1
|
Th17 cell master transcription factor RORC2 regulates HIV-1 gene expression and viral outgrowth. Proc Natl Acad Sci U S A 2021; 118:2105927118. [PMID: 34819367 PMCID: PMC8640723 DOI: 10.1073/pnas.2105927118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2021] [Indexed: 11/21/2022] Open
Abstract
HIV-1 infects CD4 T cells, and, among these, T helper 17 (Th17) cells are known to be particularly permissive for virus replication. The infection of Th17 cells is critical for AIDS pathogenesis and viral persistence. It is, however, not clear why these cells are highly permissive to HIV-1. We found that Th17 cell permissiveness depends on the expression of the hormone receptor RORC2, which is the master transcriptional regulator of Th17 cell differentiation. We identify RORC2 as a cell-specific host-dependency factor that can be targeted by small molecules. Our results suggest that RORC2 may be a cell-specific target to mitigate the loss of Th17 cells as a consequence of their preferential HIV-1 infection. Among CD4+ T cells, T helper 17 (Th17) cells are particularly susceptible to HIV-1 infection and are depleted from mucosal sites, which causes damage to the gut barrier, resulting in a microbial translocation-induced systemic inflammation, a hallmark of disease progression. Furthermore, a proportion of latently infected Th17 cells persist long term in the gastrointestinal lymphatic tract where a low-level HIV-1 transcription is observed. This residual viremia contributes to chronic immune activation. Thus, Th17 cells are key players in HIV pathogenesis and viral persistence. It is, however, unclear why these cells are highly susceptible to HIV-1 infection. Th17 cell differentiation depends on the expression of the master transcriptional regulator RORC2, a retinoic acid-related nuclear hormone receptor that regulates specific transcriptional programs by binding to promoter/enhancer DNA. Here, we report that RORC2 is a key host cofactor for HIV replication in Th17 cells. We found that specific inhibitors that bind to the RORC2 ligand-binding domain reduced HIV replication in CD4+ T cells. The depletion of RORC2 inhibited HIV-1 infection, whereas its overexpression enhanced it. RORC2 was also found to promote HIV-1 gene expression by binding to the nuclear receptor responsive element in the HIV-1 long terminal repeats (LTR). In treated HIV-1 patients, RORC2+ CD4 T cells contained more proviral DNA than RORC2− cells. Pharmacological inhibition of RORC2 potently reduced HIV-1 outgrowth in CD4+ T cells from antiretroviral-treated patients. Altogether, these results provide an explanation as to why Th17 cells are highly susceptible to HIV-1 infection and suggest that RORC2 may be a cell-specific target for HIV-1 therapy.
Collapse
|
2
|
Planas D, Fert A, Zhang Y, Goulet JP, Richard J, Finzi A, Ruiz MJ, Marchand LR, Chatterjee D, Chen H, Wiche Salinas TR, Gosselin A, Cohen EA, Routy JP, Chomont N, Ancuta P. Pharmacological Inhibition of PPARy Boosts HIV Reactivation and Th17 Effector Functions, While Preventing Progeny Virion Release and de novo Infection. Pathog Immun 2020; 5:177-239. [PMID: 33089034 PMCID: PMC7556414 DOI: 10.20411/pai.v5i1.348] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/04/2020] [Indexed: 01/02/2023] Open
Abstract
The frequency and functions of Th17-polarized
CCR6+RORyt+CD4+ T cells are rapidly
compromised upon HIV infection and are not restored with long-term viral
suppressive antiretroviral therapy (ART). In line with this, Th17 cells
represent selective HIV-1 infection targets mainly at mucosal sites, with
long-lived Th17 subsets carrying replication-competent HIV-DNA during ART.
Therefore, novel Th17-specific therapeutic interventions are needed as a
supplement of ART to reach the goal of HIV remission/cure. Th17 cells express
high levels of peroxisome proliferator-activated receptor gamma
(PPARy), which acts as a transcriptional repressor of the HIV provirus and the
rorc gene, which encodes for the Th17-specific master
regulator RORyt. Thus, we hypothesized that the pharmacological inhibition of
PPARy will facilitate HIV reservoir reactivation while enhancing Th17 effector
functions. Consistent with this prediction, the PPARy antagonist T0070907
significantly increased HIV transcription (cell-associated HIV-RNA) and
RORyt-mediated Th17 effector functions (IL-17A). Unexpectedly, the PPARy
antagonism limited HIV outgrowth from cells of ART-treated people living with
HIV (PLWH), as well as HIV replication in vitro.
Mechanistically, PPARy inhibition in CCR6+CD4+ T cells
induced the upregulation of transcripts linked to Th17-polarisation (RORyt,
STAT3, BCL6 IL-17A/F, IL-21) and HIV transcription (NCOA1-3, CDK9, HTATIP2).
Interestingly, several transcripts involved in HIV-restriction were upregulated
(Caveolin-1, TRIM22, TRIM5α, BST2, miR-29), whereas HIV permissiveness
transcripts were downregulated (CCR5, furin), consistent with the decrease in
HIV outgrowth/replication. Finally, PPARy inhibition increased intracellular
HIV-p24 expression and prevented BST-2 downregulation on infected T cells,
suggesting that progeny virion release is restricted by BST-2-dependent
mechanisms. These results provide a strong rationale for considering PPARy
antagonism as a novel strategy for HIV-reservoir purging and restoring
Th17-mediated mucosal immunity in ART-treated PLWH.
Collapse
Affiliation(s)
- Delphine Planas
- Département de microbiologie, infectiologie et immunologie; Faculté de médecine; Université de Montréal; Montréal, Québec, Canada.,Centre de recherche du CHUM; Montréal, Québec, Canada
| | - Augustine Fert
- Département de microbiologie, infectiologie et immunologie; Faculté de médecine; Université de Montréal; Montréal, Québec, Canada.,Centre de recherche du CHUM; Montréal, Québec, Canada
| | - Yuwei Zhang
- Département de microbiologie, infectiologie et immunologie; Faculté de médecine; Université de Montréal; Montréal, Québec, Canada.,Centre de recherche du CHUM; Montréal, Québec, Canada
| | | | - Jonathan Richard
- Département de microbiologie, infectiologie et immunologie; Faculté de médecine; Université de Montréal; Montréal, Québec, Canada.,Centre de recherche du CHUM; Montréal, Québec, Canada
| | - Andrés Finzi
- Département de microbiologie, infectiologie et immunologie; Faculté de médecine; Université de Montréal; Montréal, Québec, Canada.,Centre de recherche du CHUM; Montréal, Québec, Canada
| | - Maria Julia Ruiz
- Département de microbiologie, infectiologie et immunologie; Faculté de médecine; Université de Montréal; Montréal, Québec, Canada.,Centre de recherche du CHUM; Montréal, Québec, Canada
| | | | - Debashree Chatterjee
- Département de microbiologie, infectiologie et immunologie; Faculté de médecine; Université de Montréal; Montréal, Québec, Canada.,Centre de recherche du CHUM; Montréal, Québec, Canada
| | - Huicheng Chen
- Département de microbiologie, infectiologie et immunologie; Faculté de médecine; Université de Montréal; Montréal, Québec, Canada.,Centre de recherche du CHUM; Montréal, Québec, Canada
| | - Tomas Raul Wiche Salinas
- Département de microbiologie, infectiologie et immunologie; Faculté de médecine; Université de Montréal; Montréal, Québec, Canada.,Centre de recherche du CHUM; Montréal, Québec, Canada
| | - Annie Gosselin
- Département de microbiologie, infectiologie et immunologie; Faculté de médecine; Université de Montréal; Montréal, Québec, Canada.,Centre de recherche du CHUM; Montréal, Québec, Canada
| | - Eric A Cohen
- Institut de recherches cliniques de Montréal; Montréal, Québec, Canada
| | - Jean-Pierre Routy
- Chronic Viral Illness Service; Division of Hematology; McGill University Health Centre-Glen site; Montreal, Québec, Canada
| | - Nicolas Chomont
- Département de microbiologie, infectiologie et immunologie; Faculté de médecine; Université de Montréal; Montréal, Québec, Canada.,Centre de recherche du CHUM; Montréal, Québec, Canada
| | - Petronela Ancuta
- Département de microbiologie, infectiologie et immunologie; Faculté de médecine; Université de Montréal; Montréal, Québec, Canada.,Centre de recherche du CHUM; Montréal, Québec, Canada
| |
Collapse
|
3
|
HIV-1 Promoter Single Nucleotide Polymorphisms Are Associated with Clinical Disease Severity. PLoS One 2016; 11:e0150835. [PMID: 27100290 PMCID: PMC4839606 DOI: 10.1371/journal.pone.0150835] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 02/20/2016] [Indexed: 12/13/2022] Open
Abstract
The large majority of human immunodeficiency virus type 1 (HIV-1) markers of disease progression/severity previously identified have been associated with alterations in host genetic and immune responses, with few studies focused on viral genetic markers correlate with changes in disease severity. This study presents a cross-sectional/longitudinal study of HIV-1 single nucleotide polymorphisms (SNPs) contained within the viral promoter or long terminal repeat (LTR) in patients within the Drexel Medicine CNS AIDS Research and Eradication Study (CARES) Cohort. HIV-1 LTR SNPs were found to associate with the classical clinical disease parameters CD4+ T-cell count and log viral load. They were found in both defined and undefined transcription factor binding sites of the LTR. A novel SNP identified at position 108 in a known COUP (chicken ovalbumin upstream promoter)/AP1 transcription factor binding site was significantly correlated with binding phenotypes that are potentially the underlying cause of the associated clinical outcome (increase in viral load and decrease in CD4+ T-cell count).
