1
|
Branch DR. Warm autoimmune hemolytic anemia: new insights and hypotheses. Curr Opin Hematol 2023; 30:203-209. [PMID: 37497853 PMCID: PMC10552839 DOI: 10.1097/moh.0000000000000779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
PURPOSE OF REVIEW Warm autoimmune hemolytic anemia (wAIHA) is the most common of the immune hemolytic anemias. Although there are numerous case reports and reviews regarding this condition, some of the unusual and more recent findings have not been fully defined and may be contentious. This review will provide insight into the common specificity of the warm autoantibodies and hypothesize a novel mechanism of wAIHA, that is proposed to be linked to the controversial subject of red blood cell senescence. RECENT FINDINGS AND HYPOTHESES It is now well established that band 3 on the red blood cell is the main target of autoantibodies in wAIHA. wAIHA targets the older red blood cells (RBCs) in about 80% of cases and, recently, it has been shown that the RBCs in these patients are aging faster than normal. It has been proposed that in these 80% of patients, that the autoantibody recognizes the senescent red blood cell antigen on band 3. It is further hypothesized that this autoantibody's production and potency has been exacerbated by hypersensitization to the RBC senescent antigen, which is processed through the adaptive immune system to create the pathogenic autoantibody. Recent publications have supported previous data that the senescent RBC antigen is exposed via a dynamic process, wherein oscillation of a band 3 internal loop flipping to the cell surface, creates a conformational neoantigen that is the RBC senescent antigen. It has also recently been shown that the cytokine profile in patients with wAIHA favors production of inflammatory cytokines/chemokines that includes interleukin-8 which can activate neutrophils to increase the oxidative stress on circulating RBCs to induce novel antigens, as has been postulated to favour exposure of the senescent RBC antigen. SUMMARY This manuscript reviews new findings and hypotheses regarding wAIHA and proposes a novel mechanism active in most wAIHA patients that is due to an exacerbation of normal RBC senescence.
Collapse
Affiliation(s)
- Donald R Branch
- Departments of Medicine and Laboratory Medicine and Pathobiology, University of Toronto and the Canadian Blood Services, Centre for Innovation, Toronto, Ontario M5B 1W8, Canada
| |
Collapse
|
2
|
Aoki T. A Comprehensive Review of Our Current Understanding of Red Blood Cell (RBC) Glycoproteins. MEMBRANES 2017; 7:membranes7040056. [PMID: 28961212 PMCID: PMC5746815 DOI: 10.3390/membranes7040056] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/20/2017] [Accepted: 09/24/2017] [Indexed: 12/11/2022]
Abstract
Human red blood cells (RBC), which are the cells most commonly used in the study of biological membranes, have some glycoproteins in their cell membrane. These membrane proteins are band 3 and glycophorins A-D, and some substoichiometric glycoproteins (e.g., CD44, CD47, Lu, Kell, Duffy). The oligosaccharide that band 3 contains has one N-linked oligosaccharide, and glycophorins possess mostly O-linked oligosaccharides. The end of the O-linked oligosaccharide is linked to sialic acid. In humans, this sialic acid is N-acetylneuraminic acid (NeuAc). Another sialic acid, N-glycolylneuraminic acid (NeuGc) is present in red blood cells of non-human origin. While the biological function of band 3 is well known as an anion exchanger, it has been suggested that the oligosaccharide of band 3 does not affect the anion transport function. Although band 3 has been studied in detail, the physiological functions of glycophorins remain unclear. This review mainly describes the sialo-oligosaccharide structures of band 3 and glycophorins, followed by a discussion of the physiological functions that have been reported in the literature to date. Moreover, other glycoproteins in red blood cell membranes of non-human origin are described, and the physiological function of glycophorin in carp red blood cell membranes is discussed with respect to its bacteriostatic activity.
Collapse
Affiliation(s)
- Takahiko Aoki
- Laboratory of Quality in Marine Products, Graduate School of Bioresources, Mie University, 1577 Kurima Machiya-cho, Mie, Tsu 514-8507, Japan.
| |
Collapse
|
3
|
Lutz HU. Naturally occurring anti-band 3 antibodies in clearance of senescent and oxidatively stressed human red blood cells. ACTA ACUST UNITED AC 2012; 39:321-7. [PMID: 23801923 DOI: 10.1159/000342171] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Accepted: 07/04/2012] [Indexed: 11/19/2022]
Abstract
SUMMARY Naturally occurring anti-band 3 antibodies (anti-band 3 NAbs) are directed against the 55-kDa chymotryptic fragment of the anion transport protein (band 3) of red blood cells (RBCs). They bind to senescent and oxidatively stressed RBCs and induce their selective clearance. These IgG NAbs exist at low concentrations, and have a weak affinity that prevents them from actively recruiting second binding sites. Cellular senescence or oxidative damage induces a cascade of biochemical events that results in the detachment of band 3 from the cytoskeleton and in clustering of band 3 protein by bound hemichromes and Syk kinase. Clustered band 3 proteins allow bivalent binding of anti-band 3 NAbs. Bivalently bound anti-band 3 NAbs have the unique capacity to stimulate C3b deposition by preferentially generating C3b2-IgG complexes, which act as potent C3 convertase precursors of the alternative complement pathway. Antibody binding not only to clustered, but also to oligomerized band 3 protein further increases if the human plasma also contains induced anti-lactoferrin antibodies. These bind to the polylactosaminyl oligosaccharide, a carbohydrate that exists in lactoferrin and in the 38-kDa fragment of band 3 protein. Anti-lactoferrin antibodies are found primarily in plasma of patients with autoimmune diseases and who have anti-neutrophil cytoplasmic antibodies (ANCA).
