1
|
Kundu D, Min X, Zhang X, Tian X, Wang S, Kim KM. The Ubiquitination of Arrestin3 within the Nucleus Triggers the Nuclear Export of Mdm2, Which, in Turn, Mediates the Ubiquitination of GRK2 in the Cytosol. Int J Mol Sci 2024; 25:9644. [PMID: 39273591 PMCID: PMC11395016 DOI: 10.3390/ijms25179644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
GRK2 and arrestin3, key players in the functional regulation of G protein-coupled receptors (GPCRs), are ubiquitinated by Mdm2, a nuclear protein. The agonist-induced increase in arrestin3 ubiquitination occurs in the nucleus, underscoring the crucial role of its nuclear translocation in this process. The ubiquitination of arrestin3 occurs in the nucleus, highlighting the pivotal role of its nuclear translocation in this process. In contrast, GRK2 cannot translocate into the nucleus; thus, facilitation of the cytosolic translocation of nuclear Mdm2 is required to ubiquitinate GRK2 in the cytosol. Among the explored cellular components and processes, arrestin, Gβγ, clathrin, and receptor phosphorylation were found to be required for the nuclear import of arrestin3, the ubiquitination of arrestin3 in the nucleus, nuclear export of Mdm2, and the ubiquitination of GRK2 in the cytosol. In conclusion, our findings demonstrate that agonist-induced ubiquitination of arrestin3 in the nucleus is interconnected with cytosolic GRK2 ubiquitination.
Collapse
Affiliation(s)
| | | | | | | | | | - Kyeong-Man Kim
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju 61186, Republic of Korea
| |
Collapse
|
2
|
Kuroyanagi G, Hioki T, Matsushima-Nishiwaki R, Kozawa O, Tokuda H. Gallein increases the fibroblast growth factor 2-elicited osteoprotegerin synthesis in osteoblasts. Biochim Biophys Acta Gen Subj 2024; 1868:130635. [PMID: 38788984 DOI: 10.1016/j.bbagen.2024.130635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/28/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Gallein is known as an inhibitor of Gβγ subunits, but roles of gallein in bone metabolism have not been reported. Fibroblast growth factor 2 (FGF-2) increases angiogenesis and promotes bone regeneration during the early stages of fracture healing. Osteoprotegerin (OPG) secreted by osteoblasts, binds to the receptor activator of nuclear factor-κB (RANK) ligand (RANKL) as a decoy receptor and prevents RANKL from binding to RANK, resulting in the suppression of bone resorption. Our previous report demonstrated that FGF-2 activates the phosphorylation of p38 mitogen-activated protein kinase (MAPK), stress-activated protein kinase/c-Jun N-terminal kinase (JNK), and p44/p42 MAPK in osteoblast-like MC3T3-E1 cells. Additionally, FGF-2-activated phosphorylation of p38 MAPK and JNK but not p44/p42 MAPK is positively involved in OPG synthesis in these cells. This work aimed to investigate the effects of gallein on the FGF-2-elicited OPG synthesis in osteoblast-like MC3T3-E1 cells and the mechanism. Our findings demonstrated that gallein significantly increased the FGF-2-elicited OPG synthesis in MC3T3-E1 cells. By contrast, fluorescein, gallein-like compound that does not bind Gβγ, did not affect the FGF-2-elicited OPG synthesis. Gallein significantly enhanced the FGF-2-induced OPG mRNA expression levels. Gallein did not affect the FGF-2-activated phosphorylation of p38 MAPK and p44/p42 MAPK, but significantly increased the FGF-2-activated phosphorylation of JNK, while fluorescein did not affect JNK phosphorylation. SP600125, a specific JNK inhibitor, strongly inhibited gallein-induced enhancement of FGF-2-induced OPG synthesis and mRNA expression levels. Our results indicated that gallein increases the FGF-2-induced OPG synthesis due to the JNK activation in the osteoblast.
Collapse
Affiliation(s)
- Gen Kuroyanagi
- Department of Orthopaedic Surgery, Nagoya City University, Nagoya 467-8601, Japan; Department of Rehabilitation Medicine, Nagoya City University, Nagoya 467-8601, Japan; Department of Pharmacology, Gifu University, Gifu 501-1194, Japan; Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan.
| | - Tomoyuki Hioki
- Department of Pharmacology, Gifu University, Gifu 501-1194, Japan; Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan; Department of Dermatology, Kizawa Memorial Hospital, Minokamo, Gifu 505-0034, Japan
| | - Rie Matsushima-Nishiwaki
- Department of Pharmacology, Gifu University, Gifu 501-1194, Japan; Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University, Gifu 501-1194, Japan; Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Haruhiko Tokuda
- Department of Pharmacology, Gifu University, Gifu 501-1194, Japan; Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan; Department of Clinical Laboratory, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| |
Collapse
|
3
|
Sokrat B, Nguyen AH, Thomsen ARB, Huang LY, Kobayashi H, Kahsai AW, Kim J, Ho BX, Ma S, Little J, Ehrhart C, Pyne I, Hammond E, Bouvier M. Role of the V2R-βarrestin-Gβγ complex in promoting G protein translocation to endosomes. Commun Biol 2024; 7:826. [PMID: 38972875 PMCID: PMC11228049 DOI: 10.1038/s42003-024-06512-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 06/27/2024] [Indexed: 07/09/2024] Open
Abstract
Classically, G protein-coupled receptors (GPCRs) promote signaling at the plasma membrane through activation of heterotrimeric Gαβγ proteins, followed by the recruitment of GPCR kinases and βarrestin (βarr) to initiate receptor desensitization and internalization. However, studies demonstrated that some GPCRs continue to signal from internalized compartments, with distinct cellular responses. Both βarr and Gβγ contribute to such non-canonical endosomal G protein signaling, but their specific roles and contributions remain poorly understood. Here, we demonstrate that the vasopressin V2 receptor (V2R)-βarr complex scaffolds Gβγ at the plasma membrane through a direct interaction with βarr, enabling its transport to endosomes. Gβγ subsequently potentiates Gαs endosomal translocation, presumably to regenerate an endosomal pool of heterotrimeric Gs. This work shines light on the mechanism underlying G protein subunits translocation from the plasma membrane to the endosomes and provides a basis for understanding the role of βarr in mediating sustained G protein signaling.
Collapse
Affiliation(s)
- Badr Sokrat
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, H3T 1J4, Canada
- Department of Molecular Pathobiology, New York University School of Dentistry, New York, NY, 10010, USA
| | - Anthony H Nguyen
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Alex R B Thomsen
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Molecular Pathobiology, New York University School of Dentistry, New York, NY, 10010, USA
| | - Li-Yin Huang
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Hiroyuki Kobayashi
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, H3T 1J4, Canada
| | - Alem W Kahsai
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Jihee Kim
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Bing X Ho
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Symon Ma
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - John Little
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Catherine Ehrhart
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ian Pyne
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Emmery Hammond
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada.
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, H3T 1J4, Canada.
| |
Collapse
|
4
|
Schafer CT, Chen Q, Tesmer JJG, Handel TM. Atypical Chemokine Receptor 3 "Senses" CXC Chemokine Receptor 4 Activation Through GPCR Kinase Phosphorylation. Mol Pharmacol 2023; 104:174-186. [PMID: 37474305 PMCID: PMC11033958 DOI: 10.1124/molpharm.123.000710] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/22/2023] [Accepted: 06/30/2023] [Indexed: 07/22/2023] Open
Abstract
Atypical chemokine receptor 3 (ACKR3) is an arrestin-biased receptor that regulates extracellular chemokine levels through scavenging. The scavenging process restricts the availability of the chemokine agonist CXCL12 for the G protein-coupled receptor (GPCR) CXCR4 and requires phosphorylation of the ACKR3 C-terminus by GPCR kinases (GRKs). ACKR3 is phosphorylated by GRK2 and GRK5, but the mechanisms by which these kinases regulate the receptor are unresolved. Here we determined that GRK5 phosphorylation of ACKR3 results in more efficient chemokine scavenging and β-arrestin recruitment than phosphorylation by GRK2 in HEK293 cells. However, co-activation of CXCR4-enhanced ACKR3 phosphorylation by GRK2 through the liberation of Gβγ, an accessory protein required for efficient GRK2 activity. The results suggest that ACKR3 "senses" CXCR4 activation through a GRK2-dependent crosstalk mechanism, which enables CXCR4 to influence the efficiency of CXCL12 scavenging and β-arrestin recruitment to ACKR3. Surprisingly, we also found that despite the requirement for phosphorylation and the fact that most ligands promote β-arrestin recruitment, β-arrestins are dispensable for ACKR3 internalization and scavenging, suggesting a yet-to-be-determined function for these adapter proteins. Since ACKR3 is also a receptor for CXCL11 and opioid peptides, these data suggest that such crosstalk may also be operative in cells with CXCR3 and opioid receptor co-expression. Additionally, kinase-mediated receptor cross-regulation may be relevant to other atypical and G protein-coupled receptors that share common ligands. SIGNIFICANCE STATEMENT: The atypical receptor ACKR3 indirectly regulates CXCR4-mediated cell migration by scavenging their shared agonist CXCL12. Here, we show that scavenging and β-arrestin recruitment by ACKR3 are primarily dependent on phosphorylation by GRK5. However, we also show that CXCR4 co-activation enhances the contribution of GRK2 by liberating Gβγ. This phosphorylation crosstalk may represent a common feedback mechanism between atypical and G protein-coupled receptors with shared ligands for regulating the efficiency of scavenging or other atypical receptor functions.
Collapse
Affiliation(s)
- Christopher T Schafer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (C.T.S., T.M.H.) and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (Q.C., J.J.G.T.)
| | - Qiuyan Chen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (C.T.S., T.M.H.) and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (Q.C., J.J.G.T.)
| | - John J G Tesmer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (C.T.S., T.M.H.) and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (Q.C., J.J.G.T.)
