1
|
Alrosan M, Tan T, Easa AM, Gammoh S, Kubow S, Alu'datt MH. Mechanisms of molecular and structural interactions between lentil and quinoa proteins in aqueous solutions induced by pH recycling. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mohammad Alrosan
- Food Technology Division School of Industrial Technology Universiti Sains Malaysia Penang 11800 USM Malaysia
- Department of Nutrition and Food Technology Faculty of Agriculture Jordan University of Science and Technology P.O. Box 3030 Irbid 22110 Jordan
| | - Thuan‐Chew Tan
- Food Technology Division School of Industrial Technology Universiti Sains Malaysia Penang 11800 USM Malaysia
| | - Azhar Mat Easa
- Food Technology Division School of Industrial Technology Universiti Sains Malaysia Penang 11800 USM Malaysia
| | - Sana Gammoh
- Department of Nutrition and Food Technology Faculty of Agriculture Jordan University of Science and Technology P.O. Box 3030 Irbid 22110 Jordan
| | - Stan Kubow
- School of Human Nutrition Macdonald Campus McGill University 21,111 Lakeshore Road Ste‐Anne‐De‐Bellevue QC H9X 3V9 Canada
| | - Muhammad H. Alu'datt
- Department of Nutrition and Food Technology Faculty of Agriculture Jordan University of Science and Technology P.O. Box 3030 Irbid 22110 Jordan
| |
Collapse
|
2
|
Alrosan M, Tan TC, Easa AM, Gammoh S, Alu'datt MH. Molecular forces governing protein-protein interaction: Structure-function relationship of complexes protein in the food industry. Crit Rev Food Sci Nutr 2021; 62:4036-4052. [PMID: 33455424 DOI: 10.1080/10408398.2021.1871589] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The application of protein-protein interaction (PPI) has been widely used in various industries, such as food, nutraceutical, and pharmaceutical. A deeper understanding of PPI is needed, and the molecular forces governing proteins and their interaction must be explained. The design of new structures with improved functional properties, e.g., solubility, emulsion, and gelation, has been fueled by the development of structural and colloidal building blocks. In this review, the molecular forces of protein structures are discussed, followed by the relationship between molecular force and structure, ways of a bind of proteins together in solution or at the interface, and functional properties. A more detailed look is thus taken at the relationship between the various influencing factors on molecular forces involved in PPI. These factors include protein properties, such as types, concentration, and mixing ratio, and solvent conditions, such as ionic strength and pH. This review also summarizes methods tha1t are capable of identifying molecular forces in protein and PPI, as well as characterizing protein structure.
Collapse
Affiliation(s)
- Mohammad Alrosan
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia.,Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Thuan-Chew Tan
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Azhar Mat Easa
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Sana Gammoh
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Muhammad H Alu'datt
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
3
|
Ma W, Wang T, Wang J, Wu D, Wu C, Du M. Enhancing the thermal stability of soy proteins by preheat treatment at lower protein concentration. Food Chem 2020; 306:125593. [PMID: 31610327 DOI: 10.1016/j.foodchem.2019.125593] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 09/23/2019] [Accepted: 09/23/2019] [Indexed: 11/28/2022]
Abstract
The heat-induced aggregation of edible proteins has been regarded as one of the critical challenges for their application in protein-enriched beverages. Therefore, the formulation of thermal stable proteins to improve the stability of these beverages upon heating is highly desired. In this study, soy proteins (SPs) with enhanced heat stability were obtained by low-concentration-preheating (LCPH). Results from reheating of the above samples showed that pretreatment of SPs at low concentrations (≤1.0%, w/v) increased their resistance against aggregation. Additionally, when the suspensions of the particles were reheated at 10% (w/v) protein concentration, no gelation was found for samples prepared by LCPH, indicating collapsed protein-protein interactions, whereas gelled suspensions were obtained for native SPs and samples prepared by preheating at higher protein concentrations (≥2.0%, w/v). Furthermore, suspensions of particles prepared at lower protein concentration showed lower viscosities and higher flow behavior index values before and after reheat treatment. These findings highlighted that LCPH would provide fundamental information on the application of SPs in high protein beverages.
Collapse
Affiliation(s)
- Wuchao Ma
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Tao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jiamei Wang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Di Wu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Chao Wu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Ming Du
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
4
|
Wang R, Xu P, Chen Z, Zhou X, Wang T. Complexation of rice proteins and whey protein isolates by structural interactions to prepare soluble protein composites. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.11.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Wang T, Xu P, Chen Z, Wang R. Mechanism of structural interplay between rice proteins and soy protein isolates to design novel protein hydrocolloids. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.06.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Toward water-solvation of rice proteins via backbone hybridization by casein. Food Chem 2018; 258:278-283. [DOI: 10.1016/j.foodchem.2018.03.084] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/15/2018] [Accepted: 03/20/2018] [Indexed: 11/24/2022]
|
7
|
Wang T, Xu P, Chen Z, Zhou X, Wang R. Alteration of the structure of rice proteins by their interaction with soy protein isolates to design novel protein composites. Food Funct 2018; 9:4282-4291. [DOI: 10.1039/c8fo00661j] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The RPs and SPIs were fabricated into nanoscale composites through synergistic structural interactions.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
- National Engineering Laboratory for Cereal Fermentation Technology
| | - Pengcheng Xu
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
- National Engineering Laboratory for Cereal Fermentation Technology
| | - Zhengxing Chen
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
- National Engineering Laboratory for Cereal Fermentation Technology
| | - Xing Zhou
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
- National Engineering Laboratory for Cereal Fermentation Technology
| | - Ren Wang
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
- National Engineering Laboratory for Cereal Fermentation Technology
| |
Collapse
|
8
|
Priyadarshini M, Bano B. Conformational changes during amyloid fibril formation of pancreatic thiol proteinase inhibitor: effect of copper and zinc. Mol Biol Rep 2011; 39:2945-55. [DOI: 10.1007/s11033-011-1056-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 06/08/2011] [Indexed: 11/30/2022]
|
9
|
Cellini B, Montioli R, Voltattorni CB. Human liver peroxisomal alanine:glyoxylate aminotransferase: characterization of the two allelic forms and their pathogenic variants. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:1577-84. [PMID: 21176891 DOI: 10.1016/j.bbapap.2010.12.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 12/06/2010] [Accepted: 12/10/2010] [Indexed: 11/15/2022]
Abstract
The hepatic peroxisomal alanine:glyoxylate aminotransferase (AGT) is a pyridoxal 5'-phosphate (PLP)-enzyme whose deficiency is responsible for Primary Hyperoxaluria Type 1 (PH1), an autosomal recessive disorder. In the last few years the knowledge of the characteristics of AGT and the transfer of this information into some pathogenic variants have significantly contributed to the improvement of the understanding at the molecular level of the PH1 pathogenesis. In this review, the spectroscopic features, the coenzyme's binding affinity, the steady-state kinetic parameters as well as the sensitivity to thermal and chemical stress of the two allelic forms of AGT, the major (AGT-Ma) and the minor (AGT-Mi) allele, have been described. Moreover, we summarize the characterization obtained by means of biochemical and bioinformatic analyses of the following PH1-causing variants in the recombinant purified forms: G82E associated with the major allele, F152I encoded on the background of the minor allele, and the G41 mutants which co-segregate either with the major allele (G41R-Ma and G41V-Ma) or with the minor allele (G41R-Mi). The data have been correlated with previous clinical and cell biology results, which allow us to (i) highlight the functional differences between AGT-Ma and AGT-Mi, (ii) identify the structural and functional molecular defects of the pathogenic variants, (iii) improve the correlation between the genotype and the enzymatic phenotype, (iv) foresee or understand the molecular basis of the responsiveness to pyridoxine treatment of patients bearing these mutations, and (v) pave the way for new treatment strategies. This article is part of a Special Issue entitled: Pyridoxal Phospate Enzymology.
