1
|
Jaber S, Garnier M, Asehnoune K, Bounes F, Buscail L, Chevaux JB, Dahyot-Fizelier C, Darrivere L, Jabaudon M, Joannes-Boyau O, Launey Y, Levesque E, Levy P, Montravers P, Muller L, Rimmelé T, Roger C, Savoye-Collet C, Seguin P, Tasu JP, Thibault R, Vanbiervliet G, Weiss E, Jong AD. Pancréatite aiguë grave du patient adulte en soins critiques 2021. ANESTHÉSIE & RÉANIMATION 2022. [DOI: 10.1016/j.anrea.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
2
|
Paulin Beske R, Henriksen HH, Obling L, Kjærgaard J, Bro-Jeppesen J, Nielsen N, Johanson PI, Hassager C. Targeted plasma metabolomics in resuscitated comatose out-of-hospital cardiac arrest patients. Resuscitation 2022; 179:163-171. [PMID: 35753507 DOI: 10.1016/j.resuscitation.2022.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Out-of-hospital cardiac arrest (OHCA) is a leading cause of death. Even if successfully resuscitated, mortality remains high due to ischemic and reperfusion injury (I/R). The oxygen deprivation leads to a metabolic derangement amplified upon reperfusion resulting in an uncontrolled generation of reactive oxygen species in the mitochondria triggering cell death mechanisms. The understanding of I/R injury in humans following OHCA remains sparse, with no existing treatment to attenuate the reperfusion injury. AIM To describe metabolic derangement in patients following resuscitated OHCA. METHODS Plasma from consecutive resuscitated unconscious OHCA patients drawn at hospital admission were analyzed using ultra-performance-liquid-mass-spectrometry. Sixty-one metabolites were prespecified for quantification and studied. RESULTS In total, 163 patients were included, of which 143 (88%) were men, and the median age was 62 years (53-68). All measured metabolites from the tricarboxylic acid (TCA) cycle were significantly higher in non-survivors vs. survivors (180-days survival). Hierarchical clustering identified four clusters (A-D) of patients with distinct metabolic profiles. Cluster A and B had higher levels of TCA metabolites, amino acids and acylcarnitine species compared to C and D. The mortality was significantly higher in cluster A and B (A:62% and B:59% vs. C:21 % and D:24%, p < 0.001). Cluster A and B had longer time to return of spontaneous circulation (A:33 min (21-43), B:27 min (24-35), C:18 min (13-28), and D:18 min (12-25), p < 0.001). CONCLUSION Circulating levels of metabolites from the TCA cycle best described the variance between survivors and non-survivors. Four different metabolic phenotypes with significantly different mortality were identified.
Collapse
Affiliation(s)
- Rasmus Paulin Beske
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Hanne H Henriksen
- Center for Endotheliomics, CAG, Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Laust Obling
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Jesper Kjærgaard
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - John Bro-Jeppesen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Niklas Nielsen
- Department of Clinical Sciences at Helsingborg, Lund University. Lund, Sweden
| | - Pär I Johanson
- Center for Endotheliomics, CAG, Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Christian Hassager
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Jaber S, Garnier M, Asehnoune K, Bounes F, Buscail L, Chevaux JB, Dahyot-Fizelier C, Darrivere L, Jabaudon M, Joannes-Boyau O, Launey Y, Levesque E, Levy P, Montravers P, Muller L, Rimmelé T, Roger C, Savoye-Collet C, Seguin P, Tasu JP, Thibault R, Vanbiervliet G, Weiss E, De Jong A. Guidelines for the management of patients with severe acute pancreatitis, 2021. Anaesth Crit Care Pain Med 2022; 41:101060. [PMID: 35636304 DOI: 10.1016/j.accpm.2022.101060] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE To provide guidelines for the management of the intensive care patient with severe acute pancreatitis. DESIGN A consensus committee of 22 experts was convened. A formal conflict-of-interest (COI) policy was developed at the beginning of the process and enforced throughout. The entire guideline construction process was conducted independently of any industrial funding (i.e. pharmaceutical, medical devices). The authors were required to follow the rules of the Grading of Recommendations Assessment, Development and Evaluation (GRADE®) system to guide assessment of quality of evidence. The potential drawbacks of making strong recommendations in the presence of low-quality evidence were emphasised. METHODS The most recent SFAR and SNFGE guidelines on the management of the patient with severe pancreatitis were published in 2001. The literature now is sufficient for an update. The committee studied 14 questions within 3 fields. Each question was formulated in a PICO (Patients Intervention Comparison Outcome) format and the relevant evidence profiles were produced. The literature review and recommendations were made according to the GRADE® methodology. RESULTS The experts' synthesis work and their application of the GRADE® method resulted in 24 recommendations. Among the formalised recommendations, 8 have high levels of evidence (GRADE 1+/-) and 12 have moderate levels of evidence (GRADE 2+/-). For 4 recommendations, the GRADE method could not be applied, resulting in expert opinions. Four questions did not find any response in the literature. After one round of scoring, strong agreement was reached for all the recommendations. CONCLUSIONS There was strong agreement among experts for 24 recommendations to improve practices for the management of intensive care patients with severe acute pancreatitis.