Collapse
Affiliation(s)
- Hans U Lutz
- Institute of Biochemistry, ETH Zurich, Switzerland
| |
Collapse
|
4
|
Lutz HU. Naturally occurring autoantibodies in mediating clearance of senescent red blood cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 750:76-90. [PMID: 22903667 DOI: 10.1007/978-1-4614-3461-0_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Germline-encoded naturally occurring autoantibodies (NAbs) developed about 400 to 450 million years ago to provide specificity for clearance ofbody waste in animals with 3 germ layers. Such NAbs became a necessity to selectively clear aged red blood cells (RBC) surviving 60 to 120 d in higher vertebrates. IgG NAbs to senescent RBC are directed to the most abundant integral membrane protein, the anion-transport protein or band 3 protein, but only bind firmly upon its oligomerization, which facilitates bivalent binding. The main constituent of RBC, the oxygen-carrying hemoglobin, is susceptible to oxidative damage. Oxidized hemoglobin forms hemichromes (a form of aggregates) that bind to the cytoplasmic portion of band 3 protein, induces their clustering on the cytoplasmic, as well as the exoplasmic side and thereby provides the prerequisites for the low affinity IgG anti-band 3 NAbs to bind bivalently. Bound anti-band 3 NAbs overcome their low numbers per RBC by stimulating complement amplification. An affinity for C3 outside the antigen binding region is responsible for a preferential formation of C3b(2)-IgG complexes from anti-band 3 NAbs. These complexes first bind oligomeric properdin, which enhances their affinity for factor B in assembling an alternative C3 convertase.
Collapse
Affiliation(s)
- Hans U Lutz
- Institute of Biochemistry, Swiss Federal Institute of Technology, ETH Hönggerberg, Zurich, Switzerland.
| |
Collapse
|
5
|
Matsuoka K, Kaneko R, Koyama T, Ma X, Esumi Y, Nakamura T, Hatano K, Terunuma D. Synthesis of sialyllactosamine clusters using carbosilane as core scaffolds by means of chemical and enzymatic approaches. Bioorg Med Chem Lett 2010; 20:4906-10. [PMID: 20620057 DOI: 10.1016/j.bmcl.2010.06.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/09/2010] [Accepted: 06/11/2010] [Indexed: 10/19/2022]
Abstract
An efficient synthesis of sialyllactosamine (SiaLacNAc) clusters using carbosilanes as core scaffolds has been accomplished by means of chemical and enzymatic approaches. N-Acetyl-D-glucosamine (GlcNAc) clusters having O-glycosidic linkage or S-glycosidic linkage were chemically synthesized from known intermediates in high yields. The GlcNAc clusters were first used as substrates for beta1,4 galactosyl transferase using UDP-galactose (UDP-Gal) as a sugar source to provide corresponding N-acetyllactosamine clusters. Further sugar elongation of the LacNAc clusters was demonstrated using alpha2,3 sialyl transferase and CMP-neuraminic acid (CMP-NANA) to yield the corresponding SiaLacNAc clusters.
Collapse
Affiliation(s)
- Koji Matsuoka
- Area for Molecular Function, Division of Material Science, Graduate School of Science and Engineering, Saitama University, Sakura, Saitama 338-8570, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Miki Y, Itoh T, Hirano K, Eda S, Hayashi A, Yamanaka M, Beppu M. Clearance of oxidatively damaged cells by macrophages: recognition of glycoprotein clusters by macrophage-surface nucleolin as early apoptotic cells. Biol Pharm Bull 2009; 32:564-72. [PMID: 19336885 DOI: 10.1248/bpb.32.564] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The mechanism of macrophage recognition of oxidatively damaged cells was investigated. Jurkat T cells exposed to various concentrations of H(2)O(2) were bound and phagocytosed by macrophages. The cells exposed to 0.1 mM H(2)O(2) were best bound. The cell-surface ligands recognized by macrophages were suggested to be sialylpolylactosaminyl sugar chains of a major sialoglycoprotein CD43 because 1) the cell binding was inhibited by oligosaccharides containing sialylpolylactosaminyl chains, and their inhibitory activity was destroyed by a polylactosamine-cleaving enzyme endo-beta-galactosidase, and by neuraminidase; 2) the oxidized Jurkat cells pretreated with either glycosidase or with anti-CD43 antibody were not bound. The macrophage receptor involved in the binding was suggested to be cell-surface nucleolin because 1) anti-nucleolin antibody inhibited the binding; 2) nucleolin-transfected HEK293 cells bound the oxidized cells; and 3) this binding was inhibited by anti-nucleolin antibody and by anti-CD43 antibody. CD43 on oxidized Jurkat cells tended to form clusters in good accordance with their susceptibility to the macrophage binding. CD43 clustering and the oxidized-cell binding to macrophages were prevented by a caspase inhibitor Z-VAD-fmk, suggesting that the oxidized and bound cells were undergoing apoptosis. Indeed, caspase-3 activity of Jurkat cells increased by the oxidation. These results suggest that moderately oxidized cells undergo apoptosis and are recognized by macrophages as early apoptotic cells.
Collapse
Affiliation(s)
- Yuichi Miki
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Japan
| | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Red blood cell (RBC) blood group antigens are polymorphic, inherited, carbohydrate or protein structures located on the extracellular surface of the RBC membrane. They contribute to the architecture of the RBC membrane, and their individual function(s) are being slowly revealed. The biological qualities assigned to these RBC membrane structures are based on observed physiological alteration in RBCs that lack the component, by documenting similarities in its protein sequence (predicted from the nucleotide sequence of the gene) to proteins of known function and by extrapolation to identified functional homologues in other cells. The varied roles of RBC antigens include membrane structural integrity, the transport of molecules through the membrane, as receptors for extracellular ligands, adhesion molecules, enzymes, complement components and regulators, and in glycocalyx formation.
