1
|
Chen JM, Hernandez E, Frosina D, Ruh PA, Ariyan C, Busam KJ, Jungbluth AA. In Situ Protein Expression Analysis of Melanocyte Differentiation Antigen TRP1 (Tyrosinase-Related Protein-1). Am J Dermatopathol 2024; 46:563-571. [PMID: 39008470 DOI: 10.1097/dad.0000000000002772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
ABSTRACT Melanocyte differentiation antigens refer to molecules expressed in cells of melanocytic lineage such as gp100/PMEL, tyrosinase, and Melan-A. Corresponding antibodies such as HMB45, T311, and A103 have become key immunohistochemical tools in surgical pathology for the diagnosis of pigmented and related lesions. Little is known about tyrosinase-related protein 1 (TRP1), another melanocyte differentiation antigen, which is an enzymatic component of melanogenesis and known as the brown locus in mice. In this study, we tested several commercial reagents to TRP1 and identified one clone, EPR13063, which we further characterized by testing its specificity and usefulness for surgical pathology. Subsequently, we analyzed the expression of TRP1 in panels of normal tissues and tumors. TRP1 is regularly expressed in normal skin and in cutaneous nevi predominantly present in junctional and to a lesser extent in dermal nevocytes. In melanoma, TRP1 is present in 100% and 44% of primary and metastatic melanomas, respectively. TRP1 was absent in 5 desmoplastic melanomas but heterogeneously present in 9 of 11 PEComas/angiomyolipomas. No TRP1 was found in neoplasms of nonmelanocytic lineage. We demonstrate that EPR13063 is a valuable reagent for the analysis of TRP1 expression in archival surgical pathology material. The TRP1 expression pattern in melanocytic and related lesions appears to parallel other melanocyte differentiation antigens with a higher incidence in primary and a lower incidence in metastatic melanomas.
Collapse
|
2
|
Determination of the Chemical Composition, Antioxidant, and Enzyme Inhibitory Activity of Onosma mollis DC. J CHEM-NY 2021. [DOI: 10.1155/2021/5405365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Onosma species have long been used traditionally for respiratory tract infections, abdominal pain, wound treatment, burns, and constipation. This study aims to investigate the chemical composition and in vitro antioxidant and enzyme inhibitory activities of ethyl acetate (EtOAc), methanol (MeOH), and water extracts of Onosma mollis DC. MeOH extract was richer in both phenolics and flavonoids than other extracts (44.06 mg GAEs/g and 41.57 mg QEs/g, respectively). The findings obtained from the results of the chromatographic analysis also supported the results of the spectrophotometric analysis. The MeOH extract was the richest in terms of most of the phytochemicals screened. Apigenin 7-glucoside, luteolin 7-glucoside, rosmarinic acid, vanillic acid, and pinoresinol were over 1000.0 μg/g in MeOH extract. The extract in question showed the highest activity in phosphomolybdenum, DPPH, and ABTS radical scavenging and CUPRAC and FRAP reducing power activity assays (2.01, 3.33, 2.30, 1.48, and 0.79 mg/ml, respectively). The water extract presented the highest activity in the ferrous ion chelating assay (1.01 mg/ml). While EtOAc extract showed high activity in acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and α-glucosidase inhibitory activity tests (1.11, 1.49, and 1.07 mg/ml, respectively), MeOH extract showed significant efficacy in tyrosinase and α-amylase inhibitory activity assays (2.94 and 2.08 mg/ml, respectively). There was a high correlation between the total phenolics/flavonoids of the extracts and their antioxidant activities (correlation coefficients were over 0.9). In addition, the phytochemicals mentioned above were found to contribute significantly to the antioxidant activity. It was concluded that a more detailed analysis should be done to determine the compounds responsible for the enzyme inhibitory activities of the extracts.
Collapse
|
3
|
Abstract
Several resorcinol derivatives were synthesized and their effects on the survival rate of B16 murine melanoma cells, melanin production, and tyrosinase activity were investigated with an aim to evaluate their skin whitening effect. Twelve resorcinol derivatives were synthesized by esterification with three functional groups (L-ascorb-6-yl, ethyl, and glyceryl) linked via four alkyl chains of varying lengths (n = 2–5) at the 4-position. The structures of the 12 resorcinol derivatives were confirmed by Nuclear Magnetic Resonance (NMR). The derivatives were added to B16 murine melanoma cells and the melanin contents in the cells and culture medium were measured. To measure the tyrosinase activity, the substrate L-DOPA was added to a mushroom-derived tyrosinase solution, and the inhibition of the tyrosinase activity was determined. At 10 µM, the resorcinol derivatives did not affect the survival of the B16 murine melanoma cells, but the melanin content was reduced. At 1 µM, the derivatives significantly inhibited the tyrosinase activity in the mushroom-derived tyrosinase solution. A plot of the inhibitory effect on melanin production against the cLogP value for each resorcinol derivative indicated that the highest inhibition occurred at a cLogP value of approximately 2. Therefore, these resorcinol derivatives are expected to serve as effective skin whitening agents.
Collapse
|
4
|
Onojafe IF, Megan LH, Melch MG, Aderemi JO, Alur RP, Abu-Asab MS, Chan CC, Bernardini IM, Albert JS, Cogliati T, Adams DR, Brooks BP. Minimal Efficacy of Nitisinone Treatment in a Novel Mouse Model of Oculocutaneous Albinism, Type 3. Invest Ophthalmol Vis Sci 2019; 59:4945-4952. [PMID: 30347088 PMCID: PMC6181301 DOI: 10.1167/iovs.16-20293] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose Oral nitisinone has been shown to increase fur and ocular pigmentation in a mouse model of oculocutaneous albinism (OCA) due to hypomorphic mutations in tyrosinase (TYR), OCA1B. This study determines if nitisinone can improve ocular and/or fur pigmentation in a mouse model of OCA type 3 (OCA3), caused by mutation of the tyrosinase-related protein 1 (Tyrp1) gene. Methods Mice homozygous for a null allele in the Tyrp1 gene (C57BL/6J-Tyrp1 b-J/J) were treated with 8 mg/kg nitisinone or vehicle every other day by oral gavage. Changes in fur and ocular melanin pigmentation were monitored. Mature ocular melanosome number and size were quantified in pigmented ocular structures by electron microscopy. Results C57BL/6J-Tyrp1 b-J/J mice carry a novel c.403T>A; 404delG mutation in Tyrp1, predicted to result in premature truncation of the TYRP1 protein. Nitisinone treatment resulted in an approximately 7-fold increase in plasma tyrosine concentrations without overt toxicity. After 1 month of treatment, no change in the color of fur or pigmented ocular structures was observed. The distribution of melanosome cross-sectional area was unchanged in ocular tissues. There was no significant difference in the number of pigmented melanosomes in the RPE/choroid of nitisinone-treated and control groups. However, there was a significant difference in the number of pigmented melanosomes in the iris. Conclusions Treatment of a mouse model of OCA3 with oral nitisinone did not have a favorable clinical effect on melanin production and minimally affected the number of pigmented melanosomes in the iris stroma. As such, treatment of OCA3 patients with nitisinone is unlikely to be therapeutic.
Collapse
Affiliation(s)
- Ighovie F Onojafe
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Lucyanne H Megan
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Madeline G Melch
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Joseph O Aderemi
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Ramakrishna P Alur
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Mones S Abu-Asab
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Chi-Chao Chan
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Isa M Bernardini
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Jessica S Albert
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Tiziana Cogliati
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - David R Adams
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Brian P Brooks
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
5
|
Solano F. On the Metal Cofactor in the Tyrosinase Family. Int J Mol Sci 2018; 19:ijms19020633. [PMID: 29473882 PMCID: PMC5855855 DOI: 10.3390/ijms19020633] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 12/16/2022] Open
Abstract
The production of pigment in mammalian melanocytes requires the contribution of at least three melanogenic enzymes, tyrosinase and two other accessory enzymes called the tyrosinase-related proteins (Trp1 and Trp2), which regulate the type and amount of melanin. The last two proteins are paralogues to tyrosinase, and they appeared late in evolution by triplication of the tyrosinase gene. Tyrosinase is a copper-enzyme, and Trp2 is a zinc-enzyme. Trp1 has been more elusive, and the direct identification of its metal cofactor has never been achieved. However, due to its enzymatic activity and similarities with tyrosinase, it has been assumed as a copper-enzyme. Recently, recombinant human tyrosinase and Trp1 have been expressed in enough amounts to achieve for the first time their crystallization. Unexpectedly, it has been found that Trp1 contains a couple of Zn(II) at the active site. This review discusses data about the metal cofactor of tyrosinase and Trps. It points out differences in the studied models, and it proposes some possible points accounting for the apparent discrepancies currently appearing. Moreover, some proposals about the possible flexibility of the tyrosinase family to uptake copper or zinc are discussed.