Collapse
Affiliation(s)
- Samir Jaber
- Department of Anaesthesiology and Intensive Care (DAR B), University Hospital Center Saint Eloi Hospital, Montpellier, France; PhyMedExp, Montpellier University, INSERM, CNRS, CHU de Montpellier, Montpellier, France.
| | - Marc Garnier
- Sorbonne Université, GRC 29, DMU DREAM, Service d'Anesthésie-Réanimation et Médecine Périopératoire Rive Droite, Paris, France
| | - Karim Asehnoune
- Service d'Anesthésie, Réanimation chirurgicale, Hôtel Dieu/HME, CHU Nantes, Nantes cedex 1, France; Inserm, UMR 1064 CR2TI, team 6, France
| | - Fanny Bounes
- Toulouse University Hospital, Anaesthesia Critical Care and Perioperative Medicine Department, Toulouse, France; Équipe INSERM Pr Payrastre, I2MC, Université Paul Sabatier Toulouse III, Toulouse, France
| | - Louis Buscail
- Department of Gastroenterology & Pancreatology, University of Toulouse, Rangueil Hospital, Toulouse, France
| | | | - Claire Dahyot-Fizelier
- Anaesthesiology and Intensive Care Department, University hospital of Poitiers, Poitiers, France; INSERM U1070, University of Poitiers, Poitiers, France
| | - Lucie Darrivere
- Department of Anaesthesia and Critical Care Medicine, AP-HP, Hôpital Lariboisière, F-75010, Paris, France
| | - Matthieu Jabaudon
- Department of Perioperative Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France; iGReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Olivier Joannes-Boyau
- Service d'Anesthésie-Réanimation SUD, CHU de Bordeaux, Hôpital Magellan, Bordeaux, France
| | - Yoann Launey
- Critical Care Unit, Department of Anaesthesia, Critical Care and Perioperative Medicine, University Hospital of Rennes, Rennes, France
| | - Eric Levesque
- Department of Anaesthesia and Surgical Intensive Care, AP-HP, Henri Mondor Hospital, Créteil, France; Université Paris-Est Creteil, EnvA, DYNAMiC, Faculté de Santé de Créteil, Creteil, France
| | - Philippe Levy
- Service de Pancréatologie et d'Oncologie Digestive, DMU DIGEST, Université de Paris, Hôpital Beaujon, APHP, Clichy, France
| | - Philippe Montravers
- Université de Paris Cité, INSERM UMR 1152 - PHERE, Paris, France; Département d'Anesthésie-Réanimation, APHP, CHU Bichat-Claude Bernard, DMU PARABOL, APHP, Paris, France
| | - Laurent Muller
- Réanimations et surveillance continue, Pôle Anesthésie Réanimation Douleur Urgences, CHU Nîmes Caremeau, Montpellier, France
| | - Thomas Rimmelé
- Département d'anesthésie-réanimation, Hôpital Édouard Herriot, Hospices Civils de Lyon, Lyon, France; EA 7426: Pathophysiology of Injury-induced Immunosuppression, Pi3, Hospices Civils de Lyon-Biomérieux-Université Claude Bernard Lyon 1, Lyon, France
| | - Claire Roger
- Réanimations et surveillance continue, Pôle Anesthésie Réanimation Douleur Urgences, CHU Nîmes Caremeau, Montpellier, France; Department of Intensive care medicine, Division of Anaesthesiology, Intensive Care, Pain and Emergency Medicine, Nîmes University Hospital, Nîmes, France
| | - Céline Savoye-Collet
- Department of Radiology, Normandie University, UNIROUEN, Quantif-LITIS EA 4108, Rouen University Hospital-Charles Nicolle, Rouen, France
| | - Philippe Seguin
- Service d'Anesthésie Réanimation 1, Réanimation chirurgicale, CHU de Rennes, Rennes, France
| | - Jean-Pierre Tasu
- Service de radiologie diagnostique et interventionnelle, CHU de Poitiers, Poitiers, France; LaTim, UBO and INSERM 1101, University of Brest, Brest, France
| | - Ronan Thibault
- Service Endocrinologie-Diabétologie-Nutrition, CHU Rennes, INRAE, INSERM, Univ Rennes, NuMeCan, Nutrition Metabolisms Cancer, Rennes, France
| | - Geoffroy Vanbiervliet
- Department of Digestive Endoscopy, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Emmanuel Weiss
- Department of Anaesthesiology and Critical Care, Beaujon Hospital, DMU Parabol, AP-HP.Nord, Clichy, France; University of Paris, Paris, France; Inserm UMR_S1149, Centre for Research on Inflammation, Paris, France
| | - Audrey De Jong
- Department of Anaesthesiology and Intensive Care (DAR B), University Hospital Center Saint Eloi Hospital, Montpellier, France; PhyMedExp, Montpellier University, INSERM, CNRS, CHU de Montpellier, Montpellier, France
| |
Collapse
|
4
|
Waller A, Long B, Koyfman A, Gottlieb M. Acute Pancreatitis: Updates for Emergency Clinicians. J Emerg Med 2018; 55:769-779. [PMID: 30268599 DOI: 10.1016/j.jemermed.2018.08.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 08/03/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Acute pancreatitis is a frequent reason for patient presentation to the emergency department (ED) and the most common gastrointestinal disease resulting in admission. Emergency clinicians are often responsible for the diagnosis and initial management of acute pancreatitis. OBJECTIVE This review article provides emergency clinicians with a focused overview of the diagnosis and management of pancreatitis. DISCUSSION Pancreatitis is an inflammatory process within the pancreas. While the disease is often mild, severe forms can have a mortality rate of up to 30%. The diagnosis of pancreatitis requires two of the following three criteria: epigastric abdominal pain, an elevated lipase, and imaging findings of pancreatic inflammation. The most common etiologies include gallbladder disease and alcohol use. After the diagnosis has been made, it is important to identify underlying etiologies requiring specific intervention, as well as obtain a right upper quadrant ultrasound. The initial management of choice is fluid resuscitation and pain control. Recent data have suggested that more cautious fluid resuscitation in the first 24 h might be more appropriate for some patients. Intravenous opiates are generally safe if used judiciously. Appropriate disposition is a multifactorial decision, which can be facilitated by using Ranson criteria or the Bedside Index of Severity in Acute Pancreatitis score. Complications, though rare, can be severe. CONCLUSIONS Pancreatitis is a potentially deadly disease that commonly presents to most emergency departments. It is important for clinicians to be aware of the current evidence regarding the diagnosis, treatment, and disposition of these patients.