Collapse
Affiliation(s)
- Marion E Reid
- Laboratology of Immunology and the Lindsley F. Kimball Research Institute, New York Blood Center, 310 E. 67th Street, New York, NY 10021, USA
| | | |
Collapse
|
8
|
Abstract
Living bodies may experience oxidative stress induced by reactive oxygen species and heavy metal ions, which may damage components in the body and cause aging and disorders. In addition to the known defense systems against oxidative damage, the author describes new defense systems. Lipid peroxidation in living bodies, which has hitherto been thought to increase oxidative damage, was found to attenuate oxidative stress-induced DNA damage. Red blood cells become senescent due to oxidative stress during circulation, where membrane band 3 becomes aggregated to anti-band 3 IgG and macrophages attached through poly-N-acetyllactosaminyl sugar chains, and the sugar chain attachment to macrophages is stimulated by oxidative stress in macrophages. Oxidized protein hydrolase that preferentially hydrolyzes proteins damaged by oxidative stress was newly discovered, which may play an important role in saving cells from oxidative damage.
Collapse
Affiliation(s)
- Kiyomi Kikugawa
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo 092-0392, Japan.
| |
Collapse
|
9
|
Kikugawa K. Strategy in a Living Body to Protect against Oxidative Stress-Induced Damage. ACTA ACUST UNITED AC 2004. [DOI: 10.1248/jhs.50.443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kiyomi Kikugawa
- School of Pharmacy, Tokyo University of Pharmacy and Life Science
| |
Collapse
|
10
|
Eda S, Yamanaka M, Beppu M. Carbohydrate-mediated phagocytic recognition of early apoptotic cells undergoing transient capping of CD43 glycoprotein. J Biol Chem 2003; 279:5967-74. [PMID: 14613931 DOI: 10.1074/jbc.m310805200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel mechanism of phagocytic recognition of apoptotic cells was found and characterized. Jurkat cells incubated with appropriate concentrations of etoposide or anti-Fas antibody transiently became susceptible to binding and phagocytosis by THP-1 cell-derived macrophages at 2 h. The bound Jurkat cells showed no chromatin condensation, but the binding was prevented by a caspase inhibitor, indicating that they were recognized at an early stage of apoptosis. The ligands recognized on the apoptotic cells were sialylpolylactosaminyl sugar chains because 1) the binding was inhibited by an oligosaccharide preparation of erythrocyte membrane, and its inhibitory activity was destroyed by polylactosaminoglycan-specific endo-beta-galactosidase or neuraminidase; 2) Jurkat cells pretreated with endo-beta-galactosidase or neuraminidase failed to be recognized; and 3) treatment of the apoptotic cells with polylactosaminoglycan-binding Datura stramonium agglutinin prevented recognition. The sialylpolylactosaminyl chains involved were most likely those of a major sialoglycoprotein CD43 because anti-CD43 antibody inhibited recognition. CD43 on apoptotic Jurkat cells was found to form a cap at 2 h, and the cap disappeared at 4 h. This transient capping of CD43 coincided with the transient increase in the susceptibility of the cells to macrophage recognition, suggesting that CD43 capping is responsible for generation of the carbohydrate ligands for recognition. Furthermore, microscopic observation suggested that the apoptotic cells were recognized at the CD43 cap. Taken together, we conclude that apoptotic Jurkat cells transiently undergo CD43 capping at an early stage of apoptosis and are recognized by macrophages through the cluster of sialylpolylactosaminyl chains of the capped CD43.
Collapse
Affiliation(s)
- Shigetoshi Eda
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | |
Collapse
|
11
|
Abstract
Atopic diseases such as asthma, rhinitis, eczema and food allergies have increased in most industrialised countries of the world during the last 20 years. The reasons for this increase are not known and different hypotheses have been assessed including increased exposure to sensitising allergens or decreased stimulation of the immune system during critical periods of development. In allergic diseases there is a polarisation of the Th2 response and an increase in the production of type 2 cytokines which are involved in the production of immunoglobulin E and the development of mast cells, basophils and eosinophils leading to inflammation and disease. The effector phase of atopy is initiated by interaction with Fc epsilon RI expressed on effector cells such as mast cells and basophils but also found on an ever increasing list of cells. Binding of a polyvalent allergen to the variable part of IgE leads to a cross-link of the receptor that triggers the cell to release histamine and pharmacological mediators of the symptomatic allergic response. Cross-linking of Fc epsilon RI by autoantibodies against the alpha-chain of the Fc epsilon RI, causing subsequent histamine release is thought to be involved in the pathogenesis of other diseases such as chronic idiopathic urticaria (CIU). To date, most therapeutic strategies are aimed at inhibiting and controlling components of the inflammatory response. Recently, new treatment strategies have emerged that focus on the development of preventive and even curative treatments. The most promising therapeutic approaches are aimed at inhibiting the IgE-Fc epsilon RI interaction with the use of non-anaphylactogenic anti-IgE or anti-Fc epsilon RIalpha autoantibodies. Clinical trials in humans using an humanised anti-IgE antibody showed that this antibody was well tolerated and reduced both symptoms and use of medication in asthma and allergic rhinitis. Thus interruption of the atopic cascade at the level of the IgE-Fc epsilon RI interaction with the use of non-anaphylactogenic antibodies is effective and represents an attractive therapy for the treatment of atopic disease.
