1
|
Selvy PE, Lavieri RR, Lindsley CW, Brown HA. Phospholipase D: enzymology, functionality, and chemical modulation. Chem Rev 2011; 111:6064-119. [PMID: 21936578 PMCID: PMC3233269 DOI: 10.1021/cr200296t] [Citation(s) in RCA: 271] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Paige E Selvy
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37064, USA
| | | | | | | |
Collapse
|
2
|
Eckert D, Williams O, Meseda CA, Merchlinsky M. Vaccinia virus nicking-joining enzyme is encoded by K4L (VACWR035). J Virol 2006; 79:15084-90. [PMID: 16306579 PMCID: PMC1316005 DOI: 10.1128/jvi.79.24.15084-15090.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaccinia virus encodes an enzyme with DNA modifying activity that cleaves and inefficiently cross-links cruciformic DNA. This enzyme is contained within the virion, expressed at late times postinfection, and processes DNA in an energy-independent, Mg2+ ion-independent manner. Viral nuclease activity was measured in extracts from cells infected with well-defined viral mutants. Since some viral extracts lacked nuclease activity, the gene encoding the activity was postulated to be one of the open reading frames absent in the viruses lacking activity. Inducible expression of each candidate open reading frame revealed that only the gene VACWR035, or K4L, was required for nuclease activity. A recombinant virus missing only the open reading frame for K4L lacked nuclease activity. Extracts from a recombinant virus expressing K4L linked to a FLAG polypeptide were able to cleave and cross-link cruciformic DNA. There were no significant differences between the virus lacking K4L and wild-type vaccinia virus WR with respect to infectivity, growth characteristics, or processing of viral replicative intermediate DNA, including both telomeric and cross-linked forms. Purification of the K4L FLAG polypeptide expressed in bacteria yielded protein containing nicking-joining activity, implying that K4L is the only vaccinia virus protein required for the nicking-joining enzymatic activity.
Collapse
Affiliation(s)
- Dawn Eckert
- Laboratory of DNA Viruses, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, HFM-457, 1401 Rockville Pike, Rockville, MD 20852-1448, USA
| | | | | | | |
Collapse
|
3
|
DeMasi J, Du S, Lennon D, Traktman P. Vaccinia virus telomeres: interaction with the viral I1, I6, and K4 proteins. J Virol 2001; 75:10090-105. [PMID: 11581377 PMCID: PMC114583 DOI: 10.1128/jvi.75.21.10090-10105.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 192-kb linear DNA genome of vaccinia virus has covalently closed hairpin termini that are extremely AT rich and contain 12 extrahelical bases. Vaccinia virus telomeres have previously been implicated in the initiation of viral genome replication; therefore, we sought to determine whether the telomeres form specific protein-DNA complexes. Using an electrophoretic mobility shift assay, we found that extracts prepared from virions and from the cytoplasm of infected cells contain telomere binding activity. Four shifted complexes were detected using hairpin probes representing the viral termini, two of which represent an interaction with the "flip" isoform and two with the "flop" isoform. All of the specificity for protein binding lies within the terminal 65-bp hairpin sequence. Viral hairpins lacking extrahelical bases cannot form the shifted complexes, suggesting that DNA structure is crucial for complex formation. Using an affinity purification protocol, we purified the proteins responsible for hairpin-protein complex formation. The vaccinia virus I1 protein was identified as being necessary and sufficient for the formation of the upper doublet of shifted complexes, and the vaccinia virus I6 protein was shown to form the lower doublet of shifted complexes. Competition and challenge experiments confirmed that the previously uncharacterized I6 protein binds tightly and with great specificity to the hairpin form of the viral telomeric sequence. Incubation of viral hairpins with extracts from infected cells also generates a smaller DNA fragment that is likely to reflect specific nicking at the apex of the hairpin; we show that the vaccinia virus K4 protein is necessary and sufficient for this reaction. We hypothesize that these telomere binding proteins may play a role in the initiation of vaccinia virus genome replication and/or genome encapsidation.
Collapse
Affiliation(s)
- J DeMasi
- Program in Molecular Biology, Weill Graduate School of Medical Sciences, Cornell University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
4
|
Nishikawa Y, Iwata A, Xuan X, Nagasawa H, Fujisaki K, Otsuka H, Mikami T. Expression of canine interferon-beta by a recombinant vaccinia virus. FEBS Lett 2000; 466:179-82. [PMID: 10648837 DOI: 10.1016/s0014-5793(99)01785-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A recombinant vaccinia virus expressing canine interferon (IFN)-beta was constructed (vv/cIFN-beta). In rabbit kidney (RK13) and canine A72 cells infected with vv/cIFN-beta, the recombinant canine IFN-beta was detected in both cell extracts and supernatants, and the IFN activities of the culture supernatants were also detected. Inhibition of N-linked glycosylation by tunicamycin treatment indicated that the recombinant canine IFN-beta was modified by N-linked glycosylation in a different way between RK13 and A72 cells, and that N-linked glycosylation is essential for its secretion. The growth of vv/cIFN-beta at a low multiplicity of infection was inhibited by antiviral activity of canine IFN-beta, indicating that this recombinant virus could be used as a suicide viral vector.