Collapse
|
4
|
Raiten DJ, Sakr Ashour FA, Ross AC, Meydani SN, Dawson HD, Stephensen CB, Brabin BJ, Suchdev PS, van Ommen B. Inflammation and Nutritional Science for Programs/Policies and Interpretation of Research Evidence (INSPIRE). J Nutr 2015; 145:1039S-1108S. [PMID: 25833893 PMCID: PMC4448820 DOI: 10.3945/jn.114.194571] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/08/2014] [Accepted: 10/29/2014] [Indexed: 02/06/2023] Open
Abstract
An increasing recognition has emerged of the complexities of the global health agenda—specifically, the collision of infections and noncommunicable diseases and the dual burden of over- and undernutrition. Of particular practical concern are both 1) the need for a better understanding of the bidirectional relations between nutritional status and the development and function of the immune and inflammatory response and 2) the specific impact of the inflammatory response on the selection, use, and interpretation of nutrient biomarkers. The goal of the Inflammation and Nutritional Science for Programs/Policies and Interpretation of Research Evidence (INSPIRE) is to provide guidance for those users represented by the global food and nutrition enterprise. These include researchers (bench and clinical), clinicians providing care/treatment, those developing and evaluating programs/interventions at scale, and those responsible for generating evidence-based policy. The INSPIRE process included convening 5 thematic working groups (WGs) charged with developing summary reports around the following issues: 1) basic overview of the interactions between nutrition, immune function, and the inflammatory response; 2) examination of the evidence regarding the impact of nutrition on immune function and inflammation; 3) evaluation of the impact of inflammation and clinical conditions (acute and chronic) on nutrition; 4) examination of existing and potential new approaches to account for the impact of inflammation on biomarker interpretation and use; and 5) the presentation of new approaches to the study of these relations. Each WG was tasked with synthesizing a summary of the evidence for each of these topics and delineating the remaining gaps in our knowledge. This review consists of a summary of the INSPIRE workshop and the WG deliberations.
Collapse
Affiliation(s)
- Daniel J Raiten
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD;
| | - Fayrouz A Sakr Ashour
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD
| | - A Catharine Ross
- Departments of Nutritional Sciences and Veterinary and Biomedical Science and Center for Molecular Immunology and Infectious Disease, Pennsylvania State University, University Park, PA
| | - Simin N Meydani
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Harry D Dawson
- USDA-Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, Beltsville, MD
| | - Charles B Stephensen
- Agricultural Research Service, Western Human Nutrition Research Center, USDA, Davis, CA
| | - Bernard J Brabin
- Child and Reproductive Health Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom; Global Child Health Group, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Parminder S Suchdev
- Department of Pediatrics and Global Health, Emory University, Atlanta, GA; and
| | | |
Collapse
|
5
|
Bernier A, Cleret-Buhot A, Zhang Y, Goulet JP, Monteiro P, Gosselin A, DaFonseca S, Wacleche VS, Jenabian MA, Routy JP, Tremblay C, Ancuta P. Transcriptional profiling reveals molecular signatures associated with HIV permissiveness in Th1Th17 cells and identifies peroxisome proliferator-activated receptor gamma as an intrinsic negative regulator of viral replication. Retrovirology 2013; 10:160. [PMID: 24359430 PMCID: PMC3898812 DOI: 10.1186/1742-4690-10-160] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/10/2013] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND We previously demonstrated that primary Th1Th17 cells are highly permissive to HIV-1, whereas Th1 cells are relatively resistant. Molecular mechanisms underlying these differences remain unknown. RESULTS Exposure to replication competent and single-round VSV-G pseudotyped HIV strains provide evidence that superior HIV replication in Th1Th17 vs. Th1 cells was regulated by mechanisms located at entry and post-entry levels. Genome-wide transcriptional profiling identified transcripts upregulated (n = 264) and downregulated (n = 235) in Th1Th17 vs. Th1 cells (p-value < 0.05; fold change cut-off 1.3). Gene Set Enrichment Analysis revealed pathways enriched in Th1Th17 (nuclear receptors, trafficking, p38/MAPK, NF-κB, p53/Ras, IL-23) vs. Th1 cells (proteasome, interferon α/β). Differentially expressed genes were classified into biological categories using Gene Ontology. Th1Th17 cells expressed typical Th17 markers (IL-17A/F, IL-22, CCL20, RORC, IL-26, IL-23R, CCR6) and transcripts functionally linked to regulating cell trafficking (CEACAM1, MCAM), activation (CD28, CD40LG, TNFSF13B, TNFSF25, PTPN13, MAP3K4, LTB, CTSH), transcription (PPARγ, RUNX1, ATF5, ARNTL), apoptosis (FASLG), and HIV infection (CXCR6, FURIN). Differential expression of CXCR6, PPARγ, ARNTL, PTPN13, MAP3K4, CTSH, SERPINB6, PTK2, and ISG20 was validated by RT-PCR, flow cytometry and/or confocal microscopy. The nuclear receptor PPARγ was preferentially expressed by Th1Th17 cells. PPARγ RNA interference significantly increased HIV replication at levels post-entry and prior HIV-DNA integration. Finally, the activation of PPARγ pathway via the agonist Rosiglitazone induced the nuclear translocation of PPARγ and a robust inhibition of viral replication. CONCLUSIONS Thus, transcriptional profiling in Th1Th17 vs. Th1 cells demonstrated that HIV permissiveness is associated with a superior state of cellular activation and limited antiviral properties and identified PPARγ as an intrinsic negative regulator of viral replication. Therefore, triggering PPARγ pathway via non-toxic agonists may contribute to limiting covert HIV replication and disease progression during antiretroviral treatment.
