1
|
Wang T, Koukoulis TF, Vella LJ, Su H, Purnianto A, Nie S, Ang CS, Ma G, Korhonen PK, Taki AC, Williamson NA, Reid GE, Gasser RB. The Proteome and Lipidome of Extracellular Vesicles from Haemonchus contortus to Underpin Explorations of Host-Parasite Cross-Talk. Int J Mol Sci 2023; 24:10955. [PMID: 37446130 DOI: 10.3390/ijms241310955] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Many parasitic worms have a major adverse impact on human and animal populations worldwide due to the chronicity of their infections. There is a growing body of evidence indicating that extracellular vesicles (EVs) are intimately involved in modulating (suppressing) inflammatory/immune host responses and parasitism. As one of the most pathogenic nematodes of livestock animals, Haemonchus contortus is an ideal model system for EV exploration. Here, employing a multi-step enrichment process (in vitro culture, followed by ultracentrifugation, size exclusion and filtration), we enriched EVs from H. contortus and undertook the first comprehensive (qualitative and quantitative) multi-omic investigation of EV proteins and lipids using advanced liquid chromatography-mass spectrometry and informatics methods. We identified and quantified 561 proteins and 446 lipids in EVs and compared these molecules with those of adult worms. We identified unique molecules in EVs, such as proteins linked to lipid transportation and lipid species (i.e., sphingolipids) associated with signalling, indicating the involvement of these molecules in parasite-host cross-talk. This work provides a solid starting point to explore the functional roles of EV-specific proteins and lipids in modulating parasite-host cross-talk, and the prospect of finding ways of disrupting or interrupting this relationship to suppress or eliminate parasite infection.
Collapse
Affiliation(s)
- Tao Wang
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Tiana F Koukoulis
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Laura J Vella
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Huaqi Su
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Adityas Purnianto
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Shuai Nie
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ching-Seng Ang
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Guangxu Ma
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Pasi K Korhonen
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Aya C Taki
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Nicholas A Williamson
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Gavin E Reid
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, School of Chemistry, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Robin B Gasser
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
2
|
Munguía B, Saldaña J, Nieves M, Melian ME, Ferrer M, Teixeira R, Porcal W, Manta E, Domínguez L. Sensitivity of Haemonchus contortus to anthelmintics using different in vitro screening assays: a comparative study. Parasit Vectors 2022; 15:129. [PMID: 35413885 PMCID: PMC9006605 DOI: 10.1186/s13071-022-05253-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Helminthiasis and resistance to commercial anthelmintic compounds are major causes of economic losses for livestock producers, resulting in an urgent need for new drugs and reliable in vitro screening tests capable of detecting potentially active products. Considering this, a series of novel benzimidazole derivatives (5-methylbenzimidazole 1,2-disubstituted, 5-carboxybenzimidazole, 5-methylbenzimidazole 2-one) was screened on exsheathed L3 (xL3) and on the adult stage of Haemonchus contortus (Kirby anthelmintic-susceptible McMaster isolate). METHODS This work presents the set-up of an automated motility assay on the xL3 stage of H. contortus using an infrared tracking device (WMicrotracker One) together with a larval development test (xL3 to L4) and a motility assay on the adult stage of H. contortus. A comparative study of the sensitivity of these in vitro assays using commercial anthelmintics with different mechanisms of action was carried out, also evaluating anthelmintic activity of a series of novel benzimidazole derivatives. RESULTS The automated xL3 assay had the great advantage of being able to analyze many compounds simultaneously, but it showed the limitation of having lower sensitivity, requiring higher concentrations of the commercial anthelmintics tested compared to those needed for the adult motility or development assays. Although none of the novel 1,2,5-tri-substituted benzimidazole derivatives could significantly decrease the motility of xL3s, one of them (1e) significantly affected the development of xL3s to L4, and five new compounds (1b, 1d, 1e, 2a and 2c) reduced the motility of H. contortus adult stage. CONCLUSIONS The analysis of the results strongly suggests that the in vitro xL3 to L4 development test, particularly for the L4 stage, could be closer to the pharmacological sensitivity of the adult stage of H. contortus (target of interest) for commercial anthelmintic selected, with different mechanisms of action, and for the series of benzimidazole derivatives assayed. Therefore, an automated motility assay on L4 using the infrared tracking device is being set up. Further studies will be conducted to evaluate the in vivo anthelmintic activity of the most active novel benzimidazole derivatives.
Collapse
Affiliation(s)
- Beatriz Munguía
- Área de Farmacología, CIENFAR, Facultad de Química, Universidad de la República (Udelar), Montevideo, Uruguay
| | - Jenny Saldaña
- Área de Farmacología, CIENFAR, Facultad de Química, Universidad de la República (Udelar), Montevideo, Uruguay
| | - Magdalena Nieves
- Área de Farmacología, CIENFAR, Facultad de Química, Universidad de la República (Udelar), Montevideo, Uruguay
| | - María Elisa Melian
- Área de Farmacología, CIENFAR, Facultad de Química, Universidad de la República (Udelar), Montevideo, Uruguay
| | - Manuela Ferrer
- Área de Farmacología, CIENFAR, Facultad de Química, Universidad de la República (Udelar), Montevideo, Uruguay
| | - Ramiro Teixeira
- Área de Farmacología, CIENFAR, Facultad de Química, Universidad de la República (Udelar), Montevideo, Uruguay
| | - Williams Porcal
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República (Udelar), Montevideo, Uruguay
| | - Eduardo Manta
- Departamento de Química Orgánica, Facultad de Química, Laboratorio de Química Farmacéutica, Universidad de la República (Udelar), Montevideo, Uruguay
| | - Laura Domínguez
- Área de Farmacología, CIENFAR, Facultad de Química, Universidad de la República (Udelar), Montevideo, Uruguay.
| |
Collapse
|
3
|
Almeida BH, Medeiros MLS, Bezerra ACDS, Silva MDC. Nematicidal effect of a lectin preparation from Artocarpus heterophyllus (Moraceae) on larvae and adults of Haemonchus contortus. Int J Biol Macromol 2022; 200:409-415. [PMID: 35041887 DOI: 10.1016/j.ijbiomac.2022.01.077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/21/2021] [Accepted: 01/11/2022] [Indexed: 11/05/2022]
Abstract
Haemonchus contortus is a hematophagous parasite that causes damage to ruminant production worldwide. This study reported the in vitro nematicidal effect of a lectin preparation (LP) isolated from Artocarpus heterophyllus seeds on larvae and adults of H. contortus. The protein extraction was in phosphate-buffered saline followed by protein precipitation with ammonium sulfate 70% and dialysis. The dialyzed protein fraction was chromatographed to obtain isolated LP. The LP was characterized by hemagglutinating activity (HA) assays, protein dosage and polyacrylamide gel electrophoresis. The motility index of H. contortus in the third larval stage (unsheathed L3 larvae) and adult stage was evaluated. The HA inhibition of LP by mannose and galactose as well as the electrophoretic profile indicated the presence of the lectins ArtinM and Jacalin. The motility index of H. contortus was significantly reduced (p < 0.001) during the first 8 h of LP exposure, both in larvae (lowest index 8.3% with LP at 1 mg mL-1) and female adults (lowest index 20% with LP at 500 μg mL-1; index 40% with LP at 1 mg mL-1). This research revealed that the LP has potential for being utilized in the development of natural nematicides.