Collapse
Affiliation(s)
- Anna Waller
- Department of Emergency Medicine, Brooke Army Medical Center, Fort Sam Houston, Texas
| | - Brit Long
- Department of Emergency Medicine, Brooke Army Medical Center, Fort Sam Houston, Texas
| | - Alex Koyfman
- Department of Emergency Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Michael Gottlieb
- Department of Emergency Medicine, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
5
|
Kuchay MS, Farooqui KJ, Bano T, Khandelwal M, Gill H, Mithal A. Heparin and insulin in the management of hypertriglyceridemia-associated pancreatitis: case series and literature review. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2017; 61:198-201. [PMID: 28225998 PMCID: PMC10118862 DOI: 10.1590/2359-3997000000244] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/18/2016] [Indexed: 11/22/2022]
Abstract
Severe hypertriglyceridemia accounts for up to 7% of all cases of acute pancreatitis. Heparin and insulin activate lipoprotein lipase (LPL), thereby reducing plasma triglyceride levels. However, the safety and efficacy of heparin and insulin in the treatment of hypertriglyceridemia-associated acute pancreatitis have not been well established yet. We successfully used heparin and insulin as first-line therapy in four consecutive patients with acute pancreatitis secondary to hypertriglyceridemia. In a literature search, we revised almost all reports published to date of patients managed successfully with this combination. Heparin and insulin appear to be a safe, effective, and inexpensive first-line therapy for hypertriglyceridemia-associated acute pancreatitis.
Collapse
Affiliation(s)
| | | | - Tarannum Bano
- Division of Endocrinology and Diabetes, Medanta, India
| | | | | | | |
Collapse
|
6
|
Nogueira JP, Maraninchi M, Béliard S, Padilla N, Duvillard L, Mancini J, Nicolay A, Xiao C, Vialettes B, Lewis GF, Valéro R. Absence of acute inhibitory effect of insulin on chylomicron production in type 2 diabetes. Arterioscler Thromb Vasc Biol 2012; 32:1039-44. [PMID: 22308041 DOI: 10.1161/atvbaha.111.242073] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Overproduction of intestinally derived apoB-48-containing triglyceride-rich lipoproteins (TRLs) (chylomicrons) has recently been described in type 2 diabetes, as is known for hepatic TRL-apoB-100 (very-low-density lipoprotein) production. Furthermore, insulin acutely inhibits both intestinal and hepatic TRL production, whereas this acute inhibitory effect on very-low-density lipoprotein production is blunted in type 2 diabetes. It is not currently known whether this acute effect on chylomicron production is similarly blunted in humans with type 2 diabetes. METHODS AND RESULTS We investigated the effect of acute hyperinsulinemia on TRL metabolism in 18 type 2 diabetic men using stable isotope methodology. Each subject underwent 1 control (saline infusion [SAL]) lipoprotein turnover study followed by a second study, under 1 of the 3 following clamp conditions: (1) hyperinsulinemic-euglycemic, (2) hyperinsulinemic-hyperglycemic, or (3) hyperinsulinemic-euglycemic plus intralipid and heparin. TRL-apoB-48 and TRL-apoB-100 production and clearance rates were not different between SAL and clamp and between the different clamp conditions, except for significantly lower TRL-apoB-100 clearance and production rates in hyperinsulinemic-euglycemic plus intralipid and heparin clamp compared with SAL. CONCLUSIONS This is the first demonstration in individuals with type 2 diabetes that chylomicron production is resistant to the normal acute suppressive effect of insulin. This phenomenon may contribute to the highly prevalent dyslipidemia of type 2 diabetes and potentially to atherosclerosis. Clinical Trial Registration- URL: http://www.clinicaltrials.gov. Unique identifier: NCT00950209.
Collapse
Affiliation(s)
- Juan-Patricio Nogueira
- Unité Mixte de Recherche Institut National de la Recherche Agronomique, University of la Méditerranée, Marseille, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
To develop novel strategies for the prevention and treatment of dyslipidaemia, it is essential to understand the pathophysiology of dyslipoproteinaemia in humans. Lipoprotein metabolism is a complex system in which abnormal concentrations of various lipoprotein particles can result from alterations in their rates of production, conversion and/or catabolism. Traditional methods that measure plasma lipoprotein concentrations only provide static estimates of lipoprotein metabolism and hence limited mechanistic information. By contrast, the use of tracers labelled with stable isotopes and mathematical modelling provides a powerful tool for probing lipid and lipoprotein kinetics in vivo and furthering understanding of the pathogenesis of dyslipoproteinaemia.