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (C.T.S., T.M.H.) and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (Q.C., J.J.G.T.)
| |
Collapse
|
5
|
Sharma VK, Loh YP. The discovery, structure, and function of 5-HTR1E serotonin receptor. Cell Commun Signal 2023; 21:235. [PMID: 37723479 PMCID: PMC10506339 DOI: 10.1186/s12964-023-01195-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/11/2023] [Indexed: 09/20/2023] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a unique neurotransmitter which can regulate various biological processes by activating thirteen different receptors. These serotonin receptors are divided into seven different classes based on their structure and functions. Since these receptors co-express in various tissue and cell types and share the same ligand (5-HT), it has been a challenge for the researchers to define specific pathway and separate physiological role for each of these serotonin receptors. Though the evidence of operational diversity of these receptors is continuously emerging, much work remains to be done. 5-HTR1E is a member of 5-HT1 receptor family which belongs to G-protein coupled receptors (GPCRs). Even after three decades since its discovery, 5-HTR1E remains the least explored serotonin receptor. Very high similarity with another family member (5-HTR1F) and its non-existence in mice or rats makes 5-HTR1E a difficult target to study. Despite these challenges, recent findings on the role of 5-HTR1E in neuroprotection and diseases such as cancer, have excited many researchers to explore this receptor in detail. Here, we provide the first review of 5-HTR1E, since its discovery in 1989 to 2023. We highlight the structural and functional characteristics of this important serotonin receptor in detail and propose future directions in developing 5-HTR1E as a drug target. Video Abstract.
Collapse
Affiliation(s)
- Vinay Kumar Sharma
- Section On Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, NICHD, NIH, 49, Convent Drive, Bldg 49, Rm 6A-10, Bethesda, MD, 20892, USA
| | - Y Peng Loh
- Section On Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, NICHD, NIH, 49, Convent Drive, Bldg 49, Rm 6A-10, Bethesda, MD, 20892, USA.
| |
Collapse
|
6
|
Schafer CT, Chen Q, Tesmer JJG, Handel TM. Atypical Chemokine Receptor 3 'Senses' CXC Chemokine Receptor 4 Activation Through GPCR Kinase Phosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.25.530029. [PMID: 36865154 PMCID: PMC9980177 DOI: 10.1101/2023.02.25.530029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
Atypical chemokine receptor 3 (ACKR3) is an arrestin-biased receptor that regulates extracellular chemokine levels through scavenging. The scavenging action mediates the availability of the chemokine CXCL12 for the G protein-coupled receptor (GPCR) CXCR4 and requires phosphorylation of the ACKR3 C-terminus by GPCR kinases (GRKs). ACKR3 is phosphorylated by GRK2 and GRK5, but the mechanisms by which these kinases regulate the receptor are unresolved. Here we mapped the phosphorylation patterns and determined that GRK5 phosphorylation of ACKR3 dominates β-arrestin recruitment and chemokine scavenging over GRK2. Co-activation of CXCR4 significantly enhanced phosphorylation by GRK2 through the liberation of Gβγ. These results suggest that ACKR3 'senses' CXCR4 activation through a GRK2-dependent crosstalk mechanism. Surprisingly, we also found that despite the requirement for phosphorylation, and the fact that most ligands promote β-arrestin recruitment, β-arrestins are dispensable for ACKR3 internalization and scavenging, suggesting a yet to be determined function for these adapter proteins.
Collapse
Affiliation(s)
- Christopher T. Schafer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, USA
| | - Qiuyan Chen
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
- Present address: Dept. of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - John J. G. Tesmer
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Tracy M. Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, USA
| |
Collapse
|
7
|
Min X, Zhang X, Wang S, Kim KM. Activation of PKCβII through nuclear trafficking guided by βγ subunits of trimeric G protein and 14-3-3ε. Life Sci 2022; 312:121245. [PMID: 36503900 DOI: 10.1016/j.lfs.2022.121245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
AIMS Conventional members of protein kinase C (PKC) family, including PKCβII, are constitutively phosphorylated on three major motifs and located in the cytosol in a primed state. In response to cellular stimuli, PKCβII is activated through inducible phosphorylation and Mdm2-mediated ubiquitination. In this study, we aimed to identify the activation mechanism of PKCβII, focusing on the signaling cascade that regulate the phosphorylation and ubiquitination. MATERIALS AND METHODS Loss-of-function approaches and mutants of PDK1/PKCβII that display different regulatory properties were used to identify the cellular components and processes responsible for endocytosis. KEY FINDINGS Phorbol 12-myristate 13-acetate (PMA)-induced phosphorylation and ubiquitination of PKCβII, which are needed for its translocation to the plasma membrane, required the presence of both Gβγ and 14-3-3ε. Gβγ and 14-3-3ε mediated the constitutive phosphorylation of PKCβII by scaffolding PI3K and PDK1 in the cytosol, which is an inactive but required state for the activation of PKCβII by subsequent signals. In response to PMA treatment, the signaling complex translocated to the nucleus with dissociation of PI3K from it. Thereafter, PDK1 stably interacted with 14-3-3ε and was dephosphorylated; PKCβII interacted with Mdm2 along with Gβγ, leading to its ubiquitination at two lysine residues on its C-tail. Finally, PDK1/14-3-3ε and ubiquitinated PKCβII translocated to the plasma membrane. SIGNIFICANCE As PKCβII mediates a wide range of cellular functions and plays important roles in the pathogenesis of various diseases, our results will provide clues to understand the pathogenesis of PKCβII-related disorders and facilitate their treatment.
Collapse
Affiliation(s)
- Xiao Min
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju, Republic of Korea
| | - Xiaohan Zhang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Shujie Wang
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju, Republic of Korea
| | - Kyeong-Man Kim
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju, Republic of Korea.
| |
Collapse
|
8
|
Jiang H, Galtes D, Wang J, Rockman HA. G protein-coupled receptor signaling: transducers and effectors. Am J Physiol Cell Physiol 2022; 323:C731-C748. [PMID: 35816644 PMCID: PMC9448338 DOI: 10.1152/ajpcell.00210.2022] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/27/2022] [Accepted: 07/10/2022] [Indexed: 01/14/2023]
Abstract
G protein-coupled receptors (GPCRs) are of considerable interest due to their importance in a wide range of physiological functions and in a large number of Food and Drug Administration (FDA)-approved drugs as therapeutic entities. With continued study of their function and mechanism of action, there is a greater understanding of how effector molecules interact with a receptor to initiate downstream effector signaling. This review aims to explore the signaling pathways, dynamic structures, and physiological relevance in the cardiovascular system of the three most important GPCR signaling effectors: heterotrimeric G proteins, GPCR kinases (GRKs), and β-arrestins. We will first summarize their prominent roles in GPCR pharmacology before transitioning into less well-explored areas. As new technologies are developed and applied to studying GPCR structure and their downstream effectors, there is increasing appreciation for the elegance of the regulatory mechanisms that mediate intracellular signaling and function.
Collapse
Affiliation(s)
- Haoran Jiang
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Daniella Galtes
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Jialu Wang
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Howard A Rockman
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
9
|
Gao Z, Min X, Kim KM, Liu H, Hu L, Wu C, Zhang X. The tyrosine phosphorylation of GRK2 is responsible for activated D2R-mediated insulin resistance. Biochem Biophys Res Commun 2022; 628:40-48. [DOI: 10.1016/j.bbrc.2022.08.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/02/2022]
|
10
|
Ågren R, Sahlholm K. G protein-coupled receptor kinase-2 confers isoform-specific calcium sensitivity to dopamine D 2 receptor desensitization. FASEB J 2021; 35:e22013. [PMID: 34699610 DOI: 10.1096/fj.202100704rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/04/2021] [Accepted: 10/11/2021] [Indexed: 11/11/2022]
Abstract
The dopamine D2 receptor (D2 R) functions as an autoreceptor on dopaminergic cell bodies and terminals and as a postsynaptic receptor on a variety of neurons in the central nervous system. As a result of alternative splicing, the D2 R is expressed as two isoforms: long (D2L R) and short (D2S R) differing by a stretch of 29 residues in the third intracellular loop, with D2S R being the predominant presynaptic isoform. Recent reports described a Ca2+ sensitivity of the desensitization time course of potassium currents elicited via D2S R, but not via D2L R, when either isoform was selectively expressed in dopaminergic neurons. Here, we aimed to study the mechanism behind this subtype-specific Ca2+ sensitivity. Thus, we measured the desensitization of potassium channel responses evoked by D2L R and D2S R using two-electrode voltage clamp in Xenopus oocytes in the absence and presence of different amounts of β-arrestin2 and G protein-coupled receptor kinase-2 (GRK2), both of which are known to play important roles in D2 R desensitization in native cells. We found that co-expression of both GRK2 and β-arrestin2 was necessary for reconstitution of the Ca2+ sensitivity of D2S R desensitization, while D2L R did not display Ca2+ sensitivity under these conditions. The effect of Ca2+ chelation by BAPTA-AM to slow the rate of D2S R desensitization was mimicked by the GRK2 inhibitor, Cmpd101, and by the kinase-inactivating GRK2 mutation, K220R, but not by the PKC inhibitor, Gö6976, nor by the calmodulin antagonist, KN-93. Thus, Ca2+ -sensitive desensitization of D2S R appears to be mediated via a GRK2 phosphorylation-dependent mechanism.
Collapse
Affiliation(s)
- Richard Ågren
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Kristoffer Sahlholm
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Integrative Medical Biology, Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
11
|
Bony AR, McArthur JR, Finol-Urdaneta RK, Adams DJ. Analgesic α-conotoxins modulate native and recombinant GIRK1/2 channels via activation of GABA B receptors and reduce neuroexcitability. Br J Pharmacol 2021; 179:179-198. [PMID: 34599513 DOI: 10.1111/bph.15690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Activation of GIRK channels via G protein-coupled GABAB receptors has been shown to attenuate nociceptive transmission. The analgesic α-conotoxin Vc1.1 activates GABAB receptors resulting in inhibition of Cav 2.2 and Cav 2.3 channels in mammalian primary afferent neurons. Here, we investigated the effects of analgesic α-conotoxins on recombinant and native GIRK-mediated K+ currents and on neuronal excitability. EXPERIMENTAL APPROACH The effects of analgesic α-conotoxins, Vc1.1, RgIA, and PeIA, were investigated on inwardly-rectifying K+ currents in HEK293T cells recombinantly co-expressing either heteromeric human GIRK1/2 or homomeric GIRK2 subunits, with GABAB receptors. The effects of α-conotoxin Vc1.1 and baclofen were studied on GIRK-mediated K+ currents and the passive and active electrical properties of adult mouse dorsal root ganglion neurons. KEY RESULTS Analgesic α-conotoxins Vc1.1, RgIA, and PeIA potentiate inwardly-rectifying K+ currents in HEK293T cells recombinantly expressing human GIRK1/2 channels and GABAB receptors. GABAB receptor-dependent GIRK channel potentiation by Vc1.1 and baclofen occurs via a pertussis toxin-sensitive G protein and is inhibited by the selective GABAB receptor antagonist CGP 55845. In adult mouse dorsal root ganglion neurons, GABAB receptor-dependent GIRK channel potentiation by Vc1.1 and baclofen hyperpolarizes the cell membrane potential and reduces excitability. CONCLUSIONS AND IMPLICATIONS This is the first report of GIRK channel potentiation via allosteric α-conotoxin Vc1.1-GABAB receptor agonism, leading to decreased neuronal excitability. Such action potentially contributes to the analgesic effects of Vc1.1 and baclofen observed in vivo.
