1
|
Abstract
This chronologue seeks to document the discovery and development of an understanding of oligomeric ring protein assemblies known as chaperonins that assist protein folding in the cell. It provides detail regarding genetic, physiologic, biochemical, and biophysical studies of these ATP-utilizing machines from both in vivo and in vitro observations. The chronologue is organized into various topics of physiology and mechanism, for each of which a chronologic order is generally followed. The text is liberally illustrated to provide firsthand inspection of the key pieces of experimental data that propelled this field. Because of the length and depth of this piece, the use of the outline as a guide for selected reading is encouraged, but it should also be of help in pursuing the text in direct order.
Collapse
|
2
|
Thirumalai D, Lorimer GH, Hyeon C. Iterative annealing mechanism explains the functions of the GroEL and RNA chaperones. Protein Sci 2019; 29:360-377. [PMID: 31800116 DOI: 10.1002/pro.3795] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 12/16/2022]
Abstract
Molecular chaperones are ATP-consuming machines, which facilitate the folding of proteins and RNA molecules that are kinetically trapped in misfolded states. Unassisted folding occurs by the kinetic partitioning mechanism according to which folding to the native state, with low probability as well as misfolding to one of the many metastable states, with high probability, occur rapidly. GroEL is an all-purpose stochastic machine that assists misfolded substrate proteins to fold. The RNA chaperones such as CYT-19, which are ATP-consuming enzymes, help the folding of ribozymes that get trapped in metastable states for long times. GroEL does not interact with the folded proteins but CYT-19 disrupts both the folded and misfolded ribozymes. The structures of GroEL and RNA chaperones are strikingly different. Despite these differences, the iterative annealing mechanism (IAM) quantitatively explains all the available experimental data for assisted folding of proteins and ribozymes. Driven by ATP binding and hydrolysis and GroES binding, GroEL undergoes a catalytic cycle during which it samples three allosteric states, T (apo), R (ATP bound), and R″ (ADP bound). Analyses of the experimental data show that the efficiency of the GroEL-GroES machinery and mutants is determined by the resetting rate k R ″ → T , which is largest for the wild-type (WT) GroEL. Generalized IAM accurately predicts the folding kinetics of Tetrahymena ribozyme and its variants. Chaperones maximize the product of the folding rate and the steady-state native state fold by driving the substrates out of equilibrium. Neither the absolute yield nor the folding rate is optimized.
Collapse
Affiliation(s)
- D Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin, Texas
| | - George H Lorimer
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland
| | | |
Collapse
|
3
|
Dahiya V, Buchner J. Functional principles and regulation of molecular chaperones. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 114:1-60. [PMID: 30635079 DOI: 10.1016/bs.apcsb.2018.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To be able to perform their biological function, a protein needs to be correctly folded into its three dimensional structure. The protein folding process is spontaneous and does not require the input of energy. However, in the crowded cellular environment where there is high risk of inter-molecular interactions that may lead to protein molecules sticking to each other, hence forming aggregates, protein folding is assisted. Cells have evolved robust machinery called molecular chaperones to deal with the protein folding problem and to maintain proteins in their functional state. Molecular chaperones promote efficient folding of newly synthesized proteins, prevent their aggregation and ensure protein homeostasis in cells. There are different classes of molecular chaperones functioning in a complex interplay. In this review, we discuss the principal characteristics of different classes of molecular chaperones, their structure-function relationships, their mode of regulation and their involvement in human disorders.
Collapse
Affiliation(s)
- Vinay Dahiya
- Center for Integrated Protein Science Munich CIPSM at the Department Chemie, Technische Universität München, Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science Munich CIPSM at the Department Chemie, Technische Universität München, Garching, Germany.
| |
Collapse
|
4
|
Bie AS, Fernandez-Guerra P, Birkler RID, Nisemblat S, Pelnena D, Lu X, Deignan JL, Lee H, Dorrani N, Corydon TJ, Palmfeldt J, Bivina L, Azem A, Herman K, Bross P. Effects of a Mutation in the HSPE1 Gene Encoding the Mitochondrial Co-chaperonin HSP10 and Its Potential Association with a Neurological and Developmental Disorder. Front Mol Biosci 2016; 3:65. [PMID: 27774450 PMCID: PMC5053987 DOI: 10.3389/fmolb.2016.00065] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/21/2016] [Indexed: 11/13/2022] Open
Abstract
We here report molecular investigations of a missense mutation in the HSPE1 gene encoding the HSP10 subunit of the HSP60/ HSP10 chaperonin complex that assists protein folding in the mitochondrial matrix. The mutation was identified in an infant who came to clinical attention due to infantile spasms at 3 months of age. Clinical exome sequencing revealed heterozygosity for a HSPE1 NM_002157.2:c.217C>T de novo mutation causing replacement of leucine with phenylalanine at position 73 of the HSP10 protein. This variation has never been observed in public exome sequencing databases or the literature. To evaluate whether the mutation may be disease-associated we investigated its effects by in vitro and ex vivo studies. Our in vitro studies indicated that the purified mutant protein was functional, yet its thermal stability, spontaneous refolding propensity, and resistance to proteolytic treatment were profoundly impaired. Mass spectrometric analysis of patient fibroblasts revealed barely detectable levels of HSP10-p.Leu73Phe protein resulting in an almost 2-fold decrease of the ratio of HSP10 to HSP60 subunits. Amounts of the mitochondrial superoxide dismutase SOD2, a protein whose folding is known to strongly depend on the HSP60/HSP10 complex, were decreased to approximately 20% in patient fibroblasts in spite of unchanged SOD2 transcript levels. As a likely consequence, mitochondrial superoxide levels were increased about 2-fold. Although, we cannot exclude other causative or contributing factors, our experimental data support the notion that the HSP10-p.Leu73Phe mutation could be the cause or a strong contributing factor for the disorder in the described patient.
Collapse
Affiliation(s)
- Anne S Bie
- Research Unit for Molecular Medicine, Aarhus University and Aarhus University Hospital Aarhus, Denmark
| | - Paula Fernandez-Guerra
- Research Unit for Molecular Medicine, Aarhus University and Aarhus University Hospital Aarhus, Denmark
| | - Rune I D Birkler
- Research Unit for Molecular Medicine, Aarhus University and Aarhus University Hospital Aarhus, Denmark
| | - Shahar Nisemblat
- Department of Biochemistry & Molecular Biology, Tel Aviv University Tel Aviv, Israel
| | - Dita Pelnena
- Research Unit for Molecular Medicine, Aarhus University and Aarhus University Hospital Aarhus, Denmark
| | - Xinping Lu
- Department of Biochemistry & Molecular Biology, Tel Aviv University Tel Aviv, Israel
| | - Joshua L Deignan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles Los Angeles, CA, USA
| | - Hane Lee
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los Angeles Los Angeles, CA, USA
| | - Naghmeh Dorrani
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California, Los AngelesLos Angeles, CA, USA; Department of Pediatrics, David Geffen School of Medicine at University of California, Los AngelesLos Angeles, CA, USA
| | | | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Aarhus University and Aarhus University Hospital Aarhus, Denmark
| | - Liga Bivina
- Division of Genomic Medicine, Department of Pediatrics, UC Davis Health System Sacramento, CA, USA
| | - Abdussalam Azem
- Department of Biochemistry & Molecular Biology, Tel Aviv University Tel Aviv, Israel
| | - Kristin Herman
- Division of Genomic Medicine, Department of Pediatrics, UC Davis Health System Sacramento, CA, USA
| | - Peter Bross
- Research Unit for Molecular Medicine, Aarhus University and Aarhus University Hospital Aarhus, Denmark
| |
Collapse
|
5
|
Chi H, Wang X, Li J, Ren H, Huang F. Folding of newly translated membrane protein CCR5 is assisted by the chaperonin GroEL-GroES. Sci Rep 2015; 5:17037. [PMID: 26585937 PMCID: PMC4653635 DOI: 10.1038/srep17037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/23/2015] [Indexed: 01/20/2023] Open
Abstract
The in vitro folding of newly translated human CC chemokine receptor type 5
(CCR5), which belongs to the physiologically important family of G protein-coupled
receptors (GPCRs), has been studied in a cell-free system supplemented with the
surfactant Brij-35. The freshly synthesized CCR5 can spontaneously fold into its
biologically active state but only slowly and inefficiently. However, on addition of
the GroEL-GroES molecular chaperone system, the folding of the nascent CCR5 was
significantly enhanced, as was the structural stability and functional expression of
the soluble form of CCR5. The chaperonin GroEL was partially effective on its own,
but for maximum efficiency both the GroEL and its GroES lid were necessary. These
results are direct evidence for chaperone-assisted membrane protein folding and
therefore demonstrate that GroEL-GroES may be implicated in the folding of membrane
proteins.
