1
|
Silva BRS, Jara CP, Sidarta-Oliveira D, Velloso LA, Velander WH, Araújo EP. Downregulation of the Protein C Signaling System Is Associated with COVID-19 Hypercoagulability-A Single-Cell Transcriptomics Analysis. Viruses 2022; 14:2753. [PMID: 36560757 PMCID: PMC9785999 DOI: 10.3390/v14122753] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/14/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Because of the interface between coagulation and the immune response, it is expected that COVID-19-associated coagulopathy occurs via activated protein C signaling. The objective was to explore putative changes in the expression of the protein C signaling network in the liver, peripheral blood mononuclear cells, and nasal epithelium of patients with COVID-19. Single-cell RNA-sequencing data from patients with COVID-19 and healthy subjects were obtained from the COVID-19 Cell Atlas database. A functional protein-protein interaction network was constructed for the protein C gene. Patients with COVID-19 showed downregulation of protein C and components of the downstream protein C signaling cascade. The percentage of hepatocytes expressing protein C was lower. Part of the liver cell clusters expressing protein C presented increased expression of ACE2. In PBMC, there was increased ACE2, inflammatory, and pro-coagulation transcripts. In the nasal epithelium, PROC, ACE2, and PROS1 were expressed by the ciliated cell cluster, revealing co-expression of ACE-2 with transcripts encoding proteins belonging to the coagulation and immune system interface. Finally, there was upregulation of coagulation factor 3 transcript in the liver and PBMC. Protein C could play a mechanistic role in the hypercoagulability syndrome affecting patients with severe COVID-19.
Collapse
Affiliation(s)
- Bruna Rafaela Santos Silva
- Nursing School, University of Campinas, Tessalia Vieira de Camargo, 126, Campinas 13084-970, Brazil
- Laboratory of Cell Signalling, Obesity and Comorbidities Center, OCRC, University of Campinas, Carl Von Linnaeus, s/n, Campinas 13084-864, Brazil
| | - Carlos Poblete Jara
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE 68588-0643, USA
| | - Davi Sidarta-Oliveira
- Laboratory of Cell Signalling, Obesity and Comorbidities Center, OCRC, University of Campinas, Carl Von Linnaeus, s/n, Campinas 13084-864, Brazil
- School of Medical Sciences, University of Campinas, Tessalia Vieira de Camargo, 126, Campinas 13083-887, Brazil
| | - Licio A. Velloso
- Laboratory of Cell Signalling, Obesity and Comorbidities Center, OCRC, University of Campinas, Carl Von Linnaeus, s/n, Campinas 13084-864, Brazil
- School of Medical Sciences, University of Campinas, Tessalia Vieira de Camargo, 126, Campinas 13083-887, Brazil
| | - William H. Velander
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE 68588-0643, USA
| | - Eliana P. Araújo
- Nursing School, University of Campinas, Tessalia Vieira de Camargo, 126, Campinas 13084-970, Brazil
- Laboratory of Cell Signalling, Obesity and Comorbidities Center, OCRC, University of Campinas, Carl Von Linnaeus, s/n, Campinas 13084-864, Brazil
| |
Collapse
|
2
|
Pryzdial ELG, Leatherdale A, Conway EM. Coagulation and complement: Key innate defense participants in a seamless web. Front Immunol 2022; 13:918775. [PMID: 36016942 PMCID: PMC9398469 DOI: 10.3389/fimmu.2022.918775] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/06/2022] [Indexed: 12/30/2022] Open
Abstract
In 1969, Dr. Oscar Ratnoff, a pioneer in delineating the mechanisms by which coagulation is activated and complement is regulated, wrote, “In the study of biological processes, the accumulation of information is often accelerated by a narrow point of view. The fastest way to investigate the body’s defenses against injury is to look individually at such isolated questions as how the blood clots or how complement works. We must constantly remind ourselves that such distinctions are man-made. In life, as in the legal cliché, the devices through which the body protects itself form a seamless web, unwrinkled by our artificialities.” Our aim in this review, is to highlight the critical molecular and cellular interactions between coagulation and complement, and how these two major component proteolytic pathways contribute to the seamless web of innate mechanisms that the body uses to protect itself from injury, invading pathogens and foreign surfaces.
Collapse
Affiliation(s)
- Edward L. G. Pryzdial
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Canadian Blood Services, Medical Affairs and Innovation, Vancouver, BC, Canada
- *Correspondence: Edward L. G. Pryzdial, ; Edward M. Conway,
| | - Alexander Leatherdale
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Edward M. Conway
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Canadian Blood Services, Medical Affairs and Innovation, Vancouver, BC, Canada
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Edward L. G. Pryzdial, ; Edward M. Conway,
| |
Collapse
|
3
|
Affiliation(s)
- Deane F. Mosher
- Departments of Medicine and Biomolecular Chemistry University of Wisconsin‐Madison 440 Henry Mal Madison Wisconsin53706 USA
| | | | - Craig M. Jackson
- Washington University School of Medicine in St. Louis 5931 Seacrest View Rd. San Diego California92121‐4355 USA
| |
Collapse
|
4
|
MacQuarrie KL, Williams O, Friedman KD, Bercovitz RS. Compound heterozygous protein C variants undetectable by common laboratory testing causing purpura fulminans after the neonatal period. Am J Hematol 2020; 95:1616-1621. [PMID: 32833261 DOI: 10.1002/ajh.25976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Kyle L. MacQuarrie
- Division of Hematology, Oncology, and Stem Cell Transplantation, Department of Pediatrics Northwestern University Feinberg School of Medicine Chicago Illinois
- Ann & Robert H. Lurie Children's Hospital Chicago Illinois
| | - Olatundun Williams
- Division of Hematology, Oncology, and Stem Cell Transplantation, Department of Pediatrics Northwestern University Feinberg School of Medicine Chicago Illinois
- Ann & Robert H. Lurie Children's Hospital Chicago Illinois
| | - Kenneth D. Friedman
- Blood Research Institute Versiti Blood Center of Wisconsin Milwaukee Wisconsin
- Division of Hematology and Oncology, Department of Internal Medicine Medical College of Wisconsin Milwaukee Wisconsin
| | - Rachel S. Bercovitz
- Division of Hematology, Oncology, and Stem Cell Transplantation, Department of Pediatrics Northwestern University Feinberg School of Medicine Chicago Illinois
- Ann & Robert H. Lurie Children's Hospital Chicago Illinois
| |
Collapse
|
5
|
Healy LD, Rigg RA, Griffin JH, McCarty OJ. Regulation of immune cell signaling by activated protein C. J Leukoc Biol 2018; 103:10.1002/JLB.3MIR0817-338R. [PMID: 29601101 PMCID: PMC6165708 DOI: 10.1002/jlb.3mir0817-338r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/31/2018] [Accepted: 02/07/2018] [Indexed: 12/14/2022] Open
Abstract
Innate immune cells are an essential part of the host defense response, promoting inflammation through release of proinflammatory cytokines or formation of neutrophil extracellular traps. While these processes are important for defense against infectious agents or injury, aberrant activation potentiates pathologic inflammatory disease. Thus, understanding regulatory mechanisms that limit neutrophil extracellular traps formation and cytokine release is of therapeutic interest for targeting pathologic diseases. Activated protein C is an endogenous serine protease with anticoagulant activity as well as anti-inflammatory and cytoprotective functions, the latter of which are mediated through binding cell surface receptors and inducing intracellular signaling. In this review, we discuss certain leukocyte functions, namely neutrophil extracellular traps formation and cytokine release, and the inhibition of these processes by activated protein C.