Collapse
Affiliation(s)
- Annie Bernier
- Department of Microbiology, Infectiology, and Immunology, Université de Montréal, Faculty of Medicine, Montreal Quebec, Canada
- CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger, room R09.416, Montréal, Quebec H2X 0A9, Canada
| | - Aurélie Cleret-Buhot
- Department of Microbiology, Infectiology, and Immunology, Université de Montréal, Faculty of Medicine, Montreal Quebec, Canada
- CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger, room R09.416, Montréal, Quebec H2X 0A9, Canada
| | - Yuwei Zhang
- Department of Microbiology, Infectiology, and Immunology, Université de Montréal, Faculty of Medicine, Montreal Quebec, Canada
- CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger, room R09.416, Montréal, Quebec H2X 0A9, Canada
| | - Jean-Philippe Goulet
- Faculty of Medicine, CARTaGENE, Université de Montréal, Montreal Quebec, Canada
- Department of Pediatrics, Faculty of Medicine, Ste Justine Hospital Research Center, Université de Montréal, Montreal Quebec, Canada
| | - Patricia Monteiro
- Department of Microbiology, Infectiology, and Immunology, Université de Montréal, Faculty of Medicine, Montreal Quebec, Canada
- CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger, room R09.416, Montréal, Quebec H2X 0A9, Canada
| | - Annie Gosselin
- CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger, room R09.416, Montréal, Quebec H2X 0A9, Canada
| | - Sandrina DaFonseca
- Department of Microbiology, Infectiology, and Immunology, Université de Montréal, Faculty of Medicine, Montreal Quebec, Canada
- CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger, room R09.416, Montréal, Quebec H2X 0A9, Canada
| | - Vanessa Sue Wacleche
- Department of Microbiology, Infectiology, and Immunology, Université de Montréal, Faculty of Medicine, Montreal Quebec, Canada
- CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger, room R09.416, Montréal, Quebec H2X 0A9, Canada
| | - Mohammad-Ali Jenabian
- Chronic Viral Illness Service, McGill University Health Centre, Montreal Quebec, Canada
- Research Institute, McGill University Health Centre, Montreal Quebec, Canada
| | - Jean-Pierre Routy
- Chronic Viral Illness Service, McGill University Health Centre, Montreal Quebec, Canada
- Research Institute, McGill University Health Centre, Montreal Quebec, Canada
- Division of Hematology, McGill University Health Centre, Montreal Quebec, Canada
| | - Cécile Tremblay
- Department of Microbiology, Infectiology, and Immunology, Université de Montréal, Faculty of Medicine, Montreal Quebec, Canada
- CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger, room R09.416, Montréal, Quebec H2X 0A9, Canada
| | - Petronela Ancuta
- Department of Microbiology, Infectiology, and Immunology, Université de Montréal, Faculty of Medicine, Montreal Quebec, Canada
- CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger, room R09.416, Montréal, Quebec H2X 0A9, Canada
| |
Collapse
|
6
|
Ichim CV, Dervović DD, Zúñiga-Pflücker JC, Wells RA. The orphan nuclear receptor Ear-2 (Nr2f6) is a novel negative regulator of T cell development. Exp Hematol 2013; 42:46-58. [PMID: 24096122 DOI: 10.1016/j.exphem.2013.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/05/2013] [Accepted: 09/23/2013] [Indexed: 01/08/2023]
Abstract
We describe a novel role for the orphan nuclear receptor Ear-2 in regulating T cell development. Retrovirus-mediated overexpression of Ear-2 (EAR-2++) in a bone marrow (BM) transplantation assay resulted in limited T cell development and a greater than tenfold decrease in thymus size and cellularity relative to controls. Ear-2-transduced murine BM hematopoietic stem cells (HSCs) in OP9-DL1 cultures showed a proliferation deficit during days 1-5 after induction of differentiation, which corresponded to increased expression of the cell cycle regulators p21 (cdkn1a) and p27 (cdkn1b), as well as increased expression of Hes1, Notch3, Egr1, and Scl (Tal1) and decreased expression of Gli1, Gfi-1, HoxA9, PU.1, Nrarp, and Tcf1. In addition, there was a block in differentiation at the DN4 to double-positive (DP) transition accompanied by an increase in apoptosis, similar to the deficit seen in the RORγt null mouse. Gene expression profiling revealed that, like the RORγt-deficient mouse, EAR-2++ DP cells had decreased expression of BclXL and increased expression of the proapoptosis gene Bad. In addition, EAR-2++ DP cells had decreased expression of Bcl11b, PU.1, and HoxA9, and increased expression of Id2. Based on these findings, we conclude that EAR-2++ cells were able to migrate to, but not fully repopulate, the thymus because of a cell-intrinsic defect in the proliferation of DN1 cells followed by a block in differentiation from the DN4 to DP stage of T cell development. We conclude that Ear-2 is a novel negative regulator of T-cell development and that downregulation of Ear-2 is indispensable for the proliferation of DN1 cells and the survival of DN4-DP cells.
Collapse
Affiliation(s)
- Christine V Ichim
- Department of Medical Biophysics, University of Toronto, Toronto, Canada; Biological Sciences, Sunnybrook Research Institute, Toronto, Canada; Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Džana D Dervović
- Biological Sciences, Sunnybrook Research Institute, Toronto, Canada; Department of Immunology, University of Toronto, Toronto, Canada
| | - Juan Carlos Zúñiga-Pflücker
- Biological Sciences, Sunnybrook Research Institute, Toronto, Canada; Department of Immunology, University of Toronto, Toronto, Canada
| | - Richard A Wells
- Department of Medical Biophysics, University of Toronto, Toronto, Canada; Biological Sciences, Sunnybrook Research Institute, Toronto, Canada; Department of Medicine, University of Toronto, Toronto, Canada; Department of Medical Oncology, Myelodysplastic Syndromes Program, Toronto Sunnybrook Regional Cancer Centre, Toronto, Canada.
| |
Collapse
|
7
|
Miller MS, Mymryk JS. An unhealthy relationship: viral manipulation of the nuclear receptor superfamily. Future Microbiol 2011; 6:999-1019. [PMID: 21958141 DOI: 10.2217/fmb.11.80] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The nuclear receptor (NR) superfamily is a diverse group of over 50 proteins whose function is to regulate the transcription of a vast array of cellular genes. These proteins are able to tune transcription over an extremely dynamic range due to the fact that they may act as either transcriptional activators or repressors depending on promoter context and ligand status. Due to these unique properties, diverse families of viruses have evolved strategies to exploit NRs in order to regulate expression of their own genes and to optimize the cellular milieu to facilitate the viral lifecycle. While the specific NRs targeted by these viruses vary, the strategies used to target them are common. This is accomplished at the cis-level by incorporation of nuclear receptor response elements into the viral genome and at the trans-level by viral proteins that target NRs directly or indirectly to modulate their function. The specific NR(s) targeted by a particular virus are likely to be reflective of the tissue tropism of the virus in question. Thus, the essential role played by NRs in the replication cycles of such diverse viruses underscores the importance of understanding their functions in the context of specific infections. This knowledge will allow appropriate considerations to be made when treating infected individuals with hormone-associated diseases and will potentially assist in the rational design of novel antiviral therapeutics.
Collapse
Affiliation(s)
- Matthew S Miller
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | | |
Collapse
|
8
|
Identification of a role for the nuclear receptor EAR-2 in the maintenance of clonogenic status within the leukemia cell hierarchy. Leukemia 2011; 25:1687-96. [PMID: 21637284 PMCID: PMC4977185 DOI: 10.1038/leu.2011.137] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Identification of genes that regulate clonogenicity of acute myelogenous leukemia (AML) cells is hindered by the difficulty of isolating pure populations of cells with defined proliferative abilities. By analyzing the growth of clonal siblings in low passage cultures of the cell line OCI/AML4 we resolved this heterogeneous population into strata of distinct clonogenic potential, permitting analysis of the transcriptional signature of single cells with defined proliferative abilities. By microarray analysis we showed that the expression of the orphan nuclear receptor EAR-2 (NR2F6) is greater in leukemia cells with extensive proliferative capacity than in those that have lost proliferative ability. EAR-2 is expressed highly in long-term hematopoietic stem cells, relative to short-term hematopoietic stem and progenitor cells, and is downregulated in AML cells after induction of differentiation. Exogenous expression of EAR-2 increased the growth of U937 cells and prevented the proliferative arrest associated with terminal differentiation, and blocked differentiation of U937 and 32Dcl3 cells. Conversely, silencing of EAR-2 by short-hairpin RNA initiated terminal differentiation of these cell lines. These data identify EAR-2 as an important factor in the regulation of clonogenicity and differentiation, and establish that analysis of clonal siblings allows the elucidation of differences in gene expression within the AML hierarchy.
Collapse
|
9
|
Mukherjee S, Mani S. Orphan nuclear receptors as targets for drug development. Pharm Res 2010; 27:1439-68. [PMID: 20372994 PMCID: PMC3518931 DOI: 10.1007/s11095-010-0117-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 03/04/2010] [Indexed: 12/31/2022]
Abstract
Orphan nuclear receptors regulate diverse biological processes. These important molecules are ligand-activated transcription factors that act as natural sensors for a wide range of steroid hormones and xenobiotic ligands. Because of their importance in regulating various novel signaling pathways, recent research has focused on identifying xenobiotics targeting these receptors for the treatment of multiple human diseases. In this review, we will highlight these receptors in several physiologic and pathophysiologic actions and demonstrate how their functions can be exploited for the successful development of newer drugs.
Collapse
Affiliation(s)
- Subhajit Mukherjee
- Departments of Medicine, Genetics and Cancer Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Chanin 302-D1, Bronx, New York 10461, USA
| | - Sridhar Mani
- Departments of Medicine, Genetics and Cancer Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Chanin 302-D1, Bronx, New York 10461, USA
| |
Collapse
|
10
|
PPAR and liver injury in HIV-infected patients. PPAR Res 2009; 2009:906167. [PMID: 19390649 PMCID: PMC2669659 DOI: 10.1155/2009/906167] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 01/31/2009] [Indexed: 01/14/2023] Open
Abstract
Due to the introduction of active HIV antiretroviral treatment, AIDS-related morbidity and mortality have markedly decreased and liver diseases are now a major cause of morbidity and mortality in HIV-infected patients. Chronic liver injury encompasses a wide spectrum of diseases due to HCV and HBV coinfection, drug-related toxicity, and NASH. HIV-infected patients who are receiving treatment present with a high prevalence of metabolic complications and lipodystrophy. Those patients are at high risk of nonalcoholic fatty liver disease, the liver feature of the metabolic syndrome. This review will focus on (1) the liver injuries in HIV-infected patients; (2) both the current experimental and human data regarding PPAR and liver diseases; (3) the interactions between HIV and PPAR; (4) the potential use of PPAR agonists for the management of HIV-related liver diseases.