Collapse
Affiliation(s)
- Barbara Cellini
- Dipartimento di Scienze della Vita e della Riproduzione, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università degli Studi di Verona, Strada Le Grazie, 8 37134 Verona, Italy
| | | | | |
Collapse
|
10
|
Role of low native state kinetic stability and interaction of partially unfolded states with molecular chaperones in the mitochondrial protein mistargeting associated with primary hyperoxaluria. Amino Acids 2010; 41:1233-45. [PMID: 21103899 DOI: 10.1007/s00726-010-0801-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 10/28/2010] [Indexed: 10/18/2022]
Abstract
The G170R variant of the alanine:glyoxylate aminotransferase (AGT) is the most common pathogenic allele associated to primary hyperoxaluria type I (PH1), leading to mitochondrial mistargeting when combined with the P11L and I340M polymorphisms (minor allele; AGT(LM)). In this work, we have performed a comparative analysis on the conformation, unfolding energetics and interaction with molecular chaperones between AGT(wt), AGT(LM) and AGT(LRM) (G170R in the minor allele) proteins. Our results show that these three variants share similar conformational and functional properties as folded dimers. However, kinetic stability analyses showed a ≈1,000-fold increased unfolding rate for apo-AGT(LRM) compared to apo-AGT(wt), as well as a reduced folding efficiency upon expression in Escherichia coli. Pyridoxal 5'-phosphate (PLP)-binding provided a 4-5 orders of magnitude enhancement of the kinetic stability for all variants, suggesting a role for kinetic stabilization in pyridoxine-responsive PH1. Conformational studies at mild acidic pH and moderate guanidium concentrations showed the formation of a molten-globule-like unfolding intermediate in all three variants, which do not reactivate to the native state and strongly interact with Hsc70 and Hsp90 chaperones. Additional expression analyses in a mammalian cell-free system at neutral pH showed enhanced interaction of AGT(LRM) with Hsc70 and Hsp90 proteins compared to AGT(wt), suggesting kinetic trapping of the mutant by chaperones along the folding process. Overall, our results suggest that mitochondrial mistargeting of AGT(LRM) may involve the presentation of AGT partially folded states to the mitochondrial import machinery by molecular chaperones, which would be facilitated by the low native state kinetic stability (partially corrected by PLP binding) and kinetic trapping during folding of the AGT(LRM) variant with molecular chaperones.
Collapse
|
11
|
Mu J, Li L, Guo Y, Qiu Z, Tan X. Spectroscopic study on acid-induced unfolding and refolding of apo-neuroglobin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2010; 75:1600-1604. [PMID: 20227336 DOI: 10.1016/j.saa.2010.02.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 01/23/2010] [Accepted: 02/11/2010] [Indexed: 05/28/2023]
Abstract
pH-induced unfolding and refolding of apo-neuroglobin (apo-Ngb) were investigated by UV, fluorescence, circular dichroism (CD) spectra and light scattering measurements. Results revealed that apo-Ngb became partially unfolded at around pH 5.0, with evidences from a red shift in the fluorescence spectra, a decrease in the far-UV CD and a sharp peak in the light scattering intensity. Further lowering of the pH reversed these effects, suggesting that apo-Ngb folds back to a compact state. At pH 2.0, the apo-Ngb forms a folding intermediate known as molten globule (MG), which is possessed of native-like secondary structure and almost complete loss of tertiary structure. Based on these results, the acid-induced denaturation pathway of apo-Ngb can be illustrated from the native state (N), via a partially unfolded state (U(A)) to the molten globule state (MG).
Collapse
Affiliation(s)
- Jianshuai Mu
- School of Chemistry and Chemical Engineering, Liaocheng University, No. 1, Hunan Road, Liaocheng 252059, Shandong Province, PR China
| | | | | | | | | |
Collapse
|
12
|
Santra MK, Panda D. Acid-induced loss of functional properties of bacterial cell division protein FtsZ: evidence for an alternative conformation at acidic pH. Proteins 2007; 67:177-88. [PMID: 17243150 DOI: 10.1002/prot.21178] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Several types of bacteria live in highly acidic environments. Since the assembly of FtsZ is important for bacterial cytokinesis, the effects of pH on the assembly and structural properties of FtsZ were examined. FtsZ retained GTP binding ability but lost GTPase activity at pH 2.5. In the presence of GTP, FtsZ formed protofilaments at pH 7 while it formed aggregates instead of protofilaments at pH 2.5, indicating that GTP hydrolysis is important for the assembly of FtsZ into protofilaments. Further, the acid-inactivated state of FtsZ recovered its structural and functional properties upon refolding at pH 7, indicating that the cellular functions of FtsZ may be restored after removal of the external stress. In addition, the affinity of 1-anilinonaphthalene-8-sulfonic acid (ANS) binding to FtsZ was found to be higher at pH 2.5 than at pH 7. FtsZ-ANS complex had a higher quantum yield and lifetime at pH 2.5 than at pH 7. However, the secondary structures of FtsZ were similar at pH 7 and 2.5, indicating that FtsZ attained an alternatively folded state (A) at pH 2.5, which has some characteristics of a molten-globule-like state. The A state was more stable than the native state (N) against urea-induced unfolding. The transition from N to A state involves the formation of aggregates of FtsZ (I). The association of FtsZ monomers occurred in the narrow pH range (3.2-2.8) and it was found to be a fully reversible process. The results suggest that a productive intermediate (I) forms in the acid-induced unfolding pathway of FtsZ and that the unfolding pathway may be minimally described as N <==> I <==> A.
