1
|
Brenda CT, Norma RF, Marcela RL, Nelly LV, Teresa I F. Action mechanisms of metallic compounds on Plasmodium spp. J Trace Elem Med Biol 2022; 73:127028. [PMID: 35797926 DOI: 10.1016/j.jtemb.2022.127028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/10/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Malaria is a parasitic disease with the highest morbidity and mortality worldwide. Unfortunately, during the last decades, the causal agent, Plasmodium spp., has developed resistance to chloroquine and artemisinin. For this reason, metallic compounds have been proposed as an optional treatment since they have shown a potential antimalarial effect with diverse action mechanisms in the parasite and the host. OBJECTIVE To show the possible targets of metallic compounds in Plasmodium spp. CONCLUSION The metallic compounds are an option attractive to treatment for the malaria, for its low cost and its great activity to reduce parasitemia; however is necessary more studies principally in vivo in order to know the interactions that it can have in an experimental model.
Collapse
Affiliation(s)
- Casarrubias-Tabarez Brenda
- Departamento de Biología Celular y TIsular, Facultad de Medicina, UNAM, Av. Ciudad Universitaria 3000, Coyoacan, C.P. 04510 Mexico City, Mexico.
| | - Rivera-Fernández Norma
- Departamento de Microbiología y Parasitología, UNAM, Av. Ciudad Universitaria 3000, Coyoacan, C.P. 04510 Mexico City, Mexico.
| | - Rojas-Lemus Marcela
- Departamento de Biología Celular y TIsular, Facultad de Medicina, UNAM, Av. Ciudad Universitaria 3000, Coyoacan, C.P. 04510 Mexico City, Mexico.
| | - López-Valdez Nelly
- Departamento de Biología Celular y TIsular, Facultad de Medicina, UNAM, Av. Ciudad Universitaria 3000, Coyoacan, C.P. 04510 Mexico City, Mexico.
| | - Fortoul Teresa I
- Departamento de Biología Celular y TIsular, Facultad de Medicina, UNAM, Av. Ciudad Universitaria 3000, Coyoacan, C.P. 04510 Mexico City, Mexico.
| |
Collapse
|
2
|
Nwokocha CR, Bafor EE, Ajayi OI, Ebeigbe AB. The Malaria-High Blood Pressure Hypothesis: Revisited. Am J Hypertens 2020; 33:695-702. [PMID: 32211753 DOI: 10.1093/ajh/hpaa051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/24/2020] [Accepted: 03/18/2020] [Indexed: 11/14/2022] Open
Abstract
Malaria etiologies with pathophysiological similarities to hypertension currently constitute a major subject of research. The malaria-high blood pressure hypothesis is strongly supported by observations of the increasing incidence of hypertension in malaria-endemic, low- and middle-income countries with poor socioeconomic conditions, particularly in sub-Saharan African countries. Malnutrition and low birth weight with persistent symptomatic malaria presentations in pregnancy correlate strongly with the development of preeclampsia, gestational hypertension and subsequent hypertension in adult life. Evidence suggest that the link between malaria infection and high blood pressure involves interactions between malaria parasites and erythrocytes, the inflammatory process, effects of the infection during pregnancy; effects on renal and vascular functions as well as effects in sickle cell disease. Possible mechanisms which provide justification for the malaria-high blood pressure hypothesis include the following: endothelial dysfunction (reduced nitric oxide (NO) levels), impaired release of local neurotransmitters and cytokines, decrease in vascular smooth muscle cell viability and/or alterations in cellular calcium signaling leading to enhanced vascular reactivity, remodeling, and cardiomyopathies, deranged homeostasis through dehydration, elevated intracellular mediators and proinflammatory cytokine responses, possible genetic regulations, activation of the renin-angiotensin-aldosterone system mechanisms and renal derangements, severe anemia and hemolysis, renal failure, and end organ damage. Two key mediators of the malaria-high blood pressure association are: endothelial dysfunction (reduced NO) and increased angiotensin-converting enzyme activity/angiotensin II levels. Sickle cell disease is associated with protection against malaria infection and reduced blood pressure. In this review, we present the state of knowledge about the malaria-blood pressure hypothesis and suggest insights for future studies.