Collapse
Affiliation(s)
- Haixia Chi
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Xiaoqiang Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Jiqiang Li
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Hao Ren
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, P. R. China
| |
Collapse
|
6
|
Symmetric GroEL:GroES2 complexes are the protein-folding functional form of the chaperonin nanomachine. Proc Natl Acad Sci U S A 2013; 110:E4298-305. [PMID: 24167279 DOI: 10.1073/pnas.1318862110] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Using calibrated FRET, we show that the simultaneous occupancy of both rings of GroEL by ATP and GroES occurs, leading to the rapid formation of symmetric GroEL:GroES2 "football" particles regardless of the presence or absence of substrate protein (SP). In the absence of SP, these symmetric particles revert to asymmetric GroEL:GroES1 "bullet" particles. The breakage of GroES symmetry requires the stochastic hydrolysis of ATP and the breakage of nucleotide symmetry. These asymmetric particles are both persistent and dynamic; they turnover via the asymmetric cycle. When challenged with SP, however, they revert to symmetric particles within a second. In the presence of SP, the symmetric particles are also persistent and dynamic. They turn over via the symmetric cycle. Under these conditions, the stochastic hydrolysis of ATP and the breakage of nucleotide symmetry also occur within the ensemble of particles. However, on account of SP-catalyzed ADP/ATP exchange, GroES symmetry is rapidly restored. The residence time of both GroES and SP on functional GroEL is reduced to ∼1 s, enabling many more iterations than was previously believed possible, consistent with the iterative annealing mechanism. This result is inconsistent with currently accepted models. Using a foldable SP, we show that as the SP folds to the native state and the population of unfolded SP declines, the population of symmetric particles reverts to asymmetric particles in parallel, a result that is consistent with the former being the folding functional form.
Collapse
|
7
|
Lin Z, Puchalla J, Shoup D, Rye HS. Repetitive protein unfolding by the trans ring of the GroEL-GroES chaperonin complex stimulates folding. J Biol Chem 2013; 288:30944-55. [PMID: 24022487 DOI: 10.1074/jbc.m113.480178] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A key constraint on the growth of most organisms is the slow and inefficient folding of many essential proteins. To deal with this problem, several diverse families of protein folding machines, known collectively as molecular chaperones, developed early in evolutionary history. The functional role and operational steps of these remarkably complex nanomachines remain subjects of active debate. Here we present evidence that, for the GroEL-GroES chaperonin system, the non-native substrate protein enters the folding cycle on the trans ring of the double-ring GroEL-ATP-GroES complex rather than the ADP-bound complex. The properties of this ATP complex are designed to ensure that non-native substrate protein binds first, followed by ATP and finally GroES. This binding order ensures efficient occupancy of the open GroEL ring and allows for disruption of misfolded structures through two phases of multiaxis unfolding. In this model, repeated cycles of partial unfolding, followed by confinement within the GroEL-GroES chamber, provide the most effective overall mechanism for facilitating the folding of the most stringently dependent GroEL substrate proteins.
Collapse
Affiliation(s)
- Zong Lin
- From the Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang 314006, China
| | | | | | | |
Collapse
|
8
|
Double mutant MBP refolds at same rate in free solution as inside the GroEL/GroES chaperonin chamber when aggregation in free solution is prevented. FEBS Lett 2011; 585:1969-72. [PMID: 21609718 PMCID: PMC3144026 DOI: 10.1016/j.febslet.2011.05.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 05/04/2011] [Accepted: 05/11/2011] [Indexed: 11/21/2022]
Abstract
Under "permissive" conditions at 25°C, the chaperonin substrate protein DM-MBP refolds 5-10 times more rapidly in the GroEL/GroES folding chamber than in free solution. This has been suggested to indicate that the chaperonin accelerates polypeptide folding by entropic effects of close confinement. Here, using native-purified DM-MBP, we show that the different rates of refolding are due to reversible aggregation of DM-MBP while folding free in solution, slowing its kinetics of renaturation: the protein exhibited concentration-dependent refolding in solution, with aggregation directly observed by dynamic light scattering. When refolded in chloride-free buffer, however, dynamic light scattering was eliminated, refolding became concentration-independent, and the rate of refolding became the same as that in GroEL/GroES. The GroEL/GroES chamber thus appears to function passively toward DM-MBP.
Collapse
|
9
|
Parker JL, Jones AME, Serazetdinova L, Saalbach G, Bibb MJ, Naldrett MJ. Analysis of the phosphoproteome of the multicellular bacterium Streptomyces coelicolor A3(2) by protein/peptide fractionation, phosphopeptide enrichment and high-accuracy mass spectrometry. Proteomics 2010; 10:2486-97. [DOI: 10.1002/pmic.201000090] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Jewett AI, Shea JE. Reconciling theories of chaperonin accelerated folding with experimental evidence. Cell Mol Life Sci 2010; 67:255-76. [PMID: 19851829 PMCID: PMC11115962 DOI: 10.1007/s00018-009-0164-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 09/14/2009] [Accepted: 09/25/2009] [Indexed: 10/20/2022]
Abstract
For the last 20 years, a large volume of experimental and theoretical work has been undertaken to understand how chaperones like GroEL can assist protein folding in the cell. The most accepted explanation appears to be the simplest: GroEL, like most other chaperones, helps proteins fold by preventing aggregation. However, evidence suggests that, under some conditions, GroEL can play a more active role by accelerating protein folding. A large number of models have been proposed to explain how this could occur. Focused experiments have been designed and carried out using different protein substrates with conclusions that support many different mechanisms. In the current article, we attempt to see the forest through the trees. We review all suggested mechanisms for chaperonin-mediated folding and weigh the plausibility of each in light of what we now know about the most stringent, essential, GroEL-dependent protein substrates.
Collapse
Affiliation(s)
- Andrew I. Jewett
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106 USA
- Department of Physics, University of California, Santa Barbara, CA 93106 USA
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106 USA
- Department of Physics, University of California, Santa Barbara, CA 93106 USA
| |
Collapse
|
11
|
Bonshtien AL, Parnas A, Sharkia R, Niv A, Mizrahi I, Azem A, Weiss C. Differential effects of co-chaperonin homologs on cpn60 oligomers. Cell Stress Chaperones 2009; 14:509-19. [PMID: 19224397 PMCID: PMC2728284 DOI: 10.1007/s12192-009-0104-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 01/29/2009] [Accepted: 02/01/2009] [Indexed: 01/13/2023] Open
Abstract
In this study, we have investigated the relationship between chaperonin/co-chaperonin binding, ATP hydrolysis, and protein refolding in heterologous chaperonin systems from bacteria, chloroplast, and mitochondria. We characterized two types of chloroplast cpn60 oligomers, ch-cpn60 composed of alpha and beta subunits (alpha(7)beta(7) ch-cpn60) and one composed of all beta subunits (beta(14) ch-cpn60). In terms of ATPase activity, the rate of ATP hydrolysis increased with protein concentration up to 60 microM, reflecting a concentration at which the oligomers are stable. At high concentrations of cpn60, all cpn10 homologs inhibited ATPase activity of alpha(7)beta(7) ch-cpn60. In contrast, ATPase of beta(14) ch-cpn60 was inhibited only by mitochondrial cpn10, supporting previous reports showing that beta(14) is functional only with mitochondrial cpn10 and not with other cpn10 homologs. Surprisingly, direct binding assays showed that both ch-cpn60 oligomer types bind to bacterial, mitochondrial, and chloroplast cpn10 homologs with an equal apparent affinity. Moreover, mitochondrial cpn60 binds chloroplast cpn20 with which it is not able to refold denatured proteins. Protein refolding experiments showed that in such instances, the bound protein is released in a conformation that is not able to refold. The presence of glycerol, or subsequent addition of mitochondrial cpn10, allows us to recover enzymatic activity of the substrate protein. Thus, in our systems, the formation of co-chaperonin/chaperonin complexes does not necessarily lead to protein folding. By using heterologous oligomer systems, we are able to separate the functions of binding and refolding in order to better understand the chaperonin mechanism.
Collapse
Affiliation(s)
- Anat L. Bonshtien
- Department of Biochemistry, The George Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69778 Israel
| | - Avital Parnas
- Department of Biochemistry, The George Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69778 Israel
| | - Rajach Sharkia
- Beit-Berl College, Beit-Berl, 44905 Israel
- The Triangle Research and Development Center, P.O. Box 2167, Kfar Qari’, 30075 Israel
| | - Adina Niv
- Department of Biochemistry, The George Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69778 Israel
| | - Itzhak Mizrahi
- Department of Biochemistry, The George Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69778 Israel
| | - Abdussalam Azem
- Department of Biochemistry, The George Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69778 Israel
| | - Celeste Weiss
- Department of Biochemistry, The George Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69778 Israel
| |
Collapse
|
12
|
Misra G, Ramachandran R. Hsp70-1 from Plasmodium falciparum: protein stability, domain analysis and chaperone activity. Biophys Chem 2009; 142:55-64. [PMID: 19339102 DOI: 10.1016/j.bpc.2009.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 03/02/2009] [Accepted: 03/03/2009] [Indexed: 10/21/2022]
Abstract
P. falciparum contains six copies of the Hsp70 gene of which PfHsp70-1 is important in the parasite's lifecycle. The protein consists of two domains like other Hsp70s but has an unusually long C-terminal tail. The full-length protein is stable towards high temperatures and chemical denaturants. Fluorescence and circular dichroism studies demonstrate that the approximately 42 kDa N-terminal/nucleotide-binding domain (NBD) is relatively unstable in isolation. Addition of the approximately 35 kDa C-terminal domain with an extended tail containing an EEVD motif confers thermal stability and makes it less susceptible to thermal denaturation. This suggests that the C-terminal domain functions as a stabilization domain. PfHsp70-1 possesses a chaperone activity in addition to other functions reported earlier. We report that the chaperone activity of PfHsp70-1 is enhanced in the presence of P. falciparum Hsp40 (Pfj1, PFD0465w), the homolog of bacterial DnaJ. The present work represents the first evidence for functional interactions between the PfHsp70-1 and Pfj1.
