Development Center, Cali, Colombia
| | - Alberto Moreno
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
7
|
Itsara LS, Zhou Y, Do J, Grieser AM, Vaughan AM, Ghosh AK. The Development of Whole Sporozoite Vaccines for Plasmodium falciparum Malaria. Front Immunol 2018; 9:2748. [PMID: 30619241 PMCID: PMC6297750 DOI: 10.3389/fimmu.2018.02748] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/08/2018] [Indexed: 12/20/2022] Open
Abstract
Each year malaria kills hundreds of thousands of people and infects hundreds of millions of people despite current control measures. An effective malaria vaccine will likely be necessary to aid in malaria eradication. Vaccination using whole sporozoites provides an increased repertoire of immunogens compared to subunit vaccines across at least two life cycle stages of the parasite, the extracellular sporozoite, and intracellular liver stage. Three potential whole sporozoite vaccine approaches are under development and include genetically attenuated parasites, radiation attenuated sporozoites, and wild-type sporozoites administered in combination with chemoprophylaxis. Pre-clinical and clinical studies have demonstrated whole sporozoite vaccine immunogenicity, including humoral and cellular immunity and a range of vaccine efficacy that depends on the pre-exposure of vaccinated individuals. While whole sporozoite vaccines can provide protection against malaria in some cases, more recent studies in malaria-endemic regions demonstrate the need for improvements. Moreover, challenges remain in manufacturing large quantities of sporozoites for vaccine commercialization. A promising solution to the whole sporozoite manufacturing challenge is in vitro culturing methodology, which has been described for several Plasmodium species, including the major disease-causing human malaria parasite, Plasmodium falciparum. Here, we review whole sporozoite vaccine immunogenicity and in vitro culturing platforms for sporozoite production.
Collapse
Affiliation(s)
| | | | - Julie Do
- MalarVx, Inc., Seattle, WA, United States
| | | | - Ashley M Vaughan
- Seattle Children's Research Institute, Seattle, WA, United States
| | | |
Collapse
|
8
|
Itsara LS, Zhou Y, Do J, Dungel S, Fishbaugher ME, Betz WW, Nguyen T, Navarro MJ, Flannery EL, Vaughan AM, Kappe SHI, Ghosh AK. PfCap380 as a marker for Plasmodium falciparum oocyst development in vivo and in vitro. Malar J 2018; 17:135. [PMID: 29609625 PMCID: PMC5880026 DOI: 10.1186/s12936-018-2277-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/15/2018] [Indexed: 11/12/2022] Open
Abstract
Background Despite the importance of the Plasmodium berghei oocyst capsule protein (PbCap380) in parasite survival, very little is known about the orthologous Plasmodium falciparum capsule protein (PfCap380). The goal of this work was to study the growth of P. falciparum oocysts using PfCap380 as a developmental marker. Methods To study P. falciparum oocyst development using both in vivo (mosquito-derived) and in vitro (culture-derived) growth conditions, antibodies (polyclonal antisera) were raised against PfCap380. For studies on in vivo oocysts, mature P. falciparum gametocytes were fed to Anopheles stephensi mosquitoes. For studies on in vitro parasites, P. falciparum gametocytes were induced and matured for subsequent ookinete production. Ookinetes were purified and then tested for binding affinity to basal lamina components and transformation into early oocysts, which were grown on reconstituted basal lamia coated wells with novel oocyst media. To monitor in vivo oocyst development, immunofluorescence assays (IFA) were performed using anti-PfCap380 antisera on Pf-infected mosquito midguts. IFA were also performed on culture-derived oocysts to follow in vitro oocyst development. Results The anti-PfCap380 antisera allowed detection of early midgut oocysts starting at 2 days after gametocyte infection, while circumsporozoite protein was definitively observed on day 6. For in vitro culture, significant transformation of gametocytes to ookinetes (24%) and of ookinetes to early oocysts (85%) was observed. After screening several basal lamina components, collagen IV provided greatest binding of ookinetes and transformation into early oocysts. Finally, PfCap380 expression was observed on the surface of culture-derived oocysts but not on gametocytes or ookinetes. Conclusions This study presents developmental monitoring of P. falciparum oocysts produced in vivo and in vitro. The anti-PfCap380 antisera serves as an important reagent for developmental studies of oocysts from the mosquito midgut and also from oocyst culture using in vitro methodology. The present data demonstrate that PfCap380 is a useful marker to follow the development and maturation of in vivo and in vitro produced oocysts as early as 2 days after zygote formation. Further in vitro studies focused on oocyst and sporozoite maturation will support the manufacturing of whole sporozoites for malaria vaccines. Electronic supplementary material The online version of this article (10.1186/s12936-018-2277-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leslie S Itsara
- MalarVx, Inc., 307 Westlake Ave N Suite 200, Seattle, WA, 98109, USA
| | - Yaxian Zhou
- MalarVx, Inc., 307 Westlake Ave N Suite 200, Seattle, WA, 98109, USA
| | - Julie Do
- MalarVx, Inc., 307 Westlake Ave N Suite 200, Seattle, WA, 98109, USA
| | - Samrita Dungel
- MalarVx, Inc., 307 Westlake Ave N Suite 200, Seattle, WA, 98109, USA
| | - Matthew E Fishbaugher
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA, 98109, USA
| | - Will W Betz
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA, 98109, USA
| | - Thao Nguyen
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA, 98109, USA
| | - Mary Jane Navarro
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA, 98109, USA
| | - Erika L Flannery
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA, 98109, USA
| | - Ashley M Vaughan
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA, 98109, USA
| | - Stefan H I Kappe
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA, 98109, USA
| | - Anil K Ghosh
- MalarVx, Inc., 307 Westlake Ave N Suite 200, Seattle, WA, 98109, USA. .,Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA, 98109, USA.
| |
Collapse
|
9
|
Sasaki H, Sekiguchi H, Sugiyama M, Ikadai H. Plasmodium berghei Cap93, a novel oocyst capsule-associated protein, plays a role in sporozoite development. Parasit Vectors 2017; 10:399. [PMID: 28841886 PMCID: PMC5574095 DOI: 10.1186/s13071-017-2337-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/16/2017] [Indexed: 11/20/2022] Open
Affiliation(s)
- Hanae Sasaki
- Hokusan Co. Ltd., 27-4, Kitanosato, Kitahiroshima, Hokkaido, 061-111, Japan
| | - Harumi Sekiguchi
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Makoto Sugiyama
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Hiromi Ikadai
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan.