Collapse
Affiliation(s)
| | - Enitome E Bafor
- Department of Pharmacology and Toxicology, University of Benin, Benin City, Nigeria
| | - Olutayo I Ajayi
- Department of Physiology, College of Medical Sciences, University of Benin, Benin City, Nigeria
| | - Anthony B Ebeigbe
- Department of Physiology, College of Medical Sciences, University of Benin, Benin City, Nigeria
| |
Collapse
|
3
|
Manirakiza A, Serdouma E, Ngbalé RN, Moussa S, Gondjé S, Degana RM, Bata GGB, Moyen JM, Delmont J, Grésenguet G, Sepou A. A brief review on features of falciparum malaria during pregnancy. J Public Health Afr 2017; 8:668. [PMID: 29456824 PMCID: PMC5812306 DOI: 10.4081/jphia.2017.668] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 11/22/2022] Open
Abstract
Malaria in pregnancy is a serious public health problem in tropical areas. Frequently, the placenta is infected by accumulation of Plasmodium falciparum-infected erythrocytes in the intervillous space. Falciparum malaria acts during pregnancy by a range of mechanisms, and chronic or repeated infection and co-infections have insidious effects. The susceptibility of pregnant women to malaria is due to both immunological and humoral changes. Until a malaria vaccine becomes available, the deleterious effects of malaria in pregnancy can be avoided by protection against infection and prompt treatment with safe, effective antimalarial agents; however, concurrent infections such as with HIV and helminths during pregnancy are jeopardizing malaria control in sub-Saharan Africa.
Collapse
Affiliation(s)
| | | | | | - Sandrine Moussa
- Pasteur Institute of Bangui, Bangui, Central African Republic
| | - Samuel Gondjé
- Ministry of Public Health, Population and AIDS Control, Bangui, Central African Republic
| | - Rock Mbetid Degana
- Ministry of Public Health, Population and AIDS Control, Bangui, Central African Republic
| | | | - Jean Methode Moyen
- Ministry of Public Health, Population and AIDS Control, Bangui, Central African Republic
| | - Jean Delmont
- Center for Training and Research in Tropical Medicine and Health, Faculty of Medicine North, Marseille, France
| | | | | |
Collapse
|
4
|
Kumar H, Gothwal A, Khan I, Nakhate KT, Alexander A, Ajazuddin, Singh V, Gupta U. Galactose-Anchored Gelatin Nanoparticles for Primaquine Delivery and Improved Pharmacokinetics: A Biodegradable and Safe Approach for Effective Antiplasmodial Activity against P. falciparum 3D7 and in Vivo Hepatocyte Targeting. Mol Pharm 2017; 14:3356-3369. [DOI: 10.1021/acs.molpharmaceut.7b00376] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hitesh Kumar
- Department of Pharmacy,
School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan-305817, India
| | - Avinash Gothwal
- Department of Pharmacy,
School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan-305817, India
| | - Iliyas Khan
- Department of Pharmacy,
School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan-305817, India
| | - Kartik T. Nakhate
- Rungta College of Pharmaceutical Science and Research, Kohka, Bhilai, Chhattisgarh-490024, India
| | - Amit Alexander
- Rungta College of Pharmaceutical Science and Research, Kohka, Bhilai, Chhattisgarh-490024, India
| | - Ajazuddin
- Rungta College of Pharmaceutical Science and Research, Kohka, Bhilai, Chhattisgarh-490024, India
| | - Vineeta Singh
- National Institute of Malaria Research, Sector 8, Dwarka, New Delhi-110077, India
| | - Umesh Gupta
- Department of Pharmacy,
School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan-305817, India
| |
Collapse
|
5
|
Artemetherlumefantrine nanostructured lipid carriers for oral malaria therapy: Enhanced efficacy at reduced dose and dosing frequency. Int J Pharm 2016; 511:473-487. [DOI: 10.1016/j.ijpharm.2016.07.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 07/10/2016] [Accepted: 07/11/2016] [Indexed: 11/20/2022]
|
6
|
In vitro anti-Plasmodium falciparum properties of the full set of human secreted phospholipases A2. Infect Immun 2015; 83:2453-65. [PMID: 25824843 DOI: 10.1128/iai.02474-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 03/25/2015] [Indexed: 01/23/2023] Open
Abstract