Collapse
Affiliation(s)
- Sylvia M Miescher
- Institute of Immunology, Sahlihaus 1, Inselspital, CH-3010 Bern, Switzerland.
| | | |
Collapse
|
12
|
Bratosin D, Estaquier J, Ameisen JC, Aminoff D, Montreuil J. Flow cytometric approach to the study of erythrophagocytosis: evidence for an alternative immunoglobulin-independent pathway in agammaglobulinemic mice. J Immunol Methods 2002; 265:133-43. [PMID: 12072184 DOI: 10.1016/s0022-1759(02)00076-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neuraminidase treatment of red blood cells (RBCs) is believed to induce changes similar to RBC senescence, and leads to a rapid clearance of RBCs from the circulation in vivo. The objective of this study using immunodeficient SCID mice and the lipophilic fluorescent probe PKH-26 was to ascertain whether antibodies are required as the final signal allowing the phagocytosis of neuraminidase-treated murine RBCs. All of the methods we applied are based on flow cytometry analysis using fluorescent probes: fluoresceinyl isothiocyanate (FITC)-labeled lectins for membrane carbohydrate identification and PKH-26-labeled RBCs for in vitro phagocytosis and in vivo clearance studies. The results can be summarized as follows: (i) the rate of neuraminidase-induced desialylation of RBCs from normal and immunodeficient mice is identical as ascertained with FITC-labeled lectins (wheat germ agglutinin (WGA) and Ricinus communis agglutinin (RCA(120))); (ii) the rate of clearance of enzyme-treated RBCs from both types of mice is also similar, as is their localization in spleen, liver and lung; (iii) the rates of in vitro phagocytosis of untreated and neuraminidase-treated PKH-26-labeled RBCs from both species of mice are very similar in the presence of homologous sera. In the absence of serum or in the presence of heterologous sera, the rate of phagocytosis is markedly decreased but not totally abolished. These data suggest that neuraminidase-treated RBCs can be cleared via an alternative pathway that is antibody-independent. This pathway exists in immunocompetent mice but with a very low activity and is the only one active in immunodeficient mice. In accordance with results reported by Connor et al. [J. Biol. Chem. 269 (1994) 2399], it is possible that this antibody-independent mechanism is involved in the clearance of circulating senescent RBCs. Finally, the methods described here may also be of interest for the investigation of the mechanisms involved in the phagocytosis of apoptotic cells.
Collapse
Affiliation(s)
- Daniela Bratosin
- National Institute of Biological Science Research and Development, 296 Sp. Independentei, P.O. Box 17-16, Bucharest, Romania
| | | | | | | | | |
Collapse
|
13
|
Reinhardt D, Witt O, Miosge N, Herken R, Pekrun A. Increase in band 3 density and aggregation in hereditary spherocytosis. Blood Cells Mol Dis 2001; 27:399-406. [PMID: 11259161 DOI: 10.1006/bcmd.2001.0396] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PURPOSE Red cells in hereditary spherocytosis are characterized by a reduced surface area/volume ratio. The mechanisms leading to the loss of membrane material and subsequent elimination of the cells have still not been clarified. It was the aim of the present study to analyze band 3 distribution in the red cell membrane and its putative role in red cell elimination. METHODS/RESULTS Immunogold histochemistry was performed to detect band 3 in red cell membranes. Band 3 density and distribution were visualized by electron microscopy. Unsplenectomized spherocytosis patients (n = 12) showed reduced band 3 density and aggregation compared to controls (n = 15) (density: 1.2 +/- 0.1 gold particles/microm circumference of red cell membrane vs 1.5 +/- 0.07 gold particles/microm, x +/- SEM; P < 0.05; aggregation: 0.26 +/- 0.02 aggregates/microm vs 0.3 +/- 0.02 aggregates/microm). By contrast, band 3 density and aggregation were increased in spherocytosis patients who had undergone splenectomy (density: 2.8 +/- 0.1 gold particles/microm vs 2.0 +/- 0.1 gold particles/microm; P < 0.05; aggregation: 1.5 +/- 0.1 aggregates/microm vs 0.5 +/- 0.03 aggregates/microm; P < 0.01). Artificial ageing of red cells from healthy controls (n = 6) led to a significant increase in band 3 aggregation (2.06 +/- 0.2 aggregates/microm vs 0.33 +/- 0.1 aggregates/microm; P(Wilcoxon) < 0.01) but no change in band 3 density. In hereditary spherocytosis (n = 6), both band 3 density and aggregation increased significantly after artificial ageing of the red cells. The elevated band 3 aggregation was associated with a stimulated erythrophagocytosis in vitro. CONCLUSION Band 3 aggregation characterizes the red cells in hereditary spherocytosis. It may be the cause of selective splenic phagocytosis of both spherocytes and senescent erythrocytes.
Collapse
Affiliation(s)
- D Reinhardt
- Department of Paediatrics, Georg-August-University of Goettingen, Germany
| | | | | | | | | |
Collapse
|
14
|
Beppu M, Yokoyama N, Motohashi M, Kikugawa K. Enhanced adhesion of oxidized mouse polymorphonuclear leukocytes to macrophages by a cell-surface sugar-dependent mechanism. Biol Pharm Bull 2001; 24:19-26. [PMID: 11201240 DOI: 10.1248/bpb.24.19] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mouse thioglycollate-induced peritoneal macrophages effectively, in the absence of serum, recognized mouse polymorphonuclear leukocytes (PMNs) mildly oxidized with diamide, superoxide (hypoxanthine/xanthine oxidase) or t-butyhydroperoxide, or modified with N-ethylmaleimide (NEM). The recognition reached a maximum when PMNs were treated wtih each of the reagents at relatively low concentrations, and the recognition was decreased on treatment with reagents at higher concentrations. Glutathione depletion in the diamide-oxidized PMNs may cause enhanced adhesion to macrophages. Sialylated sugar chains attached to a peptide chain in glycophorin A and sialylated poly-N-acetyllactosaminyl sugar chains in lactoferrin and band 3 glycoprotein effectively inhibited the increased adhesion of the diamide-oxidized PMNs. Enzymatic removal of sialyl residues and the degradation of poly-N-acetyllactosaminyl sugar chains by pretreatment of PMNs with neuraminidase or endo-beta-galactosidase, respectively, lost their increasing ability for macrophage adhesion after oxidation with diamide, superoxide or t-butylhydroperoxide. Clustered sialylated poly-N-acetyllactosaminyl sugar chains on the cell surface may be involved in the increased adhesion of the oxidized PMNs to macrophages.