Collapse
Affiliation(s)
- J Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden.
| | | | | |
Collapse
|
8
|
Panitsa G, Panitsas A, Potamianou A, Messari J, Vovou J, Tesseromatis C. Impact of hyperlipidaemia on the orbital bone cefotaxime levels in rats. Eur J Drug Metab Pharmacokinet 2011; 35:23-7. [PMID: 21495263 DOI: 10.1007/s13318-010-0004-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Facial injuries are critical conditions, leading to serious complications, such as occult facial infections. Infectious endophthalmitis occurs despite of antibiotics use during implantation of intraocular lenses and is generally resistant to antibiotic therapy. It is a crucial situation in ophthalmology, since it often induces a substantial reduction of visual acuity and in some cases the loss of the eye despite treatment. It is, therefore, important to obtain drug levels able to exert antimicrobial effect in the diseased organ. The distribution of a drug depends on the binding extent to both plasma proteins and tissues and only the free drug is capable to be transported/diffused across membranes from blood vessels into tissues, in order to achieve its effect on the target organ. Hyperlipidaemia and consequent enhanced concentration of free fatty acid can modify binding pharmacokinetics of antibiotics through antagonism for the same binding sites. Cefotaxime, the third generation cephalosporin with easy penetration in a variety of tissues and body fluids and low incidence of adverse effects, can obtain adequate concentration in blood, eye bulb, and in the orbital bones. Its levels are influenced by hyperlipidaemia with clinical impact.
Collapse
|
9
|
Pavlic M, Xiao C, Szeto L, Patterson BW, Lewis GF. Insulin acutely inhibits intestinal lipoprotein secretion in humans in part by suppressing plasma free fatty acids. Diabetes 2010; 59:580-7. [PMID: 20028946 PMCID: PMC2828667 DOI: 10.2337/db09-1297] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Intestinal lipoprotein production has recently been shown to be increased in insulin resistance, but it is not known whether it is regulated by insulin in humans. Here, we investigated the effect of acute hyperinsulinemia on intestinal (and hepatic) lipoprotein production in six healthy men in the presence and absence of concomitant suppression of plasma free fatty acids (FFAs). RESEARCH DESIGN AND METHODS Each subject underwent the following three lipoprotein turnover studies, in random order, 4-6 weeks apart: 1) insulin and glucose infusion (euglycemic-hyperinsulinemic clamp) to induce hyperinsulinemia, 2) insulin and glucose infusion plus Intralipid and heparin infusion to prevent the insulin-induced suppression of plasma FFAs, and 3) saline control. RESULTS VLDL1 and VLDL2-apoB48 and -apoB100 production rates were suppressed by 47-62% by insulin, with no change in clearance. When the decline in FFAs was prevented by concomitant infusion of Intralipid and heparin, the production rates of VLDL1 and VLDL2-apoB48 and -apoB100 were intermediate between insulin and glucose infusion and saline control. CONCLUSIONS This is the first demonstration in humans that intestinal apoB48-containing lipoprotein production is acutely suppressed by insulin, which may involve insulin's direct effects and insulin-mediated suppression of circulating FFAs.
Collapse
Affiliation(s)
- Mirjana Pavlic
- Division of Endocrinology and Metabolism, Department of Medicine and Physiology, University of Toronto, Toronto, Canada
| | - Changting Xiao
- Division of Endocrinology and Metabolism, Department of Medicine and Physiology, University of Toronto, Toronto, Canada
| | - Linda Szeto
- Division of Endocrinology and Metabolism, Department of Medicine and Physiology, University of Toronto, Toronto, Canada
| | - Bruce W. Patterson
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Gary F. Lewis
- Division of Endocrinology and Metabolism, Department of Medicine and Physiology, University of Toronto, Toronto, Canada
- Corresponding author: Gary F. Lewis,
| |
Collapse
|
10
|
Zuurbier CJ, Van Wezel HB. Glucose-insulin therapy, plasma substrate levels and cardiac recovery after cardiac ischemic events. Cardiovasc Drugs Ther 2008; 22:125-31. [PMID: 18266096 PMCID: PMC2329728 DOI: 10.1007/s10557-008-6087-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 01/17/2008] [Indexed: 01/04/2023]
Abstract
Introduction The potential usefulness of glucose-insulin therapy relies to a large extent on the premise that it prevents hyperglycemia and hyperlipidemia following cardiac ischemic events. Methods In this review we evaluate the literature concerning plasma glucose and free fatty acids levels during and following cardiac ischemic events. Results The data indicate that hyperlipidemia and hyperglycemia most likely occur during acute coronary ischemic syndromes in the conscious state (e.g. acute myocardial infarction) and less so during reperfusion following CABG reperfusion. This is in accordance with observations that glucose-insulin therapy during early reperfusion post CABG may actually cause hypolipidemia, because substantial hyperlipidemia does not appear to occur during that stage of cardiac surgery. Discussion Considering recent data indicating that hypolipidemia may be detrimental for cardiac function, we propose that free fatty acid levels during reperfusion post CABG with the adjunct glucose-insulin therapy need to be closely monitored. Conclusion From a clinical point of view, a strategy directed at monitoring and thereafter maintaining plasma substrate levels in the normal range for both glucose (4–6 mM) and FFA (0.2–0.6 mM) as well as stimulation of glucose oxidation, promises to be the most optimal metabolic reperfusion treatment following cardiac ischemic episodes. Future (preclinical and subsequently clinical) investigations are required to investigate whether the combination of glucose-insulin therapy with concomitant lipid administration may be beneficial in the setting of reperfusion post CABG.