Collapse
|
11
|
HIV-1 infection and the PPARγ-dependent control of adipose tissue physiology. PPAR Res 2008; 2009:607902. [PMID: 19081837 PMCID: PMC2593159 DOI: 10.1155/2009/607902] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 07/23/2008] [Indexed: 01/03/2023] Open
Abstract
PPARγ is a ligand-dependent master transcription factor controlling adipocyte differentiation as well as multiple biological processes taking place in other cells present in adipose tissue depots such as macrophages. Recent research indicates that HIV-1 infection-related events may alter adipose tissue biology through several mechanisms involving PPARγ, ranging from direct effects of HIV-1-encoded proteins on adipocytes to the promotion of a proinflammatory environment that interferes with PPARγ actions. This effect of HIV-1 on adipose tissue cells can occur even in the absence of direct infection of adipocytes, as soluble HIV-1-encoded proteins such as Vpr may enter cells and inhibit PPARγ action. Moreover, repression of PPARγ actions may relieve inhibitory pathways of HIV-1 gene transcription, thus enhancing HIV-1 effects in infected cells. HIV-1 infection-mediated interference of PPARγ-dependent pathways in adipocytes and other cells inside adipose depots such as macrophages is likely to create an altered local environment that, after antiretroviral treatment, leads to lipodystrophy in HIV-1-infected and HAART-treated patients.
Collapse
|
12
|
PGJ2 antagonizes NF-kappaB-induced HIV-1 LTR activation in colonic epithelial cells. Virology 2008; 380:1-11. [PMID: 18755491 DOI: 10.1016/j.virol.2008.07.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 04/23/2008] [Accepted: 07/23/2008] [Indexed: 12/12/2022]
Abstract
Intestinal epithelial cells play an important role in early stages of HIV-1 infection and long-term persistence of the virus. Here we determined the mechanism that regulates HIV-1 activation via prostaglandin J(2) (PGJ(2)) in Caco-2 cells. We showed that treatment of Caco-2 cells with PGJ(2) decreased the infectivity of a luciferase reporter virus, pHXB-luc, as well as HIV production following infection of cells with a X4-tropic virus by antagonizing sodium butyrate, a cellular activator known to induce HIV-1 transcription. Transfection of intestinal epithelial cells such as Caco-2, HT-29 and SW620 cells with full-length HIV-1 LTR (pLTR-luc) revealed that PGJ(2) reduced HIV-1 LTR-mediated reporter gene activity. The involvement of NF-kappaB in the PGJ(2)-dependent down-regulation of HIV-1 transcription was further assessed using the kappaB-regulated luciferase-encoding vectors. In Caco-2 cells, PGJ(2) decreased IKK activity, resulting in reduced NF-kappaB translocation to the nucleus. Since sodium butyrate has been associated with a chronic stress response in AIDS patients, our results suggest that addition of PGJ(2) in the environment of infected intestinal epithelial cells could reduce HIV-1 transcription.
Collapse
|
13
|
Gray SG, Iglesias AH, Lizcano F, Villanueva R, Camelo S, Jingu H, Teh BT, Koibuchi N, Chin WW, Kokkotou E, Dangond F. Functional Characterization of JMJD2A, a Histone Deacetylase- and Retinoblastoma-binding Protein. J Biol Chem 2005; 280:28507-18. [PMID: 15927959 DOI: 10.1074/jbc.m413687200] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To effectively direct targeted repression, the class I histone deacetylases (HDACs) associate with many important regulatory proteins. In this paper we describe the molecular characterization of a member of the Jumonji domain 2 (JMJD2) family of proteins, and demonstrate its binding to both class I HDACs and the retinoblastoma protein (pRb). JMJD2 proteins are characterized by the presence of two leukemia-associated protein/plant homeodomain (LAP/PHD) zinc fingers, one JmjN, one JmjC (containing an internal retinoblastoma-binding protein 2 (RBBP2)-like sequence), and two Tudor domains. The first member of this group, JMJD2A, is widely expressed in human tissues and cell lines, and high endogenous expression of JMJD2A mRNA was found in several cell types, including human T-cell lymphotropic virus 1 (HTLV-1)-infected cell lines. JMJD2A and JMJD2B exhibit cell type-specific responses to the HDAC inhibitor trichostatin A. We show that the JMJD2A protein associates in vivo with pRb and class I HDACs, and mediates repression of E2F-regulated promoters. In HTLV-1 virus-infected cells, we find that JMJD2A binds to the viral Tax protein. Antibodies to JMJD2A recognize the native protein but also a half-sized protein fragment, the latter up-regulated in THP-1 cells during the G(2)/M phase of the cell cycle. The ability of JMJD2A to associate with pRb and HDACs and potentiate pRb-mediated repression of E2F-regulated promoters implies an important role for this protein in cell proliferation and oncogenesis.
Collapse
Affiliation(s)
- Steven G Gray
- Laboratory of Transcriptional and Immune Regulation, Brigham and Women's Hospital Laboratories, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hanley TM, Kiefer HLB, Schnitzler AC, Marcello JE, Viglianti GA. Retinoid-dependent restriction of human immunodeficiency virus type 1 replication in monocytes/macrophages. J Virol 2004; 78:2819-30. [PMID: 14990701 PMCID: PMC353720 DOI: 10.1128/jvi.78.6.2819-2830.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vitamin A deficiency has been correlated with increased severity of human immunodeficiency virus type 1 (HIV-1)-associated disease. Moreover, vitamin A supplementation can reduce AIDS-associated morbidity and mortality. Our group and others have shown that retinoids, the bioactive metabolites of vitamin A, repress HIV-1 replication in monocytic cell lines and primary macrophages by blocking long-terminal-repeat (LTR)-directed transcription. Based on these studies, we hypothesize that retinoids are natural repressors of HIV-1 in vivo. We show here that all-trans-retinoic acid (RA)-mediated repression of HIV-1 activation requires pretreatment for at least 12 h and is blocked by the protein synthesis inhibitors cycloheximide and puromycin. Studies of the kinetics of RA-mediated repression in U1 cells and primary monocyte-derived macrophages (MDMs) reveal that the repressive effects of RA on HIV-1 expression are long-lasting but reversible. We demonstrate that HIV-1 expression is activated when U1 cells or MDMs are cultured in retinoid-free synthetic medium and show that physiological concentrations of RA repress this activation. In addition, the synthetic pan-retinoic acid receptor antagonist BMS-204 493 activates HIV-1 replication in U1 cells in a dose-dependent manner, suggesting that RA-induced transactivation of cellular gene expression is required for HIV-1 repression. Together, these data support the hypothesis that retinoids present in tissue culture media in vitro and serum in vivo maintain HIV-1 in a transcriptionally repressed state in monocytes/macrophages.
Collapse
Affiliation(s)
- Timothy M Hanley
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
15
|
Rohr O, Marban C, Aunis D, Schaeffer E. Regulation of HIV-1 gene transcription: from lymphocytes to microglial cells. J Leukoc Biol 2003; 74:736-49. [PMID: 12960235 DOI: 10.1189/jlb.0403180] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transcription is a crucial step for human immunodeficiency virus type 1 (HIV-1) expression in all infected host cells, from T lymphocytes, thymocytes, monocytes, macrophages, and dendritic cells in the immune system up to microglial cells in the central nervous system. To maximize its replication, HIV-1 adapts transcription of its integrated proviral genome by ideally exploiting the specific cellular environment and by forcing cellular stimulatory events and impairing transcriptional inhibition. Multiple cell type-specific interplays between cellular and viral factors perform the challenge for the virus to leave latency and actively replicate in a great diversity of cells, despite the variability of its long terminal repeat region in different HIV strains. Knowledge about the molecular mechanisms underlying transcriptional regulatory events helps in the search for therapeutic agents that target the step of transcription in anti-HIV strategies.
Collapse
Affiliation(s)
- Olivier Rohr
- Institut National de la Santé Recherche Médicale Unité, Strasbourg, France
| | | | | | | |
Collapse
|
16
|
Quivy V, Van Lint C. Diversity of acetylation targets and roles in transcriptional regulation: the human immunodeficiency virus type 1 promoter as a model system. Biochem Pharmacol 2002; 64:925-34. [PMID: 12213588 DOI: 10.1016/s0006-2952(02)01152-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Persuasive evidence has accumulated that reversible acetylation of proteins is key post-translational modification regulating transcription in eukaryotes. Deacetylase inhibitors (such as trichostatin A) modulate the expression of approximately 2% of all cellular genes. We and others have demonstrated a marked transcriptional activation of the human immunodeficiency virus type 1 (HIV-1) promoter in response to deacetylase inhibitors. Deacetylation events seem to be an important mechanism of HIV-1 transcriptional repression during latency, whereas acetylation events play critical functional roles in HIV-1 reactivation from latency. These deacetylation/acetylation events are implicated in chromatin remodeling of the viral promoter region, as well as in modulating the functional properties of cellular and viral transcription factors binding to this promoter region. Thereby, the HIV-1 promoter constitutes a unique regulatory model system to study the complex relationship between acetylation processes and transcriptional activity.