| |
Collapse
|
10
|
Species-specific escape of Plasmodium sporozoites from oocysts of avian, rodent, and human malarial parasites. Malar J 2016; 15:394. [PMID: 27480269 PMCID: PMC4969971 DOI: 10.1186/s12936-016-1451-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/21/2016] [Indexed: 12/24/2022] Open
Abstract
Background Malaria is transmitted when an infected mosquito delivers Plasmodium sporozoites into a vertebrate host. There are many species of Plasmodium and, in general, the infection is host-specific. For example, Plasmodium gallinaceum is an avian parasite, while Plasmodium berghei infects mice. These two parasites have been extensively used as experimental models of malaria transmission. Plasmodium falciparum and Plasmodium vivax are the most important agents of human malaria, a life-threatening disease of global importance. To complete their life cycle, Plasmodium parasites must traverse the mosquito midgut and form an oocyst that will divide continuously. Mature oocysts release thousands of sporozoites into the mosquito haemolymph that must reach the salivary gland to infect a new vertebrate host. The current understanding of the biology of oocyst formation and sporozoite release is mostly based on experimental infections with P.berghei, and the conclusions are generalized to other Plasmodium species that infect humans without further morphological analyses. Results Here, it is described the microanatomy of sporozoite escape from oocysts of four Plasmodium species: the two laboratory models, P. gallinaceum and P. berghei, and the two main species that cause malaria in humans, P.vivax and P. falciparum. It was found that sporozoites have species-specific mechanisms of escape from the oocyst. The two model species of Plasmodium had a common mechanism, in which the oocyst wall breaks down before sporozoites emerge. In contrast, P. vivax and P. falciparum sporozoites show a dynamic escape mechanism from the oocyst via polarized propulsion. Conclusions This study demonstrated that Plasmodium species do not share a common mechanism of sporozoite escape, as previously thought, but show complex and species-specific mechanisms. In addition, the knowledge of this phenomenon in human Plasmodium can facilitate transmission-blocking studies and not those ones only based on the murine and avian models.
Collapse
|
11
|
Functional characterization of Anopheles matrix metalloprotease 1 reveals its agonistic role during sporogonic development of malaria parasites. Infect Immun 2014; 82:4865-77. [PMID: 25183733 DOI: 10.1128/iai.02080-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The ability to invade tissues is a unique characteristic of the malaria stages that develop/differentiate within the mosquitoes (ookinetes and sporozoites). On the other hand, tissue invasion by many pathogens has often been associated with increased matrix metalloprotease (MMP) activity in the invaded tissues. By employing cell biology and reverse genetics, we studied the expression and explored putative functions of one of the three MMPs encoded in the genome of the malaria vector Anopheles gambiae, namely, the Anopheles gambiae MMP1 (AgMMP1) gene, during the processes of blood digestion, midgut epithelium invasion by Plasmodium ookinetes, and oocyst development. We show that AgMMP1 exists in two alternative isoforms resulting from alternative splicing; one secreted (S-MMP1) and associated with hemocytes, and one membrane type (MT-MMP1) enriched in the cell attachment sites of the midgut epithelium. MT-MMP1 showed a remarkable response to ookinete midgut invasion manifested by increased expression, enhanced zymogen maturation, and subcellular redistribution, all indicative of an implication in the midgut epithelial healing that accompanies ookinete invasion. Importantly, RNA interference (RNAi)-mediated silencing of the AgMMP1 gene revealed a postinvasion protective function of AgMMP1 during oocyst development. The combined results link for the first time an MMP with vector competence and mosquito-Plasmodium interactions.
Collapse
|
12
|
Crawford JE, Rottschaefer SM, Coulibaly B, Sacko M, Niaré O, Riehle MM, Traore SF, Vernick KD, Lazzaro BP. No evidence for positive selection at two potential targets for malaria transmission-blocking vaccines in Anopheles gambiae s.s. INFECTION GENETICS AND EVOLUTION 2013; 16:87-92. [PMID: 23357581 DOI: 10.1016/j.meegid.2013.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/04/2013] [Accepted: 01/05/2013] [Indexed: 12/27/2022]
Abstract
Human malaria causes nearly a million deaths in sub-Saharan Africa each year. The evolution of drug-resistance in the parasite and insecticide resistance in the mosquito vector has complicated control measures and made the need for new control strategies more urgent. Anopheles gambiae s.s. is one of the primary vectors of human malaria in Africa, and parasite-transmission-blocking vaccines targeting Anopheles proteins have been proposed as a possible strategy to control the spread of the disease. However, the success of these hypothetical technologies would depend on the successful ability to broadly target mosquito populations that may be genetically heterogeneous. Understanding the evolutionary pressures shaping genetic variation among candidate target molecules offers a first step towards evaluating the prospects of successfully deploying such technologies. We studied the population genetics of genes encoding two candidate target proteins, the salivary gland protein saglin and the basal lamina structural protein laminin, in wild populations of the M and S molecular forms of A. gambiae in Mali. Through analysis of intraspecific genetic variation and interspecific comparisons, we found no evidence of positive natural selection at the genes encoding these proteins. On the contrary, we found evidence for particularly strong purifying selection at the laminin gene. These results provide insight into the patterns of genetic diversity of saglin and laminin, and we discuss these findings in relation to the potential development of these molecules as vaccine targets.