Collapse
Affiliation(s)
- Breno H Almeida
- Departamento de Biociências, Centro de Ciências Biológicas e da Saúde, Universidade Federal Rural do Semi-Árido, Av. Francisco Mota, 572, Costa e Silva, 59625-900 Mossoró, Rio Grande do Norte, Brazil.
| | - Mário L S Medeiros
- Departamento de Ciências Biomédicas, Faculdade de Ciências da Saúde, Universidade do Estado do Rio Grande do Norte, Rua Atirador Miguel Antônio da Silva Neto, s/n, Aeroporto, 59607-360 Mossoró, Rio Grande do Norte, Brazil.
| | - Ana C D S Bezerra
- Departamento de Biociências, Centro de Ciências Biológicas e da Saúde, Universidade Federal Rural do Semi-Árido, Av. Francisco Mota, 572, Costa e Silva, 59625-900 Mossoró, Rio Grande do Norte, Brazil.
| | - Michele D C Silva
- Departamento de Biociências, Centro de Ciências Biológicas e da Saúde, Universidade Federal Rural do Semi-Árido, Av. Francisco Mota, 572, Costa e Silva, 59625-900 Mossoró, Rio Grande do Norte, Brazil.
| |
Collapse
|
4
|
Taki AC, Byrne JJ, Wang T, Sleebs BE, Nguyen N, Hall RS, Korhonen PK, Chang BC, Jackson P, Jabbar A, Gasser RB. High-Throughput Phenotypic Assay to Screen for Anthelmintic Activity on Haemonchus contortus. Pharmaceuticals (Basel) 2021; 14:ph14070616. [PMID: 34206910 PMCID: PMC8308562 DOI: 10.3390/ph14070616] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
Parasitic worms cause very significant diseases in animals and humans worldwide, and their control is critical to enhance health, well-being and productivity. Due to widespread drug resistance in many parasitic worms of animals globally, there is a major, continuing demand for the discovery and development of anthelmintic drugs for use to control these worms. Here, we established a practical, cost-effective and semi-automated high throughput screening (HTS) assay, which relies on the measurement of motility of larvae of the barber’s pole worm (Haemonchus contortus) using infrared light-interference. Using this assay, we screened 80,500 small molecules and achieved a hit rate of 0.05%. We identified three small molecules that reproducibly inhibited larval motility and/or development (IC50 values of ~4 to 41 µM). Future work will critically assess the potential of selected hits as candidates for subsequent optimisation or repurposing against parasitic nematodes. This HTS assay has a major advantage over most previous assays in that it achieves a ≥ 10-times higher throughput (i.e., 10,000 compounds per week), and is thus suited to the screening of libraries of tens of thousands to hundreds of thousands of compounds for subsequent hit-to-lead optimisation or effective repurposing and development. The current assay should be adaptable to many socioeconomically important parasitic nematodes, including those that cause neglected tropical diseases (NTDs). This aspect is of relevance, given the goals of the World Health Organization (WHO) Roadmap for NTDs 2021–2030, to develop more effective drugs and drug combinations to improve patient outcomes and circumvent the ineffectiveness of some current anthelmintic drugs and possible drug resistance.
Collapse
Affiliation(s)
- Aya C. Taki
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (B.E.S.); (R.S.H.); (P.K.K.); (B.C.H.C.); (A.J.)
| | - Joseph J. Byrne
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (B.E.S.); (R.S.H.); (P.K.K.); (B.C.H.C.); (A.J.)
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (B.E.S.); (R.S.H.); (P.K.K.); (B.C.H.C.); (A.J.)
| | - Brad E. Sleebs
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (B.E.S.); (R.S.H.); (P.K.K.); (B.C.H.C.); (A.J.)
- Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Nghi Nguyen
- Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ross S. Hall
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (B.E.S.); (R.S.H.); (P.K.K.); (B.C.H.C.); (A.J.)
| | - Pasi K. Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (B.E.S.); (R.S.H.); (P.K.K.); (B.C.H.C.); (A.J.)
| | - Bill C.H. Chang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (B.E.S.); (R.S.H.); (P.K.K.); (B.C.H.C.); (A.J.)
| | - Paul Jackson
- Johnson & Johnson, Global Public Health, Janssen Research and Development, San Diego, CA 92121, USA;
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (B.E.S.); (R.S.H.); (P.K.K.); (B.C.H.C.); (A.J.)
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (B.E.S.); (R.S.H.); (P.K.K.); (B.C.H.C.); (A.J.)
- Correspondence:
| |
Collapse
|
5
|
Li F, Qin P, Ye L, Gupta N, Hu M. A novel BR-SMAD is required for larval development in barber's pole worm Haemonchus contortus. MICROBIAL CELL 2020; 8:57-64. [PMID: 33553419 PMCID: PMC7841850 DOI: 10.15698/mic2021.02.742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SMAD proteins mediate TGF-β signaling and thereby regulate the metazoan development; however, they are poorly defined in Haemonchus contortus–a common blood-sucking parasitic nematode of small ruminants. Here, we characterized an R-SMAD family protein in H. contortus termed HcSMA2, which is closely related to Caenorhabditis elegans SMA2 (CeSMA2) involved in the bone morphogenetic protein (BMP) signaling. Hcsma2 is transcribed in all developmental stages of H. contortus but highly induced in the adult male worms. The RNA interference with Hcsma2 retarded the transition of infective L3 into L4 larvae. Besides, the bimolecular fluorescence complementation revealed the interaction of HcSMA2 with a TGF-β-activated-R-SMAD (HcDAF8). Together these results show a BMP-like receptor-regulated SMAD in H. contortus that is required for larval differentiation and underscore an adaptive functional repurposing of BMP-signaling in parasitic worms.
Collapse
Affiliation(s)
- Fangfang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Peixi Qin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Lisha Ye
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Nishith Gupta
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China.,Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany.,Department of Biological Sciences, Birla Institute of Technology and Science Pilani (BITS-P), Hyderabad, India
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People's Republic of China
| |
Collapse
|
6
|
Medeiros MLS, Alves RRV, Oliveira BF, Napoleão TH, Paiva PMG, Coelho LCBB, Bezerra ACDS, Silva MDC. In vitro effects of Moringa oleifera seed lectins on Haemonchus contortus in larval and adult stages. Exp Parasitol 2020; 218:108004. [PMID: 32961172 DOI: 10.1016/j.exppara.2020.108004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 08/19/2020] [Accepted: 09/18/2020] [Indexed: 10/23/2022]
Abstract
Haemonchus contortus is a hematophagous parasite causing damage to the production of ruminant animals throughout the world. This study evaluated the in vitro effect of proteins from Moringa oleifera (WSMoL - Water Soluble M. oleifera Lectin and cMoL - coagulant M. oleifera Lectin) on the motility of infective larvae and adult male and female worms of H. contortus. The specific activity of total proteases and the morphology of the worms exposed to the lectins were observed. Both lectins inhibited motility of all parasite stages tested. WSMoL and cMoL at 500 μg mL-1 interfered in the motility of larvae. Values of 11.1% and 8.1% were the lowest motility indices of larvae with sheath, and 30.6% and 16.4% were the lowest motility indices of exsheathed larvae treated with WSMoL and cMoL, respectively. In 1 mg mL-1 solutions of WSMoL and of cMoL, the motility index of adult male worms was 23.3% (p < 0.001) and 20% (p < 0.001), while the motility index of adult female worms was 63.3% (p > 0.05) and 26.6% (p < 0.001), respectively. Greater proteolytic activity was detected in extracts obtained from adult worms, male and female, after incubation with the lectins. Morphological changes caused by the lectins were revealed by changes in the crests of the cuticle, in the longitudinal striations and at the vulva.