Collapse
Affiliation(s)
- C J Zuurbier
- Department of Anesthesiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | |
Collapse
|
11
|
Ramakrishnan R, Ramakrishnan JD. Using mass measurements in tracer studies--a systematic approach to efficient modeling. Metabolism 2008; 57:1078-87. [PMID: 18640385 PMCID: PMC2601710 DOI: 10.1016/j.metabol.2008.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 03/27/2008] [Indexed: 10/24/2022]
Abstract
Tracer enrichment data are fitted by multicompartmental models to estimate rate constants and fluxes or transport rates. In apolipoprotein turnover studies, mass measurements are also available, for example, apolipoprotein B levels in very low-density lipoprotein, intermediate-density lipoprotein, and low-density lipoprotein, and are often essential to calculate some of the rate constants. The usual method to use mass measurements is to estimate pool masses along with rate constants. A systematic alternative approach is developed to use flux balances around pools to express some rate constants in terms of the other rate constants and the measured masses. The resulting reduction in the number of parameters to be estimated makes the modeling more efficient. In models that would be unidentifiable without mass measurements, the usual approach and the proposed approach yield identical results. In a simple two-pool model, the number of unknown parameters is reduced from 4 to 2. In a published five-pool model for apolipoprotein B kinetics with three mass measurements, the number of parameters is reduced from 12 to 9. With m mass measurements, the number of responses to be fitted and the number of parameters to be estimated are each reduced by m, a simplification by 1/4 to 1/3 in a typical pool model. Besides a proportionate reduction in computational effort, there is a further benefit because the dimensionality of the problem is also decreased significantly, which means ease of convergence and a smaller likelihood of suboptimal solutions. Although our approach is conceptually straightforward, the dependencies get considerably more complex with increasing model size. To generate dependency definitions automatically, a Web-accessible program is available at http://biomath.info/poolfit/constraints.
Collapse
Affiliation(s)
- Rajasekhar Ramakrishnan
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| | | |
Collapse
|
12
|
Adiels M, Westerbacka J, Soro-Paavonen A, Häkkinen AM, Vehkavaara S, Caslake MJ, Packard C, Olofsson SO, Yki-Järvinen H, Taskinen MR, Borén J. Acute suppression of VLDL1 secretion rate by insulin is associated with hepatic fat content and insulin resistance. Diabetologia 2007; 50:2356-65. [PMID: 17849096 DOI: 10.1007/s00125-007-0790-1] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 06/21/2007] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS Overproduction of VLDL(1) seems to be the central pathophysiological feature of the dyslipidaemia associated with type 2 diabetes. We explored the relationship between liver fat and suppression of VLDL(1) production by insulin in participants with a broad range of liver fat content. METHODS A multicompartmental model was used to determine the kinetic parameters of apolipoprotein B and TG in VLDL(1) and VLDL(2) after a bolus of [(2)H(3)]leucine and [(2)H(5)]glycerol during a hyperinsulinaemic-euglycaemic clamp in 20 male participants: eight with type 2 diabetes and 12 control volunteers. The participants were divided into two groups with low or high liver fat. All participants with diabetes were in the high liver-fat group. RESULTS The results showed a rapid drop in VLDL(1)-apolipoprotein B and -triacylglycerol secretion in participants with low liver fat during the insulin infusion. In contrast, participants with high liver fat showed no significant change in VLDL(1) secretion. The VLDL(1) suppression following insulin infusion correlated with the suppression of NEFA, and the ability of insulin to suppress the plasma NEFA was impaired in participants with high liver fat. A novel finding was an inverse response between VLDL(1) and VLDL(2) secretion in participants with low liver fat: VLDL(1) secretion decreased acutely after insulin infusion whereas VLDL(2) secretion increased. CONCLUSIONS/INTERPRETATION Insulin downregulates VLDL(1) secretion and increases VLDL(2) secretion in participants with low liver fat but fails to suppress VLDL(1) secretion in participants with high liver fat, resulting in overproduction of VLDL(1). Thus, liver fat is associated with lack of VLDL(1) suppression in response to insulin.
Collapse
Affiliation(s)
- M Adiels
- Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Göteborg University, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Magkos F, Patterson BW, Mohammed BS, Klein S, Mittendorfer B. Women produce fewer but triglyceride-richer very low-density lipoproteins than men. J Clin Endocrinol Metab 2007; 92:1311-8. [PMID: 17264179 DOI: 10.1210/jc.2006-2215] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Very low-density lipoproteins (VLDL) are a major risk factor for cardiovascular disease. The concentrations of VLDL particles and VLDL-triglyceride (TG) in plasma are lower in women than men, but the mechanisms responsible for these differences are unclear. OBJECTIVE The objective of the study was to investigate the effects of sex on VLDL-TG and VLDL-apolipoprotein B-100 (apoB-100) metabolism. EXPERIMENTAL DESIGN AND MAIN OUTCOME MEASURES: We measured basal VLDL-TG and VLDL-apoB-100 kinetics by using stable isotope labeled tracers. SETTING/PARTICIPANTS Twenty-six healthy, lean subjects (13 men, aged 29+/-5 yr; 13 women, aged 28+/-6 yr) were studied in the General Clinical Research Center at Washington University School of Medicine. RESULTS VLDL-TG and VLDL-apoB-100 concentrations were less in women than men (P<0.05). The secretion rate of VLDL-TG was approximately 70% greater (P<0.05), whereas the secretion rate of VLDL-apoB-100 (i.e. VLDL particles) was approximately 20% less (P<0.05) in women than men. The molar ratio of VLDL-TG and VLDL-apoB-100 secretion rates was therefore more than double (P<0.05) in women than men. VLDL-TG plasma clearance rate was approximately 70% greater in women than men (P<0.05), whereas VLDL-apoB-100 plasma clearance rate was not different between sexes. However, VLDL-TG and VLDL-apoB-100 mean residence times in plasma were both shorter (by 45 and 25%, respectively; P<0.05) in women than men. CONCLUSIONS Increased VLDL-TG plasma clearance is responsible for lower VLDL-TG concentration, whereas decreased VLDL-apoB-100 secretion rate, combined with shorter VLDL-apoB-100 residence time in plasma, is responsible for lower VLDL-apoB-100 concentration in women than men. The greater molar ratio of VLDL-TG and VLDL-apoB-100 secretion rates suggests that the liver in women secretes fewer but TG-richer VLDL particles than the liver in men.