Collapse
|
13
|
Angrisano F, Tan YH, Sturm A, McFadden GI, Baum J. Malaria parasite colonisation of the mosquito midgut – Placing the Plasmodium ookinete centre stage. Int J Parasitol 2012; 42:519-27. [DOI: 10.1016/j.ijpara.2012.02.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/03/2012] [Accepted: 02/04/2012] [Indexed: 11/28/2022]
|
14
|
Ramakrishnan C, Dessens JT, Armson R, Pinto SB, Talman AM, Blagborough AM, Sinden RE. Vital functions of the malarial ookinete protein, CTRP, reside in the A domains. Int J Parasitol 2011; 41:1029-39. [PMID: 21729699 DOI: 10.1016/j.ijpara.2011.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 05/04/2011] [Accepted: 05/06/2011] [Indexed: 10/18/2022]
Abstract
The transformation of malaria ookinetes into oocysts occurs in the mosquito midgut and is a major bottleneck for parasite transmission. The secreted ookinete surface protein, circumsporozoite- and thrombospondin-related adhesive protein (TRAP)-related protein (CTRP), is essential for this transition and hence constitutes a potential target for malaria transmission blockade. CTRP is a modular multidomain protein containing six tandem von Willebrand factor A-like (A) domains and seven tandem thrombospondin type I repeat-like (TS) domains. Here we present, to our knowledge, the first structure-function analysis of CTRP using genetically modified Plasmodium berghei parasites expressing mutant versions of the ctrp gene. Our data show that the A domains of CTRP are critical for ookinete gliding motility and oocyst formation whilst, unexpectedly, its TS domains are fully redundant. These results may have important implications for the design of CTRP-based transmission blocking strategies.
Collapse
Affiliation(s)
- Chandra Ramakrishnan
- Division of Cell and Molecular Biology, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW72AZ, UK.
| | | | | | | | | | | | | |
Collapse
|
15
|
Nacer A, Walker K, Hurd H. Localisation of laminin within Plasmodium berghei oocysts and the midgut epithelial cells of Anopheles stephensi. Parasit Vectors 2008; 1:33. [PMID: 18808667 PMCID: PMC2556657 DOI: 10.1186/1756-3305-1-33] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 09/22/2008] [Indexed: 01/16/2023] Open
Abstract
Background Oocysts of the malaria parasite form and develop in close proximity to the mosquito midgut basal lamina and it has been proposed that components of this structure play a crucial role in the development and maturation of oocysts that produce infective sporozoites. It is further suggested that oocysts incorporate basal lamina proteins into their capsule and that this provides them with a means to evade recognition by the mosquito's immune system. The site of production of basal lamina proteins in insects is controversial and it is still unclear whether haemocytes or midgut epithelial cells are the main source of components of the mosquito midgut basal lamina. Of the multiple molecules that compose the basal lamina, laminin is known to interact with a number of Plasmodium proteins. In this study, the localisation of mosquito laminin within the capsule and cytoplasm of Plasmodium berghei oocysts and in the midgut epithelial cells of Anopheles stephensi was investigated. Results An ultrastructural examination of midgut sections from infected and uninfected An. stephensi was performed. Post-embedded immunogold labelling demonstrated the presence of laminin within the mosquito basal lamina. Laminin was also detected on the outer surface of the oocyst capsule, incorporated within the capsule and associated with sporozoites forming within the oocysts. Laminin was also found within cells of the midgut epithelium, providing support for the hypothesis that these cells contribute towards the formation of the midgut basal lamina. Conclusion We suggest that ookinetes may become coated in laminin as they pass through the midgut epithelium. Thereafter, laminin secreted by midgut epithelial cells and/or haemocytes, binds to the outer surface of the oocyst capsule and that some passes through and is incorporated into the developing oocysts. The localisation of laminin on sporozoites was unexpected and the importance of this observation is less clear.
Collapse
Affiliation(s)
- Adéla Nacer
- Centre for Applied Entomology and Parasitology, Institute for Science and Technology in Medicine, School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| | | | | |
Collapse
|
16
|
Petrópolis DB, Fernandes Rodrigues JC, da Rocha-Azevedo B, Silva-Filho FCE. The binding of Tritrichomonas foetus to immobilized laminin-1 and its role in the cytotoxicity exerted by the parasite. Microbiology (Reading) 2008; 154:2283-2290. [DOI: 10.1099/mic.0.2007/015941-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
| | | | - Bruno da Rocha-Azevedo
- UFRJ – Instituto de Biofísica Carlos Chagas Filho, CCS – Bloco G, Rio de Janeiro, Brazil
| | | |
Collapse
|
17
|
Nacer A, Underhill A, Hurd H. The microneme proteins CTRP and SOAP are not essential for Plasmodium berghei ookinete to oocyst transformation in vitro in a cell free system. Malar J 2008; 7:82. [PMID: 18489758 PMCID: PMC2427035 DOI: 10.1186/1475-2875-7-82] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 05/19/2008] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Two Plasmodium berghei ookinete micronemal proteins, circumsporozoite and TRAP related protein (CTRP) and secreted ookinete adhesive protein (SOAP) both interact with the basal lamina component laminin. Following gene disruption studies it has been proposed that, apart from their role in motility, these proteins may be required for interactions leading to ookinete-to-oocyst transformation. METHODS CTRP and SOAP null mutant P. berghei ookinetes were compared to P. berghei ANKA wild-type for their ability to transform and grow in vitro. To confirm in vitro findings for P. berghei CTRP-KO ookinetes were injected into the haemocoel of Anopheles gambiae female mosquitoes. RESULTS Transformation, growth, and viability were comparable for the gene disrupted and wild-type parasites. P. berghei CTRP-KO ookinetes were able to transform into oocysts in the haemocoel of An. gambiae mosquitoes. CONCLUSION Neither CTRP nor SOAP is required for parasite transformation in vitro. By-passing the midgut lumen allows for the transformation of P. berghei CTRP-KO ookinetes suggesting that it is not required for transformation in vivo.