Collapse
Affiliation(s)
- Y Nishikawa
- The Research Center for Protozoan Molecular Immunology, Obihiro University, Inadacho, Obihiro, Hokkaido, Japan
| | | | | | | | | | | | | |
Collapse
|
5
|
Palaniyar N, Gerasimopoulos E, Evans DH. Shope fibroma virus DNA topoisomerase catalyses holliday junction resolution and hairpin formation in vitro. J Mol Biol 1999; 287:9-20. [PMID: 10074403 DOI: 10.1006/jmbi.1999.2586] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The telomeres of poxviral chromosomes comprise covalently closed hairpin structures bearing mismatched bases. These hairpins are formed as concatemeric replication intermediates and are processed into mature, unit-length genomes. The structural transitions and enzymes involved in telomere resolution are poorly understood. Here we show that the type I topoisomerase of Shope fibroma virus (SFV) can promote a recombination reaction which converts cloned SFV replication intermediates into hairpin-ended molecules resembling mature poxviral telomeres. Recombinant SFV topoisomerase linearised a palindromic plasmid bearing 1.5 kb of DNA encoding the SFV concatemer junction, at a site near the centre of inverted-repeat symmetry. Most of these linear reaction products bore hairpin tips as judged by denaturing gel electrophoresis. The resolution reaction required palindromic SFV DNA sequences and was inhibited by compounds which block branch migration (MgCl2) or poxviral topoisomerases. The resolution reaction was also slow, needed substantial quantities of topoisomerase, and required that the palindrome be extruded in a cruciform configuration. DNA cleavage experiments identified a pair of suitably oriented topoisomerase recognition sites, 90 bases from the centre of the cloned SFV terminal inverted repeat, which may mark the resolution site. These data suggest a resolution scheme in which branch migration of a Holliday junction through a site occupied by covalently bound topoisomerase molecules, could lead to telomere resolution.
Collapse
Affiliation(s)
- N Palaniyar
- The Department of Molecular Biology & Genetics, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | | | |
Collapse
|
6
|
Gellert M, McBlane JF. Steps along the pathway of V (D)J recombination. Philos Trans R Soc Lond B Biol Sci 1995; 347:43-7. [PMID: 7746852 DOI: 10.1098/rstb.1995.0007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The mechanism of lymphoid-specific gene rearrangement (V(D)J recombination) is discussed, with a focus on the existence of broken DNA intermediates. Older evidence in support of this idea includes the sequence alteration at the recombined junctions and the presence of aberrant recombinants. More recently, broken DNA molecules have been directly detected in recombinationally active cells. The signal sequence ends have normal blunt-ended DNA breaks, but the coding ends have a hairpin (self-joined) structure that provides an explanation for the self-complementary P nucleotide insertions often found after V(D)J joining in the antigen receptor genes.
Collapse
Affiliation(s)
- M Gellert
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
7
|
Abstract
The diversity of immunoglobulins and T cell receptors is largely due to the assembly of functional genes from separate segments. The mechanism by which these gene fragments are joined is starting to be deciphered, with broken DNA molecules that may be intermediates in the reaction providing a new clue.
Collapse
Affiliation(s)
- M Gellert
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892
| |
Collapse
|
8
|
Roth DB, Menetski JP, Nakajima PB, Bosma MJ, Gellert M. V(D)J recombination: broken DNA molecules with covalently sealed (hairpin) coding ends in scid mouse thymocytes. Cell 1992; 70:983-91. [PMID: 1356077 DOI: 10.1016/0092-8674(92)90248-b] [Citation(s) in RCA: 385] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lymphoid cells from scid mice initiate V(D)J recombination normally but have a severely reduced ability to join coding segments. Thymocytes from scid mice contain broken DNA molecules at the TCR delta locus that have coding ends, as well as molecules with signal ends, whereas in normal mice we previously detected only signal ends. Remarkably, these coding (but not signal) ends are sealed into hairpin structures. The formation of hairpins at coding ends may be a universal, early step in V(D)J recombination; this would provide a simple explanation for the origin of P nucleotides in coding joints. These findings may shed light on the mechanism of cleavage and suggest a possible role for the scid factor.