Collapse
Affiliation(s)
- Mário L S Medeiros
- Departamento de Ciências Biomédicas, Faculdade de Ciências da Saúde, Universidade do Estado do Rio Grande do Norte, Rua Atirador Miguel Antônio da Silva Neto, S/n, Aeroporto, 59607-360, Mossoró, Rio Grande do Norte, Brazil.
| | - Robson R V Alves
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Professor Morais Rego S/n, Cidade Universitária, 50670-901, Recife, Pernambuco, Brazil
| | - Benny F Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Professor Morais Rego S/n, Cidade Universitária, 50670-901, Recife, Pernambuco, Brazil
| | - Thiago H Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Professor Morais Rego S/n, Cidade Universitária, 50670-901, Recife, Pernambuco, Brazil
| | - Patrícia M G Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Professor Morais Rego S/n, Cidade Universitária, 50670-901, Recife, Pernambuco, Brazil
| | - Luana C B B Coelho
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Professor Morais Rego S/n, Cidade Universitária, 50670-901, Recife, Pernambuco, Brazil
| | - Ana C D S Bezerra
- Departamento de Biociências, Centro de Ciências Biológicas e da Saúde, Universidade Federal Rural do Semi-Árido, Av. Francisco Mota 572, Costa e Silva, 59625-900, Mossoró, Rio Grande do Norte, Brazil
| | - Michele D C Silva
- Departamento de Biociências, Centro de Ciências Biológicas e da Saúde, Universidade Federal Rural do Semi-Árido, Av. Francisco Mota 572, Costa e Silva, 59625-900, Mossoró, Rio Grande do Norte, Brazil.
| |
Collapse
|
7
|
Wang T, Ma G, Ang CS, Korhonen PK, Stroehlein AJ, Young ND, Hofmann A, Chang BCH, Williamson NA, Gasser RB. The developmental phosphoproteome of Haemonchus contortus. J Proteomics 2019; 213:103615. [PMID: 31846766 DOI: 10.1016/j.jprot.2019.103615] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/22/2019] [Accepted: 12/13/2019] [Indexed: 12/22/2022]
Abstract
Protein phosphorylation plays essential roles in many cellular processes. Despite recent progress in the genomics, transcriptomics and proteomics of socioeconomically important parasitic nematodes, there is scant phosphoproteomic data to underpin molecular biological discovery. Here, using the phosphopeptide enrichment-based LC-MS/MS and data-independent acquisition (DIA) quantitation, we characterised the first developmental phosphoproteome of the parasitic nematode Haemonchus contortus - one of the most pathogenic parasites of ruminant livestock. Totally, 1804 phosphorylated proteins with 4406 phosphorylation sites ('phosphosites') from different developmental stages/sexes were identified. Bioinformatic analyses of quantified 'phosphosites' exhibited distinctive stage- and sex-specific patterns during development, and identified a subset of phosphoproteins proposed to play crucial roles in processes such as spindle positioning, signal transduction and kinase activity. A sequence-based comparison of the phosphoproteome of H. contortus with those of two free-living nematode species (Caenorhabditis elegans and Pristionchus pacificus) suggested a limited number of common protein phosphorylation events among these species. Our findings infer active roles for protein phosphorylation in the adaptation of a parasitic nematode to a constantly changing external environment. The phosphoproteomic data set for H. contortus provides a basis to better understand phosphorylation and associated biological processes (e.g., regulation of signal transduction), and might enable the discovery of novel anthelmintic targets. SIGNIFICANCE: Here, we report the first phosphoproteome for a socioeconomically parasitic nematode (Haemonchus contortus). This phosphoproteome exhibits distinctive patterns during development, suggesting active roles of post-translational modification in the parasite's adaptation to changing environments within and outside of the host animal. This work sheds a light on the developmental phosphorylation in a parasitic nematode, and could enable the discovery of novel interventions against major pathogens.
Collapse
Affiliation(s)
- Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Guangxu Ma
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Ching-Seng Ang
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Pasi K Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Andreas J Stroehlein
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Andreas Hofmann
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Bill C H Chang
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Nicholas A Williamson
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
8
|
Ma G, Wang T, Korhonen PK, Young ND, Nie S, Ang CS, Williamson NA, Reid GE, Gasser RB. Dafachronic acid promotes larval development in Haemonchus contortus by modulating dauer signalling and lipid metabolism. PLoS Pathog 2019; 15:e1007960. [PMID: 31335899 PMCID: PMC6677322 DOI: 10.1371/journal.ppat.1007960] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/02/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023] Open
Abstract
Here, we discovered an endogenous dafachronic acid (DA) in the socioeconomically important parasitic nematode Haemonchus contortus. We demonstrate that DA promotes larval exsheathment and development in this nematode via a relatively conserved nuclear hormone receptor (DAF-12). This stimulatory effect is dose- and time-dependent, and relates to a modulation of dauer-like signalling, and glycerolipid and glycerophospholipid metabolism, likely via a negative feedback loop. Specific chemical inhibition of DAF-9 (cytochrome P450) was shown to significantly reduce the amount of endogenous DA in H. contortus; compromise both larval exsheathment and development in vitro; and modulate lipid metabolism. Taken together, this evidence shows that DA plays a key functional role in the developmental transition from the free-living to the parasitic stage of H. contortus by modulating the dauer-like signalling pathway and lipid metabolism. Understanding the intricacies of the DA-DAF-12 system and associated networks in H. contortus and related parasitic nematodes could pave the way to new, nematode-specific treatments. In the present study, using an integrative multi-omics approach, we show that dafachronic acid (DA) plays a critical functional role in the developmental transition in larvae of the parasitic nematode Haemonchus contortus (barber’s pole worm) by modulating the dauer-like signalling pathway and lipid metabolism. The DA-DAF-12 signalling module in H. contortus provides a paradigm to explore its developmental and reproductive biology at the molecular level, to study physiochemical cross-talk between the parasite and its hosts, and to discover novel anthelmintic targets.
Collapse
Affiliation(s)
- Guangxu Ma
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Pasi K. Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Neil D. Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Shuai Nie
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, Victoria, Australia
| | - Ching-Seng Ang
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas A. Williamson
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, Victoria, Australia
| | - Gavin E. Reid
- School of Chemistry, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
9
|
Wang T, Ma G, Ang CS, Korhonen PK, Koehler AV, Young ND, Nie S, Williamson NA, Gasser RB. High throughput LC-MS/MS-based proteomic analysis of excretory-secretory products from short-term in vitro culture of Haemonchus contortus. J Proteomics 2019; 204:103375. [PMID: 31071474 DOI: 10.1016/j.jprot.2019.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/08/2019] [Accepted: 05/02/2019] [Indexed: 12/27/2022]
Abstract
Parasitic nematodes of humans, animals and plants have a major, adverse impact on global health and agricultural production worldwide. To cope with their surrounding environment in and the immune attack from the host, excretory-secretory (ES) proteins are released by nematodes to orchestrate or regulate parasite-host interactions. In the present study, we characterised the ES products from short-term (12 h) in vitro culture of different developmental stages/sexes of Haemonchus contortus (one of the most important parasitic nematodes of livestock animals worldwide) using a high throughput tandem mass-spectrometry, underpinned by the most recent genomic dataset. In total, 878 unique proteins from key developmental stages/sexes (third-stage and fourth-stage larvae, and female and male adults) were identified and quantified with high confidence. Bioinformatic analyses showed noteworthy ES protein alterations during the transition from the free-living to the parasitic phase, especially for proteins which are likely involved in nutrient digestion and acquisition as well as parasite-host interactions, such as proteolytic cascade-related peptidases, glycoside hydrolases, C-type lectins and sperm-coating protein/Tpx/antigen 5/pathogenesis related-1/Sc7 (= SCP/TAPS) proteins. Our findings provide an avenue to better explore interactive processes between the host and this highly significant parasitic nematode, to underpin the search for novel drug and vaccine targets. SIGNIFICANCE: The present study represents a comprehensive proteomic analysis of the secretome of key developmental stages/sexes of H. contortus maintained in short-term in vitro culture. High throughput LC-MS/MS analysis of ES products allowed the identification of a large repertoire of proteins (secretome) and the establishment of a new proteomic database for H. contortus. The secretome of H. contortus undergoes substantial changes during the nematode's transition from free-living to parasitic stages, suggesting a constant adaptation to different environments outside of and within the host animal. Understanding the host-parasite relationship at the molecular level could assist significantly in the development of intervention strategies (i.e. novel drugs and vaccines) against H. contortus and related nematodes.
Collapse
Affiliation(s)
- Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Guangxu Ma
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Ching-Seng Ang
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Pasi K Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Anson V Koehler
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Shuai Nie
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Nicholas A Williamson
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
10
|
Wang T, Ma G, Ang CS, Korhonen PK, Xu R, Nie S, Koehler AV, Simpson RJ, Greening DW, Reid GE, Williamson NA, Gasser RB. Somatic proteome of Haemonchus contortus. Int J Parasitol 2019; 49:311-320. [PMID: 30771357 DOI: 10.1016/j.ijpara.2018.12.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 01/09/2023]
Abstract
Currently, there is a dearth of proteomic data to underpin fundamental investigations of parasites and parasitism at the molecular level. Here, using a high throughput LC-MS/MS-based approach, we undertook the first reported comprehensive, large-scale proteomic investigation of the barber's pole worm (Haemonchus contortus) - one of the most important parasitic nematodes of livestock animals worldwide. In total, 2487 unique H. contortus proteins representing different developmental stages/sexes (i.e. eggs, L3s and L4s, female (Af) and male (Am) adults) were identified and quantified with high confidence. Bioinformatic analyses of this proteome revealed substantial alterations in protein profiles during the life cycle, particularly in the transition from the free-living to the parasitic phase, and key groups of proteins involved specifically in feeding, digestion, metabolism, development, parasite-host interactions (including immunomodulation), structural remodelling of the body wall and adaptive processes during parasitism. This proteomic data set will facilitate future molecular, biochemical and physiological investigations of H. contortus and related nematodes, and the discovery of novel intervention targets against haemonchosis.