Collapse
Affiliation(s)
- Adéla Nacer
- Centre for Applied Entomology and Parasitology, Institute of Science and Technology in Medicine, School of Life Sciences, Keele University, Staffordshire, ST5 5BG, UK
| | - Ann Underhill
- Centre for Applied Entomology and Parasitology, Institute of Science and Technology in Medicine, School of Life Sciences, Keele University, Staffordshire, ST5 5BG, UK
| | - Hilary Hurd
- Centre for Applied Entomology and Parasitology, Institute of Science and Technology in Medicine, School of Life Sciences, Keele University, Staffordshire, ST5 5BG, UK
| |
Collapse
|
18
|
Ecto-phosphatase activity on the external surface of Rhodnius prolixus salivary glands: modulation by carbohydrates and Trypanosoma rangeli. Acta Trop 2008; 106:137-42. [PMID: 18407240 DOI: 10.1016/j.actatropica.2008.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 02/26/2008] [Accepted: 02/28/2008] [Indexed: 12/24/2022]
Abstract
The salivary glands of insect's vectors are target organs to study the vectors-pathogens interactions. Rhodnius prolixus an important vector of Trypanosoma cruzi can also transmit Trypanosoma rangeli by bite. In the present study we have investigated ecto-phosphatase activity on the surface of R. prolixus salivary glands. Ecto-phosphatases are able to hydrolyze phosphorylated substrates in the extracellular medium. We characterized these ecto-enzyme activities on the salivary glands external surface and employed it to investigate R. prolixus-T. rangeli interaction. Salivary glands present a low level of hydrolytic activity (4.30+/-0.35 nmol p-nitrophenol (p-NP)xh(-1)xgland pair(-1)). The salivary glands ecto-phosphatase activity was not affected by pH variation; and it was insensitive to alkaline inhibitor levamisole and inhibited approximately 50% by inorganic phosphate (Pi). MgCl2, CaCl2 and SrCl2 enhanced significantly the ecto-phosphatase activity detected on the surface of salivary glands. The ecto-phosphatase from salivary glands surface efficiently releases phosphate groups from different phosphorylated amino acids, giving a higher rate of phosphate release when phospho-tyrosine is used as a substrate. This ecto-phosphatase activity was inhibited by carbohydrates as d-galactose and d-mannose. Living short epimastigotes of T. rangeli inhibited salivary glands ecto-phosphatase activity at 75%, while boiled parasites did not. Living long epimastigote forms induced a lower, but significant inhibitory effect on the salivary glands phosphatase activity. Interestingly, boiled long epimastigote forms did not loose the ability to modulate salivary glands phosphatase activity. Taken together, these data suggest a possible role for ecto-phosphatase on the R. prolixus salivary glands-T. rangeli interaction.
Collapse
|
19
|
Srinivasan P, Fujioka H, Jacobs-Lorena M. PbCap380, a novel oocyst capsule protein, is essential for malaria parasite survival in the mosquito. Cell Microbiol 2008; 10:1304-12. [PMID: 18248630 DOI: 10.1111/j.1462-5822.2008.01127.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
An essential requisite for transmission of Plasmodium, the causative agent of malaria, is the successful completion of a complex developmental cycle in its mosquito vector. Of hundreds of ookinetes that form in the mosquito midgut, only few transform into oocysts, a loss attributed to the action of the mosquito immune system. However, once oocysts form, they appear to be resistant to mosquito defences. During oocyst development, a thick capsule forms around the parasite and appears to function as a protective cover. Little information is available about the composition of this capsule. Here we report on the identification and partial characterization of the first Plasmodium oocyst capsule protein (PbCap380). Genetic analysis indicates that the gene is essential and that PbCap380(-) mutant parasites form oocysts in normal numbers but are gradually eliminated. As a result, mosquitoes infected with PbCap380(-) parasites do not transmit malaria. Targeting of the oocyst capsule may provide a new strategy for malaria control.
Collapse
Affiliation(s)
- Prakash Srinivasan
- Malaria Research Institute, Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD 20852, USA.
| | | | | |
Collapse
|
20
|
Sinnis P, Coppi A, Toida T, Toyoda H, Kinoshita-Toyoda A, Xie J, Kemp MM, Linhardt RJ. Mosquito heparan sulfate and its potential role in malaria infection and transmission. J Biol Chem 2007; 282:25376-84. [PMID: 17597060 PMCID: PMC2121605 DOI: 10.1074/jbc.m704698200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparan sulfate has been isolated for the first time from the mosquito Anopheles stephensi, a known vector for Plasmodium parasites, the causative agents of malaria. Chondroitin sulfate, but not dermatan sulfate or hyaluronan, was also present in the mosquito. The glycosaminoglycans were isolated, from salivary glands and midguts of the mosquito in quantities sufficient for disaccharide microanalysis. Both of these organs are invaded at different stages of the Plasmodium life cycle. Mosquito heparan sulfate was found to contain the critical trisulfated disaccharide sequence, -->4)beta-D-GlcNS6S(1-->4)-alpha-L-IdoA2S(1-->, that is commonly found in human liver heparan sulfate, which serves as the receptor for apolipoprotein E and is also believed to be responsible for binding to the circumsporozoite protein found on the surface of the Plasmodium sporozoite. The heparan sulfate isolated from the whole mosquito binds to circumsporozoite protein, suggesting a role within the mosquito for infection and transmission of the Plasmodium parasite.
Collapse
Affiliation(s)
- Photini Sinnis
- Department of Medical Parasitology, New York University School of Medicine, New York, New York 10010
| | - Alida Coppi
- Department of Medical Parasitology, New York University School of Medicine, New York, New York 10010
| | - Toshihiko Toida
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-33, Yayoi, Inage-ku, Chiba 263-8522, Japan
| | - Hidenao Toyoda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-33, Yayoi, Inage-ku, Chiba 263-8522, Japan
| | - Akiko Kinoshita-Toyoda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-33, Yayoi, Inage-ku, Chiba 263-8522, Japan
| | - Jin Xie
- Center for Biocatalysis and Interdisciplinary Studies and Departments of Chemistry, Biology, and Chemical Engineering, Rensselaer Polytechnic Institute, Troy, New York, 12180
| | - Melissa M. Kemp
- Center for Biocatalysis and Interdisciplinary Studies and Departments of Chemistry, Biology, and Chemical Engineering, Rensselaer Polytechnic Institute, Troy, New York, 12180
| | - Robert J. Linhardt
- Center for Biocatalysis and Interdisciplinary Studies and Departments of Chemistry, Biology, and Chemical Engineering, Rensselaer Polytechnic Institute, Troy, New York, 12180
| |
Collapse
|
21
|
Saxena AK, Wu Y, Garboczi DN. Plasmodium p25 and p28 surface proteins: potential transmission-blocking vaccines. EUKARYOTIC CELL 2007; 6:1260-5. [PMID: 17557884 PMCID: PMC1951121 DOI: 10.1128/ec.00060-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Ajay K Saxena
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | | | | |
Collapse
|
22
|
Warburg A, Shtern A, Cohen N, Dahan N. Laminin and a Plasmodium ookinete surface protein inhibit melanotic encapsulation of Sephadex beads in the hemocoel of mosquitoes. Microbes Infect 2006; 9:192-9. [PMID: 17224290 DOI: 10.1016/j.micinf.2006.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 11/02/2006] [Accepted: 11/07/2006] [Indexed: 10/23/2022]
Abstract
In refractory mosquitoes, melanotic encapsulation of Plasmodium ookinetes and oocysts is a commonly observed immune response. However, in susceptible mosquitoes, Plasmodium oocysts develop extracellularly in the body cavity without being recognized by the immune system. Like Plasmodium gallinaceum oocysts, negatively charged carboxymethyl (CM)-Sephadex beads implanted in the hemocoel of Aedes aegypti female mosquitoes were not usually melanized, but were coated with mosquito-derived laminin. Conversely, electrically neutral G-Sephadex beads were routinely melanized. Since mosquito laminin coated both CM-Sephadex beads and P. gallinaceum oocysts, we hypothesized that laminin prevents melanization of both. To test this hypothesis, we coated cyanogen-bromide-activated G-Sephadex beads with laminin, recombinant P. gallinaceum ookinete surface protein (PgS28) or bovine serum albumin (BSA). Beads were implanted into the abdominal body cavity of female Aedes aegypti and retrieved 4 days later. Uncoated controls as well as BSA-coated G-Sephadex beads were melanized in a normal manner. However, melanization of beads coated with mouse laminin, Drosophila L2-secreted proteins or PgS28 was markedly reduced. Fluorescent antibody labeling showed that PgS28-coated beads had adsorbed mosquito laminin on their surface. Thus, mosquito laminin interacting with Plasmodium surface proteins probably masks oocysts from the mosquito's immune system, thereby facilitating their development in the body cavity.