Collapse
Affiliation(s)
- Francisco Solano
- Department Biochemistry and Molecular Biology B and Immunology, School of Medicine and LAIB-IMIB, University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
6
|
Lai X, Wichers HJ, Soler-Lopez M, Dijkstra BW. Structure and Function of Human Tyrosinase and Tyrosinase-Related Proteins. Chemistry 2017; 24:47-55. [PMID: 29052256 DOI: 10.1002/chem.201704410] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Indexed: 12/22/2022]
Abstract
Melanin is the main pigment responsible for the color of human skin, hair and eye. Its biosynthesis requires three melanogenic enzymes, tyrosinase (TYR), and the tyrosinase-related proteins TYRP1 and TYRP2. The difficulty of isolating pure and homogeneous proteins from endogenous sources has hampered their study, and resulted in many contradictory findings regarding their physiological functions. In this review, we summarize recent advances on the structure and function of TYR and TYRPs by virtue of the crystal structure of human TYRP1, which is the first available structure of a mammalian melanogenic enzyme. This structure, combined with tyrosinase structures from other lower eukaryotes and mutagenesis studies of key active site residues, sheds light on the mechanism of TYR and TYRPs. Furthermore, a TYRP1-based homology model of TYR provides a high-quality platform to map and analyze albinism-related mutations, as well as the design of specific antimelanogenic compounds. Finally, we provide perspectives for future structure/function studies of TYR and TYRPs.
Collapse
Affiliation(s)
- Xuelei Lai
- Laboratory of Biophysical Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.,ESRF-The European Synchrotron, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Harry J Wichers
- Wageningen Food & Biobased Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | | | - Bauke W Dijkstra
- Laboratory of Biophysical Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
7
|
De Filippo E, Schiedel AC, Manga P. Interaction between G Protein-Coupled Receptor 143 and Tyrosinase: Implications for Understanding Ocular Albinism Type 1. J Invest Dermatol 2016; 137:457-465. [PMID: 27720922 DOI: 10.1016/j.jid.2016.09.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 12/31/2022]
Abstract
Developmental eye defects in X-linked ocular albinism type 1 are caused by G-protein coupled receptor 143 (GPR143) mutations. Mutations result in dysfunctional melanosome biogenesis and macromelanosome formation in pigment cells, including melanocytes and retinal pigment epithelium. GPR143, primarily expressed in pigment cells, localizes exclusively to endolysosomal and melanosomal membranes unlike most G protein-coupled receptors, which localize to the plasma membrane. There is some debate regarding GPR143 function and elucidating the role of this receptor may be instrumental for understanding neurogenesis during eye development and for devising therapies for ocular albinism type I. Many G protein-coupled receptors require association with other proteins to function. These G protein-coupled receptor-interacting proteins also facilitate fine-tuning of receptor activity and tissue specificity. We therefore investigated potential GPR143 interaction partners, with a focus on the melanogenic enzyme tyrosinase. GPR143 coimmunoprecipitated with tyrosinase, while confocal microscopy demonstrated colocalization of the proteins. Furthermore, tyrosinase localized to the plasma membrane when coexpressed with a GPR143 trafficking mutant. The physical interaction between the proteins was confirmed using fluorescence resonance energy transfer. This interaction may be required in order for GPR143 to function as a monitor of melanosome maturation. Identifying tyrosinase as a potential GPR143 binding protein opens new avenues for investigating the mechanisms that regulate pigmentation and neurogenesis.
Collapse
Affiliation(s)
| | - Anke C Schiedel
- Pharmaceutical Chemistry I, PharmaCenter Bonn, University of Bonn, Bonn, Germany.
| | - Prashiela Manga
- Ronald O. Perelman, Department of Dermatology, New York University School of Medicine, New York, New York, USA.
| |
Collapse
|
8
|
Popa IL, Milac AL, Sima LE, Alexandru PR, Pastrama F, Munteanu CVA, Negroiu G. Cross-talk between Dopachrome Tautomerase and Caveolin-1 Is Melanoma Cell Phenotype-specific and Potentially Involved in Tumor Progression. J Biol Chem 2016; 291:12481-12500. [PMID: 27053106 DOI: 10.1074/jbc.m116.714733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Indexed: 12/16/2022] Open
Abstract
l-Dopachrome tautomerase (l-DCT), also called tyrosinase-related protein-2 (TRP-2), is a melanoma antigen overexpressed in most chemo-/radiotherapeutic stress-resistant tumor clones, and caveolin-1 (CAV1) is a main regulator of numerous signaling processes. A structural and functional relationship between DCT and CAV1 is first presented here in two human amelanotic melanoma cell lines, derived from vertical growth phase (MelJuSo) and metastatic (SKMel28) melanomas. DCT co-localizes at the plasma membrane with CAV1 and Cavin-1, another molecular marker for caveolae in both cell phenotypes. Our novel structural model proposed for the DCT-CAV1 complex, in addition to co-immunoprecipitation and mass spectrometry data, indicates a possible direct interaction between DCT and CAV1. The CAV1 control on DCT gene expression, DCT post-translational processing, and subcellular distribution is cell phenotype-dependent. DCT is a modulator of CAV1 stability and supramolecular assembly in both cell phenotypes. During autocrine stimulation, the expressions of DCT and CAV1 are oppositely regulated; DCT increases while CAV1 decreases. Sub-confluent MelJuSo clones DCT(high)/CAV1(low) are proliferating and acquire fibroblast-like morphology, forming massive, confluent clusters as demonstrated by immunofluorescent staining and TissueFAXS quantitative image cytometry analysis. CAV1 down-regulation directly contributes to the expansion of MelJuSo DCT(high) subtype. CAV1 involved in the perpetuation of cell phenotype-overexpressing anti-stress DCT molecule supports the concept that CAV1 functions as a tumor suppressor in early stages of melanoma. DCT is a regulator of the CAV1-associated structures and is possibly a new molecular player in CAV1-mediated processes in melanoma.
Collapse
Affiliation(s)
- Ioana L Popa
- Department of Protein Folding, Institute of Biochemistry of the Romanian Academy, 060031 Bucharest, Romania
| | - Adina L Milac
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, 060031 Bucharest, Romania
| | - Livia E Sima
- Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, 060031 Bucharest, Romania
| | - Petruta R Alexandru
- Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, 060031 Bucharest, Romania
| | - Florin Pastrama
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, 060031 Bucharest, Romania
| | - Cristian V A Munteanu
- Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, 060031 Bucharest, Romania
| | - Gabriela Negroiu
- Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, 060031 Bucharest, Romania.
| |
Collapse
|
9
|
Qiu C, Li P, Bi J, Wu Q, Lu L, Qian G, Jia R, Jia R. Differential expression of TYRP1 in adult human retinal pigment epithelium and uveal melanoma cells. Oncol Lett 2016; 11:2379-2383. [PMID: 27073483 PMCID: PMC4812559 DOI: 10.3892/ol.2016.4280] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 11/16/2015] [Indexed: 11/18/2022] Open
Abstract
Uveal melanoma (UM) is the most frequently occurring primary intraocular malignancy in adults. Tyrosinase (TYR) is a copper-containing enzyme and a type I membrane protein that is involved in the generation of melanin, the main pigment in vertebrates. TYR-related protein 1 (TYRP1) is regarded to have a crucial role in the immunotherapy of melanoma. As biomarkers, the TYR-related proteins, TYRP1 and TYRP2, exhibit specific expression in melanocytes, while also contributing to melanin synthesis within melanosomes. In the present study, the differential expression of TYRP1 was investigated at the mRNA, protein and morphological levels in four human UM cell lines (SP6.5, OM431, OCM1 and OCM290) and the human retinal pigment epithelium (RPE) cell line, using polymerase chain reaction, western blotting, immunocytochemistry and immunofluorescence staining. It was found that SP6.5 cells expressed the highest level of TYRP1, in comparison to SP6.5 OCM1 and OM431 cells, which produced less TYRP1, and OCM290 cells, which produced almost no TYRP1. No TYRP1 protein expression was identified in the RPE cell line. These findings indicate the potential use of TYRP1 in the development of therapy for UM.