Collapse
Affiliation(s)
- D B Roth
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
9
|
Carpenter MS, DeLange AM. Identification of a temperature-sensitive mutant of vaccinia virus defective in late but not intermediate gene expression. Virology 1992; 188:233-44. [PMID: 1566576 DOI: 10.1016/0042-6822(92)90753-c] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The vaccinia virus conditional-lethal temperature-sensitive (ts) mutant tsC63 is defective in the synthesis of some but not all postreplicative proteins. Synthesis of the temporal "intermediate" class of proteins was unaffected, whereas "late" proteins were absent at the nonpermissive temperature. At the DNA level, DNA synthesis was unaffected, but telomere resolution was severely inhibited. In order to identify the defective gene responsible for this ts defect, we performed marker rescue and DNA sequencing experiments. We localized the lesion to open reading frame (ORF) A1L, which has recently been identified as one of the three intermediate genes required for the transcription of late genes (J.G. Keck, C.J. Baldick, Jr., and B. Moss, (1990). Cell 61, 801-809). S1 nuclease analysis of viral mRNA demonstrated that the ts defect in late protein synthesis was caused by a defect in the transcription of stable mRNA and therefore provides evidence for a role of the A1L gene product during in vivo transcriptional activation of late genes or stabilization of late RNA. Furthermore, the kinetics of early protein synthesis in tsC63-infected cells suggests that, in addition to its role in trans-activation of late genes, intermediate gene expression mediates suppression of early protein synthesis. The telomere resolution defect of this mutant is presumably a secondary consequence of the defect in late gene expression.
Collapse
Affiliation(s)
- M S Carpenter
- Department of Human Genetics, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
10
|
Stuart D, Ellison K, Graham K, McFadden G. In vitro resolution of poxvirus replicative intermediates into linear minichromosomes with hairpin termini by a virally induced Holliday junction endonuclease. J Virol 1992; 66:1551-63. [PMID: 1738203 PMCID: PMC240881 DOI: 10.1128/jvi.66.3.1551-1563.1992] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Available evidence suggests that one or more late viral gene products are involved in processing poxvirus replicative intermediates into mature progeny hairpin-terminated genomes. Cloned versions of the Shope fibroma virus (SFV) replicated telomere in the inverted repeat configuration were used as substrates to assay lysates from poxvirus-infected cells for protein fractions that participate in the resolution of the circular substrate plasmid into a linear minichromosome with viral hairpin termini. An activity in a crude protein fraction obtained from vaccinia virus-infected cells at late times during the replicative cycle was capable of accurately resolving all poxviral inverted repeat replicative intermediates tested. The resolved linear products are identical to the products of in vivo resolution and possessed symmetrical nicks which mapped at the borders of the inverted repeat sequence. Strand-specific nicks were also identified, which mapped within the telomere resolution target sequence known to be required for telomere resolution in vivo. The resolving activity that we have identified is specific to virus-infected cells at late times during replication and cleaves cloned poxviral telomeric substrates in a fashion expected of a classic Holliday junction-resolving enzyme in addition to possessing a telomere resolution target-specific nicking activity. Although a Holliday junction-resolving activity would also be expected to play a role in the recombination induced by poxvirus infection, the appearance of the activity described here only after the commencement of viral late protein synthesis suggests that it functions strictly at late times. Other non-viral Holliday junction analogs can also be cleaved by this extract, suggesting that this component of the resolution activity may also play a role in other viral processes that require cleavage of a branched DNA structure. Thus, we have identified a poxviral activity that may be a part of a protein complex which resolves concatemeric replicative intermediates of viral DNA as well as participate in general recombination late during infection.
Collapse
Affiliation(s)
- D Stuart
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
11
|
Vaccinia virus encodes an active thymidylate kinase that complements a cdc8 mutant of Saccharomyces cerevisiae. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54896-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
12
|
Kerr SM, Smith GL. Vaccinia virus DNA ligase is nonessential for virus replication: recovery of plasmids from virus-infected cells. Virology 1991; 180:625-32. [PMID: 1989387 DOI: 10.1016/0042-6822(91)90076-n] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The essentiality of the vaccinia virus DNA ligase gene, SalF 15R, for virus growth was tested by insertional mutagenesis. A plasmid containing E. coli gpt inserted within a large deletion in the DNA ligase gene was transfected into vaccinia virus-infected cells and recombinant viruses selected by three cycles of plaque purification in the presence of mycophenolic acid (MPA). Surprisingly, in some isolates, which replicated in a manner indistinguishable from wild type (WT) virus, the WT gene was replaced by the gpt allele, demonstrating that the DNA ligase gene is nonessential for growth in cultured cells. In other isolates the entire plasmid was integrated into the virus genome by a single crossover event and a functional copy of the DNA ligase was retained. Southern blot analyses of the latter, drug-resistant viruses indicated extra DNA fragments, of sizes inconsistent with predicted viral structures, which represent the plasmid products of homologous recombination. Hirt extracts from cells infected with such multiply plaque purified virus isolates yielded plasmids that produced ampicillin-resistant colonies after transformation of E. coli. These plasmids were of two structures, representing either the original plasmid used for transfection, or a plasmid containing the WT ligase gene rescued by recombination with the virus genome. Similarly, insertional mutagenesis of the vaccinia virus thymidine kinase (TK) gene with gpt yielded plasmids containing mutant or wild type TK alleles when recombinant viruses were selected in MPA. Such plasmids were not isolated when TK minus viruses were selected in 5-bromodeoxyuridine (BUdR).