Collapse
Affiliation(s)
- Manas K Santra
- The School of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | |
Collapse
|
13
|
Deu E, Kirsch JF. Cofactor-Directed Reversible Denaturation Pathways: The Cofactor-Stabilized Escherichia coli Aspartate Aminotransferase Homodimer Unfolds through a Pathway That Differs from That of the Apoenzyme. Biochemistry 2007; 46:5819-29. [PMID: 17441730 DOI: 10.1021/bi602632d] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
While the urea-mediated unfolding pathway of the Escherichia coli aspartate aminotransferase (eAATase) homodimer proceeds through a reversible three-state process with a partially folded dimeric intermediate, D D* 2U (E. Deu and J. F. Kirsch, accompanying paper), that of a cofactor-stabilized form differs. Pyridoxal phosphate, which binds at the intersubunit active sites, stabilizes the native form by 6 kcal mol-1 and dissociates during the D <==> D* transition. Reductive trapping of the cofactor to a nondissociable derivative (PPL-eAATase) precludes the formation of D*. A novel monomeric intermediate (M'-PPL) with 70% of the native secondary structure (circular dichroism) was identified in the unfolding pathway of PPL-eAATase: D-PPL2 <==> 2M'-PPL <==> 2U-PPL. The combined results define two structural regions with distinct stabilities: the active site region (ASR) and the generally more stable, dimerization region (DMR). The DMR includes the key intersubunit contacts. It is responsible for the multimeric nature of D*, and its disorder leads to dimer dissociation. Selective strengthening of the ASR-cofactor interactions by cofactor trapping reverses the relative stabilities of the two regions (from DMR > ASR in the apoenzyme to ASR > DMR in PPL-eAATase) and results in a reordering of the eAATase denaturation pathway.
Collapse
Affiliation(s)
- Edgar Deu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720-3206, USA
| | | |
Collapse
|
14
|
Artigues A, Iriarte A, Martinez-Carrion M. Identification of Hsc70 binding sites in mitochondrial aspartate aminotransferase. Arch Biochem Biophys 2006; 450:30-8. [PMID: 16631106 DOI: 10.1016/j.abb.2006.03.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 03/21/2006] [Accepted: 03/22/2006] [Indexed: 11/27/2022]
Abstract
Hsc70 binds acid-unfolded mitochondrial aspartate aminotransferase (mAAT), forming either soluble or insoluble complexes depending on the relative concentrations of the proteins. Using partial proteolysis of Hsc70-mAAT complexes in combination with MALDI-TOF mass spectrometry, we have identified several potential Hsc70-binding regions in the mAAT polypeptide. Only one mAAT peptide was found bound to Hsc70 in the insoluble complexes while nine peptides arising from eight sequence regions of mAAT were found associated with Hsc70 in the soluble complexes. Most of these binding sites map to secondary structure elements, particularly alpha-helix, that are partly exposed on the surface of the folded structure. These results suggest that these peptide regions must not only be exposed but still in a flexible extended conformation in the mAAT folding intermediates recognized by Hsc70. Thus, for mAAT the discrimination between native and non-native structures by Hsc70 may rely more on the level of structure of the binding sites than on their degree of exposure to the solvent in the native structure.
Collapse
Affiliation(s)
- Antonio Artigues
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, 64110-2499, USA
| | | | | |
Collapse
|
15
|
Bertoldi M, Cellini B, Laurents D, Borri Voltattorni C. Folding pathway of the pyridoxal 5'-phosphate C-S lyase MalY from Escherichia coli. Biochem J 2005; 389:885-98. [PMID: 15823094 PMCID: PMC1180740 DOI: 10.1042/bj20050279] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
MalY from Escherichia coli is a bifunctional dimeric PLP (pyridoxal 5'-phosphate) enzyme acting as a beta-cystathionase and as a repressor of the maltose system. The spectroscopic and molecular properties of the holoenzyme, in the untreated and NaBH4-treated forms, and of the apoenzyme have been elucidated. A systematic study of the urea-induced unfolding of MalY has been monitored by gel filtration, cross-linking, ANS (8-anilino-1-naphthalenesulphonic acid) binding and by visible, near- and far-UV CD, fluorescence and NMR spectroscopies under equilibrium conditions. Unfolding proceeds in at least three stages. The first transition, occurring between 0 and 1 M urea, gives rise to a partially active dimeric species that binds PLP. The second equilibrium transition involving dimer dissociation, release of PLP and loss of lyase activity leads to the formation of a monomeric equilibrium intermediate. It is a partially unfolded molecule that retains most of the native-state secondary structure, binds significant amounts of ANS (a probe for exposed hydrophobic surfaces) and tends to self-associate. The self-associated aggregates predominate at urea concentrations of 2-4 M for holoMalY. The third step represents the complete unfolding of the enzyme. These results when compared with the urea-induced unfolding profiles of apoMalY and NaBH4-reduced holoenzyme suggest that the coenzyme group attached to the active-site lysine residue increases the stability of the dimeric enzyme. Both holo- and apo-MalY could be successfully refolded into the active enzyme with an 85% yield. Further refolding studies suggest that large misfolded soluble aggregates that cannot be refolded could be responsible for the incomplete re-activation.