Collapse
Affiliation(s)
- Laura D. Healy
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Department of Cell, Developmental & Cancer Biology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Rachel A. Rigg
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - John H. Griffin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Owen J.T. McCarty
- Department of Cell, Developmental & Cancer Biology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
6
|
Yoshida K, Akita N, Okamoto T, Asanuma K, Uchida A, Sudo A, Shimaoka M, Suzuki K, Hayashi T. Activated protein C suppresses osteoclast differentiation via endothelial protein C receptor, protease-activated receptor-1, sphingosine 1-phosphate receptor, and apolipoprotein E receptor 2. Thromb Res 2018; 163:30-40. [PMID: 29334656 DOI: 10.1016/j.thromres.2018.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 12/24/2017] [Accepted: 01/02/2018] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Bone remodeling relies on a delicate balance between formation and resorption of bone tissues, processes in which bone-forming osteoblasts and bone-resorbing osteoclasts play central roles. Recently, we reported that anticoagulant activated protein C (APC) promotes osteoblast proliferation, but the role of the blood coagulation system in bone remodeling remains unclear. In this study, to further elucidate the relationship between bone remodeling and blood coagulation, we investigated the effect of APC on osteoclast differentiation. MATERIALS AND METHODS Normal human osteoclast precursor cells were cultured in their growth medium including soluble RANKL, M-CSF, and FBS, and on days 4 and 7, the culture medium was replaced with the same medium containing various concentrations of APC, protein C (PC), sphingosine 1-phosphate (S1P) receptor agonist, FTY720, or APC+various substances without FBS. On day 8, TRAP-positive multinucleated cells (≥3 nuclei) were counted manually using a light microscope. The effects of APC on NF-κB and NFATc1 activation were evaluated using specific ELISA. RESULTS APC suppressed RANKL-induced osteoclast differentiation, and this APC-induced suppression of osteoclast differentiation was inhibited by zymogen protein C and aprotinin, a serine protease inhibitor. Immunohistochemistry and RT-PCR analyses suggested that endothelial protein C receptor (EPCR) and protease-activated receptor-1 (PAR-1) were expressed in osteoclast precursor cells and osteoclasts. Both anti-PAR-1 antibody and anti-EPCR antibody (RCR-252), which blocks APC binding to EPCR, inhibited the APC-induced suppression of osteoclast differentiation. FTY720 had no effect on osteoclast differentiation. However, FTY 720 and S1P receptor antagonist, VP 23019, inhibited the APC-induced suppression of osteoclast differentiation. On the other hand, recombinant soluble human ApoER2 and anti-human ApoER2 inhibited the APC-induced suppression of osteoclast differentiation. Further, APC had no effect on NF-κB and NFATc1 activation. CONCLUSIONS APC suppresses human osteoclast differentiation mainly by inhibiting the formation of multinucleated cells via EPCR, PAR-1, S1P receptor, and ApoER2 in a manner that depends on APC protease activity.
Collapse
Affiliation(s)
- Kakunoshin Yoshida
- Department of Orthopedic Surgery, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan
| | - Nobuyuki Akita
- Faculty of Medical Engineering, Suzuka University of Medical Science, Suzuka-city, Mie, Japan
| | - Takayuki Okamoto
- Department of Pharmacology, Faculty of Medicine, Shimane University, Shimane-city, Shimane, Japan
| | - Kunihiro Asanuma
- Department of Orthopedic Surgery, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan
| | - Atsumasa Uchida
- Department of Orthopedic Surgery, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan
| | - Akihiro Sudo
- Department of Orthopedic Surgery, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan
| | - Koji Suzuki
- Faculty of Pharmaceutical Science, Suzuka University of Medical Science, Suzuka-city, Mie, Japan
| | - Tatsuya Hayashi
- Faculty of Nursing Science, Mie Prefectural College of Nursing, Tsu-city, Mie, Japan.
| |
Collapse
|
7
|
Foley JH, Conway EM. Cross Talk Pathways Between Coagulation and Inflammation. Circ Res 2017; 118:1392-408. [PMID: 27126649 DOI: 10.1161/circresaha.116.306853] [Citation(s) in RCA: 386] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 03/21/2016] [Indexed: 02/06/2023]
Abstract
Anatomic pathology studies performed over 150 years ago revealed that excessive activation of coagulation occurs in the setting of inflammation. However, it has taken over a century since these seminal observations were made to delineate the molecular mechanisms by which these systems interact and the extent to which they participate in the pathogenesis of multiple diseases. There is, in fact, extensive cross talk between coagulation and inflammation, whereby activation of one system may amplify activation of the other, a situation that, if unopposed, may result in tissue damage or even multiorgan failure. Characterizing the common triggers and pathways are key for the strategic design of effective therapeutic interventions. In this review, we highlight some of the key molecular interactions, some of which are already showing promise as therapeutic targets for inflammatory and thrombotic disorders.
Collapse
Affiliation(s)
- Jonathan H Foley
- From the Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom (J.H.F.); Katharine Dormandy Haemophilia Centre and Thrombosis Unit, Royal Free NHS Trust, London, United Kingdom (J.H.F.); and Centre for Blood Research, Department of Medicine, University of British Columbia, Vancouver, Canada (E.M.C.)
| | - Edward M Conway
- From the Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom (J.H.F.); Katharine Dormandy Haemophilia Centre and Thrombosis Unit, Royal Free NHS Trust, London, United Kingdom (J.H.F.); and Centre for Blood Research, Department of Medicine, University of British Columbia, Vancouver, Canada (E.M.C.).