Collapse
Affiliation(s)
- Anuja R Bony
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | - Jeffrey R McArthur
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | - Rocio K Finol-Urdaneta
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | - David J Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
12
|
Garcia-Marcos M. Complementary biosensors reveal different G-protein signaling modes triggered by GPCRs and non-receptor activators. eLife 2021; 10:65620. [PMID: 33787494 PMCID: PMC8034979 DOI: 10.7554/elife.65620] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/30/2021] [Indexed: 01/14/2023] Open
Abstract
It has become evident that activation of heterotrimeric G-proteins by cytoplasmic proteins that are not G-protein-coupled receptors (GPCRs) plays a role in physiology and disease. Despite sharing the same biochemical guanine nucleotide exchange factor (GEF) activity as GPCRs in vitro, the mechanisms by which these cytoplasmic proteins trigger G-protein-dependent signaling in cells have not been elucidated. Heterotrimeric G-proteins can give rise to two active signaling species, Gα-GTP and dissociated Gβγ, with different downstream effectors, but how non-receptor GEFs affect the levels of these two species in cells is not known. Here, a systematic comparison of GPCRs and three unrelated non-receptor proteins with GEF activity in vitro (GIV/Girdin, AGS1/Dexras1, and Ric-8A) revealed high divergence in their contribution to generating Gα-GTP and free Gβγ in cells directly measured with live-cell biosensors. These findings demonstrate fundamental differences in how receptor and non-receptor G-protein activators promote signaling in cells despite sharing similar biochemical activities in vitro.
Collapse
Affiliation(s)
- Mikel Garcia-Marcos
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| |
Collapse
|
13
|
Senthivinayagam S, Serbulea V, Upchurch CM, Polanowska-Grabowska R, Mendu SK, Sahu S, Jayaguru P, Aylor KW, Chordia MD, Steinberg L, Oberholtzer N, Uchiyama S, Inada N, Lorenz UM, Harris TE, Keller SR, Meher AK, Kadl A, Desai BN, Kundu BK, Leitinger N. Adaptive thermogenesis in brown adipose tissue involves activation of pannexin-1 channels. Mol Metab 2021; 44:101130. [PMID: 33248294 PMCID: PMC7779784 DOI: 10.1016/j.molmet.2020.101130] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 11/06/2020] [Accepted: 11/21/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Brown adipose tissue (BAT) is specialized in thermogenesis. The conversion of energy into heat in brown adipocytes proceeds via stimulation of β-adrenergic receptor (βAR)-dependent signaling and activation of mitochondrial uncoupling protein 1 (UCP1). We have previously demonstrated a functional role for pannexin-1 (Panx1) channels in white adipose tissue; however, it is not known whether Panx1 channels play a role in the regulation of brown adipocyte function. Here, we tested the hypothesis that Panx1 channels are involved in brown adipocyte activation and thermogenesis. METHODS In an immortalized brown pre-adipocytes cell line, Panx1 currents were measured using patch-clamp electrophysiology. Flow cytometry was used for assessment of dye uptake and luminescence assays for adenosine triphosphate (ATP) release, and cellular temperature measurement was performed using a ratiometric fluorescence thermometer. We used RNA interference and expression plasmids to manipulate expression of wild-type and mutant Panx1. We used previously described adipocyte-specific Panx1 knockout mice (Panx1Adip-/-) and generated brown adipocyte-specific Panx1 knockout mice (Panx1BAT-/-) to study pharmacological or cold-induced thermogenesis. Glucose uptake into brown adipose tissue was quantified by positron emission tomography (PET) analysis of 18F-fluorodeoxyglucose (18F-FDG) content. BAT temperature was measured using an implantable telemetric temperature probe. RESULTS In brown adipocytes, Panx1 channel activity was induced either by apoptosis-dependent caspase activation or by β3AR stimulation via a novel mechanism that involves Gβγ subunit binding to Panx1. Inactivation of Panx1 channels in cultured brown adipocytes resulted in inhibition of β3AR-induced lipolysis, UCP-1 expression, and cellular thermogenesis. In mice, adiponectin-Cre-dependent genetic deletion of Panx1 in all adipose tissue depots resulted in defective β3AR agonist- or cold-induced thermogenesis in BAT and suppressed beigeing of white adipose tissue. UCP1-Cre-dependent Panx1 deletion specifically in brown adipocytes reduced the capacity for adaptive thermogenesis without affecting beigeing of white adipose tissue and aggravated diet-induced obesity and insulin resistance. CONCLUSIONS These data demonstrate that Gβγ-dependent Panx1 channel activation is involved in β3AR-induced thermogenic regulation in brown adipocytes. Identification of Panx1 channels in BAT as novel thermo-regulatory elements downstream of β3AR activation may have therapeutic implications.
Collapse
Affiliation(s)
| | - Vlad Serbulea
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Clint M Upchurch
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | | | - Suresh K Mendu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Srabani Sahu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Prathiba Jayaguru
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Kevin W Aylor
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Mahendra D Chordia
- Department of Radiology and Medical Imaging, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Limor Steinberg
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Nathaniel Oberholtzer
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Seichii Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Noriko Inada
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Ulrike M Lorenz
- Department of Microbiology, Immunology and Cancer Biology, Center for Cell Clearance, the Beirne B. Carter Center for Immunology Research, USA
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Susanna R Keller
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Akshaya K Meher
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Alexandra Kadl
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Bimal N Desai
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Bijoy K Kundu
- Department of Radiology and Medical Imaging, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA; Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Norbert Leitinger
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA; Robert M Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
14
|
Tian JY, Chi CL, Bian G, Guo FJ, Wang XQ, Yu B. A novel GPCR target in correlation with androgen deprivation therapy for prostate cancer drug discovery. Basic Clin Pharmacol Toxicol 2020; 128:195-203. [PMID: 32991779 DOI: 10.1111/bcpt.13499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/24/2022]
Abstract
Most prostate carcinomas require androgen stimulation to grow, and for nearly 70 years, androgen ablation therapy has been one of the central therapeutic strategies against advanced prostate cancer. Although most tumours initially respond to this therapy, some will be acquired resistant and progress to metastatic castration-resistant (mCRPC) disease which clinically tends to progress more rapidly than earlier disease manifestations. The underlying molecular biology of mCRPC is highly complex, and numerous mechanisms have been proposed that promote and retain androgen independence. In various clinical and preclinical data explored, the nature of intracellular signalling pathways mediating mitogenic acquired resistant effects of GPCRs in prostate cancer is poorly defined. G-protein-coupled receptor kinase 2 (GRK2) contributes to the modulation of basic cellular functions-such as cell proliferation, survival or motility-and is involved in metabolic homeostasis, inflammation or angiogenic processes. Moreover, altered GRK2 levels are starting to be reported in different tumoural contexts and shown to promote breast tumourigenesis or to trigger the tumoural angiogenic switch. Thus, we are exploring recent findings that present unexpected opportunities to interfere with major tumourigenic signals by manipulating GPCR-mediated pathways.
Collapse
Affiliation(s)
- Jing-Yan Tian
- Department of Urology, Second Division of The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Chang-Liang Chi
- Department of Urology, Second Division of The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Ge Bian
- Department of Urology, Second Division of The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Feng-Jun Guo
- Department of Gynaecology and Obstetrics, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Xiao-Qing Wang
- Department of Urology, Second Division of The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Bing Yu
- Department of Urology, Second Division of The First Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
15
|
Zhang X, Min X, Wang S, Sun N, Kim KM. Mdm2-mediated ubiquitination of β-arrestin2 in the nucleus occurs in a Gβγ- and clathrin-dependent manner. Biochem Pharmacol 2020; 178:114049. [PMID: 32450252 DOI: 10.1016/j.bcp.2020.114049] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/19/2020] [Indexed: 01/03/2023]
Abstract
The fate and activity of β-arrestin2, a key player in the regulation of desensitization and endocytosis of G protein-coupled receptors (GPCRs), are regulated by mouse double minute 2 homolog (Mdm2)-mediated ubiquitination. However, details of the molecular mechanisms of β-arrestin2 ubiquitination remain unclear. Studies on β-arrestin2 and Mdm2 mutants with modified nucleocytoplasmic shuttling properties have revealed that β-arrestin2 ubiquitination occurs in the nucleus in a Gβγ- and clathrin-dependent manner. The nuclear entry of both β-arrestin2 and Mdm2 commonly relies on the presence of importin complex but can occur independently of each other. Gβγ and clathrin regulated the nuclear entry of β-arrestin2 by mediating the interaction between β-arrestin2 and importin β1. In contrast, Akt-mediated phosphorylation of two serine residues of Mdm2 partly regulated the nuclear entry of Mdm2. Ubiquitinated β-arrestin2 along with Mdm2 translocated to the cytoplasm where they play various functional roles including receptor endocytosis and ubiquitination of other cytoplasmic proteins. The nuclear export of Mdm2 required nuclear entry and interaction of β-arrestin2 with Mdm2. Ubiquitination was required for the translocation of β-arrestin2 toward activated receptors on the plasma membrane and for its endocytic activity. The current study revealed the cellular components and processes involved in the ubiquitination of β-arrestin2, and these findings could be quintessential for providing directions and detailed strategies for the manipulation of GPCR functions and development of GPCR-related therapeutics.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju 61186, Republic of Korea
| | - Xiao Min
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju 61186, Republic of Korea
| | - Shujie Wang
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju 61186, Republic of Korea
| | - Ningning Sun
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju 61186, Republic of Korea
| | - Kyeong-Man Kim
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju 61186, Republic of Korea.