Collapse
Affiliation(s)
- Alon Warburg
- Department of Parasitology, The Kuvin Center for the Study of Infectious and Tropical Diseases, Hebrew University-Hadassah Medical School, P.O. Box 12272, Ein Kerem, Jerusalem 91120, Israel.
| | | | | | | |
Collapse
|
23
|
Abstract
To complete their life cycle, Plasmodium parasites must survive the environment in the insect host, cross multiple barriers including epithelial layers, and avoid destruction by the mosquito immune system. Completion of the Anopheles gambiae and Plasmodium falciparum genomes has opened the opportunity to apply high throughput methods to the analysis of gene function. The burst of information generated by these approaches and the use of molecular markers to investigate the cell biology of these interactions is broadening our understanding of this complex system. This review discusses our current understanding of the critical interactions that take place during the journey of Plasmodium through the mosquito host, with special emphasis on the responses of midgut epithelial cells to parasite invasion.
Collapse
Affiliation(s)
- Carolina Barillas-Mury
- Mosquito Immunity & Vector Competence Unit, Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD 20852, USA.
| | | |
Collapse
|
24
|
Porter-Kelley JM, Dinglasan RR, Alam U, Ndeta GA, Sacci JB, Azad AF. Plasmodium yoelii: axenic development of the parasite mosquito stages. Exp Parasitol 2005; 112:99-108. [PMID: 16289466 DOI: 10.1016/j.exppara.2005.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 09/24/2005] [Accepted: 09/28/2005] [Indexed: 10/25/2022]
Abstract
Study of the parasite mosquito stages of Plasmodium and its use in the production of sporozoite vaccines against malaria has been hampered by the technical difficulties of in vitro development. Here, we show the complete axenic development of the parasite mosquito stages of Plasmodium yoelii. While we demonstrate that matrigel is not required for parasite development, soluble factors produced and secreted by Drosophila melanogaster S2 cells appear to be crucial for the ookinete to oocyst transition. Parasites cultured axenically are both morphologically and biologically similar to mosquito-derived ookinetes, oocysts, and sporozoites. Axenically derived sporozoites were capable of producing an infection in mice as determined by RT-PCR; however, the parasitemia was significantly much less than that produced by mosquito-derived sporozoites. Our cell free system for development of the mosquito stages of P. yoelii provides a simplified approach to generate sporozoites that may be for biological assays and genetic manipulations.
Collapse
MESH Headings
- Animals
- Anopheles/parasitology
- Antibodies, Protozoan/blood
- Antigens, Protozoan/analysis
- Antigens, Protozoan/biosynthesis
- Blotting, Western
- Cell Line
- Cells, Cultured
- Collagen
- Culture Media, Conditioned
- DNA, Protozoan/analysis
- Drosophila melanogaster
- Drug Combinations
- Enzyme-Linked Immunosorbent Assay
- Female
- Fluorescent Antibody Technique, Indirect
- Hepatocytes/parasitology
- Laminin
- Malaria/parasitology
- Mice
- Mice, Inbred BALB C
- Microscopy, Fluorescence
- Microscopy, Phase-Contrast
- Parasitemia/parasitology
- Plasmodium yoelii/genetics
- Plasmodium yoelii/growth & development
- Plasmodium yoelii/immunology
- Proteoglycans
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Johanna M Porter-Kelley
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Vlachou D, Kafatos FC. The complex interplay between mosquito positive and negative regulators of Plasmodium development. Curr Opin Microbiol 2005; 8:415-21. [PMID: 15996894 DOI: 10.1016/j.mib.2005.06.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Accepted: 06/22/2005] [Indexed: 12/01/2022]
Abstract
The malaria parasite, Plasmodium, requires sexual development in the mosquito before it can be transmitted to the vertebrate host. Mosquito genes are able to substantially modulate this process, which can result in major decreases in parasite numbers. Even in susceptible mosquitoes, haemolymph proteins implicated in systemic immune reactions, together with local epithelial responses, cause lysis of more than 80% of the ookinetes that cross the mosquito midgut. In a refractory mosquito strain, immune responses lead to melanisation of virtually all parasites. Conversely, certain mosquito genes have an opposite effect: they are used by the parasite to evade defence reactions. Detailed understanding of the interplay between positive and negative regulators of parasite development could lead to the generation of novel approaches for malaria control through the vector.