Collapse
Affiliation(s)
- Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Guangxu Ma
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ching-Seng Ang
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Pasi K Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Rong Xu
- Department of Biochemistry, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bundoora, Victoria 3086, Australia
| | - Shuai Nie
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Anson V Koehler
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Richard J Simpson
- Department of Biochemistry, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bundoora, Victoria 3086, Australia
| | - David W Greening
- Department of Biochemistry, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bundoora, Victoria 3086, Australia
| | - Gavin E Reid
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010 Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria 3010, Australia; Bio21 Molecular Science and Biotechnology Institute. The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nicholas A Williamson
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
11
|
Gasser RB, Schwarz EM, Korhonen PK, Young ND. Understanding Haemonchus contortus Better Through Genomics and Transcriptomics. ADVANCES IN PARASITOLOGY 2016; 93:519-67. [PMID: 27238012 DOI: 10.1016/bs.apar.2016.02.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Parasitic roundworms (nematodes) cause substantial mortality and morbidity in animals globally. The barber's pole worm, Haemonchus contortus, is one of the most economically significant parasitic nematodes of small ruminants worldwide. Although this and related nematodes can be controlled relatively well using anthelmintics, resistance against most drugs in common use has become a major problem. Until recently, almost nothing was known about the molecular biology of H. contortus on a global scale. This chapter gives a brief background on H. contortus and haemonchosis, immune responses, vaccine research, chemotherapeutics and current problems associated with drug resistance. It also describes progress in transcriptomics before the availability of H. contortus genomes and the challenges associated with such work. It then reviews major progress on the two draft genomes and developmental transcriptomes of H. contortus, and summarizes their implications for the molecular biology of this worm in both the free-living and the parasitic stages of its life cycle. The chapter concludes by considering how genomics and transcriptomics can accelerate research on Haemonchus and related parasites, and can enable the development of new interventions against haemonchosis.
Collapse
Affiliation(s)
- R B Gasser
- The University of Melbourne, Parkville, VIC, Australia
| | - E M Schwarz
- The University of Melbourne, Parkville, VIC, Australia; Cornell University, Ithaca, NY, United States
| | - P K Korhonen
- The University of Melbourne, Parkville, VIC, Australia
| | - N D Young
- The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
12
|
Kumarasingha R, Preston S, Yeo TC, Lim DSL, Tu CL, Palombo EA, Shaw JM, Gasser RB, Boag PR. Anthelmintic activity of selected ethno-medicinal plant extracts on parasitic stages of Haemonchus contortus. Parasit Vectors 2016; 9:187. [PMID: 27036205 PMCID: PMC4818492 DOI: 10.1186/s13071-016-1458-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/16/2016] [Indexed: 12/16/2022] Open
Abstract
Background Parasitic roundworms (nematodes) cause substantial morbidity and mortality in livestock animals globally, and considerable productivity losses to farmers. The control of these nematodes has relied largely on the use of a limited number of anthelmintics. However, resistance to many of these these anthelmintics is now widespread, and, therefore, there is a need to find new drugs to ensure sustained and effective treatment and control into the future. Methods Recently, we developed a screening assay to test natural, plant extracts with known inhibitory effects against the free-living worm Caenorhabditis elegans. Using this assay, we assessed here the effects of the extracts on motility and development of parasitic larval stages of Haemonchus contortus, one of the most important nematodes of small ruminants worldwide. Results The study showed that two of five extracts from Picria fel-terrae Lour. have a significant inhibitory effect (at concentrations of 3–5 mg/ml) on the motility and development of H. contortus larvae. Although the two extracts originated from the same plant, they displayed different levels of inhibition on motility and development, which might relate to the presence of various active constituents in these extracts, or the same constituents at different concentrations in distinct parts of the plant. Conclusions These results suggest that extracts from P. fel-terrae Lour. have promising anthelmintic activity and that more broadly, plant extracts are a potential rich source of anthelmintics to combat helminthic diseases.
Collapse
Affiliation(s)
- Rasika Kumarasingha
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Sarah Preston
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Tiong-Chia Yeo
- Sarawak Biodiversity Centre (SBC), KM 20 Jalan Borneo Heights, Semengoh, Locked Bag No. 3032, 93990, Kuching, Sarawak, Malaysia
| | - Diana S L Lim
- Sarawak Biodiversity Centre (SBC), KM 20 Jalan Borneo Heights, Semengoh, Locked Bag No. 3032, 93990, Kuching, Sarawak, Malaysia
| | - Chu-Lee Tu
- Sarawak Biodiversity Centre (SBC), KM 20 Jalan Borneo Heights, Semengoh, Locked Bag No. 3032, 93990, Kuching, Sarawak, Malaysia
| | - Enzo A Palombo
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Victoria, 3122, Australia
| | - Jillian M Shaw
- Department of Health and Medical Sciences, Faculty of Health, Arts and Design, Swinburne University of Technology, Victoria, 3122, Australia
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Peter R Boag
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia. .,Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
13
|
Molecular characterization of the Haemonchus contortus phosphoinositide-dependent protein kinase-1 gene (Hc-pdk-1). Parasit Vectors 2016; 9:65. [PMID: 26842781 PMCID: PMC4741024 DOI: 10.1186/s13071-016-1351-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/28/2016] [Indexed: 12/22/2022] Open
Abstract
Background Phosphoinositide-dependent protein kinase-1 (PDK-1), which functions downstream of phosphoinositide 3-kinase (AGE-1) and activates protein kinases of the AGC family, plays critical roles in regulating biology processes, such as metabolism, growth, development and survival. In the free-living nematode Caenorhabditis elegans, PDK-1 is a key component of the insulin-like signalling pathway, regulating the entry into and exit from dauer (arrested development). Although it is proposed that similar molecular mechanisms control the transition from the free-living to the parasitic stages of nematodes, nothing is known about PDK-1 in Haemonchus contortus, a socioeconomically important gastric nematode of ruminants. Methods Here, we isolated and characterized the pdk-1 gene (Hc-pdk-1) and its inferred product (Hc-PDK-1) from H. contortus. Using in vitro and in vivo methods, we then studied the transcriptional profiles of Hc-pdk-1 and anatomical gene expression patterns of Hc-PDK-1 in different developmental stages of C. elegans. Results In silico analysis of Hc-PDK-1 displayed conserved functional domains, such as protein kinase and pleckstrin homology (PH) domains and two predicted phosphorylation sites (Thr226/Tyr229), which are crucial for the phosphorylation of downstream signalling. The Hc-pdk-1 gene is transcribed in all of the main developmental stages of H. contortus, with its highest transcription in the infective third-stage larvae (iL3) compared with other stages. Transgene constructs, in which respective promoters were fused to the coding sequence for green fluorescent protein (GFP), were used to transform C. elegans, and to localize and compare the expression of Hc-pdk-1 and Ce-pdk-1. The expression of GFP under the control of the Hc-pdk-1 promoter was localized to the intestine, and head and tail neurons, contrasting somewhat the profile for the C. elegans ortholog, which is expressed in pharynx, intestine and head and tail neurons. Conclusions This is the first characterization of pdk-1/PDK-1 from a trichostrongyloid nematode. Taken together, the findings from this study provide a first glimpse of the involvement of Hc-pdk-1 in the insulin-like signalling pathway in H. contortus. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1351-6) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
Preston S, Jabbar A, Nowell C, Joachim A, Ruttkowski B, Baell J, Cardno T, Korhonen PK, Piedrafita D, Ansell BRE, Jex AR, Hofmann A, Gasser RB. Low cost whole-organism screening of compounds for anthelmintic activity. Int J Parasitol 2015; 45:333-43. [PMID: 25746136 DOI: 10.1016/j.ijpara.2015.01.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/19/2015] [Accepted: 01/20/2015] [Indexed: 12/11/2022]
Abstract
Due to major problems with drug resistance in parasitic nematodes of animals, there is a substantial need and excellent opportunities to develop new anthelmintics via genomic-guided and/or repurposing approaches. In the present study, we established a practical and cost-effective whole-organism assay for the in vitro-screening of compounds for activity against parasitic stages of the nematode Haemonchus contortus (barber's pole worm). The assay is based on the use of exsheathed L3 (xL3) and L4 stages of H. contortus of small ruminants (sheep and goats). Using this assay, we screened a panel of 522 well-curated kinase inhibitors (GlaxoSmithKline, USA; code: PKIS2) for activity against H. contortus by measuring the inhibition of larval motility using an automated image analysis system. We identified two chemicals within the compound classes biphenyl amides and pyrazolo[1,5-α]pyridines, which reproducibly inhibit both xL3 and L4 motility and development, with IC50s of 14-47 μM. Given that these inhibitors were designed as anti-inflammatory drugs for use in humans and fit the Lipinski rule-of-five (including bioavailability), they show promise for hit-to-lead optimisation and repurposing for use against parasitic nematodes. The screening assay established here has significant advantages over conventional methods, particularly in terms of ease of use, throughput, time and cost. Although not yet fully automated, the current assay is readily suited to the screening of hundreds to thousands of compounds for subsequent hit-to-lead optimisation. The current assay is highly adaptable to many parasites of socioeconomic importance, including those causing neglected tropical diseases. This aspect is of major relevance, given the urgent need to deliver the goals of the London Declaration (http://unitingtocombatntds.org/resource/london-declaration) through the rapid and efficient repurposing of compounds in public-private partnerships.