| |
Collapse
|
16
|
Peters A, Rabe P, Krumbholz P, Kalwa H, Kraft R, Schöneberg T, Stäubert C. Natural biased signaling of hydroxycarboxylic acid receptor 3 and G protein-coupled receptor 84. Cell Commun Signal 2020; 18:31. [PMID: 32102673 PMCID: PMC7045412 DOI: 10.1186/s12964-020-0516-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/29/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Medium-chain fatty acids and their 3-hydroxy derivatives are metabolites endogenously produced in humans, food-derived or originating from bacteria. They activate G protein-coupled receptors, including GPR84 and HCA3, which regulate metabolism and immune functions. Although both receptors are coupled to Gi proteins, share at least one agonist and show overlapping tissue expression, GPR84 exerts pro-inflammatory effects whereas HCA3 is involved in anti-inflammatory responses. Here, we analyzed signaling kinetics of both HCA3 and GPR84, to unravel signal transduction components that may explain their physiological differences. METHODS To study the signaling kinetics and components involved in signal transduction of both receptors we applied the label-free dynamic mass redistribution technology in combination with classical cAMP, ERK signaling and β-arrestin-2 recruitment assays. For phenotypical analyses, we used spheroid cell culture models. RESULTS We present strong evidence for a natural biased signaling of structurally highly similar agonists at HCA3 and GPR84. We show that HCA3 signaling and trafficking depends on dynamin-2 function. Activation of HCA3 by 3-hydroxyoctanoic acid but not 3-hydroxydecanoic acid leads to β-arrestin-2 recruitment, which is relevant for cell-cell adhesion. GPR84 stimulation with 3-hydroxydecanoic acid causes a sustained ERK activation but activation of GPR84 is not followed by β-arrestin-2 recruitment. CONCLUSIONS In summary, our results highlight that biased agonism is a physiological property of HCA3 and GPR84 with relevance for innate immune functions potentially to differentiate between endogenous, non-pathogenic compounds and compounds originating from e.g. pathogenic bacteria. Video Abstract.
Collapse
Affiliation(s)
- Anna Peters
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Philipp Rabe
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Petra Krumbholz
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Hermann Kalwa
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, Leipzig University, Härtelstraße 16-18, 04107, Leipzig, Germany
| | - Robert Kraft
- Carl Ludwig Institute for Physiology, Medical Faculty, Leipzig University, 04103, Leipzig, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Claudia Stäubert
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany.
| |
Collapse
|
17
|
Li J, Ge Y, Huang JX, Strømgaard K, Zhang X, Xiong XF. Heterotrimeric G Proteins as Therapeutic Targets in Drug Discovery. J Med Chem 2019; 63:5013-5030. [PMID: 31841625 DOI: 10.1021/acs.jmedchem.9b01452] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heterotrimeric G proteins are molecular switches in GPCR signaling pathways and regulate a plethora of physiological and pathological processes. GPCRs are efficient drug targets, and more than 30% of the drugs in use target them. However, selectively targeting an individual GPCR may be undesirable in various multifactorial diseases in which multiple receptors are involved. In addition, abnormal activation or expression of G proteins is frequently associated with diseases. Furthermore, G proteins harboring mutations often result in malignant diseases. Thus, targeting G proteins instead of GPCRs might provide alternative approaches for combating these diseases. In this review, we discuss the biochemistry of heterotrimeric G proteins, describe the G protein-associated diseases, and summarize the currently known modulators that can regulate the activities of G proteins. The outlook for targeting G proteins to treat diverse diseases is also included in this manuscript.
Collapse
Affiliation(s)
- Jian Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| | - Yang Ge
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| | - Jun-Xiang Huang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Xiaolei Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| | - Xiao-Feng Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| |
Collapse
|
18
|
Ligand-induced activation of ERK1/2 signaling by constitutively active G s-coupled 5-HT receptors. Acta Pharmacol Sin 2019; 40:1157-1167. [PMID: 30833707 DOI: 10.1038/s41401-018-0204-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 11/08/2018] [Indexed: 01/14/2023] Open
Abstract
5-HT4R, 5-HT6R, and 5-HT7AR are three constitutively active Gs-coupled 5-HT receptors that have key roles in brain development, learning, memory, cognition, and other physiological processes in the central nervous system. In addition to Gs signaling cascade mediated by these three 5-HT receptors, the ERK1/2 signaling which is dependent on cyclic adenosine monophosphate (cAMP) production and protein kinase A (PKA) activation downstream of Gs signaling has also been widely studied. In this study, we investigated these two signaling pathways originating from the three Gs-coupled 5-HT receptors in AD293 cells. We found that the phosphorylation and activation of ERK1/2 are ligand-induced, in contrast to the constitutively active Gs signaling. This indicates that Gs signaling alone is not sufficient for ERK1/2 activation in these three 5-HT receptors. In addition to Gs, we found that β-arrestin and Fyn are essential for the activation of ERK1/2. Together, these results put forth a novel mechanism for ERK1/2 activation involving the cooperative action of Gs, β-arrestin, and Fyn.
Collapse
|
19
|
Zhao P, Pattison LA, Jensen DD, Jimenez-Vargas NN, Latorre R, Lieu T, Jaramillo JO, Lopez-Lopez C, Poole DP, Vanner SJ, Schmidt BL, Bunnett NW. Protein kinase D and Gβγ mediate sustained nociceptive signaling by biased agonists of protease-activated receptor-2. J Biol Chem 2019; 294:10649-10662. [PMID: 31142616 DOI: 10.1074/jbc.ra118.006935] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/23/2019] [Indexed: 12/20/2022] Open
Abstract
Proteases sustain hyperexcitability and pain by cleaving protease-activated receptor-2 (PAR2) on nociceptors through distinct mechanisms. Whereas trypsin induces PAR2 coupling to Gαq, Gαs, and β-arrestins, cathepsin-S (CS) and neutrophil elastase (NE) cleave PAR2 at distinct sites and activate it by biased mechanisms that induce coupling to Gαs, but not to Gαq or β-arrestins. Because proteases activate PAR2 by irreversible cleavage, and activated PAR2 is degraded in lysosomes, sustained extracellular protease-mediated signaling requires mobilization of intact PAR2 from the Golgi apparatus or de novo synthesis of new receptors by incompletely understood mechanisms. We found here that trypsin, CS, and NE stimulate PAR2-dependent activation of protein kinase D (PKD) in the Golgi of HEK293 cells, in which PKD regulates protein trafficking. The proteases stimulated translocation of the PKD activator Gβγ to the Golgi, coinciding with PAR2 mobilization from the Golgi. Proteases also induced translocation of a photoconverted PAR2-Kaede fusion protein from the Golgi to the plasma membrane of KNRK cells. After incubation of HEK293 cells and dorsal root ganglia neurons with CS, NE, or trypsin, PAR2 responsiveness initially declined, consistent with PAR2 cleavage and desensitization, and then gradually recovered. Inhibitors of PKD, Gβγ, and protein translation inhibited recovery of PAR2 responsiveness. PKD and Gβγ inhibitors also attenuated protease-evoked mechanical allodynia in mice. We conclude that proteases that activate PAR2 by canonical and biased mechanisms stimulate PKD in the Golgi; PAR2 mobilization and de novo synthesis repopulate the cell surface with intact receptors and sustain nociceptive signaling by extracellular proteases.
Collapse
Affiliation(s)
- Peishen Zhao
- From the Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Luke A Pattison
- From the Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Dane D Jensen
- the Departments of Surgery and Pharmacology, Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Nestor N Jimenez-Vargas
- the Gastrointestinal Diseases Research Unit, Division of Gastroenterology, Queen's University, Kingston, Ontario K7L 3N6, Canada, and
| | - Rocco Latorre
- the Departments of Surgery and Pharmacology, Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - TinaMarie Lieu
- From the Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Josue O Jaramillo
- the Gastrointestinal Diseases Research Unit, Division of Gastroenterology, Queen's University, Kingston, Ontario K7L 3N6, Canada, and
| | - Cintya Lopez-Lopez
- the Gastrointestinal Diseases Research Unit, Division of Gastroenterology, Queen's University, Kingston, Ontario K7L 3N6, Canada, and
| | - Daniel P Poole
- From the Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Stephen J Vanner
- the Gastrointestinal Diseases Research Unit, Division of Gastroenterology, Queen's University, Kingston, Ontario K7L 3N6, Canada, and
| | - Brian L Schmidt
- the Bluestone Center for Clinical Research, New York University College of Dentistry, New York, New York 10010
| | - Nigel W Bunnett
- the Departments of Surgery and Pharmacology, Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, New York 10032,
| |
Collapse
|
20
|
Abstract
Advances in the treatment of heart failure with reduced ejection fraction due to systolic dysfunction are engaging an ever-expanding compendium of molecular signaling targets. Well established approaches modifying hemodynamics and cell biology by neurohumoral receptor blockade are evolving, exploring the role and impact of modulating intracellular signaling pathways with more direct myocardial effects. Even well-tread avenues are being reconsidered with new insights into the signaling engaged and thus opportunity to treat underlying myocardial disease. This review explores therapies that have proven successful, those that have not, those that are moving into the clinic but whose utility remains to be confirmed, and those that remain in the experimental realm. The emphasis is on signaling pathways that are tractable for therapeutic manipulation. Of the approaches yet to be tested in humans, we chose those with a well-established experimental history, where clinical translation may be around the corner. The breadth of opportunities bodes well for the next generation of heart failure therapeutics.