Collapse
Affiliation(s)
- Gauri Misra
- Molecular & Structural Biology Division, Central Drug Research Institute, P.O. Box 173, Chattar Manzil, Mahatma Gandhi Marg, Lucknow-226001, India
| | | |
Collapse
|
13
|
GroEL assisted folding of large polypeptide substrates in Escherichia coli: Present scenario and assignments for the future. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2009; 99:42-50. [DOI: 10.1016/j.pbiomolbio.2008.10.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Papo N, Kipnis Y, Haran G, Horovitz A. Concerted release of substrate domains from GroEL by ATP is demonstrated with FRET. J Mol Biol 2008; 380:717-25. [PMID: 18556021 DOI: 10.1016/j.jmb.2008.05.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 05/02/2008] [Accepted: 05/09/2008] [Indexed: 10/22/2022]
Abstract
The chaperonin GroEL assists protein folding by undergoing ATP-induced conformational changes that are concerted within each of its two back-to-back stacked rings. Here we examined whether concerted allosteric switching gives rise to all-or-none release and folding of domains in a chimeric fluorescent protein substrate, CyPet-YPet. Using this substrate, it was possible to determine the folding yield of each domain from its intrinsic fluorescence and that of the entire chimera by measuring Förster resonance energy transfer between the two domains. Hence, it was possible to determine whether release of one domain is accompanied by release of the other domain (concerted mechanism), or whether their release is not coupled. Our results show that the chimera's release tends to be concerted when folding is assisted by a wild-type GroEL variant, but not when assisted by the F44W/D155A mutant that undergoes a sequential allosteric switch. A connection between the allosteric mechanism of this molecular machine and its biological function in assisting folding is thus established.
Collapse
Affiliation(s)
- Niv Papo
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
15
|
Do chaperonins boost protein yields by accelerating folding or preventing aggregation? Biophys J 2008; 94:2987-93. [PMID: 18192377 DOI: 10.1529/biophysj.107.113209] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The GroEL chaperonin has the ability to behave as an unfoldase, repeatedly denaturing proteins upon binding, which in turn can free them from kinetic traps and increase their folding rates. The complex formed by GroEL+GroES+ATP can also act as an infinite dilution cage, enclosing proteins within a protective container where they can fold without danger of aggregation. Controversy remains over which of these two properties is more critical to the GroEL/ES chaperonin's function. We probe the importance of the unfoldase nature of GroEL under conditions where aggregation is the predominant protein degradation pathway. We consider the effect of a hypothetical mutation to GroEL which increases the cycle frequency of GroEL/ES by increasing the rate of hydrolysis of GroEL-bound ATP. Using a simple kinetic model, we show that this modified chaperonin would be self-defeating: any potential reduction in folding time would be negated by an increase in time spent in the bulk, causing an increase in aggregation and a net decrease in protein folding yields.
Collapse
|
16
|
Horst R, Fenton WA, Englander SW, Wüthrich K, Horwich AL. Folding trajectories of human dihydrofolate reductase inside the GroEL GroES chaperonin cavity and free in solution. Proc Natl Acad Sci U S A 2007; 104:20788-92. [PMID: 18093916 PMCID: PMC2410080 DOI: 10.1073/pnas.0710042105] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Indexed: 11/18/2022] Open
Abstract
The chaperonin GroEL binds non-native polypeptides in an open ring via hydrophobic contacts and then, after ATP and GroES binding to the same ring as polypeptide, mediates productive folding in the now hydrophilic, encapsulated cis chamber. The nature of the folding reaction in the cis cavity remains poorly understood. In particular, it is unclear whether polypeptides take the same route to the native state in this cavity as they do when folding spontaneously free in solution. Here, we have addressed this question by using NMR measurements of the time course of acquisition of amide proton exchange protection of human dihydrofolate reductase (DHFR) during folding in the presence of methotrexate and ATP either free in solution or inside the stable cavity formed between a single ring variant of GroEL, SR1, and GroES. Recovery of DHFR refolded by the SR1/GroES-mediated reaction is 2-fold higher than in the spontaneous reaction. Nevertheless, DHFR folding was found to proceed by the same trajectories inside the cis folding chamber and free in solution. These observations are consistent with the description of the chaperonin chamber as an "Anfinsen cage" where polypeptide folding is determined solely by the amino acid sequence, as it is in solution. However, if misfolding occurs in the confinement of the chaperonin cavity, the polypeptide chain cannot undergo aggregation but rather finds its way back to a productive pathway in a manner that cannot be accomplished in solution, resulting in the observed high overall recovery.
Collapse
Affiliation(s)
| | - Wayne A. Fenton
- Department of Molecular Biology and
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510
| | - S. Walter Englander
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Kurt Wüthrich
- Department of Molecular Biology and
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Arthur L. Horwich
- Department of Molecular Biology and
- Howard Hughes Medical Institute and
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510
| |
Collapse
|
17
|
Farr GW, Fenton WA, Horwich AL. Perturbed ATPase activity and not "close confinement" of substrate in the cis cavity affects rates of folding by tail-multiplied GroEL. Proc Natl Acad Sci U S A 2007; 104:5342-7. [PMID: 17372195 PMCID: PMC1828711 DOI: 10.1073/pnas.0700820104] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Folding of substrate proteins inside the sequestered and hydrophilic GroEL-GroES cis cavity favors production of the native state. Recent studies of GroEL molecules containing volume-occupying multiplications of the flexible C-terminal tail segments have been interpreted to indicate that close confinement of substrate proteins in the cavity optimizes the rate of folding: the rate of folding of a larger protein, Rubisco (51 kDa), was compromised by multiplication, whereas that of a smaller protein, rhodanese (33 kDa), was increased by tail duplication. Here, we report that this latter effect does not extend to the subunit of malate dehydrogenase (MDH), also 33 kDa. In addition, single-ring versions of tail-duplicated and triplicated molecules, comprising stable cis complexes, did not produce any acceleration of folding of rhodanese or MDH, nor did they show significant retardation of the folding of Rubisco. Tail quadruplication produced major reduction in recovery of native protein with both systems, the result of strongly reduced binding of all three substrates. When steady-state ATPase of the tail-multiplied double-ring GroELs was examined, it scaled directly with the number of tail segments, with more than double the normal ATPase rate upon tail triplication. As previously observed, disturbance of ATPase activity of the cycling double-ring system, and thus of "dwell time" for the folding protein in the cis cavity, produces effects on folding rates. We conclude that, within the limits of the approximately 10% decrease of cavity volume produced by tail triplication, there does not appear to be an effect of "close confinement" on folding in the cis cavity.
Collapse
Affiliation(s)
- George W. Farr
- *Department of Genetics and Howard Hughes Medical Institute, Yale School of Medicine, Boyer Center, 295 Congress Avenue, New Haven, CT 06510; and
| | - Wayne A. Fenton
- Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Arthur L. Horwich
- *Department of Genetics and Howard Hughes Medical Institute, Yale School of Medicine, Boyer Center, 295 Congress Avenue, New Haven, CT 06510; and
- Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
18
|
Abstract
Protein folding is a spontaneous process that is essential for life, yet the concentrated and complex interior of a cell is an inherently hostile environment for the efficient folding of many proteins. Some proteins-constrained by sequence, topology, size, and function-simply cannot fold by themselves and are instead prone to misfolding and aggregation. This problem is so deeply entrenched that a specialized family of proteins, known as molecular chaperones, evolved to assist in protein folding. Here we examine one essential class of molecular chaperones, the large, oligomeric, and energy utilizing chaperonins or Hsp60s. The bacterial chaperonin GroEL, along with its co-chaperonin GroES, is probably the best-studied example of this family of protein-folding machine. In this review, we examine some of the general properties of proteins that do not fold well in the absence of GroEL and then consider how folding of these proteins is enhanced by GroEL and GroES. Recent experimental and theoretical studies suggest that chaperonins like GroEL and GroES employ a combination of protein isolation, unfolding, and conformational restriction to drive protein folding under conditions where it is otherwise not possible.
Collapse
Affiliation(s)
- Zong Lin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
19
|
Jewett AI, Shea JE. Folding on the chaperone: yield enhancement through loose binding. J Mol Biol 2006; 363:945-57. [PMID: 16987526 DOI: 10.1016/j.jmb.2006.08.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 07/28/2006] [Accepted: 08/16/2006] [Indexed: 10/24/2022]
Abstract
A variety of small cageless chaperones have been discovered that can assist protein folding without the consumption of ATP. These include mini-chaperones (catalytically active fragments of larger chaperones), as well as small proteins such as alpha-casein and detergents acting as "artificial chaperones." These chaperones all possess exposed hydrophobic patches on their surface that act as recognition sites for misfolded proteins. They lack the complexity of chaperonins (that encapsulate proteins in their inner rings) and their study can offer insight into the minimal requirements for chaperone function. We use molecular dynamics simulations to investigate how a cageless chaperone, modeled as a sphere of tunable hydrophobicity, can assist folding of a substrate protein. We find that under steady-state (non-stress) conditions, cageless chaperones that bind to a single substrate protein increase folding yields by reducing the time the substrate spends in an aggregation-prone state in a dual manner: (a) by competing for aggregation-prone hydrophobic sites on the surface of a protein, hence reducing the time the protein spends unprotected in the bulk and (b) by accelerating folding rates of the protein. In both cases, the chaperone must bind to and hold the protein loosely enough to allow the protein to change its conformation and fold while bound. Loose binding may enable small cageless chaperones to help proteins fold and avoid aggregation under steady-state conditions, even at low concentrations, without the consumption of ATP.