Collapse
Affiliation(s)
- Chun Qiu
- School of Life Science, Anhui University, Hefei, Anhui 230601, P.R. China; Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, P.R. China
| | - Peng Li
- School of Life Science, Anhui University, Hefei, Anhui 230601, P.R. China; Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, P.R. China
| | - Jianjun Bi
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, P.R. China
| | - Qing Wu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, P.R. China
| | - Linna Lu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, P.R. China
| | - Guanxiang Qian
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, P.R. China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, P.R. China
| | - Rong Jia
- School of Life Science, Anhui University, Hefei, Anhui 230601, P.R. China
| |
Collapse
|
10
|
Chadha N, Bahia MS, Kaur M, Silakari O. Thiazolidine-2,4-dione derivatives: Programmed chemical weapons for key protein targets of various pathological conditions. Bioorg Med Chem 2015; 23:2953-74. [DOI: 10.1016/j.bmc.2015.03.071] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/26/2015] [Accepted: 03/28/2015] [Indexed: 10/23/2022]
|
11
|
Kondo T, Namiki T, Coelho SG, Valencia JC, Hearing VJ. Oculocutaneous albinism: Developing novel antibodies targeting the proteins associated with OCA2 and OCA4. J Dermatol Sci 2015; 77:21-7. [DOI: 10.1016/j.jdermsci.2014.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/05/2014] [Accepted: 11/10/2014] [Indexed: 12/31/2022]
|
12
|
|
13
|
Depigmenting Mechanisms of All-Trans Retinoic Acid and Retinol on B16 Melanoma Cells. Biosci Biotechnol Biochem 2014; 72:2589-97. [DOI: 10.1271/bbb.80279] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Tian L. Copper active sites in biology. Chem Rev 2014; 114:3659-853. [PMID: 24588098 PMCID: PMC4040215 DOI: 10.1021/cr400327t] [Citation(s) in RCA: 1220] [Impact Index Per Article: 110.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - David E. Heppner
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | | | - Jake W. Ginsbach
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Jordi Cirera
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Munzarin Qayyum
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | | | | | - Ryan G. Hadt
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Li Tian
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| |
Collapse
|
15
|
Demirkiran O, Sabudak T, Ozturk M, Topcu G. Antioxidant and tyrosinase inhibitory activities of flavonoids from Trifolium nigrescens Subsp. petrisavi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:12598-603. [PMID: 24328319 DOI: 10.1021/jf403669k] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Trifolium nigrescens was researched for its chemical constituents for the first time. Bioassay-guided isolation of the EtOAc extract from the leaves of T. nigrescens resulted in the purification of a new biflavone, 4''',5,5″,7,7″-pentahydroxy-3',3'''-dimethoxy-3-O-β-d-glucosyl-3″,4'-O-biflavone (1) along with eleven known compounds consisting of three phenolics (2-4), and eight flavonoid glycosides (5-12). Their structures were determined by extensive 1D and 2D NMR, and MS data analyses. The isolated compounds were evaluated for their antioxidant activity and inhibitory activity on mushroom tyrosinase. Highly potent inhibitions were found by compounds 7 (IC50 = 0.38 mM), 8 (IC50 = 0.19 mM), and 12 (IC50 = 0.26 mM) when compared with standard tyrosinase inhibitors kojic acid (IC50 = 0.67 mM) and l-mimosine (IC50 = 0.64 mM). The antioxidative effect of the isolated compounds and the extracts were determined by using β-carotene-linoleic acid, DPPH(•) scavenging, ABTS(+•) scavenging, superoxide scavenging, and CUPRAC assays. The experimental findings indicated that all the compounds demonstrated activity in all antioxidant activity tests employed except for the compounds 2-6. Compounds 2-6 showed moderate activity only in ABTS(+•) scavenging assay. The new compound 1 exhibited better activity than standard α-tocopherol in DPPH(•) scavenging, and ABTS(+•) scavenging assays. The results show that T. nigrescens can be regarded as a potential source of antioxidant compounds and tyrosinase inhibitors of significance in both the pharmaceutical and food industries.
Collapse
Affiliation(s)
- Ozlem Demirkiran
- Department of Pharmacognosy, Faculty of Pharmacy, Trakya University , 22030, Edirne, Turkey
| | | | | | | |
Collapse
|
16
|
Zhang Y, Helke KL, Coelho SG, Valencia JC, Hearing VJ, Sun S, Liu B, Li Z. Essential role of the molecular chaperone gp96 in regulating melanogenesis. Pigment Cell Melanoma Res 2013; 27:82-9. [PMID: 24024552 DOI: 10.1111/pcmr.12165] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 09/05/2013] [Indexed: 01/06/2023]
Abstract
Through a process known as melanogenesis, melanocyte produces melanin in specialized organelles termed melanosomes, which regulates pigmentation of the skin, eyes, and hair. Gp96 is a constitutively expressed heat shock protein in the endoplasmic reticulum whose expression is further upregulated upon ultraviolet irradiation. However, the roles and mechanisms of this chaperone in pigmentation biology are unknown. In this study, we found that knockdown of gp96 by RNA interference significantly perturbed melanin synthesis and blocked late melanosome maturation. Gp96 knockdown did not impair the expression of tyrosinase, an essential enzyme in melanin synthesis, but compromised its catalytic activity and melanosome translocation. Further, mice with melanocyte-specific deletion of gp96 displayed decreased pigmentation. A mechanistic study revealed that the defect in melanogenesis can be rescued by activation of the canonical Wnt pathway, consistent with the critical roles of gp96 in chaperoning Wnt-coreceptor LRP6. Thus, this work uncovered the essential role of gp96 in regulating melanogenesis.
Collapse
Affiliation(s)
- Yongliang Zhang
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Immunotargeting and eradication of orthotopic melanoma using a chemokine-enhanced DNA vaccine. Gene Ther 2013; 20:939-48. [PMID: 23552473 DOI: 10.1038/gt.2013.17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 01/24/2013] [Accepted: 02/25/2013] [Indexed: 01/11/2023]
Abstract
DNA vaccines are attractive candidates for tumor immunotherapy. However, the potential of DNA vaccines in treating established malignant lesions has yet to be demonstrated. Here we demonstrate that transient alteration of either intratumoral or intradermal (ID) chemotactic gradients provide a favorable milieu for DNA vaccine-mediated activation of tumor-specific immune response in both prophylactic and therapeutic settings. Specifically, we show that priming of established B16 ID melanoma lesions via forced intratumoral expression of CCL21 boosted DNA vaccination-dependent systemic cytotoxic immune response leading to the regression of tumor nodules. In this setting, application of CCL20 was not effective likely due to the engagement of the regulatory T cells. However, priming of the skin at DNA vaccine administration sites outside the tumor bed with both CCL20 and CCL21 chemokines along with structural modifications of the DNA vaccine significantly improved vaccine efficacy. This optimized ID vaccination regimen led to the inhibition of distant established melanomas and prolonged tumor-free survival of mice observed in 60% of vaccinated animals with complete tumor remission in 30%. These effects were mediated by extranodal priming and activation of T cells at vaccine administration sites and progressive accumulation of systemic antigen-specific cytotoxic T cells (CTLs) on successive vaccinations. These results underscore the potential of chemokine-enhanced DNA vaccination to mount therapeutic immune response against established tumors.
Collapse
|
18
|
Syntaxin-3 is required for melanosomal localization of Tyrp1 in melanocytes. J Invest Dermatol 2013; 133:2237-46. [PMID: 23549422 DOI: 10.1038/jid.2013.156] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/28/2013] [Accepted: 03/11/2013] [Indexed: 11/08/2022]
Abstract
Melanogenic enzymes are transported by vesicular/membrane trafficking to immature melanosomes in melanocytes where they catalyze the synthesis of melanin pigments. Although several factors involved in melanogenic enzyme trafficking have been identified in the past decade, involvement of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, which generally mediate membrane fusion, on melanosomes in the process of melanogenic enzyme trafficking has never been investigated. In this study we identified syntaxin-3, which was originally described as a target SNARE protein at the plasma membrane, as a melanosome-resident protein and investigated whether syntaxin-3 is involved in the trafficking of the melanogenic enzyme Tyrp1 (tyrosinase-related protein 1) in mouse melanocytes. The results showed that knockdown of endogenous syntaxin-3 protein in melanocytes caused a dramatic reduction in Tyrp1 signals, especially from peripheral melanosomes, presumably as a result of lysosomal degradation of Tyrp1. They also showed that syntaxin-3 interacts with another target SNARE SNAP23 (synaptosome-associated protein of 23 kDa) and with vesicle SNARE VAMP7 (vesicle-associated membrane protein 7), which has been shown to be localized at Tyrp1-containing vesicles/organelles. These findings suggested that the SNARE machinery composed of VAMP7 on Tyrp1-containing vesicles and syntaxin-3 and SNAP23 on melanosomes regulates Tyrp1 trafficking to the melanosome in melanocytes.
Collapse
|
19
|
Zhao Z, Jin C, Ding K, Ge X, Dai L. Dedifferentiation of human epidermal melanocytes into melanoblasts in vitro. Exp Dermatol 2012; 21:504-8. [PMID: 22540983 DOI: 10.1111/j.1600-0625.2012.01488.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Melanoblasts (MB) are also called melanocyte (MC) precursor cells. In recent years, people have successfully cultivated human and mouse MB. Previous studies have shown that EDN3 induces cultivated bird MC to re-differentiate into double potential progenitor cells of MB. However, no study has reported whether in vitro cultivated human MC can be dedifferentiated. Our research on MC that were purified and cultivated in vitro found that adding 10 nm endothelin 1 (EDN1) (ET-1) to the MC medium without phorbol 12-myristate 13-acetate (PMA) induced a few MC to dedifferentiate and become a new type of cell. This new cell type was separated, purified, cloned and identified using multiple approaches. The results show that 88.7%, 8.69% and 2.5% of this new cell type were cells in the G(0) -G(1) , G(2) -M and S stages, respectively. The new cell type did not exhibit an apparent apoptotic peak, and its apoptotic rate was 0.09%. Stage I melanosomes were observed in the cytoplasm and were negative for the DOPA reaction. The cell surface antigen expression was positive for tyrosinase-related protein 2, negative or positive for c-kit and negative for S-100 and HMB45, showing that these cells were dedifferentiated MB of MC. Our findings provided evidence for atavism of mature human MC under certain conditions.