Collapse
Affiliation(s)
- Faidon Magkos
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Diabetic dyslipidaemia is a cluster of plasma lipid and lipoprotein abnormalities that are metabolically interrelated. The increase of large type 1 very low density lipoprotein particles in type 2 diabetes initiates a sequence of events that generates atherogenic remnants, small dense low-density lipoprotein and small dense high-density lipoprotein particles. Thus, it is of great importance to elucidate the mechanisms behind the overproduction of large very low density lipoprotein particles in diabetic dyslipidaemia. This review discusses the pathophysiology of very low density lipoprotein metabolism in type 2 diabetes and recent concepts of lipid management of diabetic dyslipidaemia. RECENT FINDINGS Results indicate that triglyceride and apolipoprotein B production in types 1 and 2 very low density lipoprotein are significantly correlated, suggesting a coupling of the two processes governing the metabolism of these lipoprotein subpopulations. Insulin resistance, hyperglycaemia, and liver fat were associated with excess hepatic production of type 1 but not type 2 very low density lipoprotein particles. These data provide support for the independent regulation of types 1 and 2 very low density lipoprotein apolipoprotein B production. SUMMARY Recent data suggest that the assembly of very low density lipoprotein is fundamentally altered in type 2 diabetes, explaining the overproduction of large type 1 very low density lipoprotein as well as the inability of insulin to suppress production of type 1 very low density lipoprotein in type 2 diabetes. Future discoveries hopefully will delineate the regulatory steps to allow more targeted treatment of diabetic dyslipidaemia.
Collapse
Affiliation(s)
- Martin Adiels
- Sahlgrenska Center for Metabolism and Cardiovascular Research, Wallenberg Laboratory for Cardiovascular Research and the Department of Metabolism and Cardiovascular Research, The Sahlgrenska Academy at Göteborg University, Göteborg, Sweden
| | | | | | | |
Collapse
|
15
|
Olofsson SO, Borèn J. Apolipoprotein B: a clinically important apolipoprotein which assembles atherogenic lipoproteins and promotes the development of atherosclerosis. J Intern Med 2005; 258:395-410. [PMID: 16238675 DOI: 10.1111/j.1365-2796.2005.01556.x] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Apolipoprotein (apo) B exists in two forms apoB100 and apoB48. ApoB100 is present on very low-density lipoproteins (VLDL), intermediate density lipoproteins (IDL) and LDL. ApoB100 assembles VLDL particles in the liver. This process starts by the formation of a pre-VLDL, which is retained in the cell unless converted to the triglyceride-poor VLDL2. VLDL2 is secreted or converted to VLDL1 by a bulk lipidation in the Golgi apparatus. ApoB100 has a central role in the development of atherosclerosis. Two proteoglycan-binding sequences in apoB100 have been identified, which are important for retaining the lipoprotein in the intima of the artery. Retention is essential for the development of the atherosclerotic lesion.
Collapse
Affiliation(s)
- S-O Olofsson
- Wallenberg Laboratory for Cardiovascular Research, Göteborg University, Sahlgrenska University Hospital, Göteborg, Sweden.
| | | |
Collapse
|
16
|
Adiels M, Packard C, Caslake MJ, Stewart P, Soro A, Westerbacka J, Wennberg B, Olofsson SO, Taskinen MR, Borén J. A new combined multicompartmental model for apolipoprotein B-100 and triglyceride metabolism in VLDL subfractions. J Lipid Res 2004; 46:58-67. [PMID: 15489544 DOI: 10.1194/jlr.m400108-jlr200] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The use of stable isotopes in conjunction with compartmental modeling analysis has greatly facilitated studies of the metabolism of the apolipoprotein B (apoB)-containing lipoproteins in humans. The aim of this study was to develop a multicompartment model that allows us to simultaneously determine the kinetics of apoB and triglyceride (TG) in VLDL(1) and VLDL(2) after a bolus injection of [(2)H(3)]leucine and [(2)H(5)]glycerol and to follow the catabolism and transfer of the lipoprotein particles. Here, we describe the model and present the results of its application in a fasting steady-state situation in 17 subjects with lipid values representative of a Western population. Analysis of the correlations showed that plasma TG was determined by the VLDL(1) and VLDL(2) apoB and TG fractional catabolic rate. Furthermore, the model showed a linear correlation between VLDL(1) TG and apoB production. A novel observation was that VLDL TG entered the circulation within 21 min after its synthesis, whereas VLDL apoB entered the circulation after 33 min. These observations are consistent with a sequential assembly model of VLDL and suggest that the TG is added to a primordial apoB-containing particle in the liver.