| |
Collapse
|
8
|
Healy LD, Puy C, Fernández JA, Mitrugno A, Keshari RS, Taku NA, Chu TT, Xu X, Gruber A, Lupu F, Griffin JH, McCarty OJT. Activated protein C inhibits neutrophil extracellular trap formation in vitro and activation in vivo. J Biol Chem 2017; 292:8616-8629. [PMID: 28408624 DOI: 10.1074/jbc.m116.768309] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 04/11/2017] [Indexed: 12/11/2022] Open
Abstract
Activated protein C (APC) is a multifunctional serine protease with anticoagulant, cytoprotective, and anti-inflammatory activities. In addition to the cytoprotective effects of APC on endothelial cells, podocytes, and neurons, APC cleaves and detoxifies extracellular histones, a major component of neutrophil extracellular traps (NETs). NETs promote pathogen clearance but also can lead to thrombosis; the pathways that negatively regulate NETosis are largely unknown. Thus, we studied whether APC is capable of directly inhibiting NETosis via receptor-mediated cell signaling mechanisms. Here, by quantifying extracellular DNA or myeloperoxidase, we demonstrate that APC binds human leukocytes and prevents activated platelet supernatant or phorbol 12-myristate 13-acetate (PMA) from inducing NETosis. Of note, APC proteolytic activity was required for inhibiting NETosis. Moreover, antibodies against the neutrophil receptors endothelial protein C receptor (EPCR), protease-activated receptor 3 (PAR3), and macrophage-1 antigen (Mac-1) blocked APC inhibition of NETosis. Select mutations in the Gla and protease domains of recombinant APC caused a loss of NETosis. Interestingly, pretreatment of neutrophils with APC prior to induction of NETosis inhibited platelet adhesion to NETs. Lastly, in a nonhuman primate model of Escherichia coli-induced sepsis, pretreatment of animals with APC abrogated release of myeloperoxidase from neutrophils, a marker of neutrophil activation. These findings suggest that the anti-inflammatory function of APC at therapeutic concentrations may include the inhibition of NETosis in an EPCR-, PAR3-, and Mac-1-dependent manner, providing additional mechanistic insight into the diverse functions of neutrophils and APC in disease states including sepsis.
Collapse
Affiliation(s)
- Laura D Healy
- From the Departments of Cell, Developmental & Cancer Biology and
| | - Cristina Puy
- Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97230
| | - José A Fernández
- the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, and
| | - Annachiara Mitrugno
- Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97230
| | - Ravi S Keshari
- the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Nyiawung A Taku
- Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97230
| | - Tiffany T Chu
- Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97230
| | - Xiao Xu
- the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, and
| | - András Gruber
- Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97230
| | - Florea Lupu
- the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - John H Griffin
- the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, and
| | - Owen J T McCarty
- From the Departments of Cell, Developmental & Cancer Biology and.,Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97230
| |
Collapse
|
9
|
Xue M, Jackson CJ. Activated protein C and its potential applications in prevention of islet β-cell damage and diabetes. VITAMINS AND HORMONES 2014; 95:323-63. [PMID: 24559924 DOI: 10.1016/b978-0-12-800174-5.00013-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Activated protein C (APC) is derived from its precursor, protein C (PC). Originally thought to be synthesized exclusively by the liver, recent reports have shown that PC is also produced by many other cells including pancreatic islet β cells. APC functions as a physiological anticoagulant with anti-inflammatory, anti-apoptotic, and barrier-stabilizing properties. APC exerts its protective effects via an intriguing mechanism requiring combinations of endothelial PC receptor, protease-activated receptors, epidermal growth factor receptor, Tie2 or CD11b, depending on cell types. Diabetes is a chronic condition resulted from the body's inability to produce and/or properly use insulin. The prevalence of diabetes has risen dramatically and has become one of the major causes of premature mortality and morbidity worldwide. Diabetes prevention is an ideal approach to reduce this burden. Type 1 and type 2 diabetes are the major forms of diabetes mellitus, and both are characterized by an autoimmune response, intraislet inflammation, β-cell apoptosis, and progressive β-cell loss. Protecting β-cell from damage is critical in both prevention and treatment of diabetes. Recent in vitro and animal studies show that APC's strong anti-inflammatory and anti-apoptotic properties are beneficial in preventing β-cell destruction and diabetes in the NOD mouse model of type 1 diabetes. Future preventive and therapeutic uses of APC in diabetes look very promising.
Collapse
Affiliation(s)
- Meilang Xue
- Sutton Arthritis Research Laboratories, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia.
| | - Christopher J Jackson
- Sutton Arthritis Research Laboratories, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| |
Collapse
|
10
|
D’Alessio S, Genua M, Vetrano S. The protein C pathway in intestinal barrier function: challenging the hemostasis paradigm. Ann N Y Acad Sci 2012; 1258:78-85. [DOI: 10.1111/j.1749-6632.2012.06557.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
Weiler H. Multiple receptor-mediated functions of activated protein C. Hamostaseologie 2012; 31:185-95. [PMID: 21826371 DOI: 10.5482/ha-1166] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 06/17/2011] [Indexed: 01/08/2023] Open
Abstract
The central effector protease of the protein C pathway, activated protein C (APC), interacts with the endothelial cell protein C receptor, with protease activated receptors (PAR), the apolipoprotein E2 receptor, and integrins to exert multiple effects on haemostasis and immune cell function. Such receptor interactions modify the activation of PC and determine the biological response to endogenous and therapeutically administered APC. This review summarizes the current knowledge about interactions of APC with cell surface-associated receptors, novel substrates such as histones and tissue factor pathway inhibitor, and their implications for the biologic function of APC in the control of coagulation and inflammation.
Collapse
Affiliation(s)
- H Weiler
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee WI 53226, USA.
| |
Collapse
|
12
|
Conway EM. Thrombomodulin and its role in inflammation. Semin Immunopathol 2012; 34:107-25. [PMID: 21805323 DOI: 10.1007/s00281-011-0282-8] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 07/20/2011] [Indexed: 12/30/2022]
Abstract
The goal is to provide an extensive review of the physiologic role of thrombomodulin (TM) in maintaining vascular homeostasis, with a focus on its anti-inflammatory properties. Data were collected from published research. TM is a transmembrane glycoprotein expressed on the surface of all vascular endothelial cells. Expression of TM is tightly regulated to maintain homeostasis and to ensure a rapid and localized hemostatic and inflammatory response to injury. By virtue of its strategic location, its multidomain structure and complex interactions with thrombin, protein C (PC), thrombin activatable fibrinolysis inhibitor (TAFI), complement components, the Lewis Y antigen, and the cytokine HMGB1, TM exhibits a range of physiologically important anti-inflammatory, anti-coagulant, and anti-fibrinolytic properties. TM is an essential cofactor that impacts on multiple biologic processes. Alterations in expression of TM and its partner proteins may be manifest by inflammatory and thrombotic disorders. Administration of soluble forms of TM holds promise as effective therapies for inflammatory diseases, and infections and malignancies that are complicated by disseminated intravascular coagulation.