Collapse
Affiliation(s)
- Zhiguo Zhao
- Department of Dermatology, the Affiliated of People's Hospital of Jiangsu University, Jiangsu, China.
| | | | | | | | | |
Collapse
|
20
|
Esposito R, D'Aniello S, Squarzoni P, Pezzotti MR, Ristoratore F, Spagnuolo A. New insights into the evolution of metazoan tyrosinase gene family. PLoS One 2012; 7:e35731. [PMID: 22536431 PMCID: PMC3334994 DOI: 10.1371/journal.pone.0035731] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 03/24/2012] [Indexed: 11/19/2022] Open
Abstract
Tyrosinases, widely distributed among animals, plants and fungi, are involved in the biosynthesis of melanin, a pigment that has been exploited, in the course of evolution, to serve different functions. We conducted a deep evolutionary analysis of tyrosinase family amongst metazoa, thanks to the availability of new sequenced genomes, assessing that tyrosinases (tyr) represent a distinctive feature of all the organisms included in our study and, interestingly, they show an independent expansion in most of the analyzed phyla. Tyrosinase-related proteins (tyrp), which derive from tyr but show distinct key residues in the catalytic domain, constitute an invention of chordate lineage. In addition we here reported a detailed study of the expression territories of the ascidian Ciona intestinalis tyr and tyrps. Furthermore, we put efforts in the identification of the regulatory sequences responsible for their expression in pigment cell lineage. Collectively, the results reported here enlarge our knowledge about the tyrosinase gene family as valuable resource for understanding the genetic components involved in pigment cells evolution and development.
Collapse
Affiliation(s)
| | | | | | | | | | - Antonietta Spagnuolo
- Cellular and Developmental Biology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
| |
Collapse
|
21
|
Wu CY, Pang JHS, Huang ST. Inhibition of Melanogenesis in Murine B16/F10 Melanoma Cells byLigusticum sinensis Oliv. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 34:523-33. [PMID: 16710901 DOI: 10.1142/s0192415x06004053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ligusticum sinensis Oliv. (LSO) is an herbal drug commonly used as a topical treatment of epidermal hyperdepigmentation in Chinese medicine. However, the mechanism underlying the depigmentation by LSO is still unclear. The purpose of this study was to investigate the effects of LSO on the process of melanogenesis and its possible underlying mechanism. Suppressed DOPA oxidase activity of mushroom tyrosinase was first noted when incubated with aqueous extracts of LSO, demonstrating the direct inhibitory effect of LSO on mushroom tyrosinase. Further experiments were carried out in murine B16/F10 melanoma cells and the effects of LSO extract on melanin formation, tyrosinase activity and tyrosinase gene expression were tested. Under conditions without affecting the viability of murine B16/F10 melanoma cells, LSO extract significantly reduced the cellular melanin content in a dose-dependent manner. The DOPA oxidase activity of tyrosinase in B16/F10 cells was dose-dependently inhibited by LSO treatment, possibly mediated by the suppressed tyrosinase mRNA expression in LSO-treated B16/F10 cells. In conclusion, the inhibitory effect of LSO on melanogenesis is likely associated with decreased DOPA oxidase activity of tyrosinase that is most likely the result of the down-regulation of tyrosinase mRNA expression.
Collapse
Affiliation(s)
- Ching-Yuan Wu
- Department of Chinese Medicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan, R.O.C
| | | | | |
Collapse
|
22
|
Ohbayashi N, Yatsu A, Tamura K, Fukuda M. The Rab21-GEF activity of Varp, but not its Rab32/38 effector function, is required for dendrite formation in melanocytes. Mol Biol Cell 2011; 23:669-78. [PMID: 22171327 PMCID: PMC3279394 DOI: 10.1091/mbc.e11-04-0324] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
ETOC: Varp contains two Rab-signaling domains—VPS9/Rab21-GEF domain and ANKR1/Rab32/38 effector domain—whose functional relationship had not previously been determined. It is shown that the Rab21-GEF activity of Varp, but not its Rab32/38 effector function, is required for forskolin-induced dendrite formation in melanocytes. Vacuolar protein sorting 9 (VPS9)–ankyrin-repeat protein (Varp) has recently been identified as an effector molecule for two small GTPases—Rab32 and Rab38—in the transport of a melanogenic enzyme tyrosinase-related protein 1 (Tyrp1) to melanosomes in melanocytes. Although Varp contains a Rab21–guanine nucleotide exchange factor (GEF) domain (i.e., VPS9 domain), since Rab21-GEF activity is not required for Tyrp1 transport, nothing is known about the physiological significance of the Rab21-GEF activity in melanocytes. Here we show by knockdown-rescue experiments that the Rab21-GEF activity of Varp, but not its Rab32/38 effector function, is required for forskolin-induced dendrite formation of cultured melanocytes. We found that Varp-deficient cells are unable to extend dendrites in response to forskolin stimulation and that reexpression of wild-type Varp or a Rab32/38-binding–deficient mutant Varp(Q509A/Y550A) in Varp-deficient cells completely restores their ability to form dendrites. By contrast, VPS9 mutants (D310A and Y350A) and a vesicle-associated membrane protein 7 (VAMP7)-binding–deficient mutant were unable to support forskolin-induced dendrite formation in Varp-deficient cells. These findings indicate that the Rab21-GEF activity and Rab32/38 binding activity of Varp are required for different melanocyte functions, that is, Rab21 activation by the VPS9 domain is required for dendrite formation, and the Rab32/38 effector function of the ankyrin repeat 1 domain is required for Tyrp1 transport to melanosomes, although VAMP7-binding ability is required for both functions.
Collapse
Affiliation(s)
- Norihiko Ohbayashi
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | | | | | | |
Collapse
|
23
|
Aydin IT, Hummler E, Smit NPM, Beermann F. Coat color dilution in mice because of inactivation of the melanoma antigen MART-1. Pigment Cell Melanoma Res 2011; 25:37-46. [PMID: 21943097 DOI: 10.1111/j.1755-148x.2011.00910.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Melanoma antigen recognized by T cells 1 (MART-1) is a melanoma-specific antigen, which has been thoroughly studied in the context of immunotherapy against malignant melanoma and which is found only in the pigment cell lineage. However, its exact function and involvement in pigmentation is not clearly understood. Melanoma antigen recognized by T cells 1 has been shown to interact with the melanosomal proteins Pmel17 and OA1. To understand the function of MART-1 in pigmentation, we developed a new knockout mouse model. Mice deficient in MART-1 are viable, but loss of MART-1 leads to a coat color phenotype, with a reduction in total melanin content of the skin and hair. Lack of MART-1 did not affect localization of melanocyte-specific proteins nor maturation of Pmel17. Melanosomes of hair follicle melanocytes in MART-1 knockout mice displayed morphological abnormalities, which were exclusive to stage III and IV melanosomes. In conclusion, our results suggest that MART-1 is a pigmentation gene that is required for melanosome biogenesis and/or maintenance.
Collapse
Affiliation(s)
- Iraz T Aydin
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | | | | |
Collapse
|
24
|
Inactivation of Pmel alters melanosome shape but has only a subtle effect on visible pigmentation. PLoS Genet 2011; 7:e1002285. [PMID: 21949658 PMCID: PMC3174228 DOI: 10.1371/journal.pgen.1002285] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 06/18/2011] [Indexed: 11/19/2022] Open
Abstract
PMEL is an amyloidogenic protein that appears to be exclusively expressed in pigment cells and forms intralumenal fibrils within early stage melanosomes upon which eumelanins deposit in later stages. PMEL is well conserved among vertebrates, and allelic variants in several species are associated with reduced levels of eumelanin in epidermal tissues. However, in most of these cases it is not clear whether the allelic variants reflect gain-of-function or loss-of-function, and no complete PMEL loss-of-function has been reported in a mammal. Here, we have created a mouse line in which the Pmel gene has been inactivated (Pmel−/−). These mice are fully viable, fertile, and display no obvious developmental defects. Melanosomes within Pmel−/− melanocytes are spherical in contrast to the oblong shape present in wild-type animals. This feature was documented in primary cultures of skin-derived melanocytes as well as in retinal pigment epithelium cells and in uveal melanocytes. Inactivation of Pmel has only a mild effect on the coat color phenotype in four different genetic backgrounds, with the clearest effect in mice also carrying the brown/Tyrp1 mutation. This phenotype, which is similar to that observed with the spontaneous silver mutation in mice, strongly suggests that other previously described alleles in vertebrates with more striking effects on pigmentation are dominant-negative mutations. Despite a mild effect on visible pigmentation, inactivation of Pmel led to a substantial reduction in eumelanin content in hair, which demonstrates that PMEL has a critical role for maintaining efficient epidermal pigmentation. Pigmentation has since long constituted a prime model to study how genes act and interact. The PMEL gene encodes a protein exclusively found in the melanosomes of pigment-producing cells. Mutations in PMEL underlie some spectacular color phenotypes in animals including Dominant white color in chickens, Silver in horses, and Merle in dogs, but no spontaneous mutation causing a complete inactivation of this gene has yet been found in mammals. We have now developed a PMEL knockout mouse to further study the function of this protein. We show that mice lacking PMEL have almost normal visible pigmentation. However, loss of PMEL has a dramatic effect on the morphology of the melanosomes in skin, hair, and eye, such that the normally rod-shaped melanosomes in wild-type animals are spherical in the knockout mice. The knockout animals also have a substantial reduction in the content of black pigment in hair. The study establishes that PMEL has a critical role for maintaining normal pigment production.