Collapse
Affiliation(s)
- Vincent Quivy
- Institut de Biologie et de Médecine Moléculaires (IBMM), Service de Chimie Biologique, Laboratoire de Virologie Moléculaire, Université Libre de Bruxelles, rue des Profs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | | |
Collapse
|
17
|
Yamaguchi K, Honda M, Ikigai H, Hara Y, Shimamura T. Inhibitory effects of (-)-epigallocatechin gallate on the life cycle of human immunodeficiency virus type 1 (HIV-1). Antiviral Res 2002; 53:19-34. [PMID: 11684313 DOI: 10.1016/s0166-3542(01)00189-9] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Epigallocatechin gallate (EGCg), the major tea catechin, is known as a potent anti-bacterial agent. In addition, anti-tumor promoting, anti-inflammatory, anti-oxidative and antiviral activities have been reported. In the present study, we investigated possible anti-human immunodeficiency virus type-1 (HIV-1) activity of EGCg and its mechanisms of action in the viral life cycle. EGCg impinges on each step of the HIV life cycle. Thus, destruction of the viral particles, viral attachment to cells, post-adsorption entry into cells, reverse transcription (RT), viral production from chronically-infected cells, and the level of expression of viral mRNA, were analyzed using T-lymphoid (H9) and monocytoid (THP-1) cell systems, and antiviral protease activity was measured using a cell-free assay. Inhibitory effects of EGCg on specific binding of the virions to the cellular surfaces and changes in the steady state viral regulation (mRNA expression) due to EGCg were not observed. However, EGCg had a destructive effect on the viral particles, and post-adsorption entry and RT in acutely infected monocytoid cells were significantly inhibited at concentrations of EGCg greater than 1 microM, and protease kinetics were suppressed at a concentration higher than 10 microM in the cell-free study. Viral production by THP-1 cells chronically-infected with HIV-1 was also inhibited in a dose-dependent manner and the inhibitory effect was enhanced by liposome modification of EGCg. As expected, increased viral mRNA production was observed in lipopolysaccharide (LPS)-activated chronically HIV-1-infected cells. This production was significantly inhibited by EGCg treatment of THP-1 cells. In contrast, production of HIV-1 viral mRNA in unstimulated or LPS-stimulated T-lymphoid cells (H9) was not inhibited by EGCg. Anti-HIV viral activity of EGCg may thus result from an interaction with several steps in the HIV-1 life cycle.
Collapse
Affiliation(s)
- Koushi Yamaguchi
- Department of Microbiology and Immunology, Showa University School of Medicine, 1-5-8, Hatanodai, Shinagawa-ku, 142-8555, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
18
|
Pereira LA, Churchill MJ, Elefanty AG, Gouskos T, Lambert PF, Ramsay RG, Deacon NJ. Characterization of interactions between transcription factors and a regulatory region spanning nt -320 to -281 of the HIV-1 LTR in T-lymphoid and non-T-lymphoid cells. J Biomed Sci 2002; 9:68-81. [PMID: 11810027 DOI: 10.1007/bf02256580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
HIV-1 gene expression is regulated by the interplay of transcription factors with multiple binding motifs present within the U3, R and U5 regions of the long terminal repeat (LTR). Here we report novel DNA binding complexes (termed 9a, 9b and 9c) between nuclear proteins from T-lymphoid and non-T-lymphoid cells and a region of the U3 LTR between nucleotides (nts) -320 to -281 in the HIV strain HXB2. Complex 9b bound a motif predicted to bind E-box or c-Myb proteins and a partially overlapping dyad symmetrical motif, and included basic helix-loop-helix proteins (E12, E47 or ITF-1) but surprisingly not c-Myb. Complex 9c, which bound to a pair of GATA sites, included GATA-3 and GATA-4 in Jurkat and MT-2 cells, respectively. We also demonstrate that the c-Myb/E-box and GATA sites form a bipartite motif required for the formation of complex 9a. Transient transfection experiments with T cells revealed that in the context of a minichromosome assembled full-length LTR, mutation of region -320 to -281 increased basal and PMA-stimulated LTR activity. These findings suggest that this region is an important component of the HIV-1 LTR required for response to different cellular transcription factors.
Collapse
Affiliation(s)
- Lloyd A Pereira
- Laboratory for Physiological Chemistry and Centre for Biomedical Genetics, University Medical Centre, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
19
|
Recio JA, Martínez de la Mata J, Martín-Nieto J, Aranda A. Retinoic acid stimulates HIV-1 transcription in human neuroblastoma SH-SY5Y cells. FEBS Lett 2000; 469:118-22. [PMID: 10708768 DOI: 10.1016/s0014-5793(00)01249-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Although the brain is an important target for the human immunodeficiency virus type 1 (HIV) and viral infection causes neuronal degeneration and dementia, the mechanisms responsible for HIV transcription in neuronal cells are largely unknown. We show here that retinoic acid (RA) stimulates HIV transcription in human neuronal SH-SY5Y cells. The steroid receptor coactivator 1 (SRC-1) enhances the transcriptional response to RA, and the viral protein Tat cooperates with RA and SRC-1 to induce a strong transactivation. These results suggest that retinoid receptors could play an important role as activators of viral gene expression in the human brain.
Collapse
Affiliation(s)
- J A Recio
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, 28029, Madrid, Spain
| | | | | | | |
Collapse
|
20
|
Geiss GK, Bumgarner RE, An MC, Agy MB, van 't Wout AB, Hammersmark E, Carter VS, Upchurch D, Mullins JI, Katze MG. Large-scale monitoring of host cell gene expression during HIV-1 infection using cDNA microarrays. Virology 2000; 266:8-16. [PMID: 10612655 DOI: 10.1006/viro.1999.0044] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection alters the expression of host cell genes at both the mRNA and protein levels. To obtain a more comprehensive view of the global effects of HIV infection of CD4-positive T-cells at the mRNA level, we performed cDNA microarray analysis on approximately 1500 cellular cDNAs at 2 and 3 days postinfection (p.i.) with HIV-1. Host cell gene expression changed little at 2 days p.i., but at 3 days p.i. 20 cellular genes were identified as differentially expressed. Genes involved in T-cell signaling, subcellular trafficking, and transcriptional regulation, as well as several uncharacterized genes, were among those whose mRNAs were differentially regulated. These results support the hypothesis that HIV-1 infection alters expression of a broad array of cellular genes and provides a framework for future functional studies on the differentially expressed mRNA products.
Collapse
Affiliation(s)
- G K Geiss
- Department of Microbiology, School of Medicine, Seattle, Washington, 98195, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Robinson CE, Wu X, Nawaz Z, Onãte SA, Gimble JM. A corepressor and chicken ovalbumin upstream promoter transcriptional factor proteins modulate peroxisome proliferator-activated receptor-gamma2/retinoid X receptor alpha-activated transcription from the murine lipoprotein lipase promoter. Endocrinology 1999; 140:1586-93. [PMID: 10098492 DOI: 10.1210/endo.140.4.6653] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Complex physiological stimuli differentially regulate the tissue-specific transcription of the lipoprotein lipase (LPL) gene. A conserved DNA recognition element (-171 to -149 bp) within the promoter functions as a transcriptional enhancer when bound by the peroxisome proliferator-activated receptor-gamma2 (PPARgamma2)/retinoid X receptor alpha (RXRalpha) heterodimer, but serves as a transcriptional silencer in the presence of unidentified double and single stranded DNA-binding proteins. To address this apparent paradox, the current study examined the effect of two classes of candidate comodulatory proteins, COUP-TF (chicken ovalbumin upstream promoter transcriptional factor) and the corepressor SMRT (silencing mediator of retinoic acid receptor and thyroid receptor). The expression of COUP-TF was detected by Western and Northern blots in a preadipocyte 3T3-L1 cell model during periods corresponding to increased LPL transcription. Cotransfection of COUP-TF expression constructs in the renal epithelial 293T cell line significantly increased transcription from the LPL promoter in synergy with PPARgamma2/RXRalpha heterodimers. The COUP-TFII (ARP-1) protein specifically bound the LPL PPAR recognition element inelectromobility shift assays and interacted directly with the ligand-binding domain of PPARgamma in pull-down experiments. In contrast, cotransfection of SMRT repressed PPARgamma2/ RXRalpha-mediated LPL transcription in the absence or presence of COUP-TFII (ARP-1). The interaction between PPARgamma2 and SMRT localized to the receptor-interactive domain 2 (amino acids 1260-1495) of the SMRT protein based on cotransfection and pull-down assays. These in vitro data indicate that COUP-TF proteins and SMRT modulate PPARgamma-mediated LPL transcription in the 293T cell line.