Collapse
Affiliation(s)
- Edward M Conway
- Division of Hematology-Oncology, Department of Medicine, Centre for Blood Research (CBR), University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
13
|
Della Valle P, Pavani G, D'Angelo A. The protein C pathway and sepsis. Thromb Res 2011; 129:296-300. [PMID: 22154246 DOI: 10.1016/j.thromres.2011.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Revised: 11/07/2011] [Accepted: 11/08/2011] [Indexed: 10/14/2022]
Abstract
After the discovery of the key components of the protein C (PC) pathway a beneficial effect on survival of the infusion of activated protein C (APC) in animal models of sepsis was demonstrated, leading to the development of recombinant human activated protein C (rh-APC) as a therapeutic agent. It soon became clear that rather than the anticoagulant and profibrinolytic activities of APC, its anti-inflammatory and cytoprotective properties played a major role in the treatment of patients with severe sepsis. Such properties affect the response to inflammation of endothelial cells and leukocytes and are exerted through binding of APC to at least five receptors with intracellular signaling. The main APC protective mechanism involves binding of the Gla-domain to the endothelial protein C receptor (EPCR) and cleavage of protease activated receptor 1 (PAR-1), eliciting suppression of proinflammatory cytokines synthesis and of intracellular proapoptotic pathways and activation of endothelial barrier properties. However, thrombin cleaves PAR-1 with much higher catalytic efficiency, followed by pro-inflammatory, pro-apoptotic and barrier disruptive intracellular signaling, and it is unclear how APC can exert a protective activity through the cleavage of PAR-1 when thrombin is also present in the same environment. Interestingly, in endothelial cell cultures, PAR-1 cleavage by thrombin results in anti-inflammatory and barrier protective signaling provided occupation of EPCR by the PC gla-domain, raising the possibility that the beneficial effects of rh-APC might be recapitulated in vivo by administration of h-PC zymogen to patients with severe sepsis. Recent reports of h-PC infusion in animal models of sepsis support this hypothesis.
Collapse
Affiliation(s)
- Patrizia Della Valle
- Coagulation Service & Thrombosis Research Unit, Scientific Institute San Raffaele, Milano, Italy
| | | | | |
Collapse
|
14
|
Neyrinck AP, Liu KD, Howard JP, Matthay MA. Protective mechanisms of activated protein C in severe inflammatory disorders. Br J Pharmacol 2009; 158:1034-47. [PMID: 19466992 DOI: 10.1111/j.1476-5381.2009.00251.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The protein C system is an important natural anticoagulant mechanism mediated by activated protein C (APC) that regulates the activity of factors VIIIa and Va. Besides well-defined anticoagulant properties, APC also demonstrates anti-inflammatory, anti-apoptotic and endothelial barrier-stabilizing effects that are collectively referred to as the cytoprotective effects of APC. Many of these beneficial effects are mediated through its co-receptor endothelial protein C receptor, and the protease-activated receptor 1, although exact mechanisms remain unclear and are likely pleiotropic in nature. Increased insight into the structure-function relationships of APC facilitated design of APC variants that conserve cytoprotective effects and reduce anticoagulant features, thereby attenuating the risk of severe bleeding with APC therapy. Impairment of the protein C system plays an important role in acute lung injury/acute respiratory distress syndrome and severe sepsis. The pathophysiology of both diseases states involves uncontrolled inflammation, enhanced coagulation and compromised fibrinolysis. This leads to microvascular thrombosis and organ injury. Administration of recombinant human APC to correct the dysregulated protein C system reduced mortality in severe sepsis patients (PROWESS trial), which stimulated further research into its mechanisms of action. Several other clinical trials evaluating recombinant human APC have been completed, including studies in children and less severely ill adults with sepsis as well as a study in acute lung injury. On the whole, these studies have not supported the use of APC in these populations and challenge the field of APC research to search for additional answers.
Collapse
Affiliation(s)
- Arne P Neyrinck
- University of California San Francisco, Cardiovascular Research Institute, San Francisco, CA, USA
| | | | | | | |
Collapse
|
15
|
Abstract
The coagulation "cascade" model accurately represents the mechanisms of the prothrombin time and activated partial thromboplastin time tests. However, these tests and the "cascade" model do not accurately reflect the risk of hemorrhage or thrombosis in vivo. In hepatic insufficiency, a balanced reduction in the levels of most of pro- and anticoagulant proteins produced in the liver does not impair thrombin generation until levels are quite low. However, the ability of the coagulation system to tolerate or recover from an insult is markedly impaired in liver disease. This allows the coagulation system to be more easily tipped into a state favoring either hemorrhage or thrombosis.
Collapse
Affiliation(s)
- Dougald M Monroe
- Carolina Cardiovascular Biology Center, Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Maureane Hoffman
- Carolina Cardiovascular Biology Center, Department of Medicine, University of North Carolina, Chapel Hill, NC, USA; Pathology and Laboratory Medicine Service, Durham Veterans Affairs Medical Center, 508 Fulton Street, Durham, NC 27705, USA; Department of Pathology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
16
|
Beaulieu LM, Church FC. Activated protein C promotes breast cancer cell migration through interactions with EPCR and PAR-1. Exp Cell Res 2006; 313:677-87. [PMID: 17254565 PMCID: PMC4055951 DOI: 10.1016/j.yexcr.2006.11.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 10/27/2006] [Accepted: 11/13/2006] [Indexed: 11/17/2022]
Abstract
Activated protein C (APC) is a serine protease that regulates thrombin (IIa) production through inactivation of blood coagulation factors Va and VIIIa. APC also has non-hemostatic functions related to inflammation, proliferation, and apoptosis through various mechanisms. Using two breast cancer cell lines, MDA-MB-231 and MDA-MB-435, we investigated the role of APC in cell chemotaxis and invasion. Treatment of cells with increasing APC concentrations (1-50 microg/ml) increased invasion and chemotaxis in a concentration-dependent manner. Only the active form of APC increased invasion and chemotaxis of the MDA-MB-231 cells when compared to 3 inactive APC derivatives. Using a modified "checkerboard" analysis, APC was shown to only affect migration when plated with the cells; therefore, APC is not a chemoattractant. Blocking antibodies to endothelial protein C receptor (EPCR) and protease-activated receptor-1 (PAR-1) attenuated the effects of APC on chemotaxis in the MDA-MB-231 cells. Finally, treatment of the MDA-MB-231 cells with the proliferation inhibitor, Na butyrate, showed that APC did not increase migration by increasing cell number. Therefore, APC increases invasion and chemotaxis of cells by binding to the cell surface and activating specific signaling pathways through EPCR and PAR-1.