Collapse
Affiliation(s)
- Sarah Preston
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Abdul Jabbar
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Cameron Nowell
- Medicinal Chemistry, Monash University Institute of Pharmaceutical Sciences (MIPS), Monash University, Parkville, Victoria 3052, Australia
| | - Anja Joachim
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Bärbel Ruttkowski
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Jonathan Baell
- Medicinal Chemistry, Monash University Institute of Pharmaceutical Sciences (MIPS), Monash University, Parkville, Victoria 3052, Australia
| | - Tony Cardno
- Medicinal Chemistry, Monash University Institute of Pharmaceutical Sciences (MIPS), Monash University, Parkville, Victoria 3052, Australia
| | - Pasi K Korhonen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - David Piedrafita
- Faculty of Science and Technology, School of Applied and Biomedical Sciences, Federation University, Churchill, Victoria 3842, Australia
| | - Brendan R E Ansell
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Aaron R Jex
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andreas Hofmann
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia; Structural Chemistry Program, Eskitis Institute, Griffith University, Brisbane, Queensland 4111, Australia
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
15
|
Cantacessi C, Hofmann A, Campbell BE, Gasser RB. Impact of next-generation technologies on exploring socioeconomically important parasites and developing new interventions. Methods Mol Biol 2015; 1247:437-474. [PMID: 25399114 DOI: 10.1007/978-1-4939-2004-4_31] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
High-throughput molecular and computer technologies have become instrumental for systems biological explorations of pathogens, including parasites. For instance, investigations of the transcriptomes of different developmental stages of parasitic nematodes give insights into gene expression, regulation and function in a parasite, which is a significant step to understanding their biology, as well as interactions with their host(s) and disease. This chapter (1) gives a background on some key parasitic nematodes of socioeconomic importance, (2) describes sequencing and bioinformatic technologies for large-scale studies of the transcriptomes and genomes of these parasites, (3) provides some recent examples of applications and (4) emphasizes the prospects of fundamental biological explorations of parasites using these technologies for the development of new interventions to combat parasitic diseases.
Collapse
Affiliation(s)
- Cinzia Cantacessi
- Department of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | | | | | | |
Collapse
|
16
|
The genome and developmental transcriptome of the strongylid nematode Haemonchus contortus. Genome Biol 2013; 14:R89. [PMID: 23985341 PMCID: PMC4053716 DOI: 10.1186/gb-2013-14-8-r89] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 08/28/2013] [Indexed: 01/23/2023] Open
Abstract
Background The barber's pole worm, Haemonchus contortus, is one of the most economically important parasites of small ruminants worldwide. Although this parasite can be controlled using anthelmintic drugs, resistance against most drugs in common use has become a widespread problem. We provide a draft of the genome and the transcriptomes of all key developmental stages of H. contortus to support biological and biotechnological research areas of this and related parasites. Results The draft genome of H. contortus is 320 Mb in size and encodes 23,610 protein-coding genes. On a fundamental level, we elucidate transcriptional alterations taking place throughout the life cycle, characterize the parasite's gene silencing machinery, and explore molecules involved in development, reproduction, host-parasite interactions, immunity, and disease. The secretome of H. contortus is particularly rich in peptidases linked to blood-feeding activity and interactions with host tissues, and a diverse array of molecules is involved in complex immune responses. On an applied level, we predict drug targets and identify vaccine molecules. Conclusions The draft genome and developmental transcriptome of H. contortus provide a major resource to the scientific community for a wide range of genomic, genetic, proteomic, metabolomic, evolutionary, biological, ecological, and epidemiological investigations, and a solid foundation for biotechnological outcomes, including new anthelmintics, vaccines and diagnostic tests. This first draft genome of any strongylid nematode paves the way for a rapid acceleration in our understanding of a wide range of socioeconomically important parasites of one of the largest nematode orders.
Collapse
|
17
|
Cantacessi C, Campbell BE, Gasser RB. Key strongylid nematodes of animals — Impact of next-generation transcriptomics on systems biology and biotechnology. Biotechnol Adv 2012; 30:469-88. [DOI: 10.1016/j.biotechadv.2011.08.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/09/2011] [Accepted: 08/19/2011] [Indexed: 10/17/2022]
|
18
|
Campbell BE, Tarleton M, Gordon CP, Sakoff JA, Gilbert J, McCluskey A, Gasser RB. Norcantharidin analogues with nematocidal activity in Haemonchus contortus. Bioorg Med Chem Lett 2011; 21:3277-81. [DOI: 10.1016/j.bmcl.2011.04.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Accepted: 04/07/2011] [Indexed: 12/16/2022]
|
19
|
Campbell BE, Boag PR, Hofmann A, Cantacessi C, Wang CK, Taylor P, Hu M, Sindhu ZUD, Loukas A, Sternberg PW, Gasser RB. Atypical (RIO) protein kinases from Haemonchus contortus--promise as new targets for nematocidal drugs. Biotechnol Adv 2011; 29:338-50. [PMID: 21262337 DOI: 10.1016/j.biotechadv.2011.01.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 12/28/2010] [Accepted: 01/14/2011] [Indexed: 02/06/2023]
Abstract
Almost nothing is known about atypical kinases in multicellular organisms, including parasites. Supported by information and data available for the free-living nematode, Caenorhabditis elegans, and other eukaryotes, the present article describes three RIO kinase genes, riok-1, riok-2 and riok-3, from Haemonchus contortus, one of the most important parasitic nematodes of small ruminants. Analyses of these genes and their products predict that they each play critical roles in the developmental pathways of parasitic nematodes. The findings of this review indicate prospects for functional studies of these genes in C. elegans (as a surrogate) and opportunities for the design of a novel class of nematode-specific inhibitors of RIO kinases. The latter aspect is of paramount importance, given the serious problems linked to anthelmintic resistance in parasitic nematode populations of livestock.