Collapse
Affiliation(s)
- Dina Vlachou
- European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg 69117, Germany
| | | |
Collapse
|
26
|
Arrighi RBG, Lycett G, Mahairaki V, Siden-Kiamos I, Louis C. Laminin and the malaria parasite's journey through the mosquito midgut. ACTA ACUST UNITED AC 2005; 208:2497-502. [PMID: 15961736 DOI: 10.1242/jeb.01664] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During the invasion of the mosquito midgut epithelium, Plasmodium ookinetes come to rest on the basal lamina, where they transform into the sporozoite-producing oocysts. Laminin, one of the basal lamina's major components, has previously been shown to bind several surface proteins of Plasmodium ookinetes. Here, using the recently developed RNAi technique in mosquitoes, we used a specific dsRNA construct targeted against the LANB2 gene (laminin gamma1) of Anopheles gambiae to reduce its mRNA levels, leading to a substantial reduction in the number of successfully developed oocysts in the mosquito midgut. Moreover, this molecular relationship is corroborated by the intimate association of developing P. berghei parasites and laminin in the gut, as observed using confocal microscopy. Our data support the notion of laminin playing a functional role in the development of the malaria parasite within the mosquito midgut.
Collapse
Affiliation(s)
- Romanico B G Arrighi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Vassilika Vouton, PO Box 1527, 71110 Heraklion, Crete, Greece
| | | | | | | | | |
Collapse
|
27
|
Mahairaki V, Lycett G, Sidén-Kiamos I, Sinden RE, Louis C. Close association of invading Plasmodium berghei and beta integrin in the Anopheles gambiae midgut. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2005; 60:13-9. [PMID: 16116619 DOI: 10.1002/arch.20077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We have used confocal microscopy and an antibody against Anopheles gambiae beta integrin to study this protein's distribution in the mosquito midgut and its relationship to invading Plasmodium berghei parasites. An extensive reorganization of integrin is seen to take place in the midgut epithelial cells following the uptake of either non-infected or parasite-infected blood meal, probably reflecting the reshaping of the gut due to the presence of the food bolus and the peritrophic membrane that surrounds it. Furthermore, malaria parasites are coated with beta integrin immediately upon entry into the epithelium, independent of whether they develop intra- or extracellularly. Although this coat is shed a few days after the invasion, beta integrin remains concentrated in the cells surrounding the maturing oocyst for several days. Finally, the antibody detects a structural change in the midgut epithelial cells in the immediate vicinity of the invading ookinete, which is consistent with Plasmodium-induced apoptosis followed by wound healing. This intimate association suggests a specific role of beta integrin in the invasion process.
Collapse
Affiliation(s)
- Vasso Mahairaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | | | | | | | | |
Collapse
|
28
|
Mahairaki V, Voyatzi T, Sidén-Kiamos I, Louis C. The Anopheles gambiae gamma1 laminin directly binds the Plasmodium berghei circumsporozoite- and TRAP-related protein (CTRP). Mol Biochem Parasitol 2005; 140:119-21. [PMID: 15694493 DOI: 10.1016/j.molbiopara.2004.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2003] [Revised: 03/18/2004] [Accepted: 11/06/2004] [Indexed: 12/01/2022]
Affiliation(s)
- Vassiliki Mahairaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Vassilika Vouton, 711 10 Heraklion, Crete, Greece
| | | | | | | |
Collapse
|
29
|
Baton LA, Ranford-Cartwright LC. Do malaria ookinete surface proteins P25 and P28 mediate parasite entry into mosquito midgut epithelial cells? Malar J 2005; 4:15. [PMID: 15733320 PMCID: PMC555762 DOI: 10.1186/1475-2875-4-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2005] [Accepted: 02/25/2005] [Indexed: 11/30/2022] Open
Abstract
Background P25 and P28 are related ookinete surface proteins highly conserved throughout the Plasmodium genus that are under consideration as candidates for inclusion in transmission-blocking vaccines. Previous research using transgenic rodent malaria parasites lacking P25 and P28 has demonstrated that these proteins have multiple partially redundant functions during parasite infection of the mosquito vector, including an undefined role in ookinete traversal of the mosquito midgut epithelium, and it has been suggested that, unlike wild-type parasites, Dko P25/P28 parasites migrate across the midgut epithelium via an intercellular, rather than intracellular, route. Presentation of the hypothesis This paper presents an alternative interpretation for the previous observations of Dko P25/P28 parasites, based upon a recently published model of the route of ookinete invasion across the midgut epithelium. This model claims ookinete invasion is intracellular, with entry occurring through the lateral apical plasma membrane of midgut epithelial cells, and is associated with significant invagination of the midgut epithelium localised at the site of parasite penetration. Following this model, it is hypothesized that: (1) a sub-population of Dko P25/P28 ookinetes invaginate, but do not penetrate, the apical surface of the midgut epithelium and thus remain within the midgut lumen; and (2) another sub-population of Dko P25/P28 parasites successfully enters and migrates across the midgut epithelium via an intracellular route similar to wild-type parasites and subsequently develops into oocysts. Testing the hypothesis These hypotheses are tested by showing how they can account for previously published observations and incorporate them into a coherent and consistent explanatory framework. Based upon these hypotheses, several quantitative predictions are made, which can be experimentally tested, about the relationship between the densities of invading Dko P25/P28 ookinetes in different regions of the midgut epithelium and the number of oocyst stage parasites to which these mutant ookinetes give rise. Implications of the hypothesis The recently published model of ookinete invasion implies that Dko P25/P28 parasites are greatly, although not completely, impaired in their ability to enter the midgut epithelium. Therefore, P25 and/or P28 have a novel, previously unrecognized, function in mediating ookinete entry into midgut epithelial cells, suggesting that one mode of action of transmission-blocking antibodies to these ookinete surface proteins is to inhibit this function.
Collapse
Affiliation(s)
- Luke A Baton
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Lisa C Ranford-Cartwright
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
30
|
Hurd H, Carter V, Nacer A. Interactions between malaria and mosquitoes: the role of apoptosis in parasite establishment and vector response to infection. Curr Top Microbiol Immunol 2005; 289:185-217. [PMID: 15791957 DOI: 10.1007/3-540-27320-4_9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Malaria parasites of the genus Plasmodium are transmitted from host to host by mosquitoes. Sexual reproduction occurs in the blood meal and the resultant motile zygote, the ookinete, migrates through the midgut epithelium and transforms to an oocyst under the basal lamina. After sporogony, sporozoites are released into the mosquito haemocoel and invade the salivary gland before injection when next the mosquito feeds on a host. Interactions between parasite and vector occur at all stages of the establishment and development of the parasite and some of these result in the death of parasite and host cells by apoptosis. Infection-induced programmed cell death occurs in patches of follicular epithelial cells in the ovary, resulting in follicle resorption and thus a reduction in egg production. We argue that fecundity reduction will result in a change in resource partitioning that may benefit the parasite. Apoptosis also occurs in cells of the midgut epithelium that have been invaded by the parasite and are subsequently expelled into the midgut. In addition, the parasite itself dies by a process of programmed cell death (PCD) in the lumen of the midgut before invasion has occurred. Caspase-like activity has been detected in the cytoplasm of the ookinetes, despite the absence of genes homologous to caspases in the genome of this, or any, unicellular eukaryote. The putative involvement of other cysteine proteases in ancient apoptotic pathways is discussed. Potential signal pathways for induction of apoptosis in the host and parasite are reviewed and we consider the evidence that nitric oxide may play a role in this induction. Finally, we consider the hypothesis that death of some parasites in the midgut will limit infection and thus prevent vector death before the parasites have developed into mature sporozoites.