Collapse
Affiliation(s)
- S M Kerr
- Sir William Dunn School of Pathology, University of Oxford, United Kingdom
| | | |
Collapse
|
13
|
Merchlinsky M. Resolution of poxvirus telomeres: processing of vaccinia virus concatemer junctions by conservative strand exchange. J Virol 1990; 64:3437-46. [PMID: 2352329 PMCID: PMC249602 DOI: 10.1128/jvi.64.7.3437-3446.1990] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The replication of vaccinia virus proceeds through concatemeric intermediates which are resolved into unit-length DNA. In vaccinia virus-infected cells, plasmids containing the vaccinia virus DNA junction fragment that connects concatemers are resolved into linear minichromosomes of vector DNA flanked by hairpin loops. Resolution requires two copies of a specific nucleotide sequence conserved among poxviruses and found proximal to the hairpin loop. This study demonstrates that orientation of each sequence with respect to the other as well as to the axis of symmetry is critical for resolution, the processing of plasmids containing heterologous pairs of resolution sites is influenced by mismatched nucleotides between the sites, and the vaccinia virus hairpin in the linear minichromosome is a heteroduplex composed of DNA from each strand of the concatemer junction. A model incorporating site-specific recombination and orientated branch migration is proposed to account for resolution of the vaccinia virus concatemer junction.
Collapse
Affiliation(s)
- M Merchlinsky
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892
| |
Collapse
|
14
|
VanSlyke JK, Hruby DE. Posttranslational modification of vaccinia virus proteins. Curr Top Microbiol Immunol 1990; 163:185-206. [PMID: 2242680 DOI: 10.1007/978-3-642-75605-4_7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- J K VanSlyke
- Department of Microbiology, Oregon State University, Corvallis 97331-3804
| | | |
Collapse
|
15
|
Affiliation(s)
- A M DeLange
- Department of Human Genetics, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
16
|
Affiliation(s)
- B Moss
- Laboratory of Viral Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
17
|
Affiliation(s)
- P Traktman
- Department of Cell Biology, Cornell University Medical College, New York, NY 10021
| |
Collapse
|
18
|
Merchlinsky M, Moss B. Nucleotide sequence required for resolution of the concatemer junction of vaccinia virus DNA. J Virol 1989; 63:4354-61. [PMID: 2778879 PMCID: PMC251052 DOI: 10.1128/jvi.63.10.4354-4361.1989] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The mature form of the vaccinia virus genome consists of a linear, 185,000-base-pair (bp) DNA molecule with a 10,000-bp inverted terminal repetition and incompletely base-paired 104-nucleotide hairpin loops connecting the two strands at each end. In concatemeric forms of intracellular vaccinia virus DNA, the inverted terminal repetitions of adjacent genomes form an imperfect palindrome. The apex of this palindrome corresponds in sequence to the double-stranded form of the hairpin loop. Circular plasmids containing palindromic concatemer junction fragments of 250 bp or longer are converted into linear minichromosomes with hairpin ends when they are transfected into vaccinia virus-infected cells, providing a model system with which to study the resolution process. To distinguish between sequence-specific and structural requirements for resolution, plasmids with symmetrical insertions, deletions, and oligonucleotide-directed mutations within the concatemer junction were constructed. A sequence (ATTTAGTGTCTAGAAAAAAA) located on both sides of the apex segment was found to be critical for resolution. Resolution was more efficient when additional nucleotides, TGTG, followed the run of A residues. Both the location and sequence of the proposed resolution signal are highly conserved among poxviruses.
Collapse
Affiliation(s)
- M Merchlinsky
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892
| | | |
Collapse
|
19
|
Greenstein D, Horiuchi K. Double-strand Cleavage and Strand Joining by the Replication Initiator Protein of Filamentous Phage f1. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)63902-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|