We have previously shown that secreted phospholipases A2 (sPLA2s) from animal venoms inhibit the in vitro development of Plasmodium falciparum, the agent of malaria. In addition, the inflammatory-type human group IIA (hGIIA) sPLA2 circulates at high levels in the serum of malaria patients. However, the role of the different human sPLA2s in host defense against P. falciparum has not been investigated. We show here that 4 out of 10 human sPLA2s, namely, hGX, hGIIF, hGIII, and hGV, exhibit potent in vitro anti-Plasmodium properties with half-maximal inhibitory concentrations (IC50s) of 2.9 ± 2.4, 10.7 ± 2.1, 16.5 ± 9.7, and 94.2 ± 41.9 nM, respectively. Other human sPLA2s, including hGIIA, are inactive. The inhibition is dependent on sPLA2 catalytic activity and primarily due to hydrolysis of plasma lipoproteins from the parasite culture. Accordingly, purified lipoproteins that have been prehydrolyzed by hGX, hGIIF, hGIII, and hGV are more toxic to P. falciparum than native lipoproteins. However, the total enzymatic activities of human sPLA2s on purified lipoproteins or plasma did not reflect their inhibitory activities on P. falciparum. For instance, hGIIF is 9-fold more toxic than hGV but releases a lower quantity of nonesterified fatty acids (NEFAs). Lipidomic analyses of released NEFAs from lipoproteins demonstrate that sPLA2s with anti-Plasmodium properties are those that release polyunsaturated fatty acids (PUFAs), with hGIIF being the most selective enzyme. NEFAs purified from lipoproteins hydrolyzed by hGIIF were more potent at inhibiting P. falciparum than those from hGV, and PUFA-enriched liposomes hydrolyzed by sPLA2s were highly toxic, demonstrating the critical role of PUFAs. The selectivity of sPLA2s toward low- and high-density (LDL and HDL, respectively) lipoproteins and their ability to directly attack parasitized erythrocytes further explain their anti-Plasmodium activity. Together, our findings indicate that 4 human sPLA2s are active against P. falciparum in vitro and pave the way to future investigations on their in vivo contribution in malaria pathophysiology.
Collapse
|
7
|
Nwokocha CR, Nwokocha MI, Owu DU, Ajayi IO, Ebeigbe AB. Experimental malaria: the in vitro and in vivo blood pressure paradox. Cardiovasc J Afr 2013; 23:98-102. [PMID: 22447479 PMCID: PMC3721815 DOI: 10.5830/cvja-2011-059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 06/06/2011] [Indexed: 11/07/2022] Open
Abstract
Objective Malaria causes more deaths worldwide than any other parasitic disease. Many aspects of the biology that governs the pathogenesis of this parasite are still unclear. Therefore insight into the complexity of the pathogenesis of malaria is vital to understand the disease, particularly as it relates to blood pressure. Methods In vivo and in vitro experimental models were used for this study. In the in vivo study, mean arterial pressure, pulse rates and heart rates were recorded by cannulation of the carotid artery of rats. In the in vitro study, ring preparations of blood vessels from the rat aorta were studied using standard organ bath techniques. Dose–response curves for phenylepherine (PE)- and acetylcholine (Ach)-induced relaxation were constructed for rings pre-contracted with PE. Results Our results showed a significant (p < 0.05) reduction in the mean arterial pressure and pulse rates, while the heart rates remained unaltered in rats with malaria parasites, compared with the controls. Incubation of rat aortic rings with parasitised blood resulted in a significant (p < 0.05) increase in maximum contractile response to phenylephrine in the rat aortic rings but there was no effect on the baseline. The dose–response curve showed a significant (p < 0.05) leftward shift following the addition of parasitised blood and the EC70 (M) values increased from 7 × 10-7 to 5 × 10-6 M. Following exposure to parasitised blood, the magnitude of Ach-induced relaxation responses reduced significantly (p < 0.05) from 73 ± 3.6 to 24.75 ± 7.25% in the rat aortic rings. Conclusions The results suggest that malaria parasitaemia caused in vivo reduction in blood pressure, and enhanced the responses to contractile agents and reduced relaxation responses to acetylcholine in vitro. This appears to be a paradox but is explainable by the complex cardiovascular control mechanisms in vivo. This may be independent of direct action on vascular smooth muscle.