Collapse
Affiliation(s)
- H Hurd
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire, ST5 5BG, UK.
| | | | | |
Collapse
|
31
|
Moreira CK, Marrelli MT, Jacobs-Lorena M. Gene expression in Plasmodium: from gametocytes to sporozoites. Int J Parasitol 2004; 34:1431-40. [PMID: 15582520 DOI: 10.1016/j.ijpara.2004.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 09/17/2004] [Accepted: 10/05/2004] [Indexed: 02/06/2023]
Abstract
Completion of the complex developmental program of Plasmodium in the mosquito is essential for parasite transmission, yet this part of its life cycle is still poorly understood. In recent years, considerable progress has been made in the identification and characterization of genes expressed during parasite development in the mosquito. This line of investigation was greatly facilitated by the availability of the genome sequence of several Plasmodium, and by the application of approaches such as proteomics, microarrays, gene disruption by homologous recombination (gene knockout) and by use of subtraction libraries. Here, we review what is presently known about genes expressed in gametocytes and during the Plasmodium life cycle in the mosquito.
Collapse
Affiliation(s)
- C K Moreira
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Malaria Research Institute, The Johns Hopkins University, 615 N Wolfe St., Baltimore, MD 21205, USA
| | | | | |
Collapse
|
32
|
Siden-Kiamos I, Louis C. Interactions between malaria parasites and their mosquito hosts in the midgut. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:679-685. [PMID: 15242709 DOI: 10.1016/j.ibmb.2004.03.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 03/18/2004] [Indexed: 05/24/2023]
Abstract
This review examines what is presently known of the molecular interactions between Plasmodium and Anopheles that take place in the latter's midgut upon ingestion of the parasites with an infectious blood meal. In order to become 'established' in the gut and to transform into a sporozoite-producing oocyst, the malaria parasite needs to undergo different developmental steps that are often characterized by the use of selected resources provided by the mosquito vector. Moreover, some of these resources may be used by the parasite in order to overcome the insect host's defence mechanisms. The molecular partners of this interplay are now in the process of being defined and analyzed for both Plasmodium and mosquito and, thus, understood; these will be presented here in some detail.
Collapse
Affiliation(s)
- Inga Siden-Kiamos
- Institute of Molecular Biology and Biotechnology, FORTH, 71110 Heraklion, Greece
| | | |
Collapse
|
33
|
Abraham EG, Islam S, Srinivasan P, Ghosh AK, Valenzuela JG, Ribeiro JMC, Kafatos FC, Dimopoulos G, Jacobs-Lorena M. Analysis of the Plasmodium and Anopheles transcriptional repertoire during ookinete development and midgut invasion. J Biol Chem 2003; 279:5573-80. [PMID: 14627712 DOI: 10.1074/jbc.m307582200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Plasmodium, the causative agent of malaria, has to undergo sexual differentiation and development in anopheline mosquitoes for transmission to occur. To isolate genes specifically induced in both organisms during the early stages of Plasmodium differentiation in the mosquito, two cDNA libraries were constructed, one enriched for sequences expressed in differentiating Plasmodium berghei ookinetes and another enriched for sequences expressed in Anopheles stephensi guts containing invading ookinetes and early oocysts. Sequencing of 457 ookinete library clones and 652 early oocyst clones represented 175 and 346 unique expressed sequence tags, respectively. Nine of 13 Plasmodium and four of the five Anopheles novel expressed sequence tags analyzed on Northern blots were induced during ookinete differentiation and mosquito gut invasion. Ancaspase-7, an Anopheles effector caspase, is proteolytically activated during Plasmodium invasion of the midgut. WARP, a gene encoding a Plasmodium surface protein with a von Willebrand factor A-like adhesive domain, is expressed only in ookinetes and early oocysts. An anti-WARP polyclonal antibody strongly inhibits (70-92%) Plasmodium development in the mosquito, making it a candidate antigen for transmission blocking vaccines. The present results and those of an accompanying report (Srinivasan, P., Abraham, E. G., Ghosh, A. K., Valenzuela, J., Ribeiro, J. M. C., Dimopoulos G., Kafatos, F. C., Adams, J. H., and Jacobs-Lorena, M. (2004) J. Biol. Chem. 279, 5581-5587) provide the foundation for further analysis of Plasmodium differentiation in the mosquito and of mosquito responses to the parasite.
Collapse
Affiliation(s)
- Eappen G Abraham
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gare DC, Piertney SB, Billingsley PF. Anopheles gambiae collagen IV genes: cloning, phylogeny and midgut expression associated with blood feeding and Plasmodium infection. Int J Parasitol 2003; 33:681-90. [PMID: 12814648 DOI: 10.1016/s0020-7519(03)00055-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A prerequisite for understanding the role that mosquito midgut extracellular matrix molecules play in malaria parasite development is proper isolation and characterisation of the genes coding for components of the basal lamina. Here we have identified genes coding for alpha1 and alpha2 chains of collagen IV from the major malaria vector, Anopheles gambiae. Conserved sequences in the terminal NC1 domain were used to obtain partial gene sequences of this functional region, and full sequence was isolated from a pupal cDNA library. In a DNA-derived phylogeny, the alpha1 and alpha2 chains cluster with dipteran orthologs, and the alpha2 is ancestral. The expression of collagen alpha1(IV) peaked during the pupal stage of mosquito development, and was expressed continuously in the adult female following a blood meal with a further rise detected in older mosquitoes. Collagen alpha1(IV) is also upregulated when the early oocyst of Plasmodium yoelii was developing within the mosquito midgut and may contribute to a larger wound healing response. A model describing the expression of basal lamina proteins during oocyst development is presented, and we hypothesise that the development of new basal lamina between the oocyst and midgut epithelium is akin to a wound healing process.