Collapse
Affiliation(s)
- Lea M. Beaulieu
- Department of Pathology and Laboratory Medicine, University of North Carolina, School of Medicine, Chapel Hill, NC 27599, USA
| | - Frank C. Church
- Department of Pathology and Laboratory Medicine, University of North Carolina, School of Medicine, Chapel Hill, NC 27599, USA
- Departments of Medicine and Pharmacology, University of North Carolina, School of Medicine, Chapel Hill, NC 27599, USA
- Corresponding author. Department of Pathology and Laboratory Medicine, University of North Carolina-Chapel Hill, 932 Mary Ellen Jones Building, CB#7035, Chapel Hill, NC 27599-7035, USA. Fax: +1 919 966 7639 (F.C. Church)
| |
Collapse
|
17
|
Abstract
The story I shall recount started in 1969, when I was given the opportunity to join the Department of Clinical Chemistry at the University Hospital in Malmö. I had just finished medical school at the university in the neighboring town of Lund. Parallel to pursuing my medical studies I had spent some time in the Department of Biochemistry. I did not know much about biochemistry, but it was enough for me to realize that I wanted to do laboratory research rather than developing a clinical career. I was happy to accept an offer to start working in the laboratory, particularly as the head of the department, Professor Carl-Bertil Laurell, had an excellent reputation. As it turned out, I came to spend almost all of my professional life in the laboratory.
Collapse
Affiliation(s)
- J Stenflo
- Department of Clinical Chemistry, University Hospital, Malmö, Sweden.
| |
Collapse
|
18
|
Wang L, Bastarache JA, Wickersham N, Fang X, Matthay MA, Ware LB. Novel role of the human alveolar epithelium in regulating intra-alveolar coagulation. Am J Respir Cell Mol Biol 2006; 36:497-503. [PMID: 17099142 PMCID: PMC1899324 DOI: 10.1165/rcmb.2005-0425oc] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Intra-alveolar fibrin deposition is a common response to localized and diffuse lung infection and acute lung injury (ALI). We hypothesized that the alveolar epithelium modulates intra-alveolar fibrin deposition through activation of protein C. Our objectives [corrected] were to determine whether components of the protein C activation pathway are present in the alveolar compartment in ALI and whether alveolar epithelium is a potential source. In patients with ALI, pulmonary edema fluid levels of endothelial protein C receptor (EPCR) were higher than plasma, suggesting a source in the lung. To determine whether alveolar epithelial cells are a potential source, protein C activation by A549, small airway epithelial, and primary human alveolar epithelial type II cells was measured. All three cell types express thrombomodulin (TM) and EPCR, and activate protein C on the cell surface. Activation of protein C was inhibited by cytomix (TNF-alpha, IL-1beta, and IFN-gamma). Release of EPCR and TM into the conditioned medium was inhibited by the metalloproteinase inhibitors tumor necrosis factor protease inhibitor (TAPI) and GM6001, indicating that the shedding of EPCR and TM from the alveolar epithelium is mediated by a metalloproteinase. These findings provide new evidence that the alveolar epithelium can modulate the protein C pathway and thus could be an important determinant of alveolar fibrin deposition. Local fibrin deposition may be a fundamental mechanism for the lung to localize and confine injury, thus limiting the risk of dissemination of injury or infection to the systemic circulation.
Collapse
Affiliation(s)
- Ling Wang
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | | | | | |
Collapse
|
19
|
Gerlach H. Mini-series: basic research-related reviews in intensive care medicine. Intensive Care Med 2006; 33:1-2. [PMID: 17093983 DOI: 10.1007/s00134-006-0434-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Accepted: 09/18/2006] [Indexed: 01/04/2023]
|
20
|
Hansson K, Stenflo J. Post-translational modifications in proteins involved in blood coagulation. J Thromb Haemost 2005; 3:2633-48. [PMID: 16129023 DOI: 10.1111/j.1538-7836.2005.01478.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- K Hansson
- Department of Clinical Chemistry, Lund University, University Hospital Malmö, Malmö, Sweden.
| | | |
Collapse
|
21
|
Tsuneyoshi N, Fukudome K, Higuchi K, Kimoto M. Preparation and Characterization of Monoclonal Antibodies to Thrombomodulin. Hybridoma (Larchmt) 2005; 24:189-96. [PMID: 16120024 DOI: 10.1089/hyb.2005.24.189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Thrombomodulin (TM) is an endothelial cell surface molecule, capable of specific binding for thrombin. The thrombin/TM complex promotes activation of plasma anticoagulant protein C (PC) and negatively regulates blood coagulation. Along with anticoagulant function, TM has been shown to have additional physiological functions such as regulation of fibrinolysis, cell adhesion, tumor growth, and embryonic development. The extracellular region of TM contains a lectin domain and six epidermal growth factor (EGF)-like domains, which are required for the various functions. To analyze the functions, we established a panel of monoclonal antibodies (MAbs) reactive to each functional domain. We obtained MAbs that react to the lectin domain or the front half of EGF domains from the first to the third using the antigen of a transfected cell line expressing full-length TM. We also obtained MAbs that reacted to the bottom half of the EGF domain from the fourth to the sixth using the antigen of a transfected cell line expressing truncated form of TM lacking the lectin domain and the EGF domains from the first to the third. All obtained MAbs could be used for Western blotting. Endothelial cell function for PC activation can be mimicked by transfected cells positive for TM and the endothelial cell protein C receptor (EPCR). Effects of the established MAbs on thrombin-dependent PC activation on the transfected cells were examined. Strong inhibition was demonstrated by three MAbs, which reacted to the fourth or fifth EGF domain, but not by MAbs to the other domains. The fourth EGF domain is known as the interaction site for PC, and the fifth domain is known to be required for thrombin binding. The sixth EGF domain also has been shown to be required for thrombin binding. An MAb against the domain strongly inhibited thrombin-binding. However, the MAb demonstrated little effect on thrombin dependent PC activation. The contradictory results demonstrated with the MAb to the sixth EGF domain suggest an unknown molecular mechanism for PC activation on the cell surface. A panel of MAbs reactive to each domain could be useful for analyzing the multifunctional molecule thrombomodulin.
Collapse
|
22
|
Ware LB, Bastarache JA, Wang L. Coagulation and fibrinolysis in human acute lung injury-New therapeutic targets? Keio J Med 2005; 54:142-9. [PMID: 16237276 DOI: 10.2302/kjm.54.142] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common, life-threatening causes of acute respiratory failure that arise from a variety of local and systemic insults. The need for new specific therapies has led a number of investigators to examine the role of altered coagulation and fibrinolysis in the pathogenesis of ALI/ARDS. This review summarizes our current understanding of coagulation and fibrinolysis in human ALI/ARDS with an emphasis on pathways that could be potential therapeutic targets including the tissue factor pathway, the protein C pathway and modulation of fibrinolysis via plasminogen activator inhibitor-1. The available data suggest that clinical ALI and ARDS are characterized by profound alterations in both systemic and intra-alveolar coagulation and fibrinolysis. Fibrin deposition in the airspaces and lung microvasculature likely results from both activation of the coagulation cascade and impaired fibrinolysis, triggered by inflammation. Modulation of fibrin deposition in the lung through targeting activation and modulation of coagulation as well as fibrinolysis may be an important therapeutic target in clinical ALI/ARDS that deserves further exploration.