Collapse
Affiliation(s)
- C E Robinson
- Zoology Department, University of Oklahoma, Norman 73019, USA
| | | | | | | | | |
Collapse
|
22
|
Lavrentiadou SN, Hadzopoulou-Cladaras M, Kardassis D, Zannis VI. Binding specificity and modulation of the human ApoCIII promoter activity by heterodimers of ligand-dependent nuclear receptors. Biochemistry 1999; 38:964-75. [PMID: 9893992 DOI: 10.1021/bi981068i] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human apolipoprotein CIII (apoCIII) is a major determinant of plasma triglyceride metabolism. The regulatory elements that control both hepatic and intestinal transcription of the human apoCIII gene are localized between nucleotides -792 and -25 of the apoCIII promoter. Elements important for apoCIII promoter activity are three hormone response elements (HREs) and three SP1-binding sites. Orphan members of the nuclear hormone receptor superfamily can bind the HREs and strongly enhance or repress apoCIII promoter activity. In the present study we have investigated the ability of ligand-dependent nuclear hormone receptors to bind and modulate the human apoCIII promoter activity. Experiments using DNA binding and competition assays showed that the proximal element B (-87/-72) binds strongly, in addition to HNF-4, ARP-1, EAR-2, and EAR-3, heterodimers of RXRalpha with RARalpha, and less efficiently, homodimers of RARalpha and heterodimers of RXRalpha with T3Rbeta or PPARalpha. Element G (-669/-648), which was shown previously to bind ARP-1 and EAR-3 but not HNF-4, binds strongly heterodimers of RXRalpha with either RARalpha or T3Rbeta. Finally element I4 (-732/-712), which was shown to bind HNF-4, also binds strongly ARP-1 and EAR-3, as well as RXRalpha/RARalpha heterodimers and less efficiently, RXRalpha/T3Rbeta heterodimers. Methylation interference experiments have identified the protein-DNA interactions between different nuclear receptors and the respective HREs on the apoCIII promoter. RXRalpha/RARalpha heterodimers and HNF-4 homodimers bind to DR-1 motifs on elements B and I4, respectively. RXRalpha/T3Rbeta heterodimers and ARP-1 bind to DR-5 and DR-0 motifs respectively on element G. Cotransfection experiments in HepG2 cells showed that RXRalpha or a combination of RXRalpha and RARalpha increased the apoCIII promoter activity approximately 2-fold in the presence of the ligands 9-cis or all-trans RA. In contrast, a combination of RXRalpha and T3Rbeta transactivated the apoCIII promoter 1.5-fold in the presence of 9-cis RA but it repressed the apoCIII promoter activity in the presence of T3. Mutations in the HREs of elements B, G, or I4 or in the SP1-binding site of element H, which abolished the binding of nuclear hormone receptors or SP1 to their cognate site, reduced the promoter strength and exhibited different responses to the ligand-dependent nuclear receptors. The findings suggest that modulation of the apoCIII promoter activity by orphan and ligand-dependent nuclear receptors involves complex interactions among nuclear receptors, SP1 and possibly other factors bound to the enhancer and the proximal promoter region.
Collapse
Affiliation(s)
- S N Lavrentiadou
- Department of Medicine, Cardiovascular Institute, Boston University Medical Center, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
23
|
Green VJ, Kokkotou E, Ladias JA. Critical structural elements and multitarget protein interactions of the transcriptional activator AF-1 of hepatocyte nuclear factor 4. J Biol Chem 1998; 273:29950-7. [PMID: 9792714 DOI: 10.1074/jbc.273.45.29950] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The nuclear receptor hepatocyte nuclear factor 4 (HNF-4) is an important regulator of several genes involved in diverse metabolic and developmental pathways. Mutations in the HNF-4A gene are responsible for the maturity-onset diabetes of the young type 1. Recently, we showed that the 24 N-terminal residues of HNF-4 function as an acidic transcriptional activator, termed AF-1 (Hadzopoulou-Cladaras, M., Kistanova, E., Evagelopoulou, C., Zeng, S. , Cladaras C., and Ladias, J. A. A. (1997) J. Biol. Chem. 272, 539-550). To identify the critical residues for this activator, we performed an extensive genetic analysis using site-directed mutagenesis. We showed that the aromatic and bulky hydrophobic residues Tyr6, Tyr14, Phe19, Lys10, and Lys17 are essential for AF-1 function. To a lesser degree, five acidic residues are also important for optimal activity. Positional changes of Tyr6 and Tyr14 reduced AF-1 activity, underscoring the importance of primary structure for this activator. Our analysis also indicated that AF-1 is bipartite, consisting of two modules that synergize to activate transcription. More important, AF-1 shares common structural motifs and molecular targets with the activators of the tumor suppressor protein p53 and NF-kappaB-p65, suggesting similar mechanisms of action. Remarkably, AF-1 interacted specifically with multiple transcriptional targets, including the TATA-binding protein; the TATA-binding protein-associated factors TAFII31 and TAFII80; transcription factor IIB; transcription factor IIH-p62; and the coactivators cAMP-responsive element-binding protein-binding protein, ADA2, and PC4. The interaction of AF-1 with proteins that regulate distinct steps of transcription may provide a mechanism for synergistic activation of gene expression by AF-1.
Collapse
Affiliation(s)
- V J Green
- Gene Regulation Laboratory and Macromolecular Crystallography Unit, Division of Experimental Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
24
|
Mammen M, Choi SK, Whitesides GM. Polyvalente Wechselwirkungen in biologischen Systemen: Auswirkungen auf das Design und die Verwendung multivalenter Liganden und Inhibitoren. Angew Chem Int Ed Engl 1998. [DOI: 10.1002/(sici)1521-3757(19981016)110:20<2908::aid-ange2908>3.0.co;2-2] [Citation(s) in RCA: 522] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Nakshatri H, Bhat-Nakshatri P. Multiple parameters determine the specificity of transcriptional response by nuclear receptors HNF-4, ARP-1, PPAR, RAR and RXR through common response elements. Nucleic Acids Res 1998; 26:2491-9. [PMID: 9580705 PMCID: PMC147560 DOI: 10.1093/nar/26.10.2491] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A number of nuclear receptors, including retinoic acid receptors (RARs), retinoid-X receptors (RXRs), hepatocyte nuclear factor 4 (HNF-4), chicken ovalbumin upstream promoter transcription factor I (COUP-TFI), apolipoprotein regulatory protein 1 (ARP-1) and peroxisome proliferator-activated receptor (PPAR), bind to response elements comprised of two core motifs, 5'-RG(G/T)TCA, or a closely related sequence separated by 1 nt (DR1 elements). The potential role of the precise sequence of the core motif as well as the spacer nucleotide in determining specificity and promiscuity of receptor-response element interactions was investigated. We show here that nucleotides at base positions 1, 2 and 4 of the core motif as well as the spacer nucleotide determine the binding preference of HNF-4 and ARP-1 homodimers and RAR:RXR and PPAR:RXR heterodimers. In transfection experiments transcriptional activation by HNF-4 and PPAR:RXR and repression by ARP-1 correlated with the relative in vitro binding affinity provided the element was located within the proper promoter context. Furthermore, promoter context also determined whether an element that binds to HNF-4 and PPAR:RXR with equal affinity functions as an HNF-4 response element or PPAR response element. Thus, apart from the element-specific differences in affinity for the receptors, additional promoter-specific transcription factors that interact with HNF-4 and PPAR:RXR determine the specificity of transcriptional response through DR1-type elements.
Collapse
Affiliation(s)
- H Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | |
Collapse
|
26
|
Chu K, Boutin JM, Breton C, Zingg HH. Nuclear orphan receptors COUP-TFII and Ear-2: presence in oxytocin-producing uterine cells and functional interaction with the oxytocin gene promoter. Mol Cell Endocrinol 1998; 137:145-54. [PMID: 9605516 DOI: 10.1016/s0303-7207(97)00241-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have previously demonstrated that the oxytocin (OT) gene is expressed in the rat uterine epithelium and that its expression is upregulated in vivo and in vitro by estrogen. This hormonal regulation is mediated by a hormone response element (HRE) located in the OT gene promoter. Here we show that the same OT-HRE is also capable of interacting with two novel members of the orphan nuclear receptor family, rat COUP-TFII and Ear-2, and that this interaction antagonizes the estrogenic induction of the OT promoter. By Northern blot analysis and immunocytochemistry, using specific cDNA probes and antibodies, respectively, we demonstrate furthermore that both orphan receptors are expressed in uterine epithelial cells. Therefore, the present findings indicate that uterine OT gene expression is under stimulatory as well as inhibitory influences which are both mediated by the same HRE. More detailed analysis of the sequences necessary for estrogen receptor action and for orphan receptor action, using site-directed mutagenesis, revealed that the specific recognition sequences are overlapping but distinct: whereas the (imperfect) palindromic structure of the HRE constitutes the estrogen response element (ERE), orphan receptor action relies on an underlying direct TGACC repeat which forms part of the OT-HRE structure and overlaps with the estrogen response element.