Collapse
Affiliation(s)
- A I Jewett
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | | |
Collapse
|
20
|
Nagumo Y, Kakeya H, Shoji M, Hayashi Y, Dohmae N, Osada H. Epolactaene binds human Hsp60 Cys442 resulting in the inhibition of chaperone activity. Biochem J 2006; 387:835-40. [PMID: 15603555 PMCID: PMC1135015 DOI: 10.1042/bj20041355] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Epolactaene is a microbial metabolite isolated from Penicillium sp., from which we synthesized its derivative ETB (epolactaene tertiary butyl ester). In the present paper, we report on the identification of the binding proteins of epolactaene/ETB, and the results of our investigation into its inhibitory mechanism. Using biotin-labelled derivatives of epolactaene/ETB, human Hsp (heat-shock protein) 60 was identified as a binding protein of epolactaene/ETB in vitro as well as in situ. In addition, we found that Hsp60 pre-incubated with epolactaene/ETB lost its chaperone activity. The in vitro binding study showed that biotin-conjugated epolactaene/ETB covalently binds to Hsp60. In order to investigate the binding site, binding experiments with alanine mutants of Hsp60 cysteine residues were conducted. As a result, it was suggested that Cys442 is responsible for the covalent binding with biotin-conjugated epolactaene/ETB. Furthermore, the replacement of Hsp60 Cys442 with an alanine residue renders the chaperone activity resistant to ETB inhibition, while the alanine replacement of other cysteine residues do not. These results indicate that this cysteine residue is alkylated by ETB, leading to Hsp60 inactivation.
Collapse
Affiliation(s)
- Yoko Nagumo
- *Antibiotics Laboratory, Discovery Research Institute RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hideaki Kakeya
- *Antibiotics Laboratory, Discovery Research Institute RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mitsuru Shoji
- †Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, Kagura-zaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yujiro Hayashi
- †Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, Kagura-zaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Naoshi Dohmae
- ‡Biomolecular Characterization Team, RIKEN Discovery Research Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Osada
- *Antibiotics Laboratory, Discovery Research Institute RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- To whom correspondence should be addressed (email )
| |
Collapse
|
21
|
Abstract
Chaperonin-mediated protein folding is complex. There have been diverse results on folding behavior, and the chaperonin molecules have been investigated as enhancing or retarding the folding rate. To understand the diversity of chaperonin-mediated protein folding, we report a study based on simulations using a simplified Gō-type model. By considering effects of affinity between the substrate protein and the chaperonin wall and spatial confinement of the chaperonin cavity, we study the thermodynamics and kinetics of folding of an unfrustrated substrate protein encapsulated in a chaperonin cavity. The affinity makes the hydrophobic residues of the protein bind to the chaperonin wall, and a strong (or weak) affinity results in a large (or small) effect of binding. Compared with the folding in bulk, the folding in chaperonin cavity with different strengths of affinity shows two kinds of behaviors: one with less dependence on the affinity but more reliance on the spatial confinement effect and the other relying strongly on the affinity. It is found that the enhancement or retardation of the folding rate depends on the competition between the spatial confinement and the affinity due to the chaperonin cavity, and a strong affinity produces a slow folding while a weak affinity induces a fast folding. The crossover between two kinds of folding behaviors happens in the case that the favorable effect of confinement is balanced by the unfavorable effect of the affinity, and a critical affinity strength is roughly defined. By analyzing the contacts formed between the residues of the protein and the chaperonin wall and between the residues of the protein themselves, the role of the affinity in the folding processes is studied. The binding of the residues with the chaperonin wall reduces the formation of both native contacts and nonnative contact or mis-contacts, providing a loose structure for further folding after allosteric change of the chaperonin cavity. In addition, 15 single-site-mutated mutants are simulated in order to test the validity of our model and to investigate the importance of affinity. Inspiringly, our results of the folding rates have a good correlation with those obtained from experiments. The folding rates are inversely correlated with the strength of the binding interactions, i.e., the weaker the binding, the faster the folding. We also find that the inner hydrophobic residues have larger effects on the folding kinetics than those of the exterior hydrophobic residues. We suggest that, besides the confinement effect, the affinity acts as another important factor to affect the folding of the substrate proteins in chaperonin systems, providing an understanding of the folding mechanism of the molecular chaperonin systems.
Collapse
Affiliation(s)
- Wei-Xin Xu
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China
| | | | | |
Collapse
|
22
|
Kawe M, Plückthun A. GroEL Walks the Fine Line: The Subtle Balance of Substrate and Co-chaperonin Binding by GroEL. A Combinatorial Investigation by Design, Selection and Screening. J Mol Biol 2006; 357:411-26. [PMID: 16427651 DOI: 10.1016/j.jmb.2005.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 11/23/2005] [Accepted: 12/01/2005] [Indexed: 10/25/2022]
Abstract
While support in protein folding by molecular chaperones is extremely efficient for endogenous polypeptides, it often fails for recombinant proteins in a bacterial host, thus constituting a major hurdle for protein research and biotechnology. To understand the reasons for this difference and to answer the question of whether it is feasible to design tailor-made chaperones, we investigated one of the most prominent bacterial chaperones, the GroEL/ES ring complex. On the basis of structural data, we designed and constructed a combinatorial GroEL library, where the substrate-binding site was randomized. Screening and selection experiments with this library demonstrated that substrate binding and release is supported by many variants, but the majority of the library members failed to assist in chaperonin-mediated protein folding under conditions where spontaneous folding is suppressed. These findings revealed a conflict between binding of substrate and binding of the co-chaperonin GroES. As a consequence, the window of mutational freedom in that region of GroEL is very small. In screening experiments, we could identify GroEL variants slightly improved for a given substrate, which were still promiscuous. As the substrate-binding site of the GroEL molecule overlaps strongly with the site of cofactor binding, the outcome of our experiments suggests that maintenance of cofactor binding affinity is more critical for chaperonin-mediated protein folding than energetically optimized substrate recognition.
Collapse
Affiliation(s)
- Martin Kawe
- Biochemisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | |
Collapse
|
23
|
Winter J, Jakob U. Beyond transcription--new mechanisms for the regulation of molecular chaperones. Crit Rev Biochem Mol Biol 2005; 39:297-317. [PMID: 15763707 DOI: 10.1080/10409230490900658] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Molecular chaperones are an essential part of the universal heat shock response that allows organisms to survive stress conditions that cause intracellular protein unfolding. During the past few years, two new mechanisms have been found to control the activity of several chaperones under stress conditions-the regulation of chaperone activity by the redox state and by the temperature of the environment. Hsp33, for example, is redox-regulated. Hsp33 is specifically activated by disulfide bond formation during oxidative stress, where it becomes a highly efficient chaperone holdase that binds tightly to unfolding proteins. Certain small heat shock proteins, such as Hsp26 and Hsp16.9, on the other hand, are temperature regulated. Exposure to heat shock temperatures causes these oligomeric proteins to disassemble, thereby changing them into highly efficient chaperones. The ATP-dependent chaperone folding system DnaK/DnaJ/GrpE also appears to be temperature regulated, switching from a folding to a holding mode during heat stress. Both of these novel post-translational regulatory strategies appear to have one ultimate goal: to significantly increase the substrate binding affinity of the affected chaperones under exactly those stress conditions that require their highest chaperone activity. This ensures that protein folding intermediates remain bound to the chaperones under stress conditions and are released only after the cells return to non-stress conditions.
Collapse
Affiliation(s)
- Jeannette Winter
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | |
Collapse
|
24
|
Lin Z, Rye HS. Expansion and compression of a protein folding intermediate by GroEL. Mol Cell 2004; 16:23-34. [PMID: 15469819 PMCID: PMC3759401 DOI: 10.1016/j.molcel.2004.09.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Revised: 07/20/2004] [Accepted: 07/28/2004] [Indexed: 10/26/2022]
Abstract
The GroEL-GroES chaperonin system is required for the assisted folding of many essential proteins. The precise nature of this assistance remains unclear, however. Here we show that denatured RuBisCO from Rhodospirillum rubrum populates a stable, nonaggregating, and kinetically trapped monomeric state at low temperature. Productive folding of this nonnative intermediate is fully dependent on GroEL, GroES, and ATP. Reactivation of the trapped RuBisCO monomer proceeds through a series of GroEL-induced structural rearrangements, as judged by resonance energy transfer measurements between the amino- and carboxy-terminal domains of RuBisCO. A general mechanism used by GroEL to push large, recalcitrant proteins like RuBisCO toward their native states thus appears to involve two steps: partial unfolding or rearrangement of a nonnative protein upon capture by a GroEL ring, followed by spatial constriction within the GroEL-GroES cavity that favors or enforces compact, folding-competent intermediate states.