Collapse
Affiliation(s)
- C R Nwokocha
- Department of Basic Medical Sciences, University of the West Indies, Kingston, Jamaica.
| | | | | | | | | |
Collapse
|
8
|
Howard BL, Thompson PE, Manallack DT. Active site similarity between human and Plasmodium falciparum phosphodiesterases: considerations for antimalarial drug design. J Comput Aided Mol Des 2011; 25:753-62. [PMID: 21766240 DOI: 10.1007/s10822-011-9458-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 07/08/2011] [Indexed: 12/18/2022]
Abstract
The similarity between Plasmodium falciparum phosphodiesterase enzymes (PfPDEs) and their human counterparts have been examined and human PDE9A was found to be a suitable template for the construction of homology models for each of the four PfPDE isoforms. In contrast, the architecture of the active sites of each model was most similar to human PDE1. Molecular docking was able to model cyclic guanosine monophosphate (cGMP) substrate binding in each case but a docking mode supporting cyclic adenosine monophosphate (cAMP) binding could not be found. Anticipating the potential of PfPDE inhibitors as anti-malarial drugs, a range of reported PDE inhibitors including zaprinast and sildenafil were docked into the model of PfPDEα. The results were consistent with their reported biological activities, and the potential of PDE1/9 inhibitor analogues was also supported by docking.
Collapse
Affiliation(s)
- Brittany L Howard
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | | | | |
Collapse
|
9
|
de Matos Macchi B, Quaresma JAS, Herculano AM, Crespo-López ME, DaMatta RA, do Nascimento JLM. Pathogenic action of Plasmodium gallinaceum in chickens: Brain histology and nitric oxide production by blood monocyte-derived macrophages. Vet Parasitol 2010; 172:16-22. [DOI: 10.1016/j.vetpar.2010.04.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 04/13/2010] [Accepted: 04/27/2010] [Indexed: 11/29/2022]
|
10
|
Shilabin AG, Kasanah N, Tekwani BL, Hamann MT. Kinetic studies and bioactivity of potential manzamine prodrugs. JOURNAL OF NATURAL PRODUCTS 2008; 71:1218-21. [PMID: 18598080 PMCID: PMC4918903 DOI: 10.1021/np800163u] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The manzamines represent a class of marine natural products that show considerable promise in the control of malaria but generate GI distress in rodents when administered orally in high doses. In an effort to generate manzamine prodrugs with improved antimalarial activity and reduced GI toxicity, we prepared acetylated 8-hydroxymanzamine A analogues including 8-acetoxymanzamine A (3) and 8,12-diacetoxymanzamine A (4), and 8-methoxymanzamine A (5) beginning with 8-hydroxymanzamine A (2). The semisynthetic analogues were assayed for antimalarial and antimicrobial activities, cytotoxicity, and biological and chemical stability. Due to gradual hydrolysis of the ester group, application of monoacetate 3 as an antimalarial prodrug was investigated. The in vitro and in vivo bioassays show that acetylated analogues exhibit significant antimalarial activity (IC50( 3) 9.6-30 ng/mL), which are comparable to the parent molecule; however the monoaceate 3 was shown to actually produce higher toxicity at 30 mg/kg when administered orally.