Collapse
Affiliation(s)
- K Chu
- Laboratory of Molecular Endocrinology, Royal Victoria Hospital, McGill University, Montreal, QC, Canada
| | | | | | | |
Collapse
|
27
|
Abstract
The brain is an important target for the human immunodeficiency virus type 1 (HIV-1). We show here that nerve growth factor (NGF), which induces neuronal differentiation and survival, causes a strong activation of the HIV-1 long terminal repeat by a Ras/Raf-dependent mechanism in PC12 cells. Mutation of the kappaB sequences contained whithin the long terminal repeat reduces NGF-mediated stimulation. NGF does not activate NF-kappaB in PC12 cells, but rather increases binding of other nuclear factors to the kappaB sequences. Furthermore, a nuclear receptor response element contributes to the stimulatory effect of NGF. The retinoids receptors have been identified as components of the nuclear binding to the nuclear receptor response element in NGF-treated PC12 cells. These results reveal the importance of neurotrophins and nuclear receptor signaling pathways as specific activators of HIV-1 gene expression in neural cells.
Collapse
Affiliation(s)
- J A Recio
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas, Arturo Duperier 4, 28029 Madrid, Spain
| | | |
Collapse
|
28
|
Lee YF, Pan HJ, Burbach JP, Morkin E, Chang C. Identification of direct repeat 4 as a positive regulatory element for the human TR4 orphan receptor. A modulator for the thyroid hormone target genes. J Biol Chem 1997; 272:12215-20. [PMID: 9115296 DOI: 10.1074/jbc.272.18.12215] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
While the TR4 orphan receptor (TR4) is able to repress the expression of its target genes via its interaction with the direct repeat 1-hormone response element (DR1-HRE) and DR2-HRE, we now report that TR4 can also induce the transcriptional activity of the reporter gene containing a DR4-HRE via chloramphenicol acetyltransferase assay. Electrophoretic mobility shift assay and Scatchard analysis reveal a strong binding affinity (dissociation constant = 2 nM) between TR4 and DR4-HRE. The induction mediated by TR4 was detected not only in the synthetic DR4-HRE but also in some genes, such as rat alpha-myosin heavy-chain and S14 genes, containing the DR4 or DR4-like motif, which have been suggested to be the response elements for a thyroid hormone receptor. Our data also demonstrate this TR4-mediated gene induction is TR4 dose- and DR4 sequence-dependent. Together, our data suggest that DR4-HRE can be a positive regulatory element for TR4, which may be able to induce the transcriptional activity of the genes containing such positive HREs.
Collapse
MESH Headings
- Animals
- Base Sequence
- Binding Sites
- DNA-Binding Proteins/metabolism
- Genes, Reporter
- HIV Long Terminal Repeat
- Humans
- Kinetics
- Mutagenesis, Site-Directed
- Myosin Heavy Chains/biosynthesis
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/metabolism
- Protein Biosynthesis
- Rats
- Receptors, Steroid/biosynthesis
- Receptors, Steroid/metabolism
- Receptors, Thyroid Hormone/biosynthesis
- Receptors, Thyroid Hormone/metabolism
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/metabolism
- Regulatory Sequences, Nucleic Acid
- Repetitive Sequences, Nucleic Acid
- Transcription, Genetic
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Y F Lee
- Comprehensive Cancer Center, University of Wisconsin, Madison, Wisconsin 53792, USA
| | | | | | | | | |
Collapse
|
29
|
Affiliation(s)
- P Ghazal
- Departments of Immunology and Neuropharmacology, Division of Virology R307B, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
30
|
Hadzopoulou-Cladaras M, Kistanova E, Evagelopoulou C, Zeng S, Cladaras C, Ladias JA. Functional domains of the nuclear receptor hepatocyte nuclear factor 4. J Biol Chem 1997; 272:539-50. [PMID: 8995295 DOI: 10.1074/jbc.272.1.539] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The hepatocyte nuclear factor 4 (HNF-4) is a member of the nuclear receptor superfamily and participates in the regulation of several genes involved in diverse metabolic pathways and developmental processes. To date, the functional domains of this nuclear receptor have not been identified, and it is not known whether its transcriptional activity is regulated by a ligand or other signals. In this report, we show that HNF-4 contains two transactivation domains, designated AF-1 and AF-2, which activate transcription in a cell type-independent manner. AF-1 consists of the extreme N-terminal 24 amino acids and functions as a constitutive autonomous activator of transcription. This short transactivator belongs to the class of acidic activators, and it is predicted to adopt an amphipathic alpha-helical structure. In contrast, the AF-2 transactivator is complex, spanning the 128-366 region of HNF-4, and it cannot be further dissected without impairing activity. The 360-366 region of HNF-4 contains a motif that is highly conserved among transcriptionally active nuclear receptors, and it is essential for AF-2 activity, but it is not necessary for dimerization and DNA binding of HNF-4. Thus, HNF-4 deletion mutants lacking the 361-465 region bind efficiently to DNA as homo- and heterodimers and behave as dominant negative mutants. Remarkably, the full transactivation potential of AF-2 is inhibited by the region spanning residues 371-465 (region F). The inhibitory effect of region F on the HNF-4 AF-2 activity is a unique feature among members of the nuclear receptor superfamily, and we propose that it defines a distinct regulatory mechanism of transcriptional activation by HNF-4.
Collapse
Affiliation(s)
- M Hadzopoulou-Cladaras
- Department of Medicine and Biochemistry, Cardiovascular Institute, Boston University School of Medicine, Massachusetts 02118-2394, USA
| | | | | | | | | | | |
Collapse
|
31
|
Sawaya BE, Rohr O, Aunis D, Schaeffer E. Chicken ovalbumin upstream promoter transcription factor, a transcriptional activator of HIV-1 gene expression in human brain cells. J Biol Chem 1996; 271:23572-6. [PMID: 8798567 DOI: 10.1074/jbc.271.38.23572] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Viral infection of the central nervous system by the human immunodeficiency virus type 1 leads to a wide range of neuropathological disorders. However, the molecular mechanisms governing transcription of the human immunodeficiency virus type 1 genome in brain remain unclear. We have recently established that in brain cells, proteins belonging to the steroid/thyroid/retinoic acid receptor family bind to the -352 to -320 region of the long terminal repeat (LTR). Here, by supershift experiments, we have identified chicken ovalbumin upstream promoter transcription factor (COUP-TF), an orphan member of this nuclear receptor family, as one of the major proteins interacting with this LTR site. Cotransfection studies revealed that COUP-TF is able to dramatically activate LTR-directed gene transcription in human oligodendroglioma but not in astrocytoma cells. This activation occurs through two mechanisms, depending on the LTR sequence. Moreover, in neuronal cells COUP-TF and dopamine, a catecholamine neurotransmitter, enhance LTR-directed transcription by acting on the proximal LTR region. These results reveal the importance of COUP-TF and the dopamine signaling pathway as activators of human immunodeficiency virus type 1 gene expression in brain.
Collapse
Affiliation(s)
- B E Sawaya
- Unité 338 INSERM, 5, rue Blaise Pascal, 67084 Strasbourg, France
| | | | | | | |
Collapse
|
32
|
Sawaya BE, Rohr O, Aunis D, Schaeffer E. Regulation of human immunodeficiency virus type 1 gene transcription by nuclear receptors in human brain cells. J Biol Chem 1996; 271:22895-900. [PMID: 8798469 DOI: 10.1074/jbc.271.37.22895] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Infection of cells of the central nervous system by the human immunodeficiency virus type-1 (HIV-1) leads to HIV-1-associated neuropathology. Recent studies have demonstrated the importance of long terminal repeat (LTR) binding sites in determining the pathogenicity of HIV. Here we have investigated the presence and the functional role of transcription factors that have the potential to interact, directly or indirectly, with the nuclear receptor-responsive element in the LTR of HIV-1, in different human cell lines of the brain. Cotransfection experiments showed that in oligodendroglioma TC-620 cells, the retinoic acid receptor and the retinoid X receptor activate LTR-driven transcription in the absence of ligand. Addition of all-trans- or 9-cis-retinoic acid reverses this effect. In contrast, in astrocytoma, neuronal, and microglial cells, no significant effect of the retinoid acid pathway was detected. This retinoid response is mediated by distinct molecular interactions in the lymphotropic LAI and the neurotropic JR-CSF HIV-1 strains. Moreover, retinoid receptors were found to antagonize the chicken ovalbumin upstream promoter transcription factor- as well as the c-JUN-mediated LTR transactivation. Our findings demonstrate the importance of the retinoic acid signaling pathway and of cross-coupling interactions in the repression of HIV-1 LTR gene expression.