Collapse
Affiliation(s)
- Mariarita Bertoldi
- *Dipartimento di Scienze Neurologiche e della Visione, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università degli Studi di Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Barbara Cellini
- *Dipartimento di Scienze Neurologiche e della Visione, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università degli Studi di Verona, Strada Le Grazie, 8, 37134 Verona, Italy
| | - Douglas V. Laurents
- †Istituto de Quimica-Fisica ‘Rocasolano’, Consejo Superior de Investigaciones Cientificas, Serrano 119, E-28006 Madrid, Spain
| | - Carla Borri Voltattorni
- *Dipartimento di Scienze Neurologiche e della Visione, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università degli Studi di Verona, Strada Le Grazie, 8, 37134 Verona, Italy
- To whom correspondence should be addressed (email )
| |
Collapse
|
16
|
Ceolín M, Colombo US, Frate MC, Clérico E, Antón E, Ermácora MR. Head-to-tail and side-by-side oligomerization of human carbonic anhydrase II: a small angle X-ray scattering study. Int J Biol Macromol 2001; 28:143-50. [PMID: 11164231 DOI: 10.1016/s0141-8130(00)00155-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Solvent-induced directional aggregation of human carbonic anhydrase II (hCA) was studied by small angle X-ray scattering and fluorescence and fourth-derivative ultraviolet absorption spectroscopy. We propose that hCA at 5 mg ml(-1) in pure water forms head-to-tail oligomers built up, on average, by four to five monomers. At higher protein concentrations, the oligomers associate pair-wise and side-by-side. Spectroscopic evidence suggests that the subunits forming the aggregates are tightly folded, but with a structure that differs, at least locally, from the native state. A more complex aggregation pattern was observed under solvent conditions that favor the removal of zinc from the enzyme-active site, conditions under which the subunits are significantly less compact than in water. hCA may provide a useful model to investigate the effects of additives and genetic manipulation on protein aggregation.
Collapse
Affiliation(s)
- M Ceolín
- Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C.67, 1900, La Plata, Argentina.
| | | | | | | | | | | |
Collapse
|
17
|
Bettati S, Benci S, Campanini B, Raboni S, Chirico G, Beretta S, Schnackerz KD, Hazlett TL, Gratton E, Mozzarelli A. Role of pyridoxal 5'-phosphate in the structural stabilization of O-acetylserine sulfhydrylase. J Biol Chem 2000; 275:40244-51. [PMID: 10995767 DOI: 10.1074/jbc.m007015200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteins belonging to the superfamily of pyridoxal 5'-phosphate-dependent enzymes are currently classified into three functional groups and five distinct structural fold types. The variation within this enzyme group creates an ideal system to investigate the relationships among amino acid sequences, folding pathways, and enzymatic functions. The number of known three-dimensional structures of pyridoxal 5'-phosphate-dependent enzymes is rapidly increasing, but only for relatively few have the folding mechanisms been characterized in detail. The dimeric O-acetylserine sulfhydrylase from Salmonella typhimurium belongs to the beta-family and fold type II group. Here we report the guanidine hydrochloride-induced unfolding of the apo- and holoprotein, investigated using a variety of spectroscopic techniques. Data from absorption, fluorescence, circular dichroism, (31)P nuclear magnetic resonance, time-resolved fluorescence anisotropy, and photon correlation spectroscopy indicate that the O-acetylserine sulfhydrylase undergoes extensive disruption of native secondary and tertiary structure before monomerization. Also, we have observed that the holo-O-acetylserine sulfhydrylase exhibits a greater conformational stability than the apoenzyme form. The data are discussed in light of the fact that the role of the coenzyme in structural stabilization varies among the pyridoxal 5'-phosphate-dependent enzymes and does not seem to be linked to the particular enzyme fold type.
Collapse
Affiliation(s)
- S Bettati
- Institute of Physical Sciences, Institute of Biochemical Sciences, and National Institute for the Physics of Matter, University of Parma, Parma 43100, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Mattingly JR, Yañez AJ, Martinez-Carrion M. The folding of nascent mitochondrial aspartate aminotransferase synthesized in a cell-free extract can be assisted by GroEL and GroES. Arch Biochem Biophys 2000; 382:113-22. [PMID: 11051104 DOI: 10.1006/abbi.2000.2003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
At 30 degrees C, the precursor to mitochondrial aspartate aminotransferase (pmAspAT) cannot fold after synthesis in rabbit reticulocyte lysate (RRL), a model for studying intracellular protein folding. However, it folds rapidly once imported into mitochondria. Guanidinium chloride denatured pmAspAT likewise cannot refold at 30 degrees C in a defined in vitro system. However, it refolds rapidly and in good yield in the presence of the intramitochondrial chaperone homologues GroEL and GroES. In this report, we demonstrate that GroEL and GroES can also facilitate the folding of nascent pmAspAT in reticulocyte lysate under conditions where it otherwise would not. When added alone, GroEL arrests the slow folding of nascent pmAspAT and inhibits import into mitochondria. These effects are significantly reversed by adding GroES. These observations suggest that added GroEL participates in an equilibrium with endogenous chaperones in the cytosol which inhibit folding and promote import competence. Native gel electrophoresis suggests that nascent pmAspAT exists in RRL as a heterogeneous population of partially folded species, some of which bind to added GroEL more readily than others. The GroEL-trapped species appear to be among the productive pmAspAT folding intermediates formed in RRL or they at least appear to equilibrate with these intermediates, since they become import competent after GroES-stimulated release from GroEL.
Collapse
Affiliation(s)
- J R Mattingly
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City 64110, USA
| | | | | |
Collapse
|
19
|
Chiaraluce R, Consalvi V, Cavallo S, Ilari A, Stefanini S, Chiancone E. The unusual dodecameric ferritin from Listeria innocua dissociates below pH 2.0. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:5733-41. [PMID: 10971584 DOI: 10.1046/j.1432-1327.2000.01639.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The stability of the dodecameric Listeria innocua ferritin at low pH values has been investigated by spectroscopic methods and size-exclusion chromatography. The dodecamer is extremely stable in comparison to the classic ferritin tetracosamer and preserves its quaternary assembly at pH 2.0, despite an altered tertiary structure. Below pH 2.0, dissociation into dimers occurs and is paralleled by the complete loss of tertiary structure and a significant decrease in secondary structure elements. Dissociation of dimers into monomers occurs only at pH 1.0. Addition of NaCl to the protein at pH 2.0 induces structural changes similar to those observed upon increasing the proton concentration, although dissociation proceeds only to the dimer stage. Addition of sulfate at pH values >/= 1.5 prevents the dissociation of the dodecamer. The role played by hydrophilic and hydrophobic interactions in determining the resistance to dissociation of L. innocua ferritin at low pH is discussed in the light of its three-dimensional structure.