Collapse
Affiliation(s)
- M Beppu
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, Hachioji, Japan
| | | | | | | |
Collapse
|
15
|
Beppu M, Ando K, Saeki M, Yokoyama N, Kikugawa K. Binding of Oxidized Jurkat Cells to THP-1 Macrophages and Antiband 3 IgG through Sialylated Poly-N-acetyllactosaminyl Sugar Chains. Arch Biochem Biophys 2000; 384:368-74. [PMID: 11368325 DOI: 10.1006/abbi.2000.2122] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human T-lymphoid cell line Jurkat cells were mildly oxidized with diamide, hydrogen peroxide, or t-butyl-hydroperoxide. The recognition of Jurkat cells in the absence of serum by human monocytic leukemia cell line THP-1 differentiated into macrophages was enhanced by the oxidation with these reagents. The recognition was maximal when Jurkat cells were treated with each of the reagents at the relatively low concentrations, and the recognition was decreased on treatment with the reagents at the higher concentrations. The enhanced recognition of THP-1 macrophages to diamide-oxidized Jurkat cells was lowered when the binding was conducted in the presence of the oligosaccharides from band 3 glycoprotein and lactoferrin. The inhibitory effect of band 3 oligosaccharides was abolished by removal of the non-reducing-terminal sialyl residues or by cleavage of poly-N-acetyllactosaminyl sugar chains in the saccharides. Moreover, on enzymatic removal of the non-reducing-terminal sialyl residues or enzymatic cleavage of the poly-N-acetyllactosaminyl sugar chains on the surface of Jurkat cells prior to oxidation, the cells were recognized poorly by THP-1 macrophages. Human naturally occuring antiband 3 IgG bound effectively to the hydrogen peroxide-oxidized Jurkat cells. This binding was abolished by the enzymatic cleavage of the poly-N-acetyllactosaminyl sugar chains on the surface of the cells prior to oxidation with hydrogen peroxide. The results indicate that binding of THP-1 macrophages and antiband 3 IgG to Jurkat cells was increased by mild oxidation of Jurkat cells, and the bindings were through sialylated poly-N-acetyllactosaminyl sugar chains on Jurkat cell surface.
Collapse
Affiliation(s)
- M Beppu
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, Hachioji, Japan
| | | | | | | | | |
Collapse
|
16
|
Ando K, Hagiwara T, Beppu M, Kikugawa K. Naturally occurring anti-band 3 antibody binds to apoptotic human T-lymphoid cell line Jurkat through sialylated poly-N-acetyllactosaminyl saccharide chains on the cell surface. Biochem Biophys Res Commun 2000; 275:412-7. [PMID: 10964679 DOI: 10.1006/bbrc.2000.3322] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human T-lymphoid cell line Jurkat was treated with actinomycin D (ActD) and cycloheximide (CHX). The induction of apoptosis was confirmed by the chromatin condensation and DNA ladder fragmentation. Anti-band 3 IgG, purified from normal human plasma, bound to the ActD- or CHX-treated cells, and the binding was correlated to the degree of apoptosis. Antioxidants, N-acetylcysteine, pilloridine dithiocarbamate, and trolox, inhibited neither induction of DNA fragmentation of ActD-treated cells nor anti-band 3 IgG binding to ActD-treated cells, indicating that formation of the anti-band 3 IgG binding sites on the apoptotic cell surface is caused by nonoxidative mechanism. When Jurkat cells were treated with endo-beta-galactosidase to cleave sialylated poly-N-acetyllactosaminyl saccharide chains from the cell surface before induction of apoptosis, the binding of anti-band 3 IgG was abolished. The results indicate that sialylated poly-N-acetyllactosaminyl saccharide chains on the cell surface are requisite for the binding of anti-band 3 IgG to apoptotic cells.
Collapse
Affiliation(s)
- K Ando
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | | | | | | |
Collapse
|
17
|
Ando K, Beppu M, Kikugawa K, Nagai R, Horiuchi S. Membrane proteins of human erythrocytes are modified by advanced glycation end products during aging in the circulation. Biochem Biophys Res Commun 1999; 258:123-7. [PMID: 10222246 DOI: 10.1006/bbrc.1999.0606] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recent immunological studies demonstrated that proteins in vivo in several diseases are subjected to post-translational modification by advanced glycation end products (AGEs), suggesting a potential role of AGEs in aging and age-enhanced disease processes such as diabetic complications, atherosclerosis and Alzheimer's disease. Nvarepsilon-(Carboxymethyl)lysine (CML) is one of the major AGE-structures demonstrated in vivo so far. In the present study, membrane proteins from young erythrocyte population were compared with those from senescent erythrocytes separated from the same individual in their CML-contents using a monoclonal antibody for CML (6D12). SDS-polyacrylamide gel electrophoresis and subsequent Western blot showed that 6D12 bound to the band 1, 2, 3, 4.2, 5, 6 and 7 proteins from senescent erythrocytes, but not to those from young erythrocytes. Furthermore, quantitative estimation of the reactivity of 6D12 to these erythrocyte membranes by ELISA showed that the reactivity of 6D12 to senescent erythrocyte membranes was 3- to 6-fold higher than that of young erythrocyte membranes. These results indicate that membrane proteins of circulating erythrocytes undergo CML-modification, and the modified proteins accumulated in an age-dependent manner during the life span of erythrocytes.