Collapse
Affiliation(s)
- Bronwyn E Campbell
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Cantacessi C, Campbell BE, Young ND, Jex AR, Hall RS, Presidente PJA, Zawadzki JL, Zhong W, Aleman-Meza B, Loukas A, Sternberg PW, Gasser RB. Differences in transcription between free-living and CO2-activated third-stage larvae of Haemonchus contortus. BMC Genomics 2010; 11:266. [PMID: 20420710 PMCID: PMC2880303 DOI: 10.1186/1471-2164-11-266] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 04/27/2010] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The disease caused by Haemonchus contortus, a blood-feeding nematode of small ruminants, is of major economic importance worldwide. The infective third-stage larva (L3) of this gastric nematode is enclosed in a cuticle (sheath) and, once ingested with herbage by the host, undergoes an exsheathment process that marks the transition from the free-living (L3) to the parasitic (xL3) stage. This study explored changes in gene transcription associated with this transition and predicted, based on comparative analysis, functional roles for key transcripts in the metabolic pathways linked to larval development. RESULTS Totals of 101,305 (L3) and 105,553 (xL3) expressed sequence tags (ESTs) were determined using 454 sequencing technology, and then assembled and annotated; the most abundant transcripts encoded transthyretin-like, calcium-binding EF-hand, NAD(P)-binding and nucleotide-binding proteins as well as homologues of Ancylostoma-secreted proteins (ASPs). Using an in silico-subtractive analysis, 560 and 685 sequences were shown to be uniquely represented in the L3 and xL3 stages, respectively; the transcripts encoded ribosomal proteins, collagens and elongation factors (in L3), and mainly peptidases and other enzymes of amino acid catabolism (in xL3). Caenorhabditis elegans orthologues of transcripts that were uniquely transcribed in each L3 and xL3 were predicted to interact with a total of 535 other genes, all of which were involved in embryonic development. CONCLUSION The present study indicated that some key transcriptional alterations taking place during the transition from the L3 to the xL3 stage of H. contortus involve genes predicted to be linked to the development of neuronal tissue (L3 and xL3), formation of the cuticle (L3) and digestion of host haemoglobin (xL3). Future efforts using next-generation sequencing and bioinformatic technologies should provide the efficiency and depth of coverage required for the determination of the complete transcriptomes of different developmental stages and/or tissues of H. contortus as well as the genome of this important parasitic nematode. Such advances should lead to a significantly improved understanding of the molecular biology of H. contortus and, from an applied perspective, to novel methods of intervention.
Collapse
Affiliation(s)
- Cinzia Cantacessi
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia
| | - Bronwyn E Campbell
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia
| | - Neil D Young
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia
| | - Aaron R Jex
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia
| | - Ross S Hall
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia
| | | | - Jodi L Zawadzki
- Department of Primary Industries, Attwood, Victoria, Australia
| | - Weiwei Zhong
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, USA
| | | | - Alex Loukas
- James Cook University, Cairns, Queensland, Australia
| | - Paul W Sternberg
- Biology Division, California Institute of Technology, Pasadena, California, USA
| | - Robin B Gasser
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia
| |
Collapse
|
21
|
Hu M, He L, Campbell BE, Zhong W, Sternberg PW, Gasser RB. A vacuolar-type proton (H+) translocating ATPase alpha subunit encoded by the Hc-vha-6 gene of Haemonchus contortus. Mol Cell Probes 2010; 24:196-203. [PMID: 20362051 DOI: 10.1016/j.mcp.2010.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Revised: 03/12/2010] [Accepted: 03/22/2010] [Indexed: 12/23/2022]
Abstract
In the present study, a full-length cDNA (designated Hc-vha-6) inferred to encode an alpha subunit of a vacuolar-type proton translocating adenosine triphosphatase (V-ATPase) was isolated from the parasitic nematode Haemonchus contortus, and characterized. The transcript for Hc-vha-6 was detected in all developmental stages and both sexes of H. contortus. Elements, including two TATA box (TATAA), two inverted CAAT box (ATTGG), five E box (CANNTG) and six GATA as well as five inverse GATA (TTATC) transcription factor motifs, were identified in the non-coding region upstream of Hc-vha-6. The open reading frame (ORF) of 2601 nucleotides encoded a protein (Hc-VHA-6) of 866 amino acids and a molecular weight of approximately 98.7 kDa. Comparison with a published protein sequence for a homologue (VPH1P) from yeast showed that Hc-VHA-6 had nine transmembrane domains and the 14 essential amino acid residues associated with enzyme activity, assembly, intracellular and/or membrane targeting. Phylogenetic analyses of selected amino acid sequence data revealed Hc-VHA-6 to be most closely related to VHA-6 of Caenorhabditis elegans. A predictive network analysis inferred that vha-6 interacts with at least seven other genes encoding V-ATPase subunits and a small Rab GTPase. This study provides the first insight into a V-ATPase of parasitic nematodes and a sound basis for future functional genomic work.
Collapse
Affiliation(s)
- Min Hu
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia; School of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | | | | | | | | | | |
Collapse
|
22
|
Characterization of a Caenorhabditis elegans glc seven-like phosphatase (gsp) orthologue from Haemonchus contortus (Nematoda). Mol Cell Probes 2010; 24:178-89. [PMID: 20153820 DOI: 10.1016/j.mcp.2010.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 02/05/2010] [Accepted: 02/05/2010] [Indexed: 01/17/2023]
Abstract
A full-length complementary DNA (cDNA; designated Hc-stp-1) encoding a serine/threonine phosphatase (Hc-STP-1) was isolated from Haemonchus contortus, a strongylid nematode parasite of small ruminants. Hc-stp-1 was shown to be transcribed in males of both adults and fourth-stage larvae, but not in females, early larval stages or eggs. The full-length gene (2854 bp) contained ten exons and nine introns, and encoded a cDNA of 951 bp. Comparisons of the conceptually translated protein (316 amino acids, estimated at approximately 35 kDa) with serine/threonine phosphatases (STPs) from other organisms revealed the presence of the conserved motif LRGNHE. Structural analysis, by comparative modelling, confirmed strict conservation of residues and features involved in catalytic activity, and variation in the ligand-binding interface. Phylogenetic analysis of amino acid sequence data revealed that Hc-STP-1 clustered with STPs from other nematodes (including Caenorhabditis elegans, Trichostrongylus vitrinus, Oesophagostomum dentatum, Ascaris suum and Brugia malayi) to the exclusion of STPs from other organisms. The protein was inferred to be most closely related to the PP1 class of STPs of C. elegans, within a group containing STPs encoded, amongst others, by the genes gsp-3 and gsp-4 in this free-living nematode. The functions of proteins GSP-3 and GSP-4 are known to be central to spermatogenesis and other male-specific processes in C. elegans. The findings from the present and previous studies support the proposal that Hc-stp-1 and its product play a significant role in reproductive and/or developmental processes in maturing or adult male H. contortus.
Collapse
|
23
|
Yan F, Xu L, Liu L, Yan R, Song X, Li X. Immunoproteomic analysis of whole proteins from male and female adult Haemonchus contortus. Vet J 2009; 185:174-9. [PMID: 19560953 DOI: 10.1016/j.tvjl.2009.05.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 05/17/2009] [Accepted: 05/25/2009] [Indexed: 10/20/2022]
Abstract
Whole proteins of male and female adult Haemonchus contortus were analysed by immunoproteomic techniques. Approximately 662 and 680 spots were detected on proteome maps of male and female nematodes, respectively, stained with Coomassie brilliant blue G-250. There were 609 shared spots. Approximately 193 and 196 spots were recognised on Western blot maps of male and female nematodes, respectively, using antiserum from naturally infected goats as the source of primary antibodies. There were 129 gender-specific spots in male nematodes and 132 in females. Twenty-three shared immunogenic spots were identified by MALDI-TOF or MALDI-TOF-TOF mass spectrometry. These proteins included glutamate dehydrogenase (GDH), homologues of Dim-1, actin, globin-like excretory/secretory protein F6, glutathione S-transferase (GST), ATPase and glyceraldehyde-3-phosphate dehydrogenase. GDH and GST have been identified as immunogenic proteins of H. contortus previously, whereas the other proteins are newly recognised immunogenic proteins in this nematode.