Collapse
Affiliation(s)
- R Chiaraluce
- Department of Biochemical Sciences and CNR Center of Molecular Biology, Department of Biochemical Sciences, 'A. Rossi Fanelli', University La Sapienza, Roma, Italy
| | | | | | | | | | | |
Collapse
|
20
|
Dragani B, Cocco R, Principe DR, Cicconetti M, Aceto A. Structural characterization of acid-induced intermediates of human glutathione transferase P1-1. Int J Biochem Cell Biol 2000; 32:725-36. [PMID: 10856703 DOI: 10.1016/s1357-2725(00)00018-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The acid denaturation of human glutathione transferase P1-1 (hGSTP1-1) has been performed to investigate the unfolding intermediates of the protein and their possible involvement in the refolding mechanism. The acid-induced structures of GSTP1-1 have been characterized by activity, gel filtration, intrinsic fluorescence and far-u.v. circular dichroism (CD) techniques. Because of the non-identity of the different transitions monitored, the acid denaturation of hGSTP1-1 appears to be a multistep process during which several intermediates coexist in equilibrium. The dependence of inactivation on the protein concentration, as well as gel-filtration experiments, indicate that the inactivation transition, centred at about pH 4.0, corresponds to the monomerization of the protein. At pH 2.0, when the enzyme is completely inactive, the protein retains a small, but significant, amount of secondary structure. This means that the dimeric arrangement of the molecule is important for maintaining the native-like secondary structure of the monomer. The results show that, at low pH, the compact state of the GST monomer, even upon the addition of salts, does not possess native-like secondary structure as described for many monomeric proteins (molten globule). In the presence of physiological concentrations of salts, the protein solution at pH 2.0 leads to a dead-end aggregation process, suggesting that this compact state cannot represent a productive intermediate of the refolding pathway.
Collapse
Affiliation(s)
- B Dragani
- Dipartimento di Scienze Biomediche, Università G. D'Annunzio, Via dei Vestini, 31, 66100 Chieti, Italy
| | | | | | | | | |
Collapse
|
21
|
Doñate F, Artigues A, Iriarte A, Martinez-Carrion M. Opposite behavior of two isozymes when refolding in the presence of non-ionic detergents. Protein Sci 1998; 7:1811-20. [PMID: 10082379 PMCID: PMC2144090 DOI: 10.1002/pro.5560070817] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
GroEL has a greater affinity for the mitochondrial isozyme (mAAT) of aspartate aminotransferase than for its cytosolic counterpart (cAAT) (Mattingly JR Jr, Iriarte A, Martinez-Carrion M, 1995, J Biol Chem 270:1138-1148), two proteins that share a high degree of sequence similarity and an almost identical spatial structure. The effect of detergents on the refolding of these large, dimeric isozymes parallels this difference in behavior. The presence of non-ionic detergents such as Triton X-100 or lubrol at concentrations above their critical micelle concentration (CMC) interferes with reactivation of mAAT unfolded in guanidinium chloride but increases the yield of cAAT refolding at low temperatures. The inhibitory effect of detergents on the reactivation of mAAT decreases progressively as the addition of detergents is delayed after starting the refolding reaction. The rate of disappearance of the species with affinity for binding detergents coincides with the slowest of the two rate-limiting steps detected in the refolding pathway of mAAT. Limited proteolysis studies indicate that the overall structure of the detergent-bound mAAT resembles that of the protein in a complex with GroEL. The mAAT folding intermediates trapped in the presence of detergents can resume reactivation either upon dilution of the detergent below its CMC or by adding beta-cyclodextrin. Thus, isolation of otherwise transient productive folding intermediates for further characterization is possible through the use of detergents.
Collapse
Affiliation(s)
- F Doñate
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, 64110-2499, USA
| | | | | | | |
Collapse
|
22
|
Venkatesha B, Udgaonkar JB, Rao NA, Savithri HS. Reversible unfolding of sheep liver tetrameric serine hydroxymethyltransferase. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1384:141-52. [PMID: 9602099 DOI: 10.1016/s0167-4838(98)00013-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Equilibrium unfolding studies of the tetrameric serine hydroxymethyltransferase from sheep liver (SHMT, E.C.2.1.2.1) revealed that the holoenzyme, apoenzyme and the sodium borohydride-reduced holoenzyme had random coil structures in 8 M urea. In the presence of a non-ionic detergent, Brij-35, and polyethylene glycol, the 8 M urea unfolded protein could be completely (> 95%) refolded by a 20-fold dilution. The refolded enzyme was completely active and kinetically similar to the native enzyme. The midpoint of inactivation of the enzyme occurred at a urea concentration that was much below the urea concentration required to bring about a substantial loss of secondary structure. This observation suggested the occurrence of a 'predenaturation transition' in the unfolding pathway. The equilibrium urea-induced denaturation curve of holoSHMT showed two transitions. The midpoint of the first transition was 1.2 M, which was comparable to that required for 50% decrease in enzyme activity. Further, 50% release of the pyridoxal-5'-phosphate (PLP) from the active site, as monitored by decrease in absorbance at 425 nm, also occurred at about 1.2 M urea. Size exclusion chromatography showed that the tetrameric SHMT unfolds via the intermediate formation of dimers. This dissociation occurred at a much lower urea concentration (0.15 M) in the unfolding of the apoenzyme, and at a higher urea concentration (1.2 M) in the unfolding of holoenzyme, thereby demonstrating the involvement of PLP in stabilizing the quaternary structure of the enzyme. Size exclusion chromatography of the refolding intermediates demonstrated that the cofactor shifts the equilibrium towards the formation of the active tetramer. The reduced holoenzyme could also be refolded to its native structure, as observed by fluorescence and CD measurements, indicating that the presence of covalently linked PLP does not affect refolding. The results demonstrate clearly that the dimer is an intermediate in the urea-induced equilibrium unfolding/refolding of sheep liver SHMT; and PLP, in addition to its role in catalysis, is required for the stabilization of the tetrameric structure of the enzyme.