Collapse
|
25
|
Huang HC, Chiu SH, Chang TM. Inhibitory effect of [6]-gingerol on melanogenesis in B16F10 melanoma cells and a possible mechanism of action. Biosci Biotechnol Biochem 2011; 75:1067-72. [PMID: 21670536 DOI: 10.1271/bbb.100851] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
[6]-Gingerol is an active component of ginger that shows antipyretic and anti-inflammation activities. To find a novel skin-whitening agent, the melanogeneis inhibitory effects and action mechanisms of [6]-gingerol were investigated. In the present study, the effects of [6]-gingerol on mushroom tyrosinase, tyrosinase activity, and melanin content were determined spectrophotometrically, and the expression of tyrosinase and related proteins in B16F10 murine melanoma cells was evaluated by Western blotting. Furthermore, a possible signaling pathway involved in [6]-gingerolmediated depigmentation was investigated by means of specific inhibitors. The results revealed that [6]-gingerol (25-100 µM) effectively suppresses murine tyrosinase activity and decreases the amount of melanin in a dose-dependent manner. Additionally, it also effectively decreased the intracellular reactive oxygen species (ROS) level in a dose-dependent pattern in the same dose range. Our results indicate that [6]-gingerol inhibits melanogenesis of B16F10 melanoma and can function as a good skinwhitening agent.
Collapse
Affiliation(s)
- Huey-Chun Huang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | | | | |
Collapse
|
26
|
Beaumont KA, Hamilton NA, Moores MT, Brown DL, Ohbayashi N, Cairncross O, Cook AL, Smith AG, Misaki R, Fukuda M, Taguchi T, Sturm RA, Stow JL. The recycling endosome protein Rab17 regulates melanocytic filopodia formation and melanosome trafficking. Traffic 2011; 12:627-43. [PMID: 21291502 DOI: 10.1111/j.1600-0854.2011.01172.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rab GTPases including Rab27a, Rab38 and Rab32 function in melanosome maturation or trafficking in melanocytes. A screen to identify additional Rabs involved in these processes revealed the localization of GFP-Rab17 on recycling endosomes (REs) and melanosomes in melanocytic cells. Rab17 mRNA expression is regulated by microphthalmia transcription factor (MITF), a characteristic of known pigmentation genes. Rab17 siRNA knockdown in melanoma cells quantitatively increased melanosome concentration at the cell periphery. Rab17 knockdown did not inhibit melanosome maturation nor movement, but it caused accumulation of melanin inside cells. Double knockdown of Rab17 and Rab27a indicated that Rab17 acts on melanosomes downstream of Rab27a. Filopodia are known to play a role in melanosome transfer, and in Rab17 knockdown cells filopodia formation was inhibited. Furthermore, we show that stimulation of melanoma cells with α-melanocyte-stimulating hormone induces filopodia formation, supporting a role for filopodia in melanosome release. Cell stimulation also caused redistribution of REs to the periphery, and knockdown of additional RE-associated Rabs 11a and 11b produced a similar accumulation of melanosomes and melanin to that seen after loss of Rab17. Our findings reveal new functions for RE and Rab17 in pigmentation through a distal step in the process of melanosome release via filopodia.
Collapse
Affiliation(s)
- Kimberley A Beaumont
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072 QLD, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Beta-catenin activity in the dermal papilla of the hair follicle regulates pigment-type switching. Proc Natl Acad Sci U S A 2010; 107:21564-9. [PMID: 21098273 DOI: 10.1073/pnas.1007326107] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The switch between black and yellow pigment is mediated by the interaction between Melanocortin receptor 1 (Mc1r) and its antagonist Agouti, but the genetic and developmental mechanisms that modify this interaction to obtain different coat color in distinct environments are poorly understood. Here, the role of Wnt/β-catenin signaling in the regulation of pigment-type switching was studied. Loss and gain of function of β-catenin in the dermal papilla (DP) of the hair follicle results in yellow and black animals, respectively. β-Catenin activity in the DP suppresses Agouti expression and activates Corin, a negative regulator of Agouti activity. In addition, β-catenin activity in the DP regulates melanocyte activity by a mechanism that is independent of both Agouti and Corin. The coordinate and inverse regulation of Agouti and Corin renders pelage pigmentation sensitive to changes in β-catenin activity in the DP that do not alter pelage structure. As a result, the signals that specify two biologically distinct quantitative traits are partially uncoupled despite their common regulation by the β-catenin pathway in the same cells.
Collapse
|
28
|
Depigmenting mechanism of NSAIDs on B16F1 melanoma cells. Arch Dermatol Res 2010; 303:171-80. [DOI: 10.1007/s00403-010-1094-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 10/28/2010] [Accepted: 11/01/2010] [Indexed: 10/18/2022]
|
29
|
Antibodies specific to melanocyte-specific proteins available from the Hearing Laboratory. Pigment Cell Melanoma Res 2009. [DOI: 10.1111/j.1755-148x.2009.00601.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
30
|
Olivares C, Solano F. New insights into the active site structure and catalytic mechanism of tyrosinase and its related proteins. Pigment Cell Melanoma Res 2009; 22:750-60. [PMID: 19735457 DOI: 10.1111/j.1755-148x.2009.00636.x] [Citation(s) in RCA: 225] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tyrosinases are widely distributed in nature. They are copper-containing oxidases belonging to the type 3 copper protein family, together with catechol oxidases and haemocyanins. Tyrosinases are essential enzymes in melanin biosynthesis and therefore responsible for pigmentation of skin and hair in mammals, where two more enzymes, the tyrosinase-related proteins (Tyrps), participate in the pathway. The structure and catalytic mechanism of mammalian tyrosinases have been extensively studied but they are not completely understood because of the lack of information on the tertiary structure. The availability of crystallographic data of one plant catechol oxidase and one bacterial tyrosinase has improved the model of the three-dimensional structure of the active site of the enzyme. Furthermore, sequence comparison of tyrosinase and the Tyrps reveals that the three orthologue proteins share many key structural features, because of their common origin from an ancestral gene, although the specific residues responsible for their different catalytic capabilities have not been identified yet. This review summarizes our current knowledge of tyrosinase and Tyrps structure and function and describes the catalytic mechanism of tyrosinase and Dct/Tyrp2, which are better characterized.
Collapse
Affiliation(s)
- Concepcion Olivares
- Department of Biochemistry, Molecular Biology & Immunology, School of Medicine, University of Murcia, Espinardo, Spain
| | | |
Collapse
|
31
|
Dankort D, Curley DP, Cartlidge RA, Nelson B, Karnezis AN, Damsky WE, You MJ, DePinho RA, McMahon M, Bosenberg M. Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nat Genet 2009; 41:544-52. [PMID: 19282848 PMCID: PMC2705918 DOI: 10.1038/ng.356] [Citation(s) in RCA: 913] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 02/13/2009] [Indexed: 12/22/2022]
Abstract
Mutational activation of BRAF is the earliest and most common genetic alteration in human melanoma. To build a model of human melanoma, we generated mice with conditional melanocyte-specific expression of BRaf(V600E). Upon induction of BRaf(V600E) expression, mice developed benign melanocytic hyperplasias that failed to progress to melanoma over 15-20 months. By contrast, expression of BRaf(V600E) combined with Pten tumor suppressor gene silencing elicited development of melanoma with 100% penetrance, short latency and with metastases observed in lymph nodes and lungs. Melanoma was prevented by inhibitors of mTorc1 (rapamycin) or MEK1/2 (PD325901) but, upon cessation of drug administration, mice developed melanoma, indicating the presence of long-lived melanoma-initiating cells in this system. Notably, combined treatment with rapamycin and PD325901 led to shrinkage of established melanomas. These mice, engineered with a common genetic profile to human melanoma, provide a system to study melanoma's cardinal feature of metastasis and for preclinical evaluation of agents designed to prevent or treat metastatic disease.