Collapse
Affiliation(s)
- Fengbin Yan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | | | | | | | | | | |
Collapse
|
24
|
Jex AR, Hu M, Littlewood DTJ, Waeschenbach A, Gasser RB. Using 454 technology for long-PCR based sequencing of the complete mitochondrial genome from single Haemonchus contortus (Nematoda). BMC Genomics 2008; 9:11. [PMID: 18190685 PMCID: PMC2254599 DOI: 10.1186/1471-2164-9-11] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 01/11/2008] [Indexed: 11/17/2022] Open
Abstract
Background Mitochondrial (mt) genomes represent a rich source of molecular markers for a range of applications, including population genetics, systematics, epidemiology and ecology. In the present study, we used 454 technology (or the GS20, massively parallel picolitre reactor platform) to determine the complete mt genome of Haemonchus contortus (Nematoda: Trichostrongylidae), a parasite of substantial agricultural, veterinary and economic significance. We validate this approach by comparison with mt sequences from publicly available expressed sequence tag (EST) and genomic survey sequence (GSS) data sets. Results The complete mt genome of Haemonchus contortus was sequenced directly from long-PCR amplified template utilizing genomic DNA (~20–40 ng) from a single adult male using 454 technology. A single contig was assembled and compared against mt sequences mined from publicly available EST (NemBLAST) and GSS datasets. The comparison demonstrated that the 454 technology platform is reliable for the sequencing of AT-rich mt genomes from nematodes. The mt genome sequenced for Haemonchus contortus was 14,055 bp in length and was highly AT-rich (78.1%). In accordance with other chromadorean nematodes studied to date, the mt genome of H. contortus contained 36 genes (12 protein coding, 22 tRNAs, rrnL and rrnS) and was similar in structure, size and gene arrangement to those characterized previously for members of the Strongylida. Conclusion The present study demonstrates the utility of 454 technology for the rapid determination of mt genome sequences from tiny amounts of DNA and reveals a wealth of mt genomic data in current databases available for mining. This approach provides a novel platform for high-throughput sequencing of mt genomes from nematodes and other organisms.
Collapse
Affiliation(s)
- Aaron R Jex
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria, 3030, Australia.
| | | | | | | | | |
Collapse
|
25
|
Campbell BE, Nagaraj SH, Hu M, Zhong W, Sternberg PW, Ong EK, Loukas A, Ranganathan S, Beveridge I, McInnes RL, Hutchinson GW, Gasser RB. Gender-enriched transcripts in Haemonchus contortus--predicted functions and genetic interactions based on comparative analyses with Caenorhabditis elegans. Int J Parasitol 2007; 38:65-83. [PMID: 17707841 DOI: 10.1016/j.ijpara.2007.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2007] [Revised: 06/27/2007] [Accepted: 07/03/2007] [Indexed: 02/05/2023]
Abstract
In the present study, a bioinformatic-microarray approach was employed for the analysis of selected expressed sequence tags (ESTs) from Haemonchus contortus, a key parasitic nematode of small ruminants. Following a bioinformatic analysis of EST data using a semiautomated pipeline, 1885 representative ESTs (rESTs) were selected, to which oligonucleotides (three per EST) were designed and spotted on to a microarray. This microarray was hybridized with cyanine-dye labelled cRNA probes synthesized from RNA from female or male adults of H. contortus. Differential hybridisation was displayed for 301 of the 1885 rESTs ( approximately 16%). Of these, 165 (55%) had significantly greater signal intensities for female cRNA and 136 (45%) for male cRNA. Of these, 113 with increased signals in female or male H. contortus had homologues in Caenorhabditis elegans, predicted to function in metabolism, information storage and processing, cellular processes and signalling, and embryonic and/or larval development. Of the rESTs with no known homologues in C. elegans, 24 ( approximately 40%) had homologues in other nematodes, four had homologues in various other organisms and 30 (52%) had no homology to any sequence in current gene databases. A genetic interaction network was predicted for the C. elegans orthologues of the gender-enriched H. contortus genes, and a focused analysis of a subset revealed a tight network of molecules involved in amino acid, carbohydrate or lipid transport and metabolism, energy production and conversion, translation, ribosomal structure and biogenesis and, importantly, those associated with meiosis and/or mitosis in the germline during oogenesis or spermatogenesis. This study provides a foundation for the molecular, biochemical and functional exploration of selected molecules with differential transcription profiles in H. contortus, for further microarray analyses of transcription in different developmental stages of H. contortus, and for an extended functional analysis once the full genome sequence of this nematode is known.
Collapse
Affiliation(s)
- Bronwyn E Campbell
- Department of Veterinary Science, The University of Melbourne, Werribee, Vic. 3030, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
James CE, Davey MW. A rapid colorimetric assay for the quantitation of the viability of free-living larvae of nematodes in vitro. Parasitol Res 2007; 101:975-80. [PMID: 17492469 DOI: 10.1007/s00436-007-0572-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Accepted: 04/26/2007] [Indexed: 12/22/2022]
Abstract
With increasing drug resistance in gastrointestinal parasites, identification of new anthelmintics is essential. The non-parasitic nematode Caenorhabditis elegans is used extensively as a model to identify drug targets and potential novel anthelmintics because it can be readily cultured in vitro. Traditionally, the assessment of worm viability has relied on labour-intensive developmental and behavioral assays. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide-formazan (MTT-formazan) colorimetric assay uses metabolic activity as a marker of viability in mammalian cell culture systems and has been applied for use with filarial nematodes. In the present study, this assay has been optimized and validated to rapidly assess the viability of C. elegans after drug treatment. Living, but not dead, C. elegans take up MTT and reduce it to the blue formazan, providing visual, qualitative, and quantitative assessment of viability. MTT at a concentration of 5 mg/ml with 3 h incubation was optimal for detecting changes in viability with drug treatment. We have applied this assay to quantitate the effects of ivermectin and short-chain alcohols on the viability of C. elegans. This assay is also applicable to first-stage larvae of the parasitic nematode Haemonchus contortus. The advantage of this assay is the rapid quantitation in screening drugs to identify potential anthelmintics.
Collapse
Affiliation(s)
- Catherine E James
- Institute for the Biotechnology of Infectious Diseases, University of Technology Sydney, 1 Broadway, Ultimo, NSW, 2007, Australia
| | | |
Collapse
|
27
|
Tochio N, Koshiba S, Kobayashi N, Inoue M, Yabuki T, Aoki M, Seki E, Matsuda T, Tomo Y, Motoda Y, Kobayashi A, Tanaka A, Hayashizaki Y, Terada T, Shirouzu M, Kigawa T, Yokoyama S. Solution structure of the kinase-associated domain 1 of mouse microtubule-associated protein/microtubule affinity-regulating kinase 3. Protein Sci 2007; 15:2534-43. [PMID: 17075132 PMCID: PMC2242405 DOI: 10.1110/ps.062391106] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Microtubule-associated protein/microtubule affinity-regulating kinases (MARKs)/PAR-1 are common regulators of cell polarity that are conserved from nematode to human. All of these kinases have a highly conserved C-terminal domain, which is termed the kinase-associated domain 1 (KA1), although its function is unknown. In this study, we determined the solution structure of the KA1 domain of mouse MARK3 by NMR spectroscopy. We found that approximately 50 additional residues preceding the previously defined KA1 domain are required for its proper folding. The newly defined KA1 domain adopts a compact alpha+beta structure with a betaalphabetabetabetabetaalpha topology. We also found a characteristic hydrophobic, concave surface surrounded by positively charged residues. This concave surface includes the highly conserved Glu-Leu-Lys-Leu motif at the C terminus, indicating that it is important for the function of the KA1 domain.