Collapse
Affiliation(s)
| | | | - David A. Kass
- Division of Cardiology, Department of Medicine
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore Maryland, 21205
| |
Collapse
|
21
|
Seyedabadi M, Ghahremani MH, Albert PR. Biased signaling of G protein coupled receptors (GPCRs): Molecular determinants of GPCR/transducer selectivity and therapeutic potential. Pharmacol Ther 2019; 200:148-178. [PMID: 31075355 DOI: 10.1016/j.pharmthera.2019.05.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
Abstract
G protein coupled receptors (GPCRs) convey signals across membranes via interaction with G proteins. Originally, an individual GPCR was thought to signal through one G protein family, comprising cognate G proteins that mediate canonical receptor signaling. However, several deviations from canonical signaling pathways for GPCRs have been described. It is now clear that GPCRs can engage with multiple G proteins and the line between cognate and non-cognate signaling is increasingly blurred. Furthermore, GPCRs couple to non-G protein transducers, including β-arrestins or other scaffold proteins, to initiate additional signaling cascades. Receptor/transducer selectivity is dictated by agonist-induced receptor conformations as well as by collateral factors. In particular, ligands stabilize distinct receptor conformations to preferentially activate certain pathways, designated 'biased signaling'. In this regard, receptor sequence alignment and mutagenesis have helped to identify key receptor domains for receptor/transducer specificity. Furthermore, molecular structures of GPCRs bound to different ligands or transducers have provided detailed insights into mechanisms of coupling selectivity. However, receptor dimerization, compartmentalization, and trafficking, receptor-transducer-effector stoichiometry, and ligand residence and exposure times can each affect GPCR coupling. Extrinsic factors including cell type or assay conditions can also influence receptor signaling. Understanding these factors may lead to the development of improved biased ligands with the potential to enhance therapeutic benefit, while minimizing adverse effects. In this review, evidence for ligand-specific GPCR signaling toward different transducers or pathways is elaborated. Furthermore, molecular determinants of biased signaling toward these pathways and relevant examples of the potential clinical benefits and pitfalls of biased ligands are discussed.
Collapse
Affiliation(s)
- Mohammad Seyedabadi
- Department of Pharmacology, School of Medicine, Bushehr University of Medical Sciences, Iran; Education Development Center, Bushehr University of Medical Sciences, Iran
| | | | - Paul R Albert
- Ottawa Hospital Research Institute, Neuroscience, University of Ottawa, Canada.
| |
Collapse
|
22
|
Parra-Mercado GK, Fuentes-Gonzalez AM, Hernandez-Aranda J, Diaz-Coranguez M, Dautzenberg FM, Catt KJ, Hauger RL, Olivares-Reyes JA. CRF 1 Receptor Signaling via the ERK1/2-MAP and Akt Kinase Cascades: Roles of Src, EGF Receptor, and PI3-Kinase Mechanisms. Front Endocrinol (Lausanne) 2019; 10:869. [PMID: 31920979 PMCID: PMC6921279 DOI: 10.3389/fendo.2019.00869] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 11/27/2019] [Indexed: 12/28/2022] Open
Abstract
In the present study, we determined the cellular regulators of ERK1/2 and Akt signaling pathways in response to human CRF1 receptor (CRF1R) activation in transfected COS-7 cells. We found that Pertussis Toxin (PTX) treatment or sequestering Gβγ reduced CRF1R-mediated activation of ERK1/2, suggesting the involvement of a Gi-linked cascade. Neither Gs/PKA nor Gq/PKC were associated with ERK1/2 activation. Besides, CRF induced EGF receptor (EGFR) phosphorylation at Tyr1068, and selective inhibition of EGFR kinase activity by AG1478 strongly inhibited the CRF1R-mediated phosphorylation of ERK1/2, indicating the participation of EGFR transactivation. Furthermore, CRF-induced ERK1/2 phosphorylation was not altered by pretreatment with batimastat, GM6001, or an HB-EGF antibody indicating that metalloproteinase processing of HB-EGF ligands is not required for the CRF-mediated EGFR transactivation. We also observed that CRF induced Src and PYK2 phosphorylation in a Gβγ-dependent manner. Additionally, using the specific Src kinase inhibitor PP2 and the dominant-negative-SrcYF-KM, it was revealed that CRF-stimulated ERK1/2 phosphorylation depends on Src activation. PP2 also blocked the effect of CRF on Src and EGFR (Tyr845) phosphorylation, further demonstrating the centrality of Src. We identified the formation of a protein complex consisting of CRF1R, Src, and EGFR facilitates EGFR transactivation and CRF1R-mediated signaling. CRF stimulated Akt phosphorylation, which was dependent on Gi/βγ subunits, and Src activation, however, was only slightly dependent on EGFR transactivation. Moreover, PI3K inhibitors were able to inhibit not only the CRF-induced phosphorylation of Akt, as expected, but also ERK1/2 activation by CRF suggesting a PI3K dependency in the CRF1R ERK signaling. Finally, CRF-stimulated ERK1/2 activation was similar in the wild-type CRF1R and the phosphorylation-deficient CRF1R-Δ386 mutant, which has impaired agonist-dependent β-arrestin-2 recruitment; however, this situation may have resulted from the low β-arrestin expression in the COS-7 cells. When β-arrestin-2 was overexpressed in COS-7 cells, CRF-stimulated ERK1/2 phosphorylation was markedly upregulated. These findings indicate that on the base of a constitutive CRF1R/EGFR interaction, the Gi/βγ subunits upstream activation of Src, PYK2, PI3K, and transactivation of the EGFR are required for CRF1R signaling via the ERK1/2-MAP kinase pathway. In contrast, Akt activation via CRF1R is mediated by the Src/PI3K pathway with little contribution of EGFR transactivation.
Collapse
Affiliation(s)
- G. Karina Parra-Mercado
- Laboratory of Signal Transduction, Department of Biochemistry, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV-IPN, Mexico City, Mexico
| | - Alma M. Fuentes-Gonzalez
- Laboratory of Signal Transduction, Department of Biochemistry, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV-IPN, Mexico City, Mexico
| | - Judith Hernandez-Aranda
- Laboratory of Signal Transduction, Department of Biochemistry, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV-IPN, Mexico City, Mexico
| | - Monica Diaz-Coranguez
- Laboratory of Signal Transduction, Department of Biochemistry, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV-IPN, Mexico City, Mexico
| | | | - Kevin J. Catt
- Section on Hormonal Regulation, Program on Developmental Endocrinology and Genetics, National Institute of Child Health and Human Development, Bethesda, MD, United States
| | - Richard L. Hauger
- Center of Excellence for Stress and Mental Health, VA Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - J. Alberto Olivares-Reyes
- Laboratory of Signal Transduction, Department of Biochemistry, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV-IPN, Mexico City, Mexico
- *Correspondence: J. Alberto Olivares-Reyes
| |
Collapse
|
23
|
Abstract
The glycoprotein follicle-stimulating hormone (FSH) acts on gonadal target cells, hence regulating gametogenesis. The transduction of the hormone-induced signal is mediated by the FSH-specific G protein-coupled receptor (FSHR), of which the action relies on the interaction with a number of intracellular effectors. The stimulatory Gαs protein is a long-time known transducer of FSH signaling, mainly leading to intracellular cAMP increase and protein kinase A (PKA) activation, the latter acting as a master regulator of cell metabolism and sex steroid production. While in vivo data clearly demonstrate the relevance of PKA activation in mediating gametogenesis by triggering proliferative signals, some in vitro data suggest that pro-apoptotic pathways may be awakened as a "dark side" of cAMP/PKA-dependent steroidogenesis, in certain conditions. P38 mitogen-activated protein kinases (MAPK) are players of death signals in steroidogenic cells, involving downstream p53 and caspases. Although it could be hypothesized that pro-apoptotic signals, if relevant, may be required for regulating atresia of non-dominant ovarian follicles, they should be transient and counterbalanced by mitogenic signals upon FSHR interaction with opposing transducers, such as Gαi proteins and β-arrestins. These molecules modulate the steroidogenic pathway via extracellular-regulated kinases (ERK1/2), phosphatidylinositol-4,5-bisphosphate 3-kinases (PI3K)/protein kinase B (AKT), calcium signaling and other intracellular signaling effectors, resulting in a complex and dynamic signaling network characterizing sex- and stage-specific gamete maturation. Even if the FSH-mediated signaling network is not yet entirely deciphered, its full comprehension is of high physiological and clinical relevance due to the crucial role covered by the hormone in regulating human development and reproduction.
Collapse
Affiliation(s)
- Livio Casarini
- Unit of Endocrinology, Department Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
- *Correspondence: Livio Casarini
| | - Pascale Crépieux
- PRC, UMR INRA0085, CNRS 7247, Centre INRA Val de Loire, Nouzilly, France
| |
Collapse
|
24
|
Abstract
G protein-coupled receptors (GPCRs) are the largest class of drug targets, largely owing to their druggability, diversity and physiological efficacy. Many drugs selectively target specific subtypes of GPCRs, but high specificity for individual GPCRs may not be desirable in complex multifactorial disease states in which multiple receptors may be involved. One approach is to target G protein subunits rather than the GPCRs directly. This approach has the potential to achieve broad efficacy by blocking pathways shared by multiple GPCRs. Additionally, because many GPCRs couple to multiple G protein signalling pathways, blocking specific G protein subunits can 'bias' GPCR signals by inhibiting only a subset of these signals. Molecules that target G protein α or βγ-subunits have been developed and show strong efficacy in multiple preclinical disease models and biased inhibition of G protein signalling. In this Review, we discuss the development and characterization of G protein α and βγ-subunit ligands and the preclinical evidence that this exciting new approach has potential for therapeutic efficacy in a number of indications, such as pain, thrombosis, asthma and heart failure.