Collapse
Affiliation(s)
- David Dankort
- Cancer Research Institute & Department of Cell and Molecular Pharmacology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco CA 94143
| | - David P. Curley
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT 05405
| | - Robert A. Cartlidge
- Cancer Research Institute & Department of Cell and Molecular Pharmacology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco CA 94143
| | - Betsy Nelson
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT 05405
| | - Anthony N. Karnezis
- Cancer Research Institute & Department of Pathology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco CA 94143
| | - William E. Damsky
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT 05405
| | - Mingjian J. You
- Belfer Institute for Applied Cancer Science, Departments of Medical Oncology, Medicine & Genetics, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115
| | - Ronald A. DePinho
- Belfer Institute for Applied Cancer Science, Departments of Medical Oncology, Medicine & Genetics, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115
| | - Martin McMahon
- Cancer Research Institute & Department of Cell and Molecular Pharmacology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco CA 94143
| | - Marcus Bosenberg
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT 05405
| |
Collapse
|
32
|
Sato K, Toriyama M. Effect of pyrroloquinoline quinone (PQQ) on melanogenic protein expression in murine B16 melanoma. J Dermatol Sci 2009; 53:140-5. [DOI: 10.1016/j.jdermsci.2008.08.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 08/19/2008] [Accepted: 08/27/2008] [Indexed: 10/21/2022]
|
33
|
Namiki T, Valencia JC, Hall MD, Hearing VJ. A novel approach to enhance antibody sensitivity and specificity by peptide cross-linking. Anal Biochem 2008; 383:265-9. [PMID: 18801330 PMCID: PMC2596928 DOI: 10.1016/j.ab.2008.08.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 08/21/2008] [Accepted: 08/25/2008] [Indexed: 11/27/2022]
Abstract
Most current techniques employed to improve antigen-antibody signals in Western blotting and in immunohistochemistry rely on sample processing prior to staining (e.g., microwaving) or using a more robust reporter (e.g., a secondary antibody with biotin-streptavidin). We have developed and optimized a new approach intended to stabilize the complexes formed between antigens and their respective primary antibodies by cupric ions at high pH. This technique improves the affinity and lowers cross-reactivity with nonspecific bands of approximately 20% of antibodies tested (5/25). Here we report that this method can enhance antigen-antibody specificity and can improve the utility of some poorly reactive primary antibodies.
Collapse
Affiliation(s)
- Takeshi Namiki
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Building 37, Room 3132, Bethesda, MD 20814, USA
| | | | | | | |
Collapse
|
34
|
Ni-Komatsu L, Tong C, Chen G, Brindzei N, Orlow SJ. Identification of quinolines that inhibit melanogenesis by altering tyrosinase family trafficking. Mol Pharmacol 2008; 74:1576-86. [PMID: 18801917 PMCID: PMC2747315 DOI: 10.1124/mol.108.050633] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A series of quinolines, including chloroquine and quinine, were identified as potent pigmentation inhibitors through screening a compound library in murine melanocytes. Structure-activity relationship analysis indicated that 4-substituted amino groups with a tertiary amine side chain, such as chloroquine, were associated with robust inhibitory activity. In contrast to many previously identified pigmentation inhibitors, these newly identified inhibitors had no effect on either the level or the enzymatic activity of tyrosinase, the rate-limiting enzyme in melanin production. Rather, our results showed that these quinolines inhibited melanogenesis by disrupting the intracellular trafficking of tyrosinase-related proteins and lysosome-associated membrane protein 1 (Lamp-1). In treated melanocytes, tyrosinase and tyrosinase-related protein 1 accumulated in Lamp-1-positive perinuclear organelles instead of melanosomes, thus preventing melanogenesis. The depigmenting abilities of chloroquine and quinine salicylate were assessed in a human skin equivalent model (MelanoDerm). Both compounds were considerably more effective than arbutin, a widely used lightening agent. Our results indicate that quinolines may be useful agents for "cosmeceutical" skin lightening and treatment of hyperpigmentation disorders.
Collapse
Affiliation(s)
- Li Ni-Komatsu
- The Ronald O Perelman Department of Dermatology, New York University School of Medicine, New York, New York 10016, USA.
| | | | | | | | | |
Collapse
|
35
|
Affiliation(s)
- K Tsukamoto
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | |
Collapse
|
36
|
Halaban R, Moellmann G. Recent advances in the molecular biology of pigmentation: mouse models. PIGMENT CELL RESEARCH 2008; Suppl 2:67-78. [PMID: 1409441 DOI: 10.1111/j.1600-0749.1990.tb00352.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- R Halaban
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut 06510
| | | |
Collapse
|
37
|
Tsukamoto K, Ueda M, Hearing VJ. Melanogenesis in murine melanocytes is suppressed by infection with the v-rasHa oncogene. PIGMENT CELL RESEARCH 2008; Suppl 2:181-4. [PMID: 1409418 DOI: 10.1111/j.1600-0749.1990.tb00371.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
MESH Headings
- Animals
- Catalase/biosynthesis
- Catalase/genetics
- Cell Differentiation/genetics
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Viral
- Cells, Cultured
- Gene Expression Regulation, Neoplastic
- Gene Expression Regulation, Viral
- Genes, ras
- Glycoproteins/biosynthesis
- Glycoproteins/genetics
- Melanins/biosynthesis
- Melanocytes/metabolism
- Melanoma, Experimental/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Nude
- Monophenol Monooxygenase/biosynthesis
- Monophenol Monooxygenase/genetics
- Neoplasm Transplantation
- Oncogene Protein p21(ras)/genetics
- Oncogene Protein p21(ras)/physiology
- Recombinant Proteins
Collapse
Affiliation(s)
- K Tsukamoto
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | |
Collapse
|
38
|
Groux-Degroote S, van Dijk SM, Wolthoorn J, Neumann S, Theos AC, De Mazière AM, Klumperman J, van Meer G, Sprong H. Glycolipid-dependent sorting of melanosomal from lysosomal membrane proteins by lumenal determinants. Traffic 2008; 9:951-63. [PMID: 18373728 DOI: 10.1111/j.1600-0854.2008.00740.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Melanosomes are lysosome-related organelles that coexist with lysosomes in mammalian pigment cells. Melanosomal and lysosomal membrane proteins share similar sorting signals in their cytoplasmic tail, raising the question how they are segregated. We show that in control melanocytes, the melanosomal enzymes tyrosinase-related protein 1 (Tyrp1) and tyrosinase follow an intracellular Golgi to melanosome pathway, whereas in the absence of glycosphingolipids, they are observed to pass over the cell surface. Unexpectedly, the lysosome-associated membrane protein 1 (LAMP-1) and 2 behaved exactly opposite: they were found to travel through the cell surface in control melanocytes but followed an intracellular pathway in the absence of glycosphingolipids. Chimeric proteins having the cytoplasmic tail of Tyrp1 or tyrosinase were transported like lysosomal proteins, whereas a LAMP-1 construct containing the lumenal domain of Tyrp1 localized to melanosomes. In conclusion, the lumenal domain contains sorting information that guides Tyrp1 and probably tyrosinase to melanosomes by an intracellular route that excludes lysosomal proteins and requires glucosylceramide.
Collapse
Affiliation(s)
- Sophie Groux-Degroote
- Membrane Enzymology, Bijvoet Center and Institute of Biomembranes, Utrecht University, 3584CH Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ni-Komatsu L, Orlow SJ. Chemical genetic screening identifies tricyclic compounds that decrease cellular melanin content. J Invest Dermatol 2008; 128:1236-47. [PMID: 18007583 DOI: 10.1038/sj.jid.5701163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A screen of a library of 2,000 drugs and natural products in murine melanocytes identified 10 tricyclic antidepressants (TCAs) as compounds that potently decreased intracellular melanin content. The rank order of potency of these compounds for decreasing melanin content was different than their relative potencies as antidepressants. These compounds had no effect on either the level or the enzymatic activity of cellular tyrosinase (Tyr). Increased presence of both Tyr and melanin in the culture media was observed in treated melanocytes. Immunofluorescence localization revealed that these compounds decreased intracellular melanin content by disrupting the intracellular trafficking of Tyr gene family proteins. In treated melanocytes, Tyr, Tyr-related protein 1, and dopachrome tautomerase accumulated in enlarged granules distributed throughout the cytoplasm. Colocalization of Tyr with lysosome-associated membrane protein 1 was observed within many of these granules. Partial colocalization of Tyr with the Hermansky-Pudlak syndrome 1 gene product observed in control melanocytes was abolished by TCA treatment. Our results show that these compounds decreased intracellular melanin content by altering the trafficking of Tyr gene family proteins and inducing abnormal secretion of Tyr. Results from our screening have implications for the design of products for skin lightening and treatment of hyperpigmentation.