Collapse
Affiliation(s)
| | | | | | - Mark T. Hamann
- To whom correspondence should be addressed. Tel: 662-915-5730. Fax: 662-915-6975.
| |
Collapse
|
11
|
Madhunapantula SV, Achur RN, Gowda DC. Developmental stage- and cell cycle number-dependent changes in characteristics of Plasmodium falciparum-infected erythrocyte adherence to placental chondroitin-4-sulfate proteoglycan. Infect Immun 2007; 75:4409-15. [PMID: 17591790 PMCID: PMC1951145 DOI: 10.1128/iai.00478-07] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The adherence of Plasmodium falciparum-infected red blood cells (IRBCs) in the human placenta is mediated by chondroitin-4-sulfate (C4S). Although IRBC binding to C4S has been unequivocally established, the adherence characteristics of IRBCs at different stages of parasite development and through successive parasite generations after selection for C4S adherence are not known. Here we show that IRBCs acquire a significant capacity to bind to C4S at as early as 14 h and exhibit maximum binding at 22 to 26 h postinvasion. Surprisingly, the IRBC binding ability decreases by approximately 50% at the late trophozoite and schizont stages. The binding strength of the IRBCs also gradually decreases during successive generations after selection for C4S binding, and at the 32nd generation, the binding capacity was only approximately 31% of that of IRBCs at the 2nd generation, suggesting that IRBCs eventually lose their C4S-adherent capacity. We also tested the susceptibility of the adhesive protein(s) on the IRBC surface to trypsin treatment at different stages of parasite development. The data show that IRBCs with late trophozoites are more resistant to trypsin treatment than those containing early trophozoites, indicating that parasite proteins expressed on the IRBC surface during trophozoite maturation partially mask accessibility of adhesive protein for binding to C4S. These data provide important insights into the expression pattern of the C4S-adhesive protein(s) on the IRBC surface, emphasizing the need for understanding the regulation of genes involved in IRBC binding to C4S. Our data also define the parasite stage at which IRBCs are suitable for studying structural interactions with C4S.
Collapse
Affiliation(s)
- Subbarao V Madhunapantula
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | | | |
Collapse
|
12
|
Gowda DC. Role of chondroitin-4-sulfate in pregnancy-associated malaria. ADVANCES IN PHARMACOLOGY 2007; 53:375-400. [PMID: 17239776 DOI: 10.1016/s1054-3589(05)53018-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- D Channe Gowda
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine Hershey, Pennsylvania 17033, USA
| |
Collapse
|
13
|
Total and functional parasite specific IgE responses in Plasmodium falciparum-infected patients exhibiting different clinical status. Malar J 2007; 6:1. [PMID: 17204149 PMCID: PMC1781948 DOI: 10.1186/1475-2875-6-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 01/04/2007] [Indexed: 11/17/2022] Open
Abstract
Background There is an increase of serum levels of IgE during Plasmodium falciparum infections in individuals living in endemic areas. These IgEs either protect against malaria or increase malaria pathogenesis. To get an insight into the exact role played by IgE in the outcome of P. falciparum infection, total IgE levels and functional anti-parasite IgE response were studied in children and adults, from two different endemic areas Gabon and India, exhibiting either uncomplicated malaria, severe non cerebral malaria or cerebral malaria, in comparison with control individuals. Methodology and results Blood samples were collected from controls and P. falciparum-infected patients before treatment on the day of hospitalization (day 0) in India and, in addition, on days 7 and 30 after treatment in Gabon. Total IgE levels were determined by ELISA and functional P. falciparum-specific IgE were estimated using a mast cell line RBL-2H3 transfected with a human Fcε RI α-chain that triggers degranulation upon human IgE cross-linking. Mann Whitney and Kruskall Wallis tests were used to compare groups and the Spearman test was used for correlations. Total IgE levels were confirmed to increase upon infection and differ with level of transmission and age but were not directly related to the disease phenotype. All studied groups exhibited functional parasite-specific IgEs able to induce mast cell degranulation in vitro in the presence of P. falciparum antigens. Plasma IgE levels correlated with those of IL-10 in uncomplicated malaria patients from Gabon. In Indian patients, plasma IFN-γ , TNF and IL-10 levels were significantly correlated with IgE concentrations in all groups. Conclusion Circulating levels of total IgE do not appear to correlate with protection or pathology, or with anti-inflammatory cytokine pattern bias during malaria. On the contrary, the P. falciparum-specific IgE response seems to contribute to the control of parasites, since functional activity was higher in asymptomatic and uncomplicated malaria patients than in severe or cerebral malaria groups.