Collapse
|
25
|
Sun N, Zhang X, Guo S, Le HT, Zhang X, Kim KM. Molecular mechanisms involved in epidermal growth factor receptor-mediated inhibition of dopamine D 3 receptor signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1187-1200. [PMID: 29885323 DOI: 10.1016/j.bbamcr.2018.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/28/2018] [Accepted: 06/05/2018] [Indexed: 01/22/2023]
Abstract
The phenomenon wherein the signaling by a given receptor is regulated by a different class of receptors is termed transactivation or crosstalk. Crosstalk between receptor tyrosine kinases (RTKs) and G protein-coupled receptors (GPCRs) is highly diverse and has unique functional implications because of the distinct structural features of the receptors and the signaling pathways involved. The present study used the epidermal growth factor receptor (EGFR) and dopamine D3 receptor (D3R), which are both associated with schizophrenia, as the model system to study crosstalk between RTKs and GPCRs. Loss-of-function approaches were used to identify the cellular components involved in the tyrosine phosphorylation of G protein-coupled receptor kinase 2 (GRK2), which is responsible for EGFR-induced regulation of the functions of D3R. SRC proto-oncogene (Src, non-receptor tyrosine kinase), heterotrimeric G protein Gβγ subunit, and endocytosis of EGFR were involved in the tyrosine phosphorylation of GRK2. In response to EGF treatment, Src interacted with EGFR in a Gβγ-dependent manner, resulting in the endocytosis of EGFR. Internalized EGFR in the cytosol mediated Src/Gβγ-dependent tyrosine phosphorylation of GRK2. The binding of tyrosine-phosphorylated GRK2 to the T142 residue of D3R resulted in uncoupling from G proteins, endocytosis, and lysosomal downregulation. This study identified the molecular mechanisms involved in the EGFR-mediated regulation of the functions of D3R, which can be extended to the crosstalk between other RTKs and GPCRs.
Collapse
Affiliation(s)
- Ningning Sun
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju, 61186, Republic of Korea
| | - Xiaowei Zhang
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju, 61186, Republic of Korea
| | - Shuohan Guo
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju, 61186, Republic of Korea
| | - Hang Thi Le
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju, 61186, Republic of Korea
| | - Xiaohan Zhang
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju, 61186, Republic of Korea
| | - Kyeong-Man Kim
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju, 61186, Republic of Korea.
| |
Collapse
|
26
|
Targeting G protein-coupled receptor signaling at the G protein level with a selective nanobody inhibitor. Nat Commun 2018; 9:1996. [PMID: 29777099 PMCID: PMC5959942 DOI: 10.1038/s41467-018-04432-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 04/25/2018] [Indexed: 01/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) activate heterotrimeric G proteins by mediating a GDP to GTP exchange in the Gα subunit. This leads to dissociation of the heterotrimer into Gα-GTP and Gβγ dimer. The Gα-GTP and Gβγ dimer each regulate a variety of downstream pathways to control various aspects of human physiology. Dysregulated Gβγ-signaling is a central element of various neurological and cancer-related anomalies. However, Gβγ also serves as a negative regulator of Gα that is essential for G protein inactivation, and thus has the potential for numerous side effects when targeted therapeutically. Here we report a llama-derived nanobody (Nb5) that binds tightly to the Gβγ dimer. Nb5 responds to all combinations of β-subtypes and γ-subtypes and competes with other Gβγ-regulatory proteins for a common binding site on the Gβγ dimer. Despite its inhibitory effect on Gβγ-mediated signaling, Nb5 has no effect on Gαq-mediated and Gαs-mediated signaling events in living cells.
Collapse
|
27
|
|
28
|
Cleator JH, Wells CA, Dingus J, Kurtz DT, Hildebrandt JD. The N54- αs Mutant Has Decreased Affinity for βγ and Suggests a Mechanism for Coupling Heterotrimeric G Protein Nucleotide Exchange with Subunit Dissociation. J Pharmacol Exp Ther 2018; 365:219-225. [PMID: 29491039 DOI: 10.1124/jpet.117.245779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/23/2018] [Indexed: 11/22/2022] Open
Abstract
Ser54 of Gsα binds guanine nucleotide and Mg2+ as part of a conserved sequence motif in GTP binding proteins. Mutating the homologous residue in small and heterotrimeric G proteins generates dominant-negative proteins, but by protein-specific mechanisms. For αi/o, this results from persistent binding of α to βγ, whereas for small GTP binding proteins and αs this results from persistent binding to guanine nucleotide exchange factor or receptor. This work examined the role of βγ interactions in mediating the properties of the Ser54-like mutants of Gα subunits. Unexpectedly, WT-αs or N54-αs coexpressed with α1B-adrenergic receptor in human embryonic kidney 293 cells decreased receptor stimulation of IP3 production by a cAMP-independent mechanism, but WT-αs was more effective than the mutant. One explanation for this result would be that αs, like Ser47 αi/o, blocks receptor activation by sequestering βγ; implying that N54-αS has reduced affinity for βγ since it was less effective at blocking IP3 production. This possibility was more directly supported by the observation that WT-αs was more effective than the mutant in inhibiting βγ activation of phospholipase Cβ2. Further, in vitro synthesized N54-αs bound biotinylated-βγ with lower apparent affinity than did WT-αs The Cys54 mutation also decreased βγ binding but less effectively than N54-αs Substitution of the conserved Ser in αo with Cys or Asn increased βγ binding, with the Cys mutant being more effective. This suggests that Ser54 of αs is involved in coupling changes in nucleotide binding with altered subunit interactions, and has important implications for how receptors activate G proteins.
Collapse
Affiliation(s)
- John H Cleator
- Department of Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| | - Christopher A Wells
- Department of Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| | - Jane Dingus
- Department of Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| | - David T Kurtz
- Department of Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| | - John D Hildebrandt
- Department of Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
29
|
Tanaka S. [Signaling and functions of G-protein-coupled receptor 3 in cerebellar granular neurons]. Nihon Yakurigaku Zasshi 2018; 152:78-83. [PMID: 30101864 DOI: 10.1254/fpj.152.78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
G-protein-coupled receptor 3 (GPR3) is a member of the class A rhodopsin-type GPCR family and is highly expressed in various neurons. A unique feature of GPR3 is its ability to constitutively activate the Gαs protein without the addition of ligands, which results in the elevation of the basal level of intracellular cAMP. During the development of the cerebellum, GPR3 expression is upregulated in cerebellar granular neurons (CGNs) and maintained thereafter. In our previous studies, we showed that the intrinsic expression of GPR3 in CGNs is highly associated with neurite outgrowth, neurite differentiation, and neuronal survival. Recently, we have focused on the possible signaling pathways associated with GPR3-mediated neurite outgrowth in CGNs. Interestingly, GPR3-mediated neurite outgrowth is mediated by not only PKA-dependent signaling pathways but also PI3K-mediated signaling pathways. Moreover, the Gβγ-mediated signaling pathway is involved in GPR3-mediated neurite outgrowth. These results suggested that neural expression of GPR3 stimulates multiple downstream signaling pathways, contributing to the maintenance of homeostasis in neurons. Further precise analyses of constitutively active GPCRs may help in unveiling novel neuronal functions.
Collapse
Affiliation(s)
- Shigeru Tanaka
- Department of Molecular and Pharmacological Neuroscience, Graduate school of Biomedical & Health Sciences, Hiroshima University
| |
Collapse
|
30
|
Kajimoto T, Mohamed NNI, Badawy SMM, Matovelo SA, Hirase M, Nakamura S, Yoshida D, Okada T, Ijuin T, Nakamura SI. Involvement of Gβγ subunits of G i protein coupled with S1P receptor on multivesicular endosomes in F-actin formation and cargo sorting into exosomes. J Biol Chem 2017; 293:245-253. [PMID: 29133526 DOI: 10.1074/jbc.m117.808733] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/11/2017] [Indexed: 12/29/2022] Open
Abstract
Exosomes play a critical role in cell-to-cell communication by delivering cargo molecules to recipient cells. However, the mechanism underlying the generation of the exosomal multivesicular endosome (MVE) is one of the mysteries in the field of endosome research. Although sphingolipid metabolites such as ceramide and sphingosine 1-phosphate (S1P) are known to play important roles in MVE formation and maturation, the detailed molecular mechanisms are still unclear. Here, we show that Rho family GTPases, including Cdc42 and Rac1, are constitutively activated on exosomal MVEs and are regulated by S1P signaling as measured by fluorescence resonance energy transfer (FRET)-based conformational changes. Moreover, we detected S1P signaling-induced filamentous actin (F-actin) formation. A selective inhibitor of Gβγ subunits, M119, strongly inhibited both F-actin formation on MVEs and cargo sorting into exosomal intralumenal vesicles of MVEs, both of which were fully rescued by the simultaneous expression of constitutively active Cdc42 and Rac1. Our results shed light on the mechanism underlying exosomal MVE maturation and inform the understanding of the physiological relevance of continuous activation of the S1P receptor and subsequent downstream G protein signaling to Gβγ subunits/Rho family GTPases-regulated F-actin formation on MVEs for cargo sorting into exosomal intralumenal vesicles.
Collapse
Affiliation(s)
- Taketoshi Kajimoto
- Department of Biochemistry and Molecular Biology, Division of Biochemistry, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan
| | - Nesma Nabil Ibrahim Mohamed
- Department of Biochemistry and Molecular Biology, Division of Biochemistry, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan
| | - Shaymaa Mohamed Mohamed Badawy
- Department of Biochemistry and Molecular Biology, Division of Biochemistry, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan
| | - Shubi Ambwene Matovelo
- Department of Biochemistry and Molecular Biology, Division of Biochemistry, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan
| | - Mitsuhiro Hirase
- Department of Biochemistry and Molecular Biology, Division of Biochemistry, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan
| | - Shunsuke Nakamura
- Department of Biochemistry and Molecular Biology, Division of Biochemistry, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan
| | - Daisuke Yoshida
- Department of Biochemistry and Molecular Biology, Division of Biochemistry, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan
| | - Taro Okada
- Department of Biochemistry and Molecular Biology, Division of Biochemistry, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan
| | - Takeshi Ijuin
- Department of Biochemistry and Molecular Biology, Division of Biochemistry, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan
| | - Shun-Ichi Nakamura
- Department of Biochemistry and Molecular Biology, Division of Biochemistry, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Kobe 650-0017, Japan.
| |
Collapse
|
31
|
Specific inhibition of GPCR-independent G protein signaling by a rationally engineered protein. Proc Natl Acad Sci U S A 2017; 114:E10319-E10328. [PMID: 29133411 DOI: 10.1073/pnas.1707992114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Activation of heterotrimeric G proteins by cytoplasmic nonreceptor proteins is an alternative to the classical mechanism via G protein-coupled receptors (GPCRs). A subset of nonreceptor G protein activators is characterized by a conserved sequence named the Gα-binding and activating (GBA) motif, which confers guanine nucleotide exchange factor (GEF) activity in vitro and promotes G protein-dependent signaling in cells. GBA proteins have important roles in physiology and disease but remain greatly understudied. This is due, in part, to the lack of efficient tools that specifically disrupt GBA motif function in the context of the large multifunctional proteins in which they are embedded. This hindrance to the study of alternative mechanisms of G protein activation contrasts with the wealth of convenient chemical and genetic tools to manipulate GPCR-dependent activation. Here, we describe the rational design and implementation of a genetically encoded protein that specifically inhibits GBA motifs: GBA inhibitor (GBAi). GBAi was engineered by introducing modifications in Gαi that preclude coupling to every known major binding partner [GPCRs, Gβγ, effectors, guanine nucleotide dissociation inhibitors (GDIs), GTPase-activating proteins (GAPs), or the chaperone/GEF Ric-8A], while favoring high-affinity binding to all known GBA motifs. We demonstrate that GBAi does not interfere with canonical GPCR-G protein signaling but blocks GBA-dependent signaling in cancer cells. Furthermore, by implementing GBAi in vivo, we show that GBA-dependent signaling modulates phenotypes during Xenopus laevis embryonic development. In summary, GBAi is a selective, efficient, and convenient tool to dissect the biological processes controlled by a GPCR-independent mechanism of G protein activation mediated by cytoplasmic factors.