Collapse
|
25
|
Sun Z, Scott DJ, Lund PA. Isolation and characterisation of mutants of GroEL that are fully functional as single rings. J Mol Biol 2003; 332:715-28. [PMID: 12963378 DOI: 10.1016/s0022-2836(03)00830-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A key aspect of the reaction mechanism for the molecular chaperone GroEL is the transmission of an allosteric signal between the two rings of the GroEL complex. Thus, the single-ring mutant SR1 is unable to act as a chaperone as it cannot release bound substrate or GroES. We used a simple selection procedure to identify mutants of SR1 that restored chaperone activity in vivo. A large number of single amino acid changes, mapping at diverse positions throughout the protein, enabled SR1 to regain its ability to act as a chaperone while remaining as a single ring. In vivo assays were used to identify the proteins that had regained maximal activity. In some cases, no difference could be detected between strains expressing wild-type GroEL and those expressing the mutated proteins. Three of the most active proteins where the mutations were in distinct parts of the protein were purified to homogeneity and characterised in vitro. All were capable of acting efficiently as chaperones for two different GroES-dependent substrates. All three proteins bound nucleotide as effectively as did GroEL, but the binding of GroES in the presence of ATP or ADP was reduced significantly relative to the wild-type. These active single rings should provide a useful tool for studying the nature of the allosteric changes that occur in the GroEL reaction cycle.
Collapse
Affiliation(s)
- Zhe Sun
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | | |
Collapse
|
26
|
Travers KJ, Patil CK, Weissman JS. Functional genomic approaches to understanding molecular chaperones and stress responses. ADVANCES IN PROTEIN CHEMISTRY 2002; 59:345-90. [PMID: 11868277 DOI: 10.1016/s0065-3233(01)59011-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- K J Travers
- Howard Hughes Medical Institute, Department of Cellular and Molecular Pharmacology, Department of Biochemistry and Biophysics, University of California-San Francisco, San Francisco, California, USA
| | | | | |
Collapse
|
27
|
Guhr P, Neuhofen S, Coan C, Wise JG, Vogel PD. New aspects on the mechanism of GroEL-assisted protein folding. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1596:326-35. [PMID: 12007612 DOI: 10.1016/s0167-4838(02)00219-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The mechanism of assisted protein folding by the chaperonin GroEL alone or in complex with the co-chaperonin GroES and in the presence or absence of nucleotides has been subject to extensive investigations during the last years. In this paper we present data where we have inactivated GroEL by stepwise blocking the nucleotide binding sites using the non-hydrolyzable ATP analogue, (Cr(H2O)4)3+ATP. We correlated the amount of accessible nucleotide binding sites with the residual ATP hydrolysis activity of GroEL as well as the residual refolding activity for two different model substrates. Under the conditions used, folding of the substrate proteins and ATP hydrolysis were directly proportional to the residual, accessible nucleotide binding sites. In the presence of GroES, 50% of the nucleotide binding sites were protected from inactivation by CrATP and the resulting protein retains 50% of both ATPase and refolding activity. The results strongly suggest that under the conditions used in our experiments, the nucleotide binding sites are additive in character and that by blocking of a certain number of binding sites a proportional amount of ATP hydrolysis and refolding activities are inactivated. The experiments including GroES suggest that full catalytic activity of GroEL requires both rings of the chaperonin. Blocking of the nucleotide binding sites of one ring still allows function of the second ring.
Collapse
Affiliation(s)
- Petra Guhr
- Fachbereich Chemie der Universität Kaiserslautern, Erwin Schrödinger Strasse, 67663, Kaiserslautern, Germany
| | | | | | | | | |
Collapse
|
28
|
Kopecek P, Altmannová K, Weigl E. Stress proteins: nomenclature, division and functions. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2001; 145:39-47. [PMID: 12426770 DOI: 10.5507/bp.2001.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The heat shock response, characterized by increased expression of heat shock proteins (Hsps) is induced by exposure of cells and tissues to extreme conditions that cause acute or chronic stress. Hsps function as molecular chaperones in regulating cellular homeostasis and promoting survival. If the stress is too severe, a signal that leads to programmed cell death, apoptosis, is activated, thereby providing a finely tuned balance between survival and death. In addition to extracellular stimuli, several nonstressfull conditions induce Hsps during normal cellular growth and development. The enhanced heat shock gene expression in response to various stimuli is regulated by heat shock transcription factors.
Collapse
Affiliation(s)
- P Kopecek
- Department of Biology, Medical Faculty, Palacký University, 775 15 Olomouc, Czech Republic
| | | | | |
Collapse
|
29
|
Tieman BC, Johnston MF, Fisher MT. A comparison of the GroE chaperonin requirements for sequentially and structurally homologous malate dehydrogenases: the importance of folding kinetics and solution environment. J Biol Chem 2001; 276:44541-50. [PMID: 11551947 DOI: 10.1074/jbc.m106693200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli malate dehydrogenase (EcMDH) and its eukaryotic counterpart, porcine mitochondrial malate dehydrogenase (PmMDH), are highly homologous proteins with significant sequence identity (60%) and virtually identical native structural folds. Despite this homology, EcMDH folds rapidly and efficiently in vitro and does not seem to interact with GroE chaperonins at physiological temperatures (37 degrees C), whereas PmMDH folds much slower than EcMDH and requires these chaperonins to fold to the native state at 37 degrees C. Double jump experiments indicate that the slow folding behavior of PmMDH is not limited by proline isomerization. Although the folding enhancer glycerol (<5 m) does not alter the renaturation kinetics of EcMDH, it dramatically accelerates the spontaneous renaturation of PmMDH at all temperatures tested. Kinetic analysis of PmMDH renaturation with increasing glycerol concentrations suggests that this osmolyte increases the on-pathway kinetics of the monomer folding to assembly-competent forms. Other osmolytes such as trimethylamine N-oxide, sucrose, and betaine also reactivate PmMDH at nonpermissive temperatures (37 degrees C). Glycerol jump experiments with preformed GroEL.PmMDH complexes indicate that the shift between stringent (requires ATP and GroES) and relaxed (only requires ATP) complex conformations is rapid (<3-5 s). The similarity in irreversible misfolding kinetics of PmMDH measured with glycerol or the activated chaperonin complex (GroEL.GroES.ATP) suggests that these folding aids may influence the same step in the PmMDH folding reaction. Moreover, the interactions between glycerol-induced PmMDH folding intermediates and GroEL.GroES.ATP are diminished. Our results support the notion that the protein folding kinetics of sequentially and structurally homologous proteins, rather than the structural fold, dictates the GroE chaperonin requirement.
Collapse
Affiliation(s)
- B C Tieman
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160-7421, USA
| | | | | |
Collapse
|
30
|
Brinker A, Pfeifer G, Kerner MJ, Naylor DJ, Hartl FU, Hayer-Hartl M. Dual function of protein confinement in chaperonin-assisted protein folding. Cell 2001; 107:223-33. [PMID: 11672529 DOI: 10.1016/s0092-8674(01)00517-7] [Citation(s) in RCA: 243] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The GroEL/GroES chaperonin system mediates the folding of a range of newly synthesized polypeptides in the bacterial cytosol. Using a rapid biotin-streptavidin-based inhibition of chaperonin function, we show that the cage formed by GroEL and its cofactor GroES can have a dual role in promoting folding. First, enclosure of nonnative protein in the GroEL:GroES complex is essential for folding to proceed unimpaired by aggregation. Second, folding inside the cage can be significantly faster than folding in free solution, independently of ATP-driven cycles of GroES binding and release. This suggests that confinement of unfolded protein in the narrow hydrophilic space of the chaperonin cage smoothes the energy landscape for the folding of some proteins, increasing the flux of folding intermediates toward the native state.
Collapse
Affiliation(s)
- A Brinker
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Koumoto Y, Shimada T, Kondo M, Hara-Nishimura I, Nishimura M. Chloroplasts have a novel Cpn10 in addition to Cpn20 as co-chaperonins in Arabidopsis thaliana. J Biol Chem 2001; 276:29688-94. [PMID: 11402030 DOI: 10.1074/jbc.m102330200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously, we characterized a mitochondrial co-chaperonin (Cpn10) and a chloroplast co-chaperonin (Cpn20) from Arabidopsis thaliana (Koumoto, Y., Tsugeki, R., Shimada, T., Mori, H., Kondo, M., Hara-Nishimura, I., and Nishimura, M. (1996) Plant J. 10, 1119-1125; Koumoto, Y., Shimada, T., Kondo, M., Takao, T., Shimonishi, Y., Hara-Nishimura, I., and Nishimura, M. (1999) Plant J. 17, 467-477). Here, we report a third co-chaperonin. The cDNA was 603 base pairs long, encoding a protein of 139 amino acids. From a sequence analysis, the protein was predicted to have one Cpn10 domain with an amino-terminal extension that might work as a chloroplast transit peptide. This novel Cpn10 was confirmed to be localized in chloroplasts, and we refer to it as chloroplast Cpn10 (chl-Cpn10). The phylogenic tree that was generated with amino acid sequences of other co-chaperonins indicates that chl-Cpn10 is highly divergent from the others. In the GroEL-assisted protein folding assay, about 30% of the substrates were refolded with chl-Cpn10, indicating that chl-Cpn10 works as a co-chaperonin. A Northern blot analysis revealed that mRNA for chl-Cpn10 is accumulated in the leaves and stems, but not in the roots. In germinating cotyledons, the accumulation of chl-Cpn10 was similar to that of chloroplastic proteins and accelerated by light. It was proposed that two kinds of co-chaperonins, Cpn20 and chl-Cpn10, work independently in the chloroplast.