Collapse
Affiliation(s)
- Martin Adiels
- Mathematical Sciences, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhang YL, Hernandez-Ono A, Ko C, Yasunaga K, Huang LS, Ginsberg HN. Regulation of Hepatic Apolipoprotein B-lipoprotein Assembly and Secretion by the Availability of Fatty Acids. J Biol Chem 2004; 279:19362-74. [PMID: 14970200 DOI: 10.1074/jbc.m400220200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The in vivo effects of increased delivery of fatty acids (FA) to the liver are poorly defined. Therefore, we compared the effects of infusing either 6 mM oleic acid (OA) bound to albumin, 0.5-20% Intralipid, or saline for 3 or 6 h into male C57BL/6J mice. Infusions were followed by studies of triglyceride (TG) and apoB secretion. Although plasma FA levels increased similarly after either 20% Intralipid or 6 mM OA, TG secretion increased only after infusion of 4-20% Intralipid; TG secretion was unchanged by 6 mM OA. By contrast, 6-h infusions of either 6 mM OA or 4-20% Intralipid increased apoB secretion. 6 mM OA and 20% Intralipid each increased secretion of apoB from primary hepatocytes ex vivo. Importantly, 0.5-2% Intralipid, which delivered more FA to the liver than 6 mM OA, did not stimulate apoB secretion. Hepatic apoB mRNA levels were unaffected by either 6 mM OA or 20% Intralipid, but microsomal triglyceride transfer protein mRNA was significantly lower after 6-h infusions with 6 mM OA versus either saline or 20% Intralipid. Lower microsomal triglyceride transfer protein mRNA levels were associated with reduced hepatic TG mass after 6-h infusions of 6 mM OA. We conclude that 1) increased FA delivery to the liver in vivo increases secretion of apoB-lipoproteins via post-transcriptional mechanisms, 2) OA-induced apoB-lipoprotein secretion occurred at least in part via mechanisms other than by providing substrate for TG synthesis, and 3) the route of delivery of FA is important for its effects on apoB secretion.
Collapse
Affiliation(s)
- Yuan-Li Zhang
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
18
|
Taskinen MR. Diabetic dyslipidaemia: from basic research to clinical practice. Diabetologia 2003; 46:733-49. [PMID: 12774165 DOI: 10.1007/s00125-003-1111-y] [Citation(s) in RCA: 561] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2003] [Revised: 04/11/2003] [Indexed: 12/11/2022]
Abstract
The recognition that the increase of plasma triglyceride rich lipoproteins (TRLs) is associated with multiple alterations of other lipoproteins species that are potentially atherogenic has expanded the picture of diabetic dyslipidaemia. The discovery of heterogeneity within major lipoprotein classes VLDL, LDL and HDL opened new avenues to reveal the specific pertubations of diabetic dyslipidaemia. The increase of large VLDL 1 particles in Type 2 diabetes initiates a sequence of events that generates atherogenic remnants, small dense LDL and small dense HDL particles. Together these components comprise the atherogenic lipid triad. Notably the malignant nature of diabetic dyslipidaemia is not completely shown by the lipid measures used in clinical practice. The key question is what are the mechanisms behind the increase of VLDL 1 particles in diabetic dyslipidaemia? Despite the advances of recent years, our understanding of VLDL assembly and secretion is still surprisingly incomplete. To date it is still unclear how the liver is able to regulate the amount of triglycerides incorporated into VLDL particles to produce either VLDL 1 or VLDL 2 particles. The current evidence suggests that the machinery driving VLDL assembly in the liver includes (i) low insulin signalling via PI-3 kinase pathway that enhances lipid accumulation into "nascent " VLDL particles (ii) up-regulation of SREBP-1C that stimulates de novo lipogenesis and (iii) excess availability of "polar molecules" in hepatocytes that stabilizes apo B 100. Recent data suggest that all these steps could be fundamentally altered in Type 2 diabetes explaining the overproduction of VLDL apo B as well as the ability of insulin to suppress VLDL 1 apo B production in Type 2 diabetes. Recent discoveries have established the transcription factors including PPARs, SREBP-1 and LXRs as the key regulators of lipid assembly in the liver. These observations suggest these factors as a new target to tailor more efficient drugs to treat diabetic dyslipidaemia.
Collapse
Affiliation(s)
- M-R Taskinen
- Department of Medicine, Division of Cardiology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
19
|
Zuurbier C. Postischemic Myocardial Metabolism. Semin Cardiothorac Vasc Anesth 2003. [DOI: 10.1177/108925320300700112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- C.J. Zuurbier
- Department of Anesthesiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ, The Netherlands
| |
Collapse
|
20
|
van Greevenbroek MMJ, Vermeulen VMMJ, de Bruin TWA. Familial combined hyperlipidemia plasma stimulates protein secretion by HepG2 cells: identification of fibronectin in the differential secretion proteome. J Lipid Res 2002; 43:1846-54. [PMID: 12401883 DOI: 10.1194/jlr.m100441-jlr200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to evaluate whether soluble factors in plasma of familial combined hyperlipidemia (FCHL) patients affect hepatic protein secretion. Cultured human hepatocytes, i.e., HepG2 cells, were incubated with fasting plasma (20%, v/v, in DMEM) from untreated FCHL patients or normolipidemic controls. Overall protein secretion was 10-15% higher after incubation with FCHL plasma. This was specifically caused by an increase in four secreted proteins, with estimated sizes of 240, 180, 120, and <40 kD (P < 0.001, P < 0.006, P < 0.002, P < 0.02, respectively). The 240 kD protein in the secretion proteome was identified as fibronectin by mass spectrometry. Plasma fibronectin concentrations were elevated in FCHL patients, confirming biological relevance of these data. Overall protein secretion by HepG2 cells correlated with concentrations of triglycerides (r = 0.61, P < 0.001) in the applied plasma samples. VLDL+IDL isolated from FCHL patients, induced a higher protein secretion than lipoproteins isolated from controls (P < 0.001). Remarkably, secretion of apoB, the structural protein of VLDL, was stimulated to a similar extent by FCHL and control plasma. FCHL plasma did not induce excess secretion of apoB by HepG2 cells compared with control plasma. FCHL plasma did stimulate secretion of several distinct hepatic proteins, among which fibronectin was identified.