Collapse
|
32
|
Dembla S, Behrendt M, Mohr F, Goecke C, Sondermann J, Schneider FM, Schmidt M, Stab J, Enzeroth R, Leitner MG, Nuñez-Badinez P, Schwenk J, Nürnberg B, Cohen A, Philipp SE, Greffrath W, Bünemann M, Oliver D, Zakharian E, Schmidt M, Oberwinkler J. Anti-nociceptive action of peripheral mu-opioid receptors by G-beta-gamma protein-mediated inhibition of TRPM3 channels. eLife 2017; 6:26280. [PMID: 28826482 PMCID: PMC5593507 DOI: 10.7554/elife.26280] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/07/2017] [Indexed: 12/20/2022] Open
Abstract
Opioids, agonists of µ-opioid receptors (µORs), are the strongest pain killers clinically available. Their action includes a strong central component, which also causes important adverse effects. However, µORs are also found on the peripheral endings of nociceptors and their activation there produces meaningful analgesia. The cellular mechanisms downstream of peripheral µORs are not well understood. Here, we show in neurons of murine dorsal root ganglia that pro-nociceptive TRPM3 channels, present in the peripheral parts of nociceptors, are strongly inhibited by µOR activation, much more than other TRP channels in the same compartment, like TRPV1 and TRPA1. Inhibition of TRPM3 channels occurs via a short signaling cascade involving Gβγ proteins, which form a complex with TRPM3. Accordingly, activation of peripheral µORs in vivo strongly attenuates TRPM3-dependent pain. Our data establish TRPM3 inhibition as important consequence of peripheral µOR activation indicating that pharmacologically antagonizing TRPM3 may be a useful analgesic strategy. There are very few treatments available for people suffering from strong or long-lasting pain. Currently, substances called opioids – which include the well-known drug morphine – are the strongest painkillers. However, these drugs also cause harmful side effects, which makes them less useful. Like all drugs, opioids mediate their effects by interacting with molecules in the body. In the case of opioids, these interacting molecules belong to a group of receptor proteins called G-protein coupled receptors (or GPCRs for short). These opioid receptors are widely distributed in the nerve cells and brain regions that detect and transmit pain signals. It was poorly understood how activation of opioid receptors reduces the activity of pain-sensing nerve cells, however several lines of evidence had suggested that a protein called TRPM3 might be involved. TRPM3 is a channel protein that allows sodium and calcium ions to enter into nerve cells by forming pores in cell membranes, and mice that lack this protein are less sensitive to certain kinds of pain. Dembla, Behrendt et al. now show that activating opioid receptors on nerve cells from mice, with morphine and a similar substance, rapidly reduces the flow of calcium ions through TRPM3 channels. Further experiments confirmed that activating opioid receptors in a mouse’s paw also reduced the pain caused when TRPM3 proteins are activated. GPCRs interact with a group of small proteins called G-proteins that, when activated by the receptor, split into two subunits. Based on studies with human kidney cells, Dembla, Behrendt et al. found the so-called G-beta-gamma subunit then carries the signal from the opioid receptor to TRPM3. Two independent studies by Quallo et al. and Badheka, Yudin et al. also report similar findings. These new findings show that drugs already used in the treatment of pain can indirectly alter how TRPM3 works in a dramatic way. These results might help scientists to find drugs that work in a more direct way to dial down the activity of TRPM3 and to combat pain with fewer side effects. Though first it will be important to confirm these new findings in human nerve cells.
Collapse
Affiliation(s)
- Sandeep Dembla
- Institut für Physiologie und Pathophysiologie, Philipps-Universität Marburg, Marburg, Germany
| | - Marc Behrendt
- Institut für Physiologie und Pathophysiologie, Philipps-Universität Marburg, Marburg, Germany
| | - Florian Mohr
- Institut für Physiologie und Pathophysiologie, Philipps-Universität Marburg, Marburg, Germany
| | - Christian Goecke
- Institut für Physiologie und Pathophysiologie, Philipps-Universität Marburg, Marburg, Germany
| | - Julia Sondermann
- Max-Planck-Institut für Experimentelle Medizin, Göttingen, Germany
| | - Franziska M Schneider
- Institut für Physiologie und Pathophysiologie, Philipps-Universität Marburg, Marburg, Germany
| | - Marlene Schmidt
- Institut für Physiologie und Pathophysiologie, Philipps-Universität Marburg, Marburg, Germany
| | - Julia Stab
- Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, Homburg, Germany
| | - Raissa Enzeroth
- Institut für Physiologie und Pathophysiologie, Philipps-Universität Marburg, Marburg, Germany
| | - Michael G Leitner
- Institut für Physiologie und Pathophysiologie, Philipps-Universität Marburg, Marburg, Germany
| | - Paulina Nuñez-Badinez
- Department of Neurophysiology, Center of Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim Heidelberg University, Mannheim, Germany
| | - Jochen Schwenk
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernd Nürnberg
- Abteilung für Pharmakologie und Experimentelle Therapie, Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität Tübingen, Tübingen, Germany
| | - Alejandro Cohen
- Proteomics and Mass Spectrometry Core Facility, Life Sciences Research Institute, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Stephan E Philipp
- Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, Homburg, Germany
| | - Wolfgang Greffrath
- Department of Neurophysiology, Center of Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim Heidelberg University, Mannheim, Germany
| | - Moritz Bünemann
- Institut für Pharmakologie und Klinische Pharmazie, Philipps-Universität Marburg, Marburg, Germany
| | - Dominik Oliver
- Institut für Physiologie und Pathophysiologie, Philipps-Universität Marburg, Marburg, Germany
| | - Eleonora Zakharian
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, United States
| | - Manuela Schmidt
- Max-Planck-Institut für Experimentelle Medizin, Göttingen, Germany
| | - Johannes Oberwinkler
- Institut für Physiologie und Pathophysiologie, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
33
|
Targeting GPCR-Gβγ-GRK2 signaling as a novel strategy for treating cardiorenal pathologies. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1883-1892. [PMID: 28130200 DOI: 10.1016/j.bbadis.2017.01.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/13/2017] [Accepted: 01/18/2017] [Indexed: 02/06/2023]
Abstract
The pathologic crosstalk between the heart and kidney is known as cardiorenal syndrome (CRS). While the specific mechanisms underlying this crosstalk remain poorly understood, CRS is associated with exacerbated dysfunction of either or both organs and reduced survival. Maladaptive fibrotic remodeling is a key component of both heart and kidney failure pathogenesis and progression. G-protein coupled receptor (GPCR) signaling is a crucial regulator of cardiovascular and renal function. Chronic/pathologic GPCR signaling elicits the interaction of the G-protein Gβγ subunit with GPCR kinase 2 (GRK2), targeting the receptor for internalization, scaffolding to pathologic signals, and receptor degradation. Targeting this pathologic Gβγ-GRK2 interaction has been suggested as a possible strategy for the treatment of HF. In the current review, we discuss recent updates in understanding the role of GPCR-Gβγ-GRK2 signaling as a crucial mediator of maladaptive organ remodeling detected in HF and kidney dysfunction, with specific attention to small molecule-mediated inhibition of pathologic Gβγ-GRK2 interactions. Further, we explore the potential of GPCR-Gβγ-GRK2 signaling as a possible therapeutic target for cardiorenal pathologies.
Collapse
|
34
|
Zhang X, Kim KM. Multifactorial Regulation of G Protein-Coupled Receptor Endocytosis. Biomol Ther (Seoul) 2017; 25:26-43. [PMID: 28035080 PMCID: PMC5207461 DOI: 10.4062/biomolther.2016.186] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/21/2016] [Accepted: 11/30/2016] [Indexed: 12/26/2022] Open
Abstract
Endocytosis is a process by which cells absorb extracellular materials via the inward budding of vesicles formed from the plasma membrane. Receptor-mediated endocytosis is a highly selective process where receptors with specific binding sites for extracellular molecules internalize via vesicles. G protein-coupled receptors (GPCRs) are the largest single family of plasma-membrane receptors with more than 1000 family members. But the molecular mechanisms involved in the regulation of GPCRs are believed to be highly conserved. For example, receptor phosphorylation in collaboration with β-arrestins plays major roles in desensitization and endocytosis of most GPCRs. Nevertheless, a number of subsequent studies showed that GPCR regulation, such as that by endocytosis, occurs through various pathways with a multitude of cellular components and processes. This review focused on i) functional interactions between homologous and heterologous pathways, ii) methodologies applied for determining receptor endocytosis, iii) experimental tools to determine specific endocytic routes, iv) roles of small guanosine triphosphate-binding proteins in GPCR endocytosis, and v) role of post-translational modification of the receptors in endocytosis.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Pharmacology Laboratory, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kyeong-Man Kim
- Pharmacology Laboratory, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
35
|
Jean-Alphonse FG, Wehbi VL, Chen J, Noda M, Taboas JM, Xiao K, Vilardaga JP. β 2-adrenergic receptor control of endosomal PTH receptor signaling via Gβγ. Nat Chem Biol 2016; 13:259-261. [PMID: 28024151 DOI: 10.1038/nchembio.2267] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 10/18/2016] [Indexed: 11/09/2022]
Abstract
Cells express several G-protein-coupled receptors (GPCRs) at their surfaces, transmitting simultaneous extracellular hormonal and chemical signals into cells. A comprehensive understanding of mechanisms underlying the integrated signaling response induced by distinct GPCRs is thus required. Here we found that the β2-adrenergic receptor, which induces a short cAMP response, prolongs nuclear cAMP and protein kinase A (PKA) activation by promoting endosomal cAMP production in parathyroid hormone (PTH) receptor signaling through the stimulatory action of G protein Gβγ subunits on adenylate cyclase type 2.