Collapse
Affiliation(s)
- Li Ni-Komatsu
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York 10016, USA
| | | |
Collapse
|
40
|
Matsuda S, Shibayama H, Hisama M, Ohtsuki M, Iwaki M. Inhibitory Effects of a Novel Ascorbic Derivative, Disodium Isostearyl 2-O-L-Ascorbyl Phosphate on Melanogenesis. Chem Pharm Bull (Tokyo) 2008; 56:292-7. [DOI: 10.1248/cpb.56.292] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Hiroharu Shibayama
- Central Research Center, Toyo Beauty Co., Ltd
- Department of Dermatorogy, Jichi Medical University
| | | | | | | |
Collapse
|
41
|
Kawase A, Kushimoto T, Kawa Y, Ohsumi K, Nishikawa H, Kawakami T, Mizoguchi M, Soma Y. Proteomic analysis of immature murine melanocytes at different stages of maturation: A crucial role for calreticulin. J Dermatol Sci 2008; 49:43-52. [PMID: 17826037 DOI: 10.1016/j.jdermsci.2007.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 07/20/2007] [Accepted: 07/24/2007] [Indexed: 11/28/2022]
Abstract
BACKGROUND We have established two immature melanocyte cell lines from murine neural crest cells. NCC-E3 cells have Stage II melanosomes and express tyrosinase while in NCCmelb4 cells, the melanosomes remain at Stage I and tyrosinase is not expressed. These cell lines may be useful in studying the differentiation of melanocyte precursors. OBJECTIVE To perform proteomic analysis of the two cell lines to identify proteins related to and possibly responsible for their different maturation stages. METHODS Western blotting, two-dimensional differential image gel electrophoresis (2D-DIGE), liquid chromatography-tandem mass spectrometry (LC-MS/MS), real-time PCR analysis and RNA interference using siRNA were employed in this study. RESULTS Western blotting revealed that the processed form of gp100, which is specific for Stage II melanosomes, is expressed in NCC-E3 cells but not in NCCmelb4 cells. 2D-DIGE identified two protein spots showing 4.06- and 2.22-fold increases in NCC-E3 cells compared to NCCmelb4 cells. Analysis of those proteins by LC-MS/MS revealed that the former was calreticulin and the latter was BiP/GRP78. When calreticulin mRNA expression in NCC-E3 cells was blocked by siRNA, tyrosinase protein was abolished and DOPA-reactivity was decreased, although tyrosinase mRNA was abundantly expressed after the same treatment. CONCLUSION Calreticulin, a lectin chaperone, is an essential molecule for the processing of tyrosinase in murine melanocytes. The role of molecular chaperones such as calreticulin should be considered when analyzing the mechanism(s) of melanocyte differentiation.
Collapse
Affiliation(s)
- Ayumi Kawase
- Department of Dermatology, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki 216-8511, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Watabe H, Valencia JC, Le Pape E, Yamaguchi Y, Nakamura M, Rouzaud F, Hoashi T, Kawa Y, Mizoguchi M, Hearing VJ. Involvement of dynein and spectrin with early melanosome transport and melanosomal protein trafficking. J Invest Dermatol 2008; 128:162-74. [PMID: 17687388 PMCID: PMC2167631 DOI: 10.1038/sj.jid.5701019] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Melanosomes are unique membrane-bound organelles specialized for the synthesis and distribution of melanin. Mechanisms involved in the trafficking of proteins to melanosomes and in the transport of mature pigmented melanosomes to the dendrites of melanocytic cells are being characterized, but details about those processes during early stages of melanosome maturation are not well understood. Early melanosomes must remain in the perinuclear area until critical components are assembled. In this study, we characterized the processing of two distinct melanosomal proteins, tyrosinase (TYR) and Pmel17, to elucidate protein processing in early or late steps of the secretory pathway, respectively, and to determine mechanisms underlying the subcellular localization and transport of early melanosomes. We used immunological, biochemical, and molecular approaches to demonstrate that the movement of early melanosomes in the perinuclear area depends primarily on microtubules but not on actin filaments. In contrast, the trafficking of TYR and Pmel17 depends on cytoplasmic dynein and its interaction with the spectrin/ankyrin system, which is involved with the sorting of cargo from the plasma membrane. These results provide important clues toward understanding the processes involved with early events in melanosome formation and transport.
Collapse
Affiliation(s)
- Hidenori Watabe
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Dermatology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Julio C. Valencia
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elodie Le Pape
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yuji Yamaguchi
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Masayuki Nakamura
- Department of Dermatology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - François Rouzaud
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Toshihiko Hoashi
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yoko Kawa
- Department of Dermatology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Masako Mizoguchi
- Department of Dermatology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Vincent J. Hearing
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
43
|
Schuler P, Contassot E, Huard B. T cell tolerance to the skin: a central role for central tolerance. Semin Immunopathol 2007; 29:59-64. [PMID: 17621954 DOI: 10.1007/s00281-007-0062-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
T cell tolerance to self-antigens is believed to be achieved in a two-step process. The first step, called central tolerance, takes place in the thymus. The second step takes place outside the thymus in secondary lymphoid organs. One may ask why two mechanisms are needed to insure T cell tolerance. These two mechanisms share redundant functions and dysfunctions, leading to T cell-mediated autoimmune syndromes. By reviewing the literature on relevant animal models for T cell tolerance and our own recent findings, we are providing evidences that only central tolerance is acting for the skin.
Collapse
Affiliation(s)
- Prisca Schuler
- Louis Jeantet Skin Cancer Laboratory, Department of Patho-Immunology, University Medical Center, 1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
44
|
Ni-Komatsu L, Orlow SJ. Identification of Novel Pigmentation Modulators by Chemical Genetic Screening. J Invest Dermatol 2007; 127:1585-92. [PMID: 17568802 DOI: 10.1038/sj.jid.5700852] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There is a continual need for compounds that effectively modulate melanin synthesis. To identify novel pigmentation modulators and their cellular targets, chemical genetic screenings were performed with triazine-based combinatorial libraries that include various linkers as intrinsic components of the small molecules in the library. The linker provides a ready means of attachment to beads, eliminating several common time-consuming downstream steps in the isolation of cellular targets for the small molecules of interest. Twelve compounds were identified as novel pigmentation modulators from various screenings performed in normal and albino murine melanocytes and zebrafish. Target identification by affinity chromatography revealed unexpected roles for prohibitin and mitochondrial F1F0-adenotriphosphatase in the regulation of mammalian pigmentation. The identification of prohibitin, a "scaffold protein", as a propigmentation effector represents a novel mechanism by which propigmentary signals are transduced. Results from our screenings provide potential active agents and targets for the medical and aesthetic treatment of disorders of pigmentation.
Collapse
Affiliation(s)
- Li Ni-Komatsu
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York 10016, USA
| | | |
Collapse
|
45
|
Hibma JC, Neufeld DA, Halaby MJ, Yang DQ. A novel phenotypic marker for ATM-deficient 129S6/SvEvTac-ATMtm1Awb/J mice. Anat Rec (Hoboken) 2007; 290:243-50. [PMID: 17525940 DOI: 10.1002/ar.20425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ataxia-telangiectasia (A-T) is a human autosomal recessive disorder characterized by neuronal degeneration as well as many other physiological and somatic defects. ATM (A-T, mutated), the gene mutated in A-T, encodes a 370 kDa protein kinase. ATM knockout mouse models (ATM(-/-)) show growth retardation, infertility, neurological dysfunction, defects in T-lymphocytes, and extreme sensitivity to ionizing radiation. We have recently established multiple ATM(+/-) breeding pairs and discovered that all ATM(-/-) offspring exhibit a nonpigmented section of tail, usually at or near the tip. To our knowledge, this is the first time that a phenotype of nonpigmented tail has been reported in ATM(-/-) knockout mice. We believe that the sections of nonpigmented tail of 129S6/SvEvTac-ATM(tm1Awb)/J mice provide a novel phenotypic marker for research using this ATM knockout mouse model. Results from histochemistry and immunoblotting analysis further demonstrate that while melanocyte precursors or melanoblasts are present in the nonpigmented tail tissue of ATM(-/-) mice, they fail to differentiate fully into mature melanocytes. The potential connection between this phenotype and other clinical symptoms caused by ATM deficiency, such as progressive neuronal degeneration, is discussed in this article.
Collapse
Affiliation(s)
- Jody C Hibma
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota 57069, USA
| | | | | | | |
Collapse
|
46
|
Maeda K, Naitou T, Umishio K, Fukuhara T, Motoyama A. A Novel Melanin Inhibitor: Hydroperoxy Traxastane-Type Triterpene from Flowers of Arnica montana. Biol Pharm Bull 2007; 30:873-9. [PMID: 17473428 DOI: 10.1248/bpb.30.873] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We isolated a novel inhibitor of melanin biosynthesis from the flowers of Arnica montana L. (Compositae), and identified it as a traxastane-type triterpene (3beta,16beta-dihydroxy-21alpha-hydroperoxy-20(30)-taraxastene) [1] by means of 1D or 2D-NMR and liquid chromatography/high-resolution mass spectrometry (LC-HR-MS). Compound [1] at the concentration of 0.53 muM completely inhibited melanin accumulation in cultured B16 melanoma cells. It is one of the most potent among known plant inhibitors of melanin biosynthesis in cultured cells, being 50 times more potent than 4-methoxyphenol, which is used as an anti-pigmentation agent. Its mechanism of action is considered to involve inhibition of transcriptional factor MITF-M (melanocyte-type isoform of microphthalmia-associated transcription factor), which would lead to a decrease of tyrosinase and related genes. We confirmed that compound [1] decreased the protein levels of tyrosinase and its related proteins in B16 melanoma cells. Further study revealed that a similar hydroperoxy triterpene also suppressed the melanin pigment accumulation of B16 melanoma cells. These results indicate that the hydroperoxy group may play an important role in the suppression of the melanin accumulation by compound [1].