Collapse
|
21
|
Henkin Y, Crystal E, Goldberg Y, Friger M, Lorber J, Zuili I, Shany S. Usefulness of lipoprotein changes during acute coronary syndromes for predicting postdischarge lipoprotein levels. Am J Cardiol 2002; 89:7-11. [PMID: 11779514 DOI: 10.1016/s0002-9149(01)02154-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The aim of our study was to evaluate the lipoprotein changes that occur during acute coronary events, and to determine the lipoprotein threshold levels that identify patients who require future statin therapy. Lipoprotein levels were measured at admission, at 6 hours, the morning after admission, before discharge, and 3 months after discharge in patients with myocardial infarction and unstable angina. Patients with myocardial infarction on thrombolytic therapy (n = 63) and patients with unstable angina (n = 33) had a decrease in low-density lipoprotein (LDL) cholesterol levels < or = 24 hours after admission (-12 +/- 20% and -6 +/- 23%, respectively), but these levels returned to baseline before discharge. In patients with myocardial infarction who did not receive thrombolytic therapy (n = 37), the decrease was more gradual and peaked before hospital discharge (-7 +/- 19%). There was good correlation between LDL cholesterol levels at admission and after discharge, especially in normotriglyceridemic patients. Over 90% of patients with LDL cholesterol > or = 125 mg/dl on the morning after admission were candidates for statin therapy after discharge. Thus, the need for future statin therapy can be predicted with fair reliability during the initial 24 hours after admission. However, elevated baseline triglyceride levels significantly affect these LDL cholesterol changes and complicate prediction of long-term lipoprotein levels.
Collapse
Affiliation(s)
- Yaakov Henkin
- Department of Cardiology, Soroka University Medical Center and Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel.
| | | | | | | | | | | | | |
Collapse
|
22
|
Tomkin GH, Owens D. Abnormalities in apo B-containing lipoproteins in diabetes and atherosclerosis. Diabetes Metab Res Rev 2001; 17:27-43. [PMID: 11241889 DOI: 10.1002/dmrr.179] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Atherosclerosis is the major cause of death in patients with diabetes. Low-density lipoprotein (LDL) being the most important cholesterol-carrying lipoprotein has been studied extensively in both diabetes and non-diabetes. This paper reviews the literature but also focuses on the precursors of LDL and in particular the postprandial apo B-containing lipoproteins. Abnormalities in the postprandial lipoproteins and alteration in chylomicron assembly and clearance are discussed and the evidence presented suggesting the importance of dysregulation of these lipoproteins in atherosclerotic progression. The relationship between chylomicron production in the intestine and hepatic release of very low-density lipoproteins (VLDL) is explored, as is the interrelationship between clearance rates of these lipoproteins. The size of LDL influences its atherogenicity. VLDL composition and size in relation to its influence on LDL is discussed. The effect of diet on the composition of lipoproteins and the relationship between fatty acid composition and clearance is reviewed. Evidence that diabetic control beneficially alters lipoprotein composition is presented suggesting how improved diabetic control may reduce atherosclerosis. The review concludes with a discussion on the effect of the apo B-containing lipoproteins and their modification through glycation and oxidation on macrophage and endothelial function.
Collapse
Affiliation(s)
- G H Tomkin
- Department of Diabetes and Endocrinology, Trinity College Dublin and Adelaide and Meath Hospital, Dublin, Ireland
| | | |
Collapse
|
23
|
Muriithi EW, Belcher PR, Day SP, Menys VC, Wheatley DJ. Heparin-induced platelet dysfunction and cardiopulmonary bypass. Ann Thorac Surg 2000; 69:1827-32. [PMID: 10892931 DOI: 10.1016/s0003-4975(00)01299-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cardiopulmonary bypass is associated with impaired platelet macroaggregation. Heparin contributes to platelet dysfunction before extracorporeal circulation. In vitro heparinization of whole blood does not impair macroaggregation. Heparin releases several endothelial proteins; thus heparin may inhibit macroaggregation indirectly. METHODS Patients undergoing operations using cardiopulmonary bypass and ABO blood group compatible volunteers were studied. Whole blood impedance aggregometry assessed macroaggregation in response to collagen (0.6 microg ml(-1)) in blood diluted either with normal saline or with platelet poor plasma, obtained from patients at different stages of cardiopulmonary bypass. RESULTS Before heparinization, blood diluted with its own platelet poor plasma recorded an impedance change of 13.0 (4.7 to 15.6) Ohms. Platelet poor plasma obtained after heparinization or during extracorporeal circulation reduced this response to 3.7 (1.1 to 8.4) and 2.0 (1.1 to 3.3) Ohms, respectively (both p < 0.0001 versus pre-heparin; n = 13). Macroaggregation in blood from volunteers was similarly inhibited by patients' platelet poor plasma (n = 30). The macroaggregatory response in blood sampled after heparinization for cardiopulmonary bypass, decreased gradually from 11.4 (8.2 to 15.9) Ohms immediately after sampling to 1.7 (1.4 to 4.1) Ohms 2 hours later (p < 0.0001; n = 11). CONCLUSIONS In vivo heparinization induces plasma changes that inhibit platelet macroaggregation. This is an indirect, delayed inhibition that is transferable in vitro to normal platelets.
Collapse
Affiliation(s)
- E W Muriithi
- Department of Cardiac Surgery, University of Glasgow, Royal Infirmary, Scotland.
| | | | | | | | | |
Collapse
|