Collapse
|
14
|
Engwerda C, Belnoue E, Grüner AC, Rénia L. ExperimentalModels of Cerebral Malaria. Curr Top Microbiol Immunol 2005. [DOI: 10.1007/3-540-29967-x_4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Eda S, Sherman IW. Selection of peptides recognized by human antibodies against the surface of Plasmodium falciparum-infected erythrocytes. Parasitology 2005; 130:1-11. [PMID: 15700752 DOI: 10.1017/s0031182004006328] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In an attempt to identify mimotopes of the surface antigens of P. falciparum-infected erythrocytes (iRBC), antibodies were eluted from iRBC that had been treated with a pool of sera from malaria-infected individuals (IHS), and were used to screen a phage display library (PDL). After repeated panning of the PDL on immobilized antibodies, phage that selectively bound to IHS were accumulated. Of 23 randomly chosen clones that were sequenced, 13 individual sequences were detected at varying frequencies and 3 of the 13 sequences had homology with membrane proteins known to exist on iRBC. The majority of phage clones (7 out of 8 clones) selected after the 4th panning bound selectively to IgG in IHS. Specific binding of the selected phage to IgG in IHS was also confirmed using 24 IHS and 11 sera from uninfected individuals. One phage clone was the most frequently found in the sequenced clones after the 4th panning, and the binding of this clone to IgG in all IHS was greater than in any serum from uninfected individuals. A rabbit antiserum against the peptide expressed on the clone specifically recognized the surface of iRBC and resulted in iRBC haemolysis.
Collapse
Affiliation(s)
- S Eda
- Department of Biology, University of California Riverside, Riverside, California 92521, USA
| | | |
Collapse
|
16
|
Muthusamy A, Achur RN, Bhavanandan VP, Fouda GG, Taylor DW, Gowda DC. Plasmodium falciparum-infected erythrocytes adhere both in the intervillous space and on the villous surface of human placenta by binding to the low-sulfated chondroitin sulfate proteoglycan receptor. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:2013-25. [PMID: 15161637 PMCID: PMC1615783 DOI: 10.1016/s0002-9440(10)63761-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In pregnant women infected with Plasmodium falciparum, the parasite-infected red blood cells (IRBCs) sequester in the placenta through chondroitin 4-sulfate (C4S)-mediated adherence. The pattern of IRBC adherence in P. falciparum-infected placenta has been controversial. Moreover, the identity of the chondroitin sulfate proteoglycan (CSPG) receptor, that mediates IRBC adherence, and its location in the placenta have not been established. This study, using immunohistochemical techniques, clearly shows, for the first time, that the low-sulfated CSPGs of the placenta are localized predominantly in the intervillous space. Ex vivo IRBC adherence analyses demonstrate that the IRBCs are adhered to the CSPG receptors in the placenta in a C4S-dependent manner. This IRBC binding pattern was similar to that observed in P. falciparum-infected placentas. These data and the results of dual-fluorescence staining of the endogenous RBCs and syncytiotrophoblasts, and co-localization of CSPG and IRBC adherence unequivocally establish that the low-sulfated CSPGs are the major natural receptors for IRBC adherence in the placenta. Further, it was found that IRBCs adhere mainly in the intervillous space and also at significant levels to the syncytiotrophoblasts. Finally, the ex vivo IRBC adherence method described herein provides a reliable procedure for future studies for the assessment of the efficacy of C4S inhibitors and adhesion inhibitory antibodies.
Collapse
Affiliation(s)
- Arivalagan Muthusamy
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | |
Collapse
|