Collapse
Affiliation(s)
- B Venkatesha
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | | | | |
Collapse
|
23
|
Chen CH, Wu SJ, Martin DL. Structural characteristics of brain glutamate decarboxylase in relation to its interaction and activation. Arch Biochem Biophys 1998; 349:175-82. [PMID: 9439596 DOI: 10.1006/abbi.1997.0457] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The conformation, stability, cofactor interactions, and activation of a recombinant 65-kDa form of rat brain glutamate decarboxylase (GAD65) were investigated by using UV/visible spectrophotometry, fluorescence spectroscopy, circular dichroism, and differential scanning microcalorimetry. The enzyme was prepared from Sf9 insect cells infected with a recombinant baculovirus containing the entire GAD65 coding region. The UV/visible absorption spectrum of purified holoenzyme (holoGAD) exhibits two peaks in the range of 300-450 nm, which are due to the formation of a Schiff base when pyridoxal phosphate (pyridoxal-P) binds to GAD. Fluorescence emission intensity (excited at 295 or 280 nm) was substantially enhanced when pyridoxal-P was removed from holoGAD and quenched when pyridoxal-P was added to the apoenzyme (apoGAD). These observations implied that a significant enzyme conformational change occurs during the formation of holoGAD. Circular dichroism provided additional evidence for a conformational change, as the ellipticity of both negative (202-242 nm) and positive (188-202 nm) bands decreased when pyridoxal-P was removed from holoGAD. Secondary structure determination estimated that holoGAD contains a higher content of alpha-helix (34% versus 24%) and a lower content of beta-sheet (18% versus 30%) than apo-GAD. Differential scanning microcalorimetry indicated that holoGAD exhibits a much larger enthalpy and a 3 degrees C higher temperature of thermal unfolding than apoGAD, suggesting that holoGAD has a much tighter conformation and greater stability than apoGAD. A model describing the interaction of pyridoxal-P with GAD is presented, which proposes that an intermediate complex involving ionic interaction between the phosphate group of pyridoxal-P and the positive, charged residues in the active site of GAD maintains the pyridoxal-P molecule in an appropriate position in the active center. Simultaneously, this complex formation is accompanied by a moderate enzyme conformational change, providing a favorable configuration that enables the epsilon-amino of the active-site lysine to react with the aldehyde group of pyridoxal-P. The formation of active holoGAD involves a large enzyme conformational change, which leads to increased stability.
Collapse
Affiliation(s)
- C H Chen
- Wadsworth Center, New York State Department of Health, Albany, USA
| | | | | |
Collapse
|
24
|
Artigues A, Iriarte A, Martinez-Carrion M. Refolding intermediates of acid-unfolded mitochondrial aspartate aminotransferase bind to hsp70. J Biol Chem 1997; 272:16852-61. [PMID: 9201992 DOI: 10.1074/jbc.272.27.16852] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The cytosolic (cAAT) and mitochondrial (mAAT) isozymes of eukaryotic aspartate aminotransferase share a high degree of sequence identity and almost identical three-dimensional structure. The rat liver proteins can be refolded and reassembled into active dimers after unfolding at low pH. However, refolding of the mitochondrial form after unfolding at pH 2.0 is arrested in the presence of hsp70, whereas this chaperone does not affect the refolding of the cytosolic isozyme unfolded under similar conditions. To elucidate the nature of the differential interaction between hsp70 and the two transaminase forms, we have characterized their refolding from their acid-unfolded states. The recovery of activity of the cytosolic enzyme is monophasic and can be adequately described by a single first-order reaction. By contrast, two sequential first-order rate-limiting steps can be detected for the refolding and reactivation of the mitochondrial protein. The overall refolding pathway of mAAT includes a very fast collapse to an intermediate with 80% of the secondary structure of the active dimer. This is followed by a slow isomerization to form assembly-competent monomers that rapidly associate to form an inactive dimer and a final structural rearrangement of the dimer to the native conformation. Analysis of the interaction of hsp70 with intermediates along the folding pathway of mAAT shows that the polypeptide loses its ability to bind to the chaperone after it has proceeded through the first isomerization/fast dimerization steps. Thus it appears that only the first collapsed intermediate states in the folding of mAAT bind hsp70. By contrast a faster refolding of cAAT from this collapsed state could explain, at least in part, the inability of hsp70 to bind this isozyme.
Collapse
Affiliation(s)
- A Artigues
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110-2499, USA
| | | | | |
Collapse
|
25
|
Chiaraluce R, Schwerdtfeger RM, Scandurra R, Antranikian G, Consalvi V. Acid-induced disassembly of glutamate dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus occurs below pH 2.0. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 247:224-30. [PMID: 9249030 DOI: 10.1111/j.1432-1033.1997.00224.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The stability of the hexameric glutamate dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus at low pH values has been studied by activity assay, spectroscopic methods, size-exclusion chromatography and ultracentrifugation analysis. The enzyme is exceptionally stable and at pH 2.0 its hexameric assembly is preserved despite the changes observed in its tertiary structure. Below pH 1.7 dissociation into monomers starts and is accompanied by a progressive loss of tertiary interactions. Dissociation intermediate(s) were not detectable. At pH 2.0 the addition of NaCl causes the same structural changes observed upon further addition of protons. The monomeric state of the enzyme at pH 1.0 shows a significant content of native secondary structure and can be unfolded by guanidinium chloride. The role of electrostatic interactions in the high stability of the enzyme structure at low pH values is discussed.