Collapse
Affiliation(s)
- K Ando
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, 192-0392, Japan
| | | | | | | | | |
Collapse
|
18
|
Horn MP, Gerster T, Ochensberger B, Derer T, Kricek F, Jouvin MH, Kinet JP, Tschernig T, Vogel M, Stadler BM, Miescher SM. Human anti-FcεRIα autoantibodies isolated from healthy donors cross-react with tetanus toxoid. Eur J Immunol 1999. [DOI: 10.1002/(sici)1521-4141(199904)29:04<1139::aid-immu1139>3.0.co;2-j] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Abstract
One hypothesis to explain the age-dependent clearance of red blood cells (RBCs) from circulation proposes that denatured/oxidized hemoglobin (hemichromes) arising late during an RBC’s life span induces clustering of the integral membrane protein, band 3. In turn, band 3 clustering generates an epitope on the senescent cell surface leading to autologous IgG binding and consequent phagocytosis. Because dog RBCs have survival characteristics that closely resemble those of human RBCs (ie, low random RBC loss, ≈115-day life span), we decided to test several aspects of the above hypothesis in the canine model, where in vivo aged cells of defined age could be evaluated for biochemical changes. For this purpose, dog RBCs were biotinylated in vivo and retrieved for biochemical analysis at various later dates using avidin-coated magnetic beads. Consistent with the above hypothesis, senescent dog RBCs were found to contain measurably elevated membrane-bound (denatured) globin and a sevenfold enhancement of surface-associated autologous IgG. Interestingly, dog RBCs that were allowed to senesce for 115 days in vivo also suffered from compromised intracellular reducing power, containing only 30% of the reduced glutathione found in unfractionated cells. Although the small quantity of cells of age ≥110 days did not allow direct quantitation of band 3 clustering, it was nevertheless possible to exploit single-cell microdeformation methods to evaluate the fraction of band 3 molecules that had lost their normal skeletal linkages and were free to cluster in response to hemichrome binding. Importantly, band 3 in RBCs ≥112 days old was found to be 25% less restrained by skeletal interactions than band 3 in control cells, indicating that the normal linkages between band 3 and the membrane skeleton had been substantially disrupted. Interestingly, the protein 4.1a/protein 4.1b ratio, commonly assumed to reflect RBC age, was found to be maximal in RBCs isolated only 58 days after labeling, implying that while this marker is useful for identifying very young populations of RBCs, it is not a very sensitive marker for canine senescent RBCs. Taken together, these data argue that several of the readily testable elements of the above hypothesis implicating band 3 in human RBC senescence can be validated in an appropriate canine model.
Collapse
|
20
|
Abstract
AbstractOne hypothesis to explain the age-dependent clearance of red blood cells (RBCs) from circulation proposes that denatured/oxidized hemoglobin (hemichromes) arising late during an RBC’s life span induces clustering of the integral membrane protein, band 3. In turn, band 3 clustering generates an epitope on the senescent cell surface leading to autologous IgG binding and consequent phagocytosis. Because dog RBCs have survival characteristics that closely resemble those of human RBCs (ie, low random RBC loss, ≈115-day life span), we decided to test several aspects of the above hypothesis in the canine model, where in vivo aged cells of defined age could be evaluated for biochemical changes. For this purpose, dog RBCs were biotinylated in vivo and retrieved for biochemical analysis at various later dates using avidin-coated magnetic beads. Consistent with the above hypothesis, senescent dog RBCs were found to contain measurably elevated membrane-bound (denatured) globin and a sevenfold enhancement of surface-associated autologous IgG. Interestingly, dog RBCs that were allowed to senesce for 115 days in vivo also suffered from compromised intracellular reducing power, containing only 30% of the reduced glutathione found in unfractionated cells. Although the small quantity of cells of age ≥110 days did not allow direct quantitation of band 3 clustering, it was nevertheless possible to exploit single-cell microdeformation methods to evaluate the fraction of band 3 molecules that had lost their normal skeletal linkages and were free to cluster in response to hemichrome binding. Importantly, band 3 in RBCs ≥112 days old was found to be 25% less restrained by skeletal interactions than band 3 in control cells, indicating that the normal linkages between band 3 and the membrane skeleton had been substantially disrupted. Interestingly, the protein 4.1a/protein 4.1b ratio, commonly assumed to reflect RBC age, was found to be maximal in RBCs isolated only 58 days after labeling, implying that while this marker is useful for identifying very young populations of RBCs, it is not a very sensitive marker for canine senescent RBCs. Taken together, these data argue that several of the readily testable elements of the above hypothesis implicating band 3 in human RBC senescence can be validated in an appropriate canine model.
Collapse
|
21
|
Ando K, Nagata K, Beppu M, Kikugawa K, Kawabata T, Hasegawa K, Suzuki M. Effect of n-3 fatty acid supplementation on lipid peroxidation and protein aggregation in rat erythrocyte membranes. Lipids 1998; 33:505-12. [PMID: 9625598 DOI: 10.1007/s11745-998-0234-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human erythrocytes in the circulation undergo dynamic oxidative damage involving membrane lipid peroxidation and protein aggregation during aging. The present study was undertaken to determine the effect of n-3 fatty acid supplementation on lipid peroxidation and protein aggregation in the circulation and also the in vitro susceptibility of rat erythrocyte membranes to oxidative damage. Wistar male rats were fed a diet containing n-6 fatty acid-rich safflower oil or n-3 fatty acid-rich fish oil with an equal amount of vitamin E for 6 wk. n-3 Fatty acid content in erythrocyte membranes of rats fed fish oil was significantly higher than that of rats fed safflower oil. The degree of membrane lipid peroxidation and protein aggregation of rats fed fish oil was not significantly higher than that of rats fed safflower oil when the amounts of phospholipid hydroperoxides, thiobarbituric acid-reactive substances, and detergent-insoluble protein aggregates were measured. When isolated erythrocytes were oxidized under aerobic conditions in the presence of Fe(III), the degree of membrane lipid peroxidation of erythrocytes from rats fed fish oil was increased to a greater extent than that of rats fed safflower oil, whereas the degree of membrane protein aggregation of both groups was increased in a similar extent. Hence, n-3 fatty acid supplementation did not affect lipid peroxidation and protein aggregation in membranes of circulating rat erythrocytes, and the supplementation increased the susceptibility of isolated erythrocytes to lipid peroxidation, but not to protein aggregation, under the aerobic conditions. If a sufficient amount of vitamin E is supplied, n-3 fatty acid supplementation may give no undesirable oxidative effects on rat erythrocytes in the circulation.