Collapse
Affiliation(s)
- Naoya Tochio
- RIKEN Genomic Sciences Center, Tsurumi, Yokohama 230-0045, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Nikolaou S, Gasser RB. Extending from PARs in Caenorhabditis elegans to homologues in Haemonchus contortus and other parasitic nematodes. Parasitology 2006; 134:461-82. [PMID: 17107637 DOI: 10.1017/s0031182006001727] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 08/23/2006] [Accepted: 10/02/2006] [Indexed: 11/05/2022]
Abstract
Signal transduction molecules play key roles in the regulation of developmental processes, such as morphogenesis, organogenesis and cell differentiation in all organisms. They are organized into 'pathways' that represent a coordinated network of cell-surface receptors and intracellular molecules, being involved in sensing environmental stimuli and transducing signals to regulate or modulate cellular processes, such as gene expression and cytoskeletal dynamics. A particularly important group of molecules implicated in the regulation of the cytoskeleton for the establishment and maintenance of cell polarity is the PAR proteins (derived from partition defective in asymmetric cell division). The present article reviews salient aspects of PAR proteins involved in the early embryonic development and morphogenesis of the free-living nematode Caenorhabditis elegans and some other organisms, with an emphasis on the molecule PAR-1. Recent advances in the knowledge and understanding of PAR-1 homologues from the economically important parasitic nematode, Haemonchus contortus, of small ruminants is summarized and discussed in the context of exploring avenues for future research in this area for parasitic nematodes.
Collapse
Affiliation(s)
- S Nikolaou
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia
| | | |
Collapse
|
29
|
Nikolaou S, Hu M, Chilton NB, Hartman D, Nisbet AJ, Presidente PJA, Gasser RB. Isolation and characterization of class II myosin genes from Haemonchus contortus. Parasitol Res 2006; 99:200-3. [PMID: 16547732 DOI: 10.1007/s00436-006-0129-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2005] [Accepted: 01/16/2006] [Indexed: 10/24/2022]
Abstract
In this study, cDNAs encoding myosin from the parasitic nematode Haemonchus contortus were isolated and characterized. Several exhibited a considerable degree of sequence variation at the nucleotide and limited divergence at the amino acid levels within the various functional domains. The results suggest that the cDNAs isolated represented a single myosin heavy chain, which, by comparison with a number of other myosins, is inferred to represent a homologue of a muscle myosin (CeMHCA) of the free-living nematode Caenorhabditis elegans. The findings could have implications for investigating cytoskeletal dynamics and/or signalling pathways.
Collapse
Affiliation(s)
- S Nikolaou
- Primary Industries Research Victoria, 475 Mickleham Road, Attwood, Victoria 3049, Australia
| | | | | | | | | | | | | |
Collapse
|
30
|
Nikolaou S, Hu M, Chilton NB, Hartman D, Nisbet AJ, Presidente PJA, Gasser RB. Class II myosins in nematodes — genetic relationships, fundamental and applied implications. Biotechnol Adv 2006; 24:338-50. [PMID: 16490342 DOI: 10.1016/j.biotechadv.2005.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 12/02/2005] [Accepted: 12/25/2005] [Indexed: 11/16/2022]
Abstract
Myosins are represented by a wide range of different classes of molecule, of which the most extensively studied are the class II myosins which drive muscle contraction and cell organization; the functional unit of class II myosins comprises two myosin heavy chains (MHCs). This minireview gives an update on class II MHCs of nematodes and describes a comparative analysis of MHC genes from nematodes and other organismal groups. Genetic analyses of sequence data for the four functional domains of MHCs (i.e., the SH3-like N-terminal, head, neck and tail domains) reveal a delineation between both the nematode and non-nematode myosins and between muscle and non-muscle myosins. The distinctiveness of the MHCs of nematodes suggests functional and tissue specialization. The elucidation of the functional roles of myosins and other molecules in specific signaling pathways in nematodes has the potential to lead to new intervention strategies for parasites via the specific disruption or interruption of key developmental processes, having biotechnological implications in the longer term.
Collapse
Affiliation(s)
- S Nikolaou
- Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia
| | | | | | | | | | | | | |
Collapse
|
31
|
Nikolaou S, Hartman D, Nisbet AJ, Gasser RB. Haemonchus contortus: prokaryotic expression and enzyme activity of recombinant HcSTK, a serine/threonine protein kinase. Exp Parasitol 2006; 113:207-14. [PMID: 16500645 DOI: 10.1016/j.exppara.2006.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2005] [Revised: 01/09/2006] [Accepted: 01/10/2006] [Indexed: 11/19/2022]
Abstract
Members of the PAR-1/MARK serine/threonine protein kinase (STK) subfamily are important regulators of the cytoskeleton, and their characterization can provide insights into a number of critical processes relating to the development and survival of an organism. We previously investigated the mRNA expression for and organization of a gene (hcstk) representing HcSTK, an STK from the parasitic nematode Haemonchus contortus. In the present study, a recombinant form of HcSTK was expressed and characterized. Affinity-purified anti-HcSTK antibodies reacted with native HcSTK in protein homogenates extracted from third-stage larvae (L3) of H. contortus and were also used to immunolocalize the protein around the nuclei of ovarian and intestinal tissues of adult H. contortus. The enzyme activity of the recombinant HcSTK protein was also demonstrated. The findings show that recombinant HcSTK is a functional protein kinase, with activity directed to KXGS motifs, consistent with other members of the PAR-1/MARK STK subfamily.
Collapse
Affiliation(s)
- Sia Nikolaou
- Primary Industries Research Victoria (Animal Genetics and Genomics), 475 Mickleham Road, Attwood, Vic. 3049, Australia
| | | | | | | |
Collapse
|
32
|
Chen Y, Donald D, Savin K, Presidente PJA, Hartman D. Haemonchus contortus: molecular cloning, sequencing, and expression analysis of the gene coding for the small subunit of ribonucleotide reductase. Exp Parasitol 2005; 111:250-4. [PMID: 16183060 DOI: 10.1016/j.exppara.2005.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 08/01/2005] [Accepted: 08/04/2005] [Indexed: 11/20/2022]
Abstract
Gastro-intestinal (GI) parasites are of great agricultural importance, annually costing the livestock industry vast amounts in resources to control parasitism. One such GI parasite, Haemonchus contortus, is principally pathogenic to sheep; with the parasite's blood-feeding behaviour causing effects ranging from mild anaemia to mortality in young animals. Current means of control, which are dependent on repeated treatment with anthelmintic chemicals, have led to increasing drug resistance. Together with the growing concern over residual chemicals in the environment and food chain, this has led to attempts to better understand the biology of the parasite with the aim to develop alternate or supplementary means of control, including the development of molecular vaccines. As a first step towards the understanding of the synthesis of deoxyribonucleotides in H. contortus, and its potential application to therapeutic control of this economically important parasite, we report the cloning, sequencing, and mRNA expression analysis of the ribonucleotide reductase R2 gene.
Collapse
Affiliation(s)
- Yaping Chen
- Primary Industries Research Victoria, Department of Primary Industries, 475 Mickleham Road, Attwood, Vic. 3049, Australia
| | | | | | | | | |
Collapse
|
33
|
Nikolaou S, Hartman D, Nisbet AJ, Presidente PJA, Gasser RB. Genomic organization and expression analysis for hcstk, a serine/threonine protein kinase gene of Haemonchus contortus, and comparison with Caenorhabditis elegans par-1. Gene 2005; 343:313-22. [PMID: 15588586 DOI: 10.1016/j.gene.2004.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 08/02/2004] [Accepted: 09/23/2004] [Indexed: 11/19/2022]
Abstract
The organization and expression of a putative serine/threonine kinase gene (designated hcstk), proposed to relate to a conserved eukaryotic signal transduction pathway, was characterized for the socio-economically important pathogen Haemonchus contortus (Nematoda). The entire hcstk gene is approximately 26.7 kb in size, has 26 exons and is inferred to produce multiple isoforms via alternative splicing in its N-terminal header and spacer domains. Comparison of hcstk with its Caenorhabditis elegans homologue, par-1, revealed major differences in genomic organization, exon number and inferred mRNA processing. The expression of hcstk transcripts was highest in the first- and late-fourth-stage larvae of the parasite compared with other developmental stages, somewhat distinct from par-1 in C. elegans. In spite of a substantial amino acid sequence identity in the functional domains between the predicted proteins HcSTK and PAR-1, overall, the findings suggest a unique functional role for each molecule.
Collapse
Affiliation(s)
- Sia Nikolaou
- Primary Industries Research Victoria (Animal Genetics and Genomics), 475 Mickleham Road, Attwood, Victoria 3049, Australia
| | | | | | | | | |
Collapse
|