Collapse
Affiliation(s)
- Y Koumoto
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
32
|
Ben-Zvi AP, Goloubinoff P. Review: mechanisms of disaggregation and refolding of stable protein aggregates by molecular chaperones. J Struct Biol 2001; 135:84-93. [PMID: 11580258 DOI: 10.1006/jsbi.2001.4352] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Molecular chaperones are essential for the correct folding of proteins in the cell under physiological and stress conditions. Two activities have been traditionally attributed to molecular chaperones: (1) preventing aggregation of unfolded polypeptides and (2) assisting in the correct refolding of chaperone-bound denatured polypeptides. We discuss here a novel function of molecular chaperones: catalytic solubilization and refolding of stable protein aggregates. In Escherichia coli, disaggregation is carried out by a network of ATPase chaperones consisting of a DnaK core, assisted by the cochaperones DnaJ, GrpE, ClpB, and GroEL-GroES. We suggest a sequential mechanism in which (a) ClpB exposes new DnaK-binding sites on the surface of the stable protein aggregates; (b) DnaK binds the aggregate surfaces and, by doing so, melts the incorrect hydrophobic associations between aggregated polypeptides; (c) ATP hydrolysis and DnaK release allow local intramolecular refolding of native domains, leading to a gradual weakening of improper intermolecular links; (d) DnaK and GroEL complete refolding of solubilized polypeptide chains into native proteins. Thus, active disaggregation by the chaperone network can serve as a central cellular tool for the recovery of native proteins from stress-induced aggregates and actively remove disease-causing toxic aggregates, such as polyglutamine-rich proteins, amyloid plaques, and prions.
Collapse
Affiliation(s)
- A P Ben-Zvi
- Department of Plant Sciences, A Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | | |
Collapse
|
33
|
Falke S, Fisher MT, Gogol EP. Structural changes in GroEL effected by binding a denatured protein substrate. J Mol Biol 2001; 308:569-77. [PMID: 11350160 DOI: 10.1006/jmbi.2001.4613] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the absence of nucleotides or cofactors, the Escherichia coli chaperonin GroEL binds select proteins in non-native conformations, such as denatured glutamine synthetase (GS) monomers, preventing their aggregation and spontaneous renaturation. The nature of the GroEL-GS complexes thus formed, specifically the effect on the conformation of the GroEL tetradecamer, has been examined by electron microscopy. We find that specimens of GroEL-GS are visibly heterogeneous, due to incomplete loading of GroEL with GS. Images contain particles indistinguishable from GroEL alone, and also those with consistent identifiable differences. Side-views of the modified particles reveal additional protein density at one end of the GroEL-GS complex, and end-views display chirality in the heptameric projection not seen in the unliganded GroEL. The coordinate appearance of these two projection differences suggests that binding of GS, as representative of a class of protein substrates, induces or stabilizes a conformation of GroEL that differs from the unliganded chaperonin. Three-dimensional reconstruction of the GroEL-GS complex reveals the location of the bound protein substrate, as well as complex conformational changes in GroEL itself, both cis and trans with respect to the bound GS. The most apparent structural alterations are inward movements of the apical domains of both GroEL heptamers, protrusion of the substrate protein from the cavity of the cis ring, and a narrowing of the unoccupied opening of the trans ring.
Collapse
Affiliation(s)
- S Falke
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | |
Collapse
|
34
|
Voziyan PA, Fisher MT. Chaperonin-assisted folding of glutamine synthetase under nonpermissive conditions: off-pathway aggregation propensity does not determine the co-chaperonin requirement. Protein Sci 2000; 9:2405-12. [PMID: 11206062 PMCID: PMC2144532 DOI: 10.1110/ps.9.12.2405] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
One of the proposed roles of the GroEL-GroES cavity is to provide an "infinite dilution" folding chamber where protein substrate can fold avoiding deleterious off-pathway aggregation. Support for this hypothesis has been strengthened by a number of studies that demonstrated a mandatory GroES requirement under nonpermissive solution conditions, i.e., the conditions where proteins cannot spontaneously fold. We have found that the refolding of glutamine synthetase (GS) does not follow this pattern. In the presence of natural osmolytes trimethylamine N-oxide (TMAO) or potassium glutamate, refolding GS monomers readily aggregate into very large inactive complexes and fail to reactivate even at low protein concentration. Surprisingly, under these "nonpermissive" folding conditions, GS can reactivate with GroEL and ATP alone and does not require the encapsulation by GroES. In contrast, the chaperonin dependent reactivation of GS under another nonpermissive condition of low Mg2+ (<2 mM MgCl2) shows an absolute requirement of GroES. High-performance liquid chromatography gel filtration analysis and irreversible misfolding kinetics show that a major species of the GS folding intermediates, generated under these "low Mg2+" conditions exist as long-lived metastable monomers that can be reactivated after a significantly delayed addition of the GroEL. Our results indicate that the GroES requirement for refolding of GS is not simply dictated by the aggregation propensity of this protein substrate. Our data also suggest that the GroEL-GroES encapsulated environment is not required under all nonpermissive folding conditions.
Collapse
Affiliation(s)
- P A Voziyan
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City 66160, USA
| | | |
Collapse
|
35
|
Guidry JJ, Moczygemba CK, Steede NK, Landry SJ, Wittung-Stafshede P. Reversible denaturation of oligomeric human chaperonin 10: denatured state depends on chemical denaturant. Protein Sci 2000; 9:2109-17. [PMID: 11152122 PMCID: PMC2144490 DOI: 10.1110/ps.9.11.2109] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chaperonins cpn60/cpn10 (GroEL/GroES in Escherichia coli) assist folding of nonnative polypeptides. Folding of the chaperonins themselves is distinct in that it entails assembly of a sevenfold symmetrical structure. We have characterized denaturation and renaturation of the recombinant human chaperonin 10 (cpn10), which forms a heptamer. Denaturation induced by chemical denaturants urea and guanidine hydrochloride (GuHCl) as well as by heat was monitored by tyrosine fluorescence, far-ultraviolet circular dichroism, and cross-linking; all denaturation reactions were reversible. GuHCl-induced denaturation was found to be cpn10 concentration dependent, in accord with a native heptamer to denatured monomer transition. In contrast, urea-induced denaturation was not cpn10 concentration dependent, suggesting that under these conditions cpn10 heptamers denature without dissociation. There were no indications of equilibrium intermediates, such as folded monomers, in either denaturant. The different cpn10 denatured states observed in high [GuHCl] and high [urea] were supported by cross-linking experiments. Thermal denaturation revealed that monomer and heptamer reactions display the same enthalpy change (per monomer), whereas the entropy-increase is significantly larger for the heptamer. A thermodynamic cycle for oligomeric cpn10, combining chemical denaturation with the dissociation constant in absence of denaturant, shows that dissociated monomers are only marginally stable (3 kJ/mol). The thermodynamics for co-chaperonin stability appears conserved; therefore, instability of the monomer could be necessary to specify the native heptameric structure.
Collapse
Affiliation(s)
- J J Guidry
- Chemistry Department, Tulane University, New Orleans, Louisiana 70118, USA
| | | | | | | | | |
Collapse
|
36
|
Mizobata T, Kawagoe M, Hongo K, Nagai J, Kawata Y. Refolding of target proteins from a "rigid" mutant chaperonin demonstrates a minimal mechanism of chaperonin binding and release. J Biol Chem 2000; 275:25600-7. [PMID: 10837467 DOI: 10.1074/jbc.m000795200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One of the most interesting facets of GroEL-facilitated protein folding lies in the fact that the requirement for a successful folding reaction of a given protein target depends upon the refolding conditions used. In this report, we utilize a mutant of GroEL (GroEL T89W) whose domain movements have been drastically restricted, producing a chaperonin that is incapable of utilizing the conventional cyclic mechanism of chaperonin action. This mutant was, however, still capable of improving the refolding yield of lactate dehydrogenase in the absence of both GroES and ATP hydrolysis. A very rapid interconversion of conformations was detected in the mutant immediately after ATP binding, and this interconversion was inferred to form part of the target release mechanism in this mutant. The possibility exists that some target proteins, although dependent on GroEL for improved refolding yields, are capable of refolding successfully by utilizing only portions of the entire mechanism provided by the chaperonins.