Collapse
Affiliation(s)
- Lorraine B Ware
- Division of Allergy, Pulmonary, and Critical Care, Department of Medicine Vanderbilt University School of Medicine, Nashville, TN 37232-2650, USA.
| | | | | |
Collapse
|
23
|
Van de Wouwer M, Collen D, Conway EM. Thrombomodulin-protein C-EPCR system: integrated to regulate coagulation and inflammation. Arterioscler Thromb Vasc Biol 2004; 24:1374-83. [PMID: 15178554 DOI: 10.1161/01.atv.0000134298.25489.92] [Citation(s) in RCA: 260] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Late in the 18th century, William Hewson recognized that the formation of a clot is characteristic of many febrile, inflammatory diseases (Owen C. A History of Blood Coagulation. Rochester, Minnesota: Mayo Foundation; 2001). Since that time, there has been steady progress in our understanding of coagulation and inflammation, but it is only in the past few decades that the molecular mechanisms linking these 2 biologic systems have started to be delineated. Most of these can be traced to the vasculature, where the systems most intimately interact. Thrombomodulin (TM), a cell surface-expressed glycoprotein, predominantly synthesized by vascular endothelial cells, is a critical cofactor for thrombin-mediated activation of protein C (PC), an event further amplified by the endothelial cell protein C receptor (EPCR). Activated PC (APC), in turn, is best known for its natural anticoagulant properties. Recent evidence has revealed that TM, APC, and EPCR have activities that impact not only on coagulation but also on inflammation, fibrinolysis, and cell proliferation. This review highlights recent insights into the diverse functions of this complex multimolecular system and how its components are integrated to maintain homeostasis under hypercoagulable and/or proinflammatory stress conditions. Overall, the described advances underscore the usefulness of elucidating the relevant molecular pathways that link both systems for the development of novel therapeutic and diagnostic targets for a wide range of inflammatory diseases.
Collapse
Affiliation(s)
- Marlies Van de Wouwer
- The Center for Transgene Technology and Gene Therapy, University of Leuven and the Flanders Interuniversity Institute for Biotechnology (VIB), Belgium
| | | | | |
Collapse
|
24
|
Abstract
The objective of this study was to review the mechanisms by which thrombomodulin (TM) may modulate inflammation. The data were taken from published research performed by other laboratories and our own experimental results. TM is a transmembrane glycoprotein receptor and cofactor for thrombin in the protein C anticoagulant system. Recent studies have revealed that TM has activities, both dependent and independent of either protein C or thrombin, that affect biological systems beyond the coagulation pathway. This review highlights recent insights, provided by in vitro and in vivo analyses, into how the unique structural domains of TM effectively modify coagulation, fibrinolysis, and inflammation in health and disease. A paradigm is presented to describe how these apparently distinct functions are integrated to maintain homeostasis under stress conditions. Finally, we explore the potential diagnostic and therapeutic utility of dissecting out the structure-function correlates of TM. We conclude that TM plays a central role in regulating not only hemostasis but also inflammation, thus providing a close link between these processes. Elucidation of the molecular mechanisms by which TM functions will likely provide novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Marlies Van de Wouwer
- Flanders Interuniversity Institute for Biotechnology and the Center for Transgene Technology and Gene Therapy, University of Leuven, Leuven, Belgium
| | | |
Collapse
|
25
|
Macronutrients. Dis Mon 2004. [DOI: 10.1016/j.disamonth.2004.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
|
27
|
Fukudome K, Ye X, Tsuneyoshi N, Tokunaga O, Sugawara K, Mizokami H, Kimoto M. Activation mechanism of anticoagulant protein C in large blood vessels involving the endothelial cell protein C receptor. J Exp Med 1998; 187:1029-35. [PMID: 9529319 PMCID: PMC2212208 DOI: 10.1084/jem.187.7.1029] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Protein C is an important regulatory mechanism of blood coagulation. Protein C functions as an anticoagulant when converted to the active serine protease form on the endothelial cell surface. Thrombomodulin (TM), an endothelial cell surface receptor specific for thrombin, has been identified as an essential component for protein C activation. Although protein C can be activated directly by the thrombin-TM complex, the conversion is known as a relatively low-affinity reaction. Therefore, protein C activation has been believed to occur only in microcirculation. On the other hand, we have identified and cloned a novel endothelial cell surface receptor (EPCR) that is capable of high-affinity binding of protein C and activated protein C. In this study, we demonstrate the constitutive, endothelial cell-specific expression of EPCR in vivo. Abundant expression was particularly detected in the aorta and large arteries. In vitro cultured, arterial endothelial cells were also found to express abundant EPCR and were capable of promoting significant levels of protein C activation. EPCR was found to greatly accelerate protein C activation by examining functional activity in transfected cell lines expressing EPCR and/or TM. EPCR decreased the dissociation constant and increased the maximum velocity for protein C activation mediated by the thrombin-TM complex. By these mechanisms, EPCR appears to enable significant levels of protein C activation in large vessels. These results suggest that the protein C anticoagulation pathway is important for the regulation of blood coagulation not only in microvessels but also in large vessels.
Collapse
Affiliation(s)
- K Fukudome
- Department of Immunology, Saga Medical School, Nabeshima, Saga 849, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Mac Hale JL, Nathan N, D'Ambra M. Intrinsic Anticoagulation: Protein C, Protein S, and Thrombomodulin. Semin Cardiothorac Vasc Anesth 1997. [DOI: 10.1177/108925329700100405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The protein C anticoagulant system provides important control over the blood coagulation cascade. Any alteration in this pathway, either hereditary, iatrogenic, or otherwise, may interfere with normal coagulation. In this review, current concepts and understanding of surface-dependent hemostatis are reviewed, effects of deficiencies in the intrinsic anticoagulant system are described, and potentially useful therapeutic strategies are proposed. The importance of protein C, protein S, and thrombomodulin in patients undergoing cardiac surgery is specifically addressed. Further work is required before complex interactions of individual components of the intrinsic anticoagulation pathway are fully understood.