Collapse
Affiliation(s)
- B E Sawaya
- Unité 338 INSERM, 5, rue Blaise Pascal, 67084 Strasbourg Cedex, France
| | | | | | | |
Collapse
|
33
|
Mallardo M, Dragonetti E, Baldassarre F, Ambrosino C, Scala G, Quinto I. An NF-kappaB site in the 5'-untranslated leader region of the human immunodeficiency virus type 1 enhances the viral expression in response to NF-kappaB-activating stimuli. J Biol Chem 1996; 271:20820-7. [PMID: 8702837 DOI: 10.1074/jbc.271.34.20820] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The 5'-untranslated leader region of human immunodeficiency virus, type 1 (HIV-1), includes a complex array of putative regulatory elements whose role in the viral expression is not completely understood. Here we demonstrate the presence of an NF-kappaB-responsive element in the trans-activation response (TAR) region of HIV-1 that confers the full induction of HIV-1 long terminal repeat (LTR) in response to NF-kappaB-activating stimuli, such as DNA alkylating agents, phorbol 12-myristate 13-acetate, and tumor necrosis factor-alpha. The TAR NF-kappaB site GGGAGCTCTC spans from positions +31 to +40 and cooperates with the NF-kappaB enhancer upstream of the TATA box in the NF-kappaB-mediated induction of HIV-1 LTR. The conclusion stems from the following observations: (i) deletion of the two NF-kappaB sites upstream of the TATA box reduces, but does not abolish, the HIV-1 LTR activation by NF-kappaB inducers; (ii) deletion or base pair substitutions of the TAR NF-kappaB site significantly reduce the HIV-1 LTR activation by NF-kappaB inducers; (iii) deletions of both the NF-kappaB sites upstream of the TATA box and the TAR NF-kappaB site abolish the activation of HIV-1 LTR in response to NF-kappaB inducers. Moreover, the p50 p65 NF-kappaB complex binds to the TAR NF-kappaB sequence and trans-activates the TAR NF-kappaB-directed expression. The identification of an additional NF-kappaB site in the HIV-1 LTR points to the relevance of NF-kappaB factors in the HIV-1 life cycle.
Collapse
Affiliation(s)
- M Mallardo
- Dipartimento di Biochimica e Biotecnologie Mediche, Università degli Studi Federico II di Napoli, 80131 Naples
| | | | | | | | | | | |
Collapse
|
34
|
Schoonjans K, Staels B, Auwerx J. The peroxisome proliferator activated receptors (PPARS) and their effects on lipid metabolism and adipocyte differentiation. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1302:93-109. [PMID: 8695669 DOI: 10.1016/0005-2760(96)00066-5] [Citation(s) in RCA: 732] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The three types of peroxisome proliferator activated receptor (PPAR), alpha, beta (or delta), and gamma, each with a specific tissue distribution, compose a subfamily of the nuclear hormone receptor gene family. Although peroxisome proliferators, including fibrates and fatty acids, activate the transcriptional activity of these receptors, only prostaglandin J2 derivatives have been identified as natural ligands of the PPAR gamma subtype, which also binds thiazolidinedione antidiabetic agents with high affinity. Activated PPARs heterodimerize with RXR and alter the transcription of target genes after binding to specific response elements or PPREs, consisting of a direct repeat of the nuclear receptor hexameric DNA core recognition motif spaced by one nucleotide. The different PPARs can be considered key messengers responsible for the translation of nutritional, pharmacological and metabolic stimuli into changes in the expression of genes, more specifically those genes involved in lipid metabolism. PPAR alpha is involved in stimulating beta-oxidation of fatty acids. In rodents, a PPAR alpha-mediated change in the expression of genes involved in fatty acid metabolism lies at the basis of the phenomenon of peroxisome proliferation, a pleiotropic cellular response, mainly limited to liver and kidney and which can lead to hepatocarcinogenesis. In addition to their role in peroxisome proliferation in rodents, PPAR is also involved in the control of HDL cholesterol levels by fibrates and fatty acids in rodents and humans. This effect is, at least partially, based on a PPAR-mediated transcriptional regulation of the major HDL apolipoproteins, apo A-I and apo A-II. The hypotriglyceridemic action of fibrates and fatty acids also involves PPARs and can be summarized as follows: (1) an increased lipolysis and clearance of remnant particles, due to changes in LPL and apo C-III levels, (2) a stimulation of cellular fatty acid uptake and their conversion to acyl-CoA derivatives by the induction of FAT, FATP and ACS activity, (3) an induction of fatty acid beta-oxidation pathways, (4) a reduction in fatty acid and triglyceride synthesis, and finally (5) a decrease in VLDL production. Hence, both enhanced catabolism of triglyceride-rich particles as well as reduced secretion of VLDL particles are mechanisms that contribute to the hypolipidemic effect of fibrates and FFAs. Whereas for PPAR beta no function so far has been identified, PPAR gamma triggers adipocyte differentiation by inducing the expression of several genes critical for adipogenesis.
Collapse
Affiliation(s)
- K Schoonjans
- L.B.R.E., Unité 325 INSERM, Département d'Athérosclérose, Institut Pasteur, Lille, France
| | | | | |
Collapse
|
35
|
Rahman A, Esmaili A, Saatcioglu F. A unique thyroid hormone response element in the human immunodeficiency virus type 1 long terminal repeat that overlaps the Sp1 binding sites. J Biol Chem 1995; 270:31059-64. [PMID: 8537364 DOI: 10.1074/jbc.270.52.31059] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Long terminal repeat (LTR) of human immunodeficiency virus (HIV) type 1 is activated by thyroid hormone (T3) receptor alpha (T3R alpha) in the absence of ligand. Addition of T3 reverses this effect. This activity is mediated by a high affinity T3 response element (T3RE) within the HIV-1 LTR, termed the HIV-T3RE (bases -74 to -50), which coincides with the Sp1 element as demonstrated by mobility shift, DNaseI footprinting, and methylation interference analyses. HIV-T3RE mediates ligand-independent activation of transcription by T3R alpha when linked to a heterologous promoter. In addition, the viral transactivator Tat synergizes with T3R alpha to activate the HIV-1 LTR in the absence of T3, which is relieved in its presence. These findings have implications for the possible control of HIV-1 LTR activity by T3.
Collapse
Affiliation(s)
- A Rahman
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla 92093-0636, USA
| | | | | |
Collapse
|
36
|
Canonne-Hergaux F, Aunis D, Schaeffer E. Interactions of the transcription factor AP-1 with the long terminal repeat of different human immunodeficiency virus type 1 strains in Jurkat, glial, and neuronal cells. J Virol 1995; 69:6634-42. [PMID: 7474072 PMCID: PMC189572 DOI: 10.1128/jvi.69.11.6634-6642.1995] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection of the neuronal and astroglial cells of the central nervous system has been proposed to contribute to HIV-1-associated dementia. Recently it was shown that differences in the nucleotide sequence of the long terminal repeat (LTR) of different HIV-1 strains govern the tissue-specific pattern of viral expression. The LTR from central nervous system-derived HIV-1 strains JR-FL and JR-CSF directs expression in the neurons of transgenic mice, in contrast with the lymphotropic LAI strain. By in vitro footprinting, gel retardation, and methylation interference experiments, we have studied the interactions of host cell proteins from human neuronal, glial, HeLa, and Jurkat T cells with the LTRs from the neurotropic JR-FL and JR-CSF strains, compared with the LAI strain. Proteins belonging to the nuclear receptor family bind with different affinities to variant -352 to -324 sites. Gel supershift assays with Jun and Fos antibodies showed that the AP-1 transcription factor present in the various cell types was unable to recognize the -352 to -324 and -306 to -285 AP-1 putative binding sites. Interestingly, Jun and Fos components of AP-1 interact with the variant TGGCTCA sequence located in the -247 to -222 region of both neurotropic strains. These interactions were cell type specific, since they were detected only with extracts from glial and HeLa cells and not from neuronal or Jurkat cells. Cotransfection experiments further revealed that the -247 to -222 sequence is able to mediate AP-1-induced transcriptional activation in glial and not neuronal cells.
Collapse
|
37
|
Abstract
Although twelve years have passed since the identification of HIV as the cause of AIDS, we do not yet know how HIV kills its target, the CD4+ T cell, nor how this killing cripples the immune system. Prominent theories include direct killing of infected CD4+ T cells by the action or accumulation of cytopathic viral DNA, transcripts or proteins, or by virus-specific cytotoxic T lymphocytes, and indirect killing of uninfected CD4+ T cells (and other immune cells) by autoimmune mechanisms, cytokines, superantigens, or apoptosis. In the past year, studies have provided tantalizing clues as to why infected cells may not die and how these infected cells kill innocent bystander cells.
Collapse
Affiliation(s)
- T H Finkel
- Department of Pediatrics, National Jewish Center for Immunology and Respiratory Medicine, Denver, Colorado 80206
| | | |
Collapse
|
38
|
Bolander FF. Pathogen -Endocrine System Interactions. Mol Endocrinol 1994. [DOI: 10.1016/b978-0-12-111231-8.50021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|