Collapse
Affiliation(s)
- T Mizobata
- Department of Biotechnology, Faculty of Engineering, Tottori University, Japan
| | | | | | | | | |
Collapse
|
37
|
Dickson R, Weiss C, Howard RJ, Alldrick SP, Ellis RJ, Lorimer G, Azem A, Viitanen PV. Reconstitution of higher plant chloroplast chaperonin 60 tetradecamers active in protein folding. J Biol Chem 2000; 275:11829-35. [PMID: 10766808 DOI: 10.1074/jbc.275.16.11829] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Unlike the GroEL homologs of eubacteria and mitochondria, oligomer preparations of the higher plant chloroplast chaperonin 60 (cpn60) consist of roughly equal amounts of two divergent subunits, alpha and beta. The functional significance of these isoforms, their structural organization into tetradecamers, and their interactions with the unique binary chloroplast chaperonin 10 (cpn10) have not been elucidated. Toward this goal, we have cloned the alpha and beta subunits of the ch-cpn60 of pea (Pisum sativum), expressed them individually in Escherichia coli, and subjected the purified monomers to in vitro reconstitution experiments. In the absence of other factors, neither subunit (alone or in combination) spontaneously assembles into a higher order structure. However, in the presence of MgATP, the beta subunits form tetradecamers in a cooperative reaction that is potentiated by cpn10. In contrast, alpha subunits only assemble in the presence of beta subunits. Although beta and alpha/beta 14-mers are indistinguishable by electron microscopy and can both assist protein folding, their specificities for cpn10 are entirely different. Similar to the authentic chloroplast protein, the reconstituted alpha/beta 14-mers are functionally compatible with bacterial, mitochondrial, and chloroplast cpn10. In contrast, the folding reaction mediated by the reconstituted beta 14-mers is only efficient with mitochondrial cpn10. The ability to reconstitute two types of functional oligomer in vitro provides a unique tool, which will allow us to investigate the mechanism of this unusual chaperonin system.
Collapse
Affiliation(s)
- R Dickson
- Molecular Biology Division, Central Research and Development Department, E. I. DuPont de Nemours and Company, Experimental Station, Wilmington, Delaware 19880-0402, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Teshima T, Kohda J, Kondo A, Taguchi H, Yohda M, Fukuda H. Preparation ofThermus thermophilus holo-chaperonin-immobilized microspheres with high ability to facilitate protein refolding. Biotechnol Bioeng 2000. [DOI: 10.1002/(sici)1097-0290(20000420)68:2<184::aid-bit7>3.0.co;2-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
39
|
Farr GW, Furtak K, Rowland MB, Ranson NA, Saibil HR, Kirchhausen T, Horwich AL. Multivalent binding of nonnative substrate proteins by the chaperonin GroEL. Cell 2000; 100:561-73. [PMID: 10721993 DOI: 10.1016/s0092-8674(00)80692-3] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The chaperonin GroEL binds nonnative substrate protein in the central cavity of an open ring through exposed hydrophobic residues at the inside aspect of the apical domains and then mediates productive folding upon binding ATP and the cochaperonin GroES. Whether nonnative proteins bind to more than one of the seven apical domains of a GroEL ring is unknown. We have addressed this using rings with various combinations of wild-type and binding-defective mutant apical domains, enabled by their production as single polypeptides. A wild-type extent of binary complex formation with two stringent substrate proteins, malate dehydrogenase or Rubisco, required a minimum of three consecutive binding-proficient apical domains. Rhodanese, a less-stringent substrate, required only two wild-type domains and was insensitive to their arrangement. As a physical correlate, multivalent binding of Rubisco was directly observed in an oxidative cross-linking experiment.
Collapse
Affiliation(s)
- G W Farr
- Howard Hughes Medical Institute and Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Itoh H, Komatsuda A, Wakui H, Miura AB, Tashima Y. Mammalian HSP60 is a major target for an immunosuppressant mizoribine. J Biol Chem 1999; 274:35147-51. [PMID: 10574997 DOI: 10.1074/jbc.274.49.35147] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has been reported that immunosuppressant cyclosporin A or FK506 binds to immunophilins in the cell and that these immunophilins make a complex with molecular chaperones HSP70 or HSP90. Although mizoribine has been used clinically as an immunosuppressant, immunophilins of the agent have not yet been fully understood. We investigated their specific binding proteins using mizoribine affinity column chromatography and porcine kidney cytosols. By increasing mizoribine in the eluant from the column, two major proteins (with molecular masses of 60 and 43 kDa) were detected by SDS-polyacrylamide gel electrophoresis. Based on the amino acid sequence analysis of these proteins, 60- and 43-kDa mizoribine-binding proteins were identified with HSP60 and cytosolic actin, respectively. A considerable amount of actin was also eluted from the affinity column by nucleotides, but a very low quantity of HSP60 was eluted under the same conditions. On the other hand, HSP60 was eluted as a major protein in the eluant that was eluted preferentially, with nucleotide followed by mizoribine. Actin was also detected in the eluant, but the quantity of the protein was very low. These results indicated that HSP60 has high affinity to mizoribine, and the interaction was also observed on surface plasmon resonance analysis. Although HSP60 or GroE facilitated refolding of citrate synthase in vitro, mizoribine interfered with the chaperone activity of HSP60. On different types of mizoribine affinity columns, HSP60 or actin recognized the NH(2) group of mizoribine, and this group may be a functional group of the agent.
Collapse
Affiliation(s)
- H Itoh
- Department of Biochemistry, Akita University School of Medicine, 1-1-1 Hondo, Akita City 010-8543, Japan.
| | | | | | | | | |
Collapse
|
41
|
Abstract
The molecular chaperones GroEL and GroES facilitate protein folding in an ATP-dependent manner under conditions where no spontaneous folding occurs. It has remained unknown whether GroE achieves this by a passive sequestration of protein inside the GroE cavity or by changing the folding pathway of a protein. Here we used citrate synthase, a well studied model substrate, to discriminate between these possibilities. We demonstrate that GroE maintains unfolding intermediates in a state that allows productive folding under nonpermissive conditions. During encapsulation of non-native protein inside GroEL.GroES complexes, a folding reaction takes place, generating association-competent monomeric intermediates that are no longer recognized by GroEL. Thus, GroE shifts folding intermediates to a productive folding pathway under heat shock conditions where even the native protein unfolds in the absence of GroE.
Collapse
Affiliation(s)
- H Grallert
- Institut für Organische Chemie and Biochemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | | |
Collapse
|
42
|
Beissinger M, Rutkat K, Buchner J. Catalysis, commitment and encapsulation during GroE-mediated folding. J Mol Biol 1999; 289:1075-92. [PMID: 10369783 DOI: 10.1006/jmbi.1999.2780] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Escherichia coli GroE chaperones assist protein folding under conditions where no spontaneous folding occurs. To achieve this, the cooperation of GroEL and GroES, the two protein components of the chaperone system, is an essential requirement. While in many cases GroE simply suppresses unspecific aggregation of non-native proteins by encapsulation, there are examples where folding is accelerated by GroE. Using maltose-binding protein (MBP) as a substrate for GroE, it had been possible to define basic requirements for catalysis of folding. Here, we have analyzed key steps in the interaction of GroE and the MBP mutant Y283D during catalyzed folding. In addition to high temperature, high ionic strength was shown to be a restrictive condition for MBP Y283D folding. In both cases, the complete GroE system (GroEL, GroES and ATP) compensates the deceleration of MBP Y283D folding. Combining kinetic folding experiments and electron microscopy of GroE particles, we demonstrate that at elevated temperatures, symmetrical GroE particles with GroES bound to both ends of the GroEL cylinder play an important role in the efficient catalysis of MBP Y283D refolding. In principle, MBP Y283D folding can be catalyzed during one encapsulation cycle. However, because the commitment to reach the native state is low after only one cycle of ATP hydrolysis, several interaction cycles are required for catalyzed folding.
Collapse
Affiliation(s)
- M Beissinger
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Regensburg, 93040, Germany
| | | | | |
Collapse
|
43
|
Abstract
The ability of the GroEL chaperonin to unfold a protein trapped in a misfolded condition was detected and studied by hydrogen exchange. The GroEL-induced unfolding of its substrate protein is only partial, requires the complete chaperonin system, and is accomplished within the 13 seconds required for a single system turnover. The binding of nucleoside triphosphate provides the energy for a single unfolding event; multiple turnovers require adenosine triphosphate hydrolysis. The substrate protein is released on each turnover even if it has not yet refolded to the native state. These results suggest that GroEL helps partly folded but blocked proteins to fold by causing them first to partially unfold. The structure of GroEL seems well suited to generate the nonspecific mechanical stretching force required for forceful protein unfolding.
Collapse
Affiliation(s)
- Mark Shtilerman
- The Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - George H. Lorimer
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - S. Walter Englander
- The Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
44
|
Horowitz PM, Lorimer GH, Ybarra J. GroES in the asymmetric GroEL14-GroES7 complex exchanges via an associative mechanism. Proc Natl Acad Sci U S A 1999; 96:2682-6. [PMID: 10077571 PMCID: PMC15829 DOI: 10.1073/pnas.96.6.2682] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The interaction of the chaperonin GroEL14 with its cochaperonin GroES7 is dynamic, involving stable, asymmetric 1:1 complexes (GroES7.GroEL7-GroEL7) and transient, metastable symmetric 2:1 complexes [GroES7.GroEL7-GroEL7.GroES7]. The transient formation of a 2:1 complex permits exchange of free GroES7 for GroES7 bound in the stable 1:1 complex. Electrophoresis in the presence of ADP was used to resolve free GroEL14 from the GroES7-GroEL14 complex. Titration of GroEL14 with radiolabeled GroES7 to molar ratios of 32:1 demonstrated a 1:1 limiting stoichiometry in a stable complex. No stable 2:1 complex was detected. Preincubation of the asymmetric GroES7.GroEL7-GroEL7 complex with excess unlabeled GroES7 in the presence of ADP demonstrated GroES7 exchange. The rates of GroES7 exchange were proportional to the concentration of unlabeled free GroES7. This concentration dependence points to an associative mechanism in which exchange of GroES7 occurs by way of a transient 2:1 complex and excludes a dissociative mechanism in which exchange occurs by way of free GroEL14. Exchange of radiolabeled ADP from 1:1 complexes was much slower than the exchange of GroES7. In agreement with recent structural studies, this indicates that conformational changes in GroEL14 following the dissociation of GroES7 must precede ADP release. These results explain how the GroEL14 cavity can become reversibly accessible to proteins under in vivo conditions that favor 2:1 complexes.