Collapse
Affiliation(s)
- John L. Mac Hale
- Department of Cardiac Anaesthesia, Massachusetts General Hospital, Boston, MA
| | - Nadia Nathan
- Department of Cardiac Anaesthesia, Massachusetts General Hospital, Boston, MA
| | - Michael D'Ambra
- Department of Cardiac Anaesthesia, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
29
|
Hillarp A, Dahlbäck B, Zöller B. Activated protein C resistance: from phenotype to genotype and clinical practice. Blood Rev 1995; 9:201-12. [PMID: 8839395 DOI: 10.1016/s0268-960x(95)90011-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The anticoagulant protein C system is an important regulator of the blood coagulation process. Its targets are the procoagulant cofactors factor Va and factor VIIIa, which are cleaved and inactivated by activated protein C, protein S and intact factor V working as cofactors. Genetic defects of protein C or protein S were, together with antithrombin III deficiency, the previously established major causes of familial venous thromboembolism. However, these abnormalities are found in less than 5-10% of patients with thrombosis. Inherited resistance to activated protein C was recently identified as a major risk factor for venous thromboembolism. The activated protein C-resistance phenotype is found in 20-60% of the patients with venous thrombosis, depending on selection criteria and on the prevalence of activated protein C-resistance in the population. The frequency of activated protein C-resistance is 2-10% in the normal populations studied so far. In more than 90% of cases, the molecular background for the activated protein C-resistance is a single point mutation in the factor V gene, which predicts substitution of an arginine at position 506 by a glutamine. Mutated factor V is activated by thrombin or factor Xa in the normal way, but impaired inactivation of mutated factor Va by activated protein C results in a life-long hypercoagulability. Owing to the high prevalence of activated protein C-resistance in the population, it occasionally occurs in patients with deficiency of protein S, protein C or antithrombin III. Individuals with combined defects suffer more severely from thrombosis, and often at a younger age, than those with single defects, suggesting thrombophilia to be a multigenetic disease.
Collapse
Affiliation(s)
- A Hillarp
- Department of Clinical Chemistry, Lund University, Malmö, Sweden
| | | | | |
Collapse
|
30
|
Dahlbäck B. Thrombophilia: the discovery of activated protein C resistance. ADVANCES IN GENETICS 1995; 33:135-75. [PMID: 7484452 DOI: 10.1016/s0065-2660(08)60333-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- B Dahlbäck
- Department of Clinical Chemistry, University Hospital, Malmö, Sweden
| |
Collapse
|
31
|
Blomberg DJ. The Pathologist as a Clinical Consultant for Hemostasis in the Community Hospital. Clin Lab Med 1993. [DOI: 10.1016/s0272-2712(18)30419-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
32
|
Butenas S, Orfeo T, Lawson JH, Mann KG. Aminonaphthalenesulfonamides, a new class of modifiable fluorescent detecting groups and their use in substrates for serine protease enzymes. Biochemistry 1992; 31:5399-411. [PMID: 1606166 DOI: 10.1021/bi00138a023] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A series of new compounds, 6-amino-1-naphthalenesulfonamides (ANSN), were used as fluorescent detecting groups for substrates of amidases. These compounds have a high quantum fluorescent yield, and the sulfonyl moiety permits a large range of chemical modification. Fifteen ANSN substrates with the structure (N alpha-Z)Arg-ANSNR1R2 were synthesized and evaluated for their reactivity with 8 proteases involved in blood coagulation and fibrinolysis. Thrombin, activated protein C, and urokinase rapidly hydrolyzed substrates with monosubstituted sulfonamide moieties (R1 = H). The maximum rate of substrate homologue). The hydrolysis rates for substrates with branched substituents were slower than their linear analogues. Monosubstituted (N alpha-Z)Arg-ANSNR1R2 possessing cyclohexyl or benzyl groups in the sulfonamide moiety were hydrolyzed by these three enzymes at rates similar to that of the n-butyl homologue (except the cyclohexyl compound for u-PA). Factor Xa rapidly hydrolyzed substrates with short alkyl chains, especially when R1 = R2 = CH3 or C2H5. Lys-plasmin and rt-PA demonstrated low activity with these compounds, and the best results were accomplished for monosubstituted compounds when R2 = benzyl (for both enzymes). Factor VIIa and factor IXa beta exhibited no activity with these substrates. A series of 14 peptidyl ANSN substrates were synthesized, and their reactivity for the same 8 enzymes was evaluated. Thrombin, factor Xa, APC, and Lys-plasmin hydrolyzed all of the substrates investigated. Urokinase, rt-PA, and factor IXa beta exhibited reactivity with a more limited group of substrates, and factor VIIa hydrolyzed only one compound (MesD-LGR-ANSN(C2H5)2). The substrate ZGGRR-ANSNH (cyclo-C6H11) showed considerable specificity for APC in comparison with other enzymes (kcat/KM = 19,300 M-1 s-1 for APC, 1560 for factor IIa, and 180 for factor Xa). This kinetic advantage in substrate hydrolysis was utilized to evaluate the activation of protein C by thrombin in a continuous assay format. Substrate (D-LPR-ANSNHC3H7) was used to evaluate factor IX activation by the factor VIIa/tissue factor enzymatic complex in a discontinuous assay. A comparison between the commercially available substrate chromozyme TH (p-nitroanilide) and the ANSN substrate with the same peptide sequence (TosGPR) demonstrated that aminonaphthalenesulfonamide increased the specificity (kcat/KM) of substrate hydrolysis by thrombin more than 30 times, with respect to factor Xa substrate hydrolysis.
Collapse
Affiliation(s)
- S Butenas
- Institute of Biochemistry, Vilnius-MTP, Lithuania
| | | | | | | |
Collapse
|
33
|
Abstract
The protein C activation system provides an interesting model for the control of coagulation. Expression of the critical receptor appears to be under the control of inflammatory mediators. Open questions of considerable importance relate to the physiological significance of these observations. Preliminary evidence is emerging that thrombomodulin is down-regulated in patients and animals with inflammation, but it remains to be determined if the loss of thrombomodulin causes the thrombotic complications or occurs in response to these complications.