Collapse
Affiliation(s)
- K Ando
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, Hachioji, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Bratosin D, Mazurier J, Tissier JP, Estaquier J, Huart JJ, Ameisen JC, Aminoff D, Montreuil J. Cellular and molecular mechanisms of senescent erythrocyte phagocytosis by macrophages. A review. Biochimie 1998; 80:173-95. [PMID: 9587675 DOI: 10.1016/s0300-9084(98)80024-2] [Citation(s) in RCA: 257] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human red blood cells (RBCs) have a life-span of 120 days in circulation, after which they are phagocytized by resident macrophages. Extensive studies have been undertaken by many investigators in order to elucidate the cellular and molecular mechanisms of the erythrophagocytosis. The critical questions addressed by physiologists, clinicians and biochemists are: 'which of the many traumatic blemishes that appear on the erythrocyte surface as it winds its way through the circulation is the primary signal for clearance of the effete RBC from the circulation?', or 'What is the critical signal that it, and it alone, will activate the resident macrophage to adhere to and engulf it?'. Numerous, and often conflicting, hypotheses have been proposed. Each investigator focusing on but one of the many modifications that afflict the cell surface of the ageing erythrocyte, viz changes in either or both the carbohydrate or peptidic moieties of glycoproteins; abolishment of the pre-existing asymmetry in the lipid bilayer with the exposure of phosphatidylserine residues; or alterations in spectrin, to mention but a few. Many of these investigators also have invoked an intermediary role for auto-immune antibodies that recognise the change(s) on the erythrocyte surface and thereby serve as opsonins as a prelude to the erythrophagocytosis. The objective of the present review is to evaluate the data in support of the various hypotheses, and to submit some of our own recent observations involving the use of flow cytometric procedures that: i) provide evidence that the cell surface sialic acid serves as a determinant of the life-span; ii) characterise the senescent erythrocyte population that is specifically captured and phagocytized by macrophages (utilising the rapid and sensitive procedure we developed for quantification of in vitro erythrophagocytosis); and finally iii) provide evidence for the existence of an alternative pathway that is independent of immunoglobulins.
Collapse
Affiliation(s)
- D Bratosin
- Institutut de Biochimie, Academia Romanà, Bucurest, Romania
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Druet E, Praddaude F, Druet P, Dietrich G. Non-immunoglobulin serum proteins prevent the binding of IgG from normal rats and from rats with Th2-mediated autoimmune glomerulonephritis to various autoantigens including glomerular antigens. Eur J Immunol 1998; 28:183-92. [PMID: 9485198 DOI: 10.1002/(sici)1521-4141(199801)28:01<183::aid-immu183>3.0.co;2-o] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It is now well established in normal humans and mice that purification of IgG from serum unmasks their autoantibody activity. Mercuric chloride (HgCl2) induces in Brown-Norway (BN) rats a Th2-dependent polyclonal B cell activation, a huge increase in serum IgE and IgG1 concentrations, the production of numerous autoantibodies and an autoantibody-mediated glomerulonephritis. In the present study we have compared the IgG autoantibody activity in the serum and in the purified IgG fraction from normal and HgCl2-injected BN rats. IgG autoantibodies were found to be masked in normal serum by non-immunoglobulin (nonIg) serum proteins and, provided these IgG did not encounter normal serum proteins, they could bind to glomerular antigens as assessed by immunofluorescence in a unilateral perfused kidney model. As a consequence of HgCl2-induced polyclonal activation of B cells, IgG autoantibodies were no longer complexed to non-Ig serum proteins, they were easily detected in the serum and could therefore reach their glomerular target. However, these autoantibodies could still be blocked by normal non-Ig serum proteins not only in vitro but also in a unilateral perfused kidney model so that their binding to glomerular antigens could be prevented. These findings indicate that the ratio between autoantibody level and the amount of non-Ig serum proteins may be crucial in autoantibody-mediated autoimmune diseases.
Collapse
Affiliation(s)
- E Druet
- INSERM U28, IFR 30, Hôpital Purpan, Faculté de Médecine Purpan, Toulouse, France
| | | | | | | |
Collapse
|
24
|
Ando K, Kikugawa K, Beppu M. Induction of band 3 aggregation in erythrocytes results in anti-band 3 autoantibody binding to the carbohydrate epitopes of band 3. Arch Biochem Biophys 1997; 339:250-7. [PMID: 9056256 DOI: 10.1006/abbi.1996.9831] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Involvement of band 3 aggregation in the mechanism of anti-band 3 autoantibody binding to the cell surface carbohydrate epitopes of band 3 was investigated. When erythrocytes were treated nonoxidatively with a known protein-aggregating agent acridine orange, protein aggregates of the cell membrane which are insoluble in a nonionic detergent C12E8 solution were remarkably increased. Analysis of the protein aggregates by SDS-PAGE indicated that they were composed of several species of noncovalently associated membrane proteins including band 3. 125I-labeled anti-band 3 bound to the acridine orange-treated cells, and the binding increased depending on the concentrations of acridine orange used. The binding was inhibited by band 3 and its oligosaccharides but not by the oligosaccharides pretreated with endo-beta-galactosidase, an enzyme specifically cleaves poly-N-acetyllactosaminyl saccharide chains of band 3. When erythrocytes were pretreated with endo-beta-galactosidase to remove poly-N-acetyllactosaminyl saccharide chains from cell surface prior to acridine orange treatment, the cells did not become susceptible to anti-band 3 binding. The results indicate that induction of band 3 aggregation in erythrocyte membrane leads to anti-band 3 binding to the poly-N-acetyllactosaminyl saccharide chains of band 3. Consistently, membrane proteins including band 3 were found to be aggregated when erythrocytes were oxidized with ADP-chelated Fe3+ under the conditions that induce anti-band 3 binding to the cells. Similar band 3 aggregation was observed on senescent erythrocytes whose carbohydrate epitopes of band 3 had been occupied with anti band 3. These results indicate that anti-band 3 binds to the carbohydrate epitopes of band 3 on erythrocytes when band 3 is aggregated by oxidative and nonoxidative mechanisms.