Collapse
Affiliation(s)
- P M Horowitz
- Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78284, USA
| | | | | |
Collapse
|
45
|
Koumoto Y, Shimada T, Kondo M, Takao T, Shimonishi Y, Hara-Nishimura I, Nishimura M. Chloroplast Cpn20 forms a tetrameric structure in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 17:467-77. [PMID: 10205903 DOI: 10.1046/j.1365-313x.1999.00388.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Chloroplast chaperonin 20 (Cpn20) in higher plants is a functional homologue of the Escherichia coli GroES, which is a critical regulator of chaperonin-mediated protein folding. The cDNA for a Cpn20 homologue of Arabidopsis thaliana was isolated. It was 958 bp long, encoding a protein of 253 amino acids. The protein was composed of an N-terminal chloroplast transit peptide, and the predicted mature region comprised two distinct GroES domains that showed 42% amino acid identity to each other. The isolated cDNA was constitutively expressed in transgenic tobacco. Immunogold labelling showed that Cpn20 is accumulated in chloroplasts of transgenic tobacco. A Northern blot analysis revealed that mRNA for the chloroplast Cpn20 is abundant in leaves and is increased by heat treatment. To examine the oligomeric structure of Cpn20, a histidine-tagged construct lacking the transit peptide was expressed in E. coli and purified by affinity chromatography. Gel-filtration and cross-linking analyses showed that the expressed products formed a tetramer. The expressed products could substitute for GroES to assist the refolding of citrate synthase under non-permissive conditions. The analysis on the subunit stoichiometry of the GroEL-Cpn20 complex also revealed that the functional complex is composed of a GroEL tetradecamer and a Cpn20 tetramer.
Collapse
Affiliation(s)
- Y Koumoto
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Quaite-Randall E, Joachimiak A. Purification of chaperonins. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 1999; 722:153-77. [PMID: 10068139 DOI: 10.1016/s0378-4347(98)00503-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The availability of protein samples of sufficient quality and in sufficient quantity is a driving force in biology and biotechnology. Protein samples that are free of critical contaminants are required for specific assays. Large amounts of highly homogeneous and reproducible material are needed for crystallography and nuclear magnetic resonance studies of protein structure. Protein-based therapeutic factors used in human medicine must not contain any contaminants that might interfere with treatment. The roles played by molecular chaperones in protein folding and in many cellular processes make these proteins very attractive candidates as biochemical reagents, and the class of chaperones called chaperonins is one of the most important candidates. Methods for successfully purifying chaperonins are needed to advance the field of chaperonin-mediated protein folding. This article outlines the strategies and methods used to obtain pure chaperonin samples from different biological sources. The objective is to help new researchers obtain better quality samples of chaperonins from many new organisms.
Collapse
|
47
|
Weigl E, Kopecek P, Raska M, Hradilová S. Heat shock proteins in immune reactions. Folia Microbiol (Praha) 1999; 44:561-6. [PMID: 10997137 DOI: 10.1007/bf02816261] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The review concerns heat shock proteins and their significance in immune reactions. It focuses on problems of physiological and pathological interactions in etiology and duration of autoimmune diseases and infection processes, especially fungal infections. New trends are described in exploitation of heat shock proteins for preparation of specific protective vaccines.
Collapse
Affiliation(s)
- E Weigl
- Department of Immunology, Medical Faculty, Palacký University, Olomouc, Czech Republic.
| | | | | | | |
Collapse
|
48
|
Smith KE, Voziyan PA, Fisher MT. Partitioning of rhodanese onto GroEL. Chaperonin binds a reversibly oxidized form derived from the native protein. J Biol Chem 1998; 273:28677-81. [PMID: 9786862 DOI: 10.1074/jbc.273.44.28677] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian mitochondrial enzyme, rhodanese, can form stable complexes with the Escherichia coli chaperonin GroEL if it is either refolded from 8 M urea in the presence of chaperonin or is simply added to the chaperonin as the folded conformer at 37 degreesC. In the presence of GroEL, the kinetic profile of the inactivation of native rhodanese followed a single exponential decay. Initially, the inactivation rates showed a dependence on the chaperonin concentration but reached a constant maximum value as the GroEL concentration increased. Over the same time period, in the absence of GroEL, native rhodanese showed only a small decline in activity. The addition of a non-denaturing concentration of urea accelerated the inactivation and partitioning of rhodanese onto GroEL. These results suggest that the GroEL chaperonin may facilitate protein unfolding indirectly by interacting with intermediates that exist in equilibrium with native rhodanese. The activity of GroEL-bound rhodanese can be completely recovered upon addition of GroES and ATP. The reactivation kinetics and commitment rates for GroEL-rhodanese complexes prepared from either unfolded or native rhodanese were identical. However, when rhodanese was allowed to inactivate spontaneously in the absence of GroEL, no recovery of activity was observed upon addition of GroEL, GroES, and ATP. Interestingly, the partitioning of rhodanese and its subsequent inactivation did not occur when native rhodanese and GroEL were incubated under anaerobic conditions. Thus, our results strongly suggest that the inactive intermediate that partitions onto GroEL is the reversibly oxidized form of rhodanese.
Collapse
Affiliation(s)
- K E Smith
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | |
Collapse
|
49
|
Wang JD, Michelitsch MD, Weissman JS. GroEL-GroES-mediated protein folding requires an intact central cavity. Proc Natl Acad Sci U S A 1998; 95:12163-8. [PMID: 9770457 PMCID: PMC22802 DOI: 10.1073/pnas.95.21.12163] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The chaperonin GroEL is an oligomeric double ring structure that, together with the cochaperonin GroES, assists protein folding. Biochemical analyses indicate that folding occurs in a cis ternary complex in which substrate is sequestered within the GroEL central cavity underneath GroES. Recently, however, studies of GroEL "minichaperones" containing only the apical substrate binding subdomain have questioned the functional importance of substrate encapsulation within GroEL-GroES complexes. Minichaperones were reported to assist folding despite the fact that they are monomeric and therefore cannot form a central cavity. Here we compare directly the folding activity of minichaperones with that of the full GroEL-GroES system. In agreement with earlier studies, minichaperones assist folding of some proteins. However, this effect is observed only under conditions where substantial spontaneous folding is also observed and is indistinguishable from that resulting from addition of the nonchaperone protein alpha-casein. By contrast, the full GroE system efficiently promotes folding of several substrates under conditions where essentially no spontaneous folding is observed. These data argue that the full GroEL folding activity requires the intact GroEL-GroES complex, and in light of previous studies, underscore the importance of substrate encapsulation for providing a folding environment distinct from the bulk solution.
Collapse
Affiliation(s)
- J D Wang
- Department of Pharmacology, University of California-San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0450, USA
| | | | | |
Collapse
|
50
|
Voziyan PA, Tieman BC, Low CM, Fisher MT. Changing the nature of the initial chaperonin capture complex influences the substrate folding efficiency. J Biol Chem 1998; 273:25073-8. [PMID: 9737964 DOI: 10.1074/jbc.273.39.25073] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
For the chaperonin substrates, rhodanese, malate dehydrogenase (MDH), and glutamine synthetase (GS), the folding efficiencies, and the lifetimes of folding intermediates were measured with either the nucleotide-free GroEL or the activated ATP.GroEL.GroES chaperonin complex. With both nucleotide-free and activated complex, the folding efficiency of rhodanese and MDH remained high over a large range of GroEL to substrate concentration ratios (up to 1:1). In contrast, the folding efficiency of GS began to decline at ratios lower than 8:1. At ratios where the refolding yields were initially the same, only a relatively small increase (1.6-fold) in misfolding kinetics of MDH was observed with either the nucleotide-free or activated chaperonin complex. For rhodanese, no change was detected with either chaperonin complex. In contrast, GS lost its ability to interact with the chaperonin system at an accelerated rate (8-fold increase) when the activated complex instead of the nucleotide-free complex was used to rescue the protein from misfolding. Our data demonstrate that the differences in the refolding yields are related to the intrinsic folding kinetics of the protein substrates. We suggest that the early kinetic events at the substrate level ultimately govern successful chaperonin-substrate interactions and play a crucial role in dictating polypeptide flux through the chaperonin system. Our results also indicate that an accurate assessment of the transient properties of folding intermediates that dictate the initial chaperonin-substrate interactions requires the use of the activated complex as the interacting chaperonin species.
Collapse
Affiliation(s)
- P A Voziyan
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160-7421, USA
| | | | | | | |
Collapse
|