Collapse
Affiliation(s)
- R Chiaraluce
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Università La Sapienza, Roma, Italy
| | | | | | | | | |
Collapse
|
26
|
Griffin KJ, Dwyer TM, Manning MC, Meyer JD, Carpenter JF, Frerman FE. alphaT244M mutation affects the redox, kinetic, and in vitro folding properties of Paracoccus denitrificans electron transfer flavoprotein. Biochemistry 1997; 36:4194-202. [PMID: 9100014 DOI: 10.1021/bi962572v] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Threonine 244 in the alpha subunit of Paracoccus denitrificans transfer flavoprotein (ETF) lies seven residues to the amino terminus of a proposed dinucleotide binding motif for the ADP moiety of the FAD prosthetic group. This residue is highly conserved in the alpha subunits of all known ETFs, and the most frequent pathogenic mutation in human ETF encodes a methionine substitution at the corresponding position, alphaT266. The X-ray crystal structures of human and P. denitrificans ETFs are very similar. The hydroxyl hydrogen and a backbone amide hydrogen of alphaT266 are hydrogen bonded to N(5) and C(4)O of the flavin, respectively, and the corresponding alphaT244 has the same structural role in P. denitrificans ETF. We substituted a methionine for T244 in the alpha subunit of P. denitrificans ETF and expressed the mutant ETF in Escherichia coli. The mutant protein was purified, characterized, and compared with wild type P. denitrificans ETF. The mutation has no significant effect on the global structure of the protein as inferred from visible and near-ultraviolet absorption and circular dichroism spectra, far-ultraviolet circular dichroism spectra, and infrared spectra in 1H2O and 2H2O. Intrinsic fluorescence due to tryptophan of the mutant protein is 60% greater than that of the wild type ETF. This increased tryptophan fluorescence is probably due to a change in the environment of the nearby W239. Tyrosine fluorescence is unchanged in the mutant protein, although two tyrosine residues are close to the site of the mutation. These results indicate that a change in structure is minor and localized. Kinetic constants of the reductive half-reaction of ETF with porcine medium chain acyl-CoA dehydrogenase are unaltered when alphaT244M ETF serves as the substrate; however, the mutant ETF fails to exhibit saturation kinetics when the semiquinone form of the protein is used as the substrate in the disproportionation reaction catalyzed by P. denitrificans electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO). The redox behavior of the mutant ETF was also altered as determined from the equilibrium constant of the disproportionation reaction. The separation of flavin redox potentials between the oxidized/semiquinone couple and semiquinone/hydroquinone couple are -6 mV in the wild type ETF and -27 mV in the mutant ETF. The mutation does not alter the AMP content of the protein, although the extent and fidelity of AMP-dependent, in vitro renaturation of the mutant AMP-free apoETF is reduced by 57% compared to renaturation of wild type apoETF, likely due to the absence of the potential hydrogen bond donor T244.
Collapse
Affiliation(s)
- K J Griffin
- Department of Pediatrics, University of Colorado School of Medicine, Denver 80262, USA
| | | | | | | | | | | |
Collapse
|
27
|
Narhi LO, Philo JS, Li T, Zhang M, Samal B, Arakawa T. Induction of alpha-helix in the beta-sheet protein tumor necrosis factor-alpha: acid-induced denaturation. Biochemistry 1996; 35:11454-60. [PMID: 8784201 DOI: 10.1021/bi952767n] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Acid-induced unfolding of proteins often results in an intermediate structure, called the molten globule structure or "A" state, which retains at least partial secondary structure but lacks a rigid tertiary structure. Acid-induced unfolding has been studied extensively for alpha-helical proteins, while few studies have been done on proteins containing only beta-strands. Tumor necrosis factor-alpha (TNF-alpha) is a trimer in which the individual subunits consist of antiparallel beta-sheet, organized into a jellyroll beta-sandwich. We have found previously [Narhi et al. (1996) Biochemistry 35, 11447-11453] that thermal denaturation of TNF-alpha results in an aggregate which contains a substantial amount of alpha-helix and that the addition of trifluoroethanol induces alpha-helix in both murine and human TNF-alpha. Here we show that acid also can induce alpha-helix in these proteins. At acidic pH (below 4), both human and murine TNF-alpha convert to a monomeric form, as determined by sedimentation and diffusion constants obtained from sedimentation velocity experiments. The sedimentation coefficient indicated that this monomer was only slightly expanded relative to the native state. Near-UV circular dichroic (CD) analysis showed a loss of tertiary structure. These structural features coincide with the notion that the acid-induced structure of TNF-alpha is a molten globule. What is unique in this protein is that TNF-alpha acquires alpha-helical structure, which is not present in the native structure as determined by both CD and Fourier transform infrared spectroscopy. Even more surprising is that TNF-alpha at pH 3.3 undergoes a very gradual noncooperative change in secondary structure upon heating, which results in an increase in alpha-helical content. At pH 2.2 in the absence of salt, TNF-alpha shows considerable alpha-helix, although heating does not change the spectrum. At pH 2.2, physiological salt decreases the amount of alpha-helix at ambient temperature, and upon heating, we see the noncooperative increase in alpha-helix as observed at pH 3.3 with low salt. The addition of salt at low pH induces reassociation but to a range of oligomers rather than a unique trimer structure. This acid-induced formation of an alpha-helical monomer of TNF-alpha may be related to its known interaction with lipid bilayers.
Collapse
Affiliation(s)
- L O Narhi
- Amgen Inc., Amgen Center, Thousand Oaks, California 91320-1789, USA
| | | | | | | | | | | |
Collapse
|
28
|
Bañuelos S, Muga A. Structural requirements for the association of native and partially folded conformations of alpha-lactalbumin with model membranes. Biochemistry 1996; 35:3892-8. [PMID: 8672419 DOI: 10.1021/bi951468v] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The effect of the structure and stability of several conformers of alpha-lactalbumin in aqueous solution on their association to negatively charged large unilamellar vesicles has been studied by circular dichroism, infrared spectroscopy, differential scanning calorimetry, and by content leakage experiments. Our results indicate that the affinity of alphaLA for negatively charged vesicles strongly depends on its conformational properties in solution. Analysis of the pH dependence of the interaction for the different conformers reveals that native-like, calcium-bound, ordered conformations become bilayer-associated through electrostatic forces. However, partially folded conformers are able to interact with negatively charged membranes at pHs higher than the protein isoelectric point, suggesting that hydrophobic interactions brought about by the exposure of hydorphobic residues at the protein surface are able to overcome the unfavorable electrostatic repulsion. Calorimetric and spectroscopic data in solution also indicate that substantial protein destabilization facilitates its subsequent membrane binding, and that the association process is favored for a set of conformers having significant secondary structure, but lacking native-like, stable tertiary structure. Aggregation of the unfolded alpha-lactalbumin molecules and burial of hydrophobic surfaces upon formation of ordered tertiary structure significantly reduce their membrane perturbing activity. These observations suggest that formation of a flexible strucutral intermediate of alpha-lactalbumin in solution is a prerequisite for its association with membranes.