Collapse
Affiliation(s)
- K Ando
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, Japan
| | | | | |
Collapse
|
25
|
Zanini D, Roy R. Chemoenzymatic synthesis and lectin binding properties of dendritic N-acetyllactosamine. Bioconjug Chem 1997; 8:187-92. [PMID: 9095359 DOI: 10.1021/bc970005u] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Proof that multivalency amplifies individual carbohydrate-protein interactions is growing. N-Acetylglucosamine (GlcNAc)-based dendrimers with valencies of two (9), four (10), and eight (11) were prepared in fair to excellent yields (65-99%) on the basis of the rational scaffolding of L-lysine on solid phase using established Fmoc and HOBt chemistry. These GlcNAc dendrimers were then further transformed enzymatically (79-90% yields) into dendritic N-acetyllactosamine (LacNAc) derivatives [di-(12), tetra-(13), and octavalent (14)] using UDPglucose, UDP-glucose 4'-epimerase, and GlcNAc beta-1,4-galactosyltransferase. GlcNAc and LacNAc dendrimers were used to inhibit lectin-porcine stomach mucin interactions. Wheat germ agglutinin and Erythrina cristagalli lectin were used for GlcNAc and LacNAc dendrimers, respectively. Di-, tetra-, and octavalent GlcNAc dendrimers exhibited IC50S of 3100, 509, and 88 microM (6200, 2040, and 703 microM, with respect to monomeric GlcNAc content). IC50s for the LacNAc series were 341, 143, and 86 microM (682, 574, and 692 microM, as compared with monomeric LacNAc content). These data represent more than 20-fold increases in inhibitory potential for dendritic GlcNAc as compared to that for monomeric GlcNAc. Studies with E. cristagalli do not reveal significant increased inhibitory potential with multivalency.
Collapse
Affiliation(s)
- D Zanini
- Department of Chemistry, University of Ottawa, Ontario, Canada
| | | |
Collapse
|
26
|
Abstract
Autoantibodies of the IgM, IgG and IgA classes, reactive with a variety of serum proteins, cell surface structures and intracellular structures, are 'naturally' found in all normal individuals. Present in human cord blood and in 'antigen-free' mice, their variable-region repertoire is selected by antigenic structures in the body and remains conserved throughout life. Encoded by germline genes with no, or few, mutations, natural autoantibodies are characteristically 'multireactive' and do not undergo affinity maturation in normal individuals. Natural autoantibodies may participate in a variety of physiological activities, from immune regulation, homeostasis and repertoire selection, to resistance to infections, transport and functional modulation of biologically active molecules.
Collapse
Affiliation(s)
- A Coutinho
- Institut Pasteur and Hôpital Broussais, Paris, France
| | | | | |
Collapse
|
27
|
Charuk JH, Tan J, Bernardini M, Haddad S, Reithmeier RA, Jaeken J, Schachter H. Carbohydrate-deficient glycoprotein syndrome type II. An autosomal recessive N-acetylglucosaminyltransferase II deficiency different from typical hereditary erythroblastic multinuclearity, with a positive acidified-serum lysis test (HEMPAS). EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 230:797-805. [PMID: 7607254 DOI: 10.1111/j.1432-1033.1995.0797h.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Carbohydrate-deficient glycoprotein syndromes (CDGS) are a family of multisystemic congenital diseases resulting in underglycosylated glycoproteins, suggesting defective N-glycan assembly. Fibroblast extracts from two patients with a recently described variant of this disease (CDGS type II) have previously been shown to have over 98% reduced activity of UDP-GlcNAc:alpha-6-D-mannoside beta-1,2-N-acetylglucosaminyltransferase II [GlcNAc-TII; Jaeken, J., Schachter, H., Carchon, H., De Cock, P., Coddeville, B. & Spik, G. (1994) Arch. Dis. Childhood 71, 123-127]. We show in this paper that mononuclear cell extracts from one of these CDGS type-II patients have no detectable GlcNAc-TII activity and that similar extracts from 12 blood relatives of the patient, including his father, mother and brother, have GlcNAc-TII levels 32-67% that of normal levels (average 50.1% +/- 10.7% SD), consistent with an autosomal recessive disease. The poly(N-acetyllactosamine) content of erythrocyte membrane glycoproteins bands 3 and 4.5 of this CDGS patient were estimated, by tomato lectin blotting, to be reduced by 50% relative to samples obtained from blood relatives and normal controls. Similar to patients with hereditary erythroblastic multinuclearity with a positive acidified-serum lysis test (HEMPAS), erythrocyte membrane glycoproteins in the CDGS patient have increased reactivities with concanavalin A, demonstrating the presence of hybrid or oligomannose carbohydrate structures. However, bands 3 and 4.5 in HEMPAS erythrocytes have almost complete lack of poly(N-acetyllactosamine). Furthermore, CDGS type-II patients have a totally different clinical presentation and their erythrocytes do not show the serology typical of HEMPAS, suggesting that the genetic lesions responsible for these two diseases are possibly different.
Collapse
Affiliation(s)
- J H Charuk
- Department of Medicine, University of Toronto, Canada
| | | | | | | | | | | | | |
Collapse
|