Collapse
Affiliation(s)
- C T Esmon
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City
| | | | | |
Collapse
|
34
|
|
35
|
Yoshikawa Y, Sakata Y, Toda G, Oka H. The acquired vitamin K-dependent gamma-carboxylation deficiency in hepatocellular carcinoma involves not only prothrombin, but also protein C. Hepatology 1988; 8:524-30. [PMID: 2836289 DOI: 10.1002/hep.1840080316] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Protein C, one of the vitamin K-dependent plasma proteins synthesized in the liver, was measured immunologically in normal subjects (n = 20), patients with hepatocellular carcinoma (n = 60), liver cirrhosis (n = 60), acute hepatitis (n = 16), chronic hepatitis (n = 19), malignant neoplasms other than hepatocellular carcinoma (n = 35) and patients on warfarin treatment (n = 20). We also assayed gamma-carboxyglutamic acid-complete (carboxylated) protein C in these population by using a monoclonal antibody directed against human protein C, JTC-1, which recognizes the gamma-carboxyglutamic acid domain-related conformational change induced by metal ions. We demonstrated that the plasma of patients with hepatocellular carcinoma contains considerable amounts of gamma-carboxyglutamic acid-incomplete protein C, evidenced by the significantly reduced protein C:gamma-carboxyglutamic acid/protein C:antigen ratios in hepatocellular carcinoma as compared to those seen in normal controls, other liver diseases and other malignant neoplasms (p less than 0.01). In two patients with hepatocellular carcinoma with the reduced protein C:gamma-carboxyglutamic acid/protein C:antigen ratios, successful treatment (transcatheter hepatic arterial embolization or lipiodolization of antitumor agent) led to the very rapid normalization of the ratios. Intravenous administration of vitamin K, however, induced no such effects in three other patients with hepatocellular carcinoma with the abnormality. We conclude that the impaired vitamin K-dependent gamma-carboxylation observed in patients with hepatocellular carcinoma involves not only prothrombin, but also protein C, and that the impairment is not due to vitamin K deficiency.
Collapse
Affiliation(s)
- Y Yoshikawa
- First Department of Medicine, Tokyo University School of Medicine, Japan
| | | | | | | |
Collapse
|
36
|
Ohlin AK, Linse S, Stenflo J. Calcium binding to the epidermal growth factor homology region of bovine protein C. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68657-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
37
|
Affiliation(s)
- D K Strickland
- Biochemistry Laboratory, American Red Cross Biomedical Research and Development, Rockville, MD 20855
| | | |
Collapse
|
38
|
Ohlin AK, Stenflo J. Calcium-dependent interaction between the epidermal growth factor precursor-like region of human protein C and a monoclonal antibody. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(19)76496-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
39
|
Kisiel W, Choi E, Kondo S. Isolation of a protein C activator from southern copperhead venom. Biochem Biophys Res Commun 1987; 143:917-22. [PMID: 3566762 DOI: 10.1016/0006-291x(87)90337-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A protease from the venom of the Southern Copperhead snake (Agkistrodon contortrix contortrix) that activates protein C was purified to homogeneity by a combination of sulfopropyl (SP)-Sephadex C-50, Sephadex G-150 and Mono-S column chromatography. The purified enzyme is a glycoprotein, and migrated as a single band in sodium dodecylsulfate-polyacrylamide gel electrophoresis with an apparent molecular weight of 37,000 under non-reducing conditions. Upon reduction with 2-mercaptoethanol, the enzyme exhibited a Mr of 40,000. The purified enzyme prolonged the clotting time of human plasma in a dose- and temperature-dependent manner. Purified bovine protein C was completely activated within 10 minutes upon incubation with the purified protease at a 1:500 enzyme: substrate ratio. This reaction was markedly inhibited by calcium ions. The purified venom protein C activator had no effect on human fibrinogen.
Collapse
|
40
|
|
41
|
Chapter 9B Inhibitors: protein C. ACTA ACUST UNITED AC 1986. [DOI: 10.1016/s0167-7306(08)60056-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
42
|
Llach F. Hypercoagulability, renal vein thrombosis, and other thrombotic complications of nephrotic syndrome. Kidney Int 1985; 28:429-39. [PMID: 3906225 DOI: 10.1038/ki.1985.149] [Citation(s) in RCA: 196] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
43
|
Ellis V, Scully MF, Kakkar VV. Mechanisms of inhibition of platelet coagulant activity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1985; 192:373-87. [PMID: 2422887 DOI: 10.1007/978-1-4615-9442-0_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The plasma proteinase inhibitors are relatively ineffective in the inhibition of the activity of the platelet prothrombinase complex, due to the low rates of inhibition, and possibly due to the indirect protection from the potentiating effect of the vascular endothelium. The plasma proteinase inhibitors are more effective at inhibiting thrombin, thereby preventing the feedback activation of platelets and factor V and subsequent prothrombinase complex development. This may constitute a mechanism for the control of the development of the prothrombinase complex on the platelet surface. The protein C-thrombomodulin mechanism for the destruction of factor Va activity probably constitutes a major inhibitory mechanism for the prothrombinase complex in vivo.
Collapse
|
44
|
Bern MM, Suzuki K, Mann K, Tracy P, Hoyer L, Jensen W, Gallivan M, Arkin C, Davis G. Response of protein C and protein C inhibitor to warfarin therapy in patient with combined deficiency of Factors V and VIII. Thromb Res 1984; 36:485-95. [PMID: 6098970 DOI: 10.1016/0049-3848(84)90188-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The role of Protein C in combined factor V/VIII deficiency was examined by reducing the Protein C concentration using warfarin therapy in a patient with the combined deficiency. The factor VIII deficiency was like Hemophilia-A, with deficiency of VIII:C and VIII:C(Ag), but normal VIIIR:Ag and VIIIR:cof. The factor V deficiency was due to loss of the V antigen. During warfarin therapy the Protein C level was reduced, but concentrations of factors V and VIII did not change. Protein C Inhibitor was normal throughout. Thus combined factor V/VIII deficiency is not related to Protein C levels.
Collapse
|
45
|
Gardiner JE, Griffin JH. Studies on human protein C inhibitor in normal and factor V/VIII deficient plasmas. Thromb Res 1984; 36:197-203. [PMID: 6549082 DOI: 10.1016/0049-3848(84)90219-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Activated protein C is a potent anticoagulant which inactivates Factors V and VIII in plasma. Normal plasma contains an inhibitor of activated protein C. A previous report from our laboratory hypothesized that the absence of this inhibitor in plasmas from patients with combined Factor V/VIII deficiency could be the molecular basis for this disease. This report demonstrates the presence of protein C inhibitor in those Factor V/VIII deficient plasmas originally studied. Freezing and thawing significantly reduced the ability of normal and Factor V/VIII deficient plasmas to inhibit activated protein C. It is suggested that this explains the conflicting literature reports describing functional assays of protein C inhibitor in Factor V/VIII deficient plasma. This observation also emphasizes that extreme care must be used in handling and storing plasma samples that are to be assayed for protein C inhibitor.
Collapse
|
46
|
Esmon CT, DeBault L, Carroll RC, Comp PC, Esmon NL. Biochemical and physiological aspects of protein c. LA RICERCA IN CLINICA E IN LABORATORIO 1984; 14:455-68. [PMID: 6098000 DOI: 10.1007/bf02904872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
47
|
|
48
|
Derivatives of blood coagulation factor IX contain a high affinity Ca2+-binding site that lacks gamma-carboxyglutamic acid. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(18)91070-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
49
|
Calcium-binding properties of bovine factor X lacking the gamma-carboxyglutamic acid-containing region. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(18)91071-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
50
|
|