Collapse
Affiliation(s)
- D C Gare
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | | | | |
Collapse
|
35
|
Dessens JT, Sidén-Kiamos I, Mendoza J, Mahairaki V, Khater E, Vlachou D, Xu XJ, Kafatos FC, Louis C, Dimopoulos G, Sinden RE. SOAP, a novel malaria ookinete protein involved in mosquito midgut invasion and oocyst development. Mol Microbiol 2003; 49:319-29. [PMID: 12828632 DOI: 10.1046/j.1365-2958.2003.03566.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
An essential, but poorly understood part of malaria transmission by mosquitoes is the development of the ookinetes into the sporozoite-producing oocysts on the mosquito midgut wall. For successful oocyst formation newly formed ookinetes in the midgut lumen must enter, traverse, and exit the midgut epithelium to reach the midgut basal lamina, processes collectively known as midgut invasion. After invasion ookinete-to-oocyst transition must occur, a process believed to require ookinete interactions with basal lamina components. Here, we report on a novel extracellular malaria protein expressed in ookinetes and young oocysts, named secreted ookinete adhesive protein (SOAP). The SOAP gene is highly conserved amongst Plasmodium species and appears to be unique to this genus. It encodes a predicted secreted and soluble protein with a modular structure composed of two unique cysteine-rich domains. Using the rodent malaria parasite Plasmodium berghei we show that SOAP is targeted to the micronemes and forms high molecular mass complexes via disulphide bonds. Moreover, SOAP interacts strongly with mosquito laminin in yeast-two-hybrid assays. Targeted disruption of the SOAP gene gives rise to ookinetes that are markedly impaired in their ability to invade the mosquito midgut and form oocysts. These results identify SOAP as a key molecule for ookinete-to-oocyst differentiation in mosquitoes.
Collapse
Affiliation(s)
- Johannes T Dessens
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, SW7 2AZ, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hurd H, Al-Olayan E, Butcher GA. In vitro methods for culturing vertebrate and mosquito stages of Plasmodium. Microbes Infect 2003; 5:321-7. [PMID: 12706445 DOI: 10.1016/s1286-4579(03)00034-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The development of in vitro culture systems for the vertebrate stages of Plasmodium led to major advancements in malaria research. Here we review both improvements made in these techniques and the recent achievement of the in vitro growth of mosquito stages from ookinete to infective sporozoite.
Collapse
Affiliation(s)
- Hilary Hurd
- Centre for Applied Entomology and Parasitology, School of Biological Sciences, Keele University, Staffordshire ST5 5BG, UK.
| | | | | |
Collapse
|
37
|
Abstract
Our understanding of the intricate interactions between the malarial parasite and the mosquito vector is complicated both by the number and diversity of parasite and vector species, and by the experimental inaccessibility of phenomena under investigation. Steady developments in techniques to study the parasite in the mosquito have recently been augmented by methods to culture in their entirety the sporogonic stages of some parasite species. These, together with the new saturation technologies, and genetic transformation of both parasite and vector will permit penetrating studies into an exciting and largely unknown area of parasite-host interactions, an understanding of which must result in the development of new intervention strategies. This microreview highlights key areas of current basic molecular interest, and identifies numerous lacunae in our knowledge that must be filled if we are to make rational decisions for future control strategies. It will conclude by trying to explain why in the opinion of this reviewer understanding malaria-mosquito interactions may be critical to our future attempts to limit a disease of growing global importance.
Collapse
Affiliation(s)
- R E Sinden
- Biological Sciences Department, Imperial College of Science, Technology and Medicine, London SW7 2AZ, UK.
| |
Collapse
|
38
|
Basseri HR, Tew IF, Ratcliffe NA. Identification and distribution of carbohydrate moieties on the salivary glands of Rhodnius prolixus and their possible involvement in attachment/invasion by Trypanosoma rangeli. Exp Parasitol 2002; 100:226-34. [PMID: 12128049 DOI: 10.1016/s0014-4894(02)00026-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the present study, FITC-labelled lectins (WGA, Con A, PNA, HPA, and TPA) were utilized to investigate carbohydrate residues on the surface of Rhodnius prolixus salivary glands. The results revealed that the salivary glands are rich in carbohydrate moieties and the diversity in binding pattern of particular lectins showed the presence of specific carbohydrate residues in the basal lamina, muscle, and cell layers of the glands. Subsequently, the sugars detected on the salivary gland surface were employed to investigate the interaction between Trypanosoma rangeli and the R. prolixus salivary glands. In vitro adhesion inhibition assays using long epimastigote forms (the invasion/adhesion forms) showed that some sugars tested were able to block the receptors on both the surfaces of the salivary glands and on T. rangeli. Among the sugars tested, GlcNAc, GalNAc, and galactose showed the highest overall inhibitory effect, following pre-incubation of either the salivary glands or parasites. These results are discussed in relation to previous work on the role of carbohydrates and lectins in insect vector/parasite interactions.
Collapse
Affiliation(s)
- H R Basseri
- Department of Medical Entomology, School of Public Health, University of Teheran Medical Sciences, Iran
| | | | | |
Collapse
|
39
|
Al-Olayan EM, Beetsma AL, Butcher GA, Sinden RE, Hurd H. Complete development of mosquito phases of the malaria parasite in vitro. Science 2002; 295:677-9. [PMID: 11809973 DOI: 10.1126/science.1067159] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Methods for reproducible in vitro development of the mosquito stages of malaria parasites to produce infective sporozoites have been elusive for over 40 years. We have cultured gametocytes of Plasmodium berghei through to infectious sporozoites with efficiencies similar to those recorded in vivo and without the need for salivary gland invasion. Oocysts developed extracellularly in a system whose essential elements include co-cultured Drosophila S2 cells, basement membrane matrix, and insect tissue culture medium. Sporozoite production required the presence of para-aminobenzoic acid. The entire life cycle of P. berghei, a useful model malaria parasite, can now be achieved in vitro.
Collapse
Affiliation(s)
- Ebtesam M Al-Olayan
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire ST5 5BG, UK
| | | | | | | | | |
Collapse
|