Collapse
Affiliation(s)
- Kazuhisa Maeda
- Life Science Research Center, Shiseido Co Ltd, Yokohama, Japan.
| | | | | | | | | |
Collapse
|
47
|
Vetrini F, Tammaro R, Bondanza S, Surace EM, Auricchio A, De Luca M, Ballabio A, Marigo V. Aberrant splicing in the ocular albinism type 1 gene (OA1/GPR143) is corrected in vitro by morpholino antisense oligonucleotides. Hum Mutat 2006; 27:420-6. [PMID: 16550551 DOI: 10.1002/humu.20303] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
An intronic point mutation was identified in the ocular albinism type 1 (OA1) gene (HUGO symbol, GPR143) in a family with the X-linked form of ocular albinism. Interestingly, the mutation creates a new acceptor splice site in intron 7 of the OA1 gene. In addition to low levels of normally spliced mRNA product of the OA1 gene, the patient samples contained also an aberrantly spliced mRNA with a 165 bp fragment of intron 7 (from position +750 to +914) inserted between exons 7 and 8. The abnormal transcript contained a premature stop codon and was unstable, as revealed by Northern blot analysis. We defined that mutation NC_000023.8:g.25288G>A generated a consensus binding motif for the splicing factor enhancer ASF/SF2, which most likely favored transcription of the aberrant mRNA. Furthermore, it activated a cryptic donor-splice site causing the inclusion between exons 7 and 8 of the 165 bp intronic fragment. Thus, the aberrant splicing is most likely explained by the generation of a de novo splicing enhancer motif. Finally, to rescue OA1 expression in the patient's melanocytes, we designed an antisense morpholino modified oligonucleotide complementary to the mutant sequence. The morpholino oligonucleotide (MO) was able to rescue OA1 expression and restore the OA1 protein level in the patient's melanocytes through skipping of the aberrant inclusion. The use of MO demonstrated that the lack of OA1 was caused by the generation of a new splice site. Furthermore, this technique will lead to new approaches to correct splice site mutations that cause human diseases.
Collapse
|
48
|
Ando H, Wen ZM, Kim HY, Valencia J, Costin GE, Watabe H, Yasumoto KI, Niki Y, Kondoh H, Ichihashi M, Hearing V. Intracellular composition of fatty acid affects the processing and function of tyrosinase through the ubiquitin-proteasome pathway. Biochem J 2006; 394:43-50. [PMID: 16232122 PMCID: PMC1386001 DOI: 10.1042/bj20051419] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Proteasomes are multicatalytic proteinase complexes within cells that selectively degrade ubiquitinated proteins. We have recently demonstrated that fatty acids, major components of cell membranes, are able to regulate the proteasomal degradation of tyrosinase, a critical enzyme required for melanin biosynthesis, in contrasting manners by relative increases or decreases in the ubiquitinated tyrosinase. In the present study, we show that altering the intracellular composition of fatty acids affects the post-Golgi degradation of tyrosinase. Incubation with linoleic acid (C18:2) dramatically changed the fatty acid composition of cultured B16 melanoma cells, i.e. the remarkable increase in polyunsaturated fatty acids such as linoleic acid and arachidonic acid (C20:4) was compensated by the decrease in monounsaturated fatty acids such as oleic acid (C18:1) and palmitoleic acid (C16:1), with little effect on the proportion of saturated to unsaturated fatty acid. When the composition of intracellular fatty acids was altered, tyrosinase was rapidly processed to the Golgi apparatus from the ER (endoplasmic reticulum) and the degradation of tyrosinase was increased after its maturation in the Golgi. Retention of tyrosinase in the ER was observed when cells were treated with linoleic acid in the presence of proteasome inhibitors, explaining why melanin synthesis was decreased in cells treated with linoleic acid and a proteasome inhibitor despite the abrogation of tyrosinase degradation. These results suggest that the intracellular composition of fatty acid affects the processing and function of tyrosinase in connection with the ubiquitin-proteasome pathway and suggest that this might be a common physiological approach to regulate protein degradation.
Collapse
Affiliation(s)
- Hideya Ando
- *Pigment Cell Biology Section, Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health (NIH), Building 37, Room 2132, MSC 4256, Bethesda, MD 20892, U.S.A
| | - Zhi-Ming Wen
- †Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, NIH, Rockville, MD 20852, U.S.A
| | - Hee-Yong Kim
- †Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, NIH, Rockville, MD 20852, U.S.A
| | - Julio C. Valencia
- *Pigment Cell Biology Section, Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health (NIH), Building 37, Room 2132, MSC 4256, Bethesda, MD 20892, U.S.A
| | - Gertrude-E. Costin
- *Pigment Cell Biology Section, Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health (NIH), Building 37, Room 2132, MSC 4256, Bethesda, MD 20892, U.S.A
| | - Hidenori Watabe
- *Pigment Cell Biology Section, Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health (NIH), Building 37, Room 2132, MSC 4256, Bethesda, MD 20892, U.S.A
| | - Ken-ichi Yasumoto
- *Pigment Cell Biology Section, Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health (NIH), Building 37, Room 2132, MSC 4256, Bethesda, MD 20892, U.S.A
| | | | | | | | - Vincent J. Hearing
- *Pigment Cell Biology Section, Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health (NIH), Building 37, Room 2132, MSC 4256, Bethesda, MD 20892, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
49
|
Ni-Komatsu L, Leung JK, Williams D, Min J, Khersonsky SM, Chang YT, Orlow SJ. Triazine-based tyrosinase inhibitors identified by chemical genetic screening. ACTA ACUST UNITED AC 2006; 18:447-53. [PMID: 16280010 DOI: 10.1111/j.1600-0749.2005.00273.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
As most of the available depigmenting agents exhibit only modest activity and some exhibit toxicities that lead to adverse side effects after long-term usage, there remains a need for novel depigmenting agents. Chemical genetic screening was performed on cultured melanocytes to identify novel depigmenting compounds. By screening a tagged-triazine library, we identified four compounds, TGH11, TGD10, TGD39 and TGJ29, as potent pigmentation inhibitors with IC50 values in the range of 10 microM. These newly identified depigmenting compounds were found to function as reversible inhibitors of tyrosinase, the key enzyme involved in melanin synthesis. Tyrosinase was further confirmed as the cellular target of these compounds by affinity chromatography. Kinetic data suggest that all four compounds act as competitive inhibitors of tyrosinase, most likely competing with L-3,4-dihydroxyphenylalanine (L-DOPA) for binding to the DOPA-binding site of the enzyme. No effect on levels of tyrosinase protein, processing or trafficking was observed upon treatment of melanocytes with these compounds. Cytotoxicity was not observed with these compounds at concentrations up to 20 muM. Our data suggest that TGH11, TGD10, TGD39 and TGJ29 are novel potent tyrosinase inhibitors with potential beneficial effects in the treatment of cutaneous hyperpigmentation.
Collapse
Affiliation(s)
- Li Ni-Komatsu
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Ni-Komatsu L, Orlow SJ. Heterologous expression of tyrosinase recapitulates the misprocessing and mistrafficking in oculocutaneous albinism type 2: effects of altering intracellular pH and pink-eyed dilution gene expression. Exp Eye Res 2005; 82:519-28. [PMID: 16199032 DOI: 10.1016/j.exer.2005.08.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Revised: 08/09/2005] [Accepted: 08/11/2005] [Indexed: 11/17/2022]
Abstract
The processing and trafficking of tyrosinase, a melanosomal protein essential for pigmentation, was investigated in a human epithelial 293 cell line that stably expresses the protein. The effects of the pink-eyed dilution (p) gene product, in which mutations result in oculocutaneous albinism type 2 (OCA2), on the processing and trafficking of tyrosinase in this cell line were studied. The majority of tyrosinase was retained in the endoplasmic reticulum-Golgi intermediate compartment and the early Golgi compartment in the 293 cells expressing the protein. Coexpression of p could partially correct the mistrafficking of tyrosinase in 293 cells. Tyrosinase was targeted to the late endosomal and lysosomal compartments after treatment of the cells with compounds that correct the tyrosinase mistrafficking in albino melanocytes, most likely through altering intracellular pH, while the substrate tyrosine had no effect on the processing of tyrosinase. Remarkably, this heterologous expression system recapitulates the defective processing and mistrafficking of tyrosinase observed in OCA2 albino melanocytes and certain amelanotic melanoma cells. Coexpression of other melanosomal proteins in this heterologous system may further aid our understanding of the details of normal and pathologic processing of melanosomal proteins.
Collapse
Affiliation(s)
- Li Ni-Komatsu
- The Ronald O. Perelman Department of Dermatology and Cell Biology, New York University School of Medicine, Dermatology Room H-100, NYU School of Medicine, 560 First Avenue, New York, NY 10016, USA
| | | |
Collapse
|