Collapse
Affiliation(s)
- S Bañuelos
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias,Universidad del País Vasco, Bilboa, Spain
| | | |
Collapse
|
29
|
Raimbault C, Couthon F, Vial C, Buchet R. Effects of pH and KCl on the conformations of creatine kinase from rabbit muscle. Infrared, circular dichroic and fluorescence studies. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 234:570-8. [PMID: 8536705 DOI: 10.1111/j.1432-1033.1995.570_b.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The activity loss of creatine kinase (CK), observed at low pH (midpoint was 4.8) corresponded to the monomerization of the dimeric protein and was correlated with structural changes. The acid-induced unfolding was not complete at this pH, as probed by circular dichroic (CD) and fluorescence methods. Further decrease of pH, led to a second transition (midpoint was pH 3.5). The loss of activity was irreversible at pH 4.8 (< 20% native activity was recovered) while it was almost fully reversible (> 90% of native activity was recovered) for the enzyme incubated at pH 0.9-2.5. The amount of intermolecular beta-sheets (monitored with the 1620 cm-1 infrared component band) was maximal when the enzyme was incubated at pH 4.8, as a consequence of protein aggregation, while it was minimal at extremes of pH and at low ionic strength. Acid-induced and alkaline-induced denaturations promoted different structural changes, leading to distinct partially unfolded conformational states. The addition of KCl (from 0.05 M to 0.5 M) to an acidic solution of monomeric creatine kinase (pH 1.6) resulted in a highly cooperative transition from the partially unfolded conformation (UA) to the more compact conformation (A) with the properties of a molten globule, as probed by CD spectra and by fluorescence. The formation of intermolecular beta-sheets in the compact conformation was observed by infrared spectroscopy, indicating formation of unstable aggregates.
Collapse
Affiliation(s)
- C Raimbault
- Laboratoire de Physico-Chimie Biologique, Université Claude Bernard, Lyon 1, CNRS URA, France
| | | | | | | |
Collapse
|
30
|
Cai K, Schirch D, Schirch V. The affinity of pyridoxal 5'-phosphate for folding intermediates of Escherichia coli serine hydroxymethyltransferase. J Biol Chem 1995; 270:19294-9. [PMID: 7642604 DOI: 10.1074/jbc.270.33.19294] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Escherichia coli serine hydroxymethyltransferase is a 94-kDa homodimer. Each subunit contains a covalently attached pyridoxal-P, which is required for catalytic activity. At which step pyridoxal-P binds in the folding pathway of E. coli serine hydroxymethyltransferase is addressed in this study. E. coli serine hydroxymethyl-transferase is rapidly unfolded to an apparent random coil in 8 M urea. Removal of the urea initiates a complete refolding to the native holoenzyme in less than 10 min at 30 degrees C. Several intermediates on the folding pathway have been identified. The most important information was obtained during folding studies at 4 degrees C. At this temperature, the far-UV circular dichroism spectrum and the fluorescence spectrum of the 3 tryptophan residues become characteristic of the native apoenzyme in less than 10 min. Size exclusion chromatography shows that under these conditions the refolding enzyme is a mixture of monomeric and dimeric species. Continued incubation at 4 degrees C for 60 min results in the formation of only a dimeric species. Neither the monomer nor dimer formed at 4 degrees C bind pyridoxal phosphate. Raising the temperature to 30 degrees C results in the formation of a dimeric enzyme which rapidly binds pyridoxal phosphate forming active enzyme. These studies support the interpretation that pyridoxal phosphate binds only at the end of the folding pathway to dimeric apoenzyme and plays no significant role in the folding mechanism.
Collapse
Affiliation(s)
- K Cai
- Department of Biochemistry and Molecular Biophysics, Virginia Commonwealth University, Richmond 23298, USA
| | | | | |
Collapse
|
31
|
Gorski JP, Kremer E, Ruiz-Perez J, Wise GE, Artigues A. Conformational analyses on soluble and surface bound osteopontin. Ann N Y Acad Sci 1995; 760:12-23. [PMID: 7785891 DOI: 10.1111/j.1749-6632.1995.tb44616.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Immunohistology of calvarial sections revealed that staining with monoclonal anti-osteopontin antibodies (clone MPIIIB10) is minimal unless sections are first treated with EDTA. In contrast, following treatment of sections with EDTA, strong staining of mineralizing osteoid areas and osteoblast-like cells was noted (Fig. 1B). Immunostaining for osteopontin appeared to be specific in that controls which substituted rabbit IgG or normal mouse ascites fluid for monoclonal antibody, or which omitted monoclonal antibody uniformly gave background results (Fig. 1C). In an effort to circumvent problems of antibody accessibility we examined the immunoreactivity of OP when adsorbed to plastic and hydroxyapatite surfaces. Although OP bound to plastic surfaces is reactive with MPIIIB10 antibodies, OP adsorbed to hydroxyapatite crystal surfaces is not recognized by these antibodies as assessed by two detection methods. These results demonstrate that most or all of OP bound to hydroxyapatite exhibits a different conformation than when bound to plastic surfaces. On the basis of immunohistologic results with calvarial sections, we suggest that the conformation of native OP in bone and of isolated OP adsorbed to hydroxyapatite may be similar. Finally, solution circular dichroism and Fourier-transformed infrared spectroscopic studies indicate that the conformation of bone OP is dependent upon its concentration, and, secondarily to the presence or absence of calcium ion. With both spectroscopic methods, addition of calcium appeared to increase the extent of disordered structure. We suggest that these findings support our hypothesis that bone matrix proteins exhibit a different conformation when adsorbed on hydroxyapatite crystal surfaces. Assumption of a more organized secondary structure in concentrated OP solutions (i.e., 15 mg/ml) is consistent with these results in that local concentrations of OP within a semisolid matrix may approach or exceed levels used here.
Collapse
Affiliation(s)
- J P Gorski
- Division of Molecular Biology and Biochemistry, University of Missouri-Kansas City 64110, USA
| | | | | | | | | |
Collapse
|