Collapse
Affiliation(s)
- Frédéric G Jean-Alphonse
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Vanessa L Wehbi
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jingming Chen
- Department of Biomedical Engineering, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Masaki Noda
- Department of Molecular Pharmacology, Medical Research Institute Tokyo Medical and Dental University, Bunkyo-Ku, Tokyo, Japan
| | - Juan M Taboas
- Department of Biomedical Engineering, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,McGowan Institute of Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kunhong Xiao
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jean-Pierre Vilardaga
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
36
|
Povstyan OV, Barrese V, Stott JB, Greenwood IA. Synergistic interplay of Gβγ and phosphatidylinositol 4,5-bisphosphate dictates Kv7.4 channel activity. Pflugers Arch 2016; 469:213-223. [PMID: 27981364 PMCID: PMC5222924 DOI: 10.1007/s00424-016-1916-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 11/30/2022]
Abstract
Kv7.4 channels are key determinants of arterial contractility and cochlear mechanosensation that, like all Kv7 channels, have an obligatory requirement for phosphatidylinositol 4,5-bisphosphate (PIP2). βγ G proteins (Gβγ) have been identified as novel positive regulators of Kv7.4. The present study ascertained whether Gβγ increased Kv7.4 open probability through an increased sensitivity to PIP2. In HEK cells stably expressing Kv7.4, PIP2 or Gβγ increased open probability in a concentration dependent manner. Depleting PIP2 prevented any Gβγ-mediated stimulation whilst an array of Gβγ inhibitors prohibited any PIP2-induced current enhancement. A combination of PIP2 and Gβγ at sub-efficacious concentrations increased channel open probability considerably. The stimulatory effects of three Kv7.2-7.5 channel activators were also lost by PIP2 depletion or Gβγ inhibitors. This study alters substantially our understanding of the fundamental processes that dictate Kv7.4 activity, revealing a more complex and subtle paradigm where the reliance on local phosphoinositide is dictated by interaction with Gβγ.
Collapse
Affiliation(s)
- Oleksandr V Povstyan
- Vascular Biology Research Centre, Molecular and Clinical Sciences Institute, St George's, University of London, London, SW17 0RE, UK
| | - Vincenzo Barrese
- Vascular Biology Research Centre, Molecular and Clinical Sciences Institute, St George's, University of London, London, SW17 0RE, UK
| | - Jennifer B Stott
- Vascular Biology Research Centre, Molecular and Clinical Sciences Institute, St George's, University of London, London, SW17 0RE, UK
| | - Iain A Greenwood
- Vascular Biology Research Centre, Molecular and Clinical Sciences Institute, St George's, University of London, London, SW17 0RE, UK.
| |
Collapse
|
37
|
Lu VB, Ikeda SR. Strategies for Investigating G-Protein Modulation of Voltage-Gated Ca2+ Channels. Cold Spring Harb Protoc 2016; 2016:2016/5/pdb.top087072. [PMID: 27140924 DOI: 10.1101/pdb.top087072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
G-protein-coupled receptor modulation of voltage-gated ion channels is a common means of fine-tuning the response of channels to changes in membrane potential. Such modulation impacts physiological processes such as synaptic transmission, and hence therapeutic strategies often directly or indirectly target these pathways. As an exemplar of channel modulation, we examine strategies for investigating G-protein modulation of CaV2.2 or N-type voltage-gated Ca(2+) channels. We focus on biochemical and genetic tools for defining the molecular mechanisms underlying the various forms of CaV2.2 channel modulation initiated following ligand binding to G-protein-coupled receptors.
Collapse
Affiliation(s)
- Van B Lu
- Section on Transmitter Signaling, Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892-9411
| | - Stephen R Ikeda
- Section on Transmitter Signaling, Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892-9411
| |
Collapse
|
38
|
Pal K, Hwang SH, Somatilaka B, Badgandi H, Jackson PK, DeFea K, Mukhopadhyay S. Smoothened determines β-arrestin-mediated removal of the G protein-coupled receptor Gpr161 from the primary cilium. J Cell Biol 2016; 212:861-75. [PMID: 27002170 PMCID: PMC4810300 DOI: 10.1083/jcb.201506132] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 02/11/2016] [Indexed: 02/08/2023] Open
Abstract
Dynamic changes in membrane protein composition of the primary cilium are central to development and homeostasis, but we know little about mechanisms regulating membrane protein flux. Stimulation of the sonic hedgehog (Shh) pathway in vertebrates results in accumulation and activation of the effector Smoothened within cilia and concomitant disappearance of a negative regulator, the orphan G protein-coupled receptor (GPCR), Gpr161. Here, we describe a two-step process determining removal of Gpr161 from cilia. The first step involves β-arrestin recruitment by the signaling competent receptor, which is facilitated by the GPCR kinase Grk2. An essential factor here is the ciliary trafficking and activation of Smoothened, which by increasing Gpr161-β-arrestin binding promotes Gpr161 removal, both during resting conditions and upon Shh pathway activation. The second step involves clathrin-mediated endocytosis, which functions outside of the ciliary compartment in coordinating Gpr161 removal. Mechanisms determining dynamic compartmentalization of Gpr161 in cilia define a new paradigm for down-regulation of GPCRs during developmental signaling from a specialized subcellular compartment.
Collapse
Affiliation(s)
- Kasturi Pal
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Sun-Hee Hwang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Bandarigoda Somatilaka
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Hemant Badgandi
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Peter K Jackson
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Kathryn DeFea
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA 92521
| | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
39
|
On the selectivity of the Gαq inhibitor UBO-QIC: A comparison with the Gαi inhibitor pertussis toxin. Biochem Pharmacol 2016; 107:59-66. [PMID: 26954502 DOI: 10.1016/j.bcp.2016.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/03/2016] [Indexed: 01/14/2023]
Abstract
Gαq inhibitor UBO-QIC (FR900359) is becoming an important pharmacological tool, but its selectivity against other G proteins and their subunits, especially βγ, has not been well characterized. We examined UBO-QIC's effect on diverse signaling pathways mediated via various G protein-coupled receptors (GPCRs) and G protein subunits by comparison with known Gαi inhibitor pertussis toxin. As expected, UBO-QIC inhibited Gαq signaling in all assay systems examined. However, other non-Gαq-events, e.g. Gβγ-mediated intracellular calcium release and inositol phosphate production, following activation of Gi-coupled A1 adenosine and M2 muscarinic acetylcholine receptors, were also blocked by low concentrations of UBO-QIC, indicating that its effect is not limited to Gαq. Thus, UBO-QIC also inhibits Gβγ-mediated signaling similarly to pertussis toxin, although UBO-QIC does not affect Gαi-mediated inhibition or Gαs-mediated stimulation of adenylyl cyclase activity. However, the blockade by UBO-QIC of GPCR signaling, such as carbachol- or adenosine-mediated calcium or inositol phosphate increases, does not always indicate inhibition of Gαq-mediated events, as the βγ subunits released from Gi proteins following the activation of Gi-coupled receptors, e.g. M2 and A1Rs, may produce similar signaling events. Furthermore, UBO-QIC completely inhibited Akt signaling, but only partially blocked ERK1/2 activity stimulated by the Gq-coupled P2Y1R. Thus, we have revealed new aspects of the pharmacological interactions of UBO-QIC.
Collapse
|
40
|
Surve CR, To JY, Malik S, Kim M, Smrcka AV. Dynamic regulation of neutrophil polarity and migration by the heterotrimeric G protein subunits Gαi-GTP and Gβγ. Sci Signal 2016; 9:ra22. [PMID: 26905427 DOI: 10.1126/scisignal.aad8163] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Activation of the Gi family of heterotrimeric guanine nucleotide-binding proteins (G proteins) releases βγ subunits, which are the major transducers of chemotactic G protein-coupled receptor (GPCR)-dependent cell migration. The small molecule 12155 binds directly to Gβγ and activates Gβγ signaling without activating the Gαi subunit in the Gi heterotrimer. We used 12155 to examine the relative roles of Gαi and Gβγ activation in the migration of neutrophils on surfaces coated with the integrin ligand intercellular adhesion molecule-1 (ICAM-1). We found that 12155 suppressed basal migration by inhibiting the polarization of neutrophils and increasing their adhesion to ICAM-1-coated surfaces. GPCR-independent activation of endogenous Gαi and Gβγ with the mastoparan analog Mas7 resulted in normal migration. Furthermore, 12155-treated cells expressing a constitutively active form of Gαi1 became polarized and migrated. The extent and duration of signaling by the second messenger cyclic adenosine monophosphate (cAMP) were enhanced by 12155. Inhibiting the activity of cAMP-dependent protein kinase (PKA) restored the polarity of 12155-treated cells but did not decrease their adhesion to ICAM-1 and failed to restore migration. Together, these data provide evidence for a direct role of activated Gαi in promoting cell polarization through a cAMP-dependent mechanism and in inhibiting adhesion through a cAMP-independent mechanism.
Collapse
Affiliation(s)
- Chinmay R Surve
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14642, USA
| | - Jesi Y To
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| | - Sundeep Malik
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| | - Minsoo Kim
- Department of Immunology and Microbiology, University of Rochester, Rochester, NY 14642, USA
| | - Alan V Smrcka
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14642, USA. Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
41
|
Horinouchi T, Hoshi A, Harada T, Higa T, Karki S, Terada K, Higashi T, Mai Y, Nepal P, Mazaki Y, Miwa S. Endothelin-1 suppresses insulin-stimulated Akt phosphorylation and glucose uptake via GPCR kinase 2 in skeletal muscle cells. Br J Pharmacol 2016; 173:1018-32. [PMID: 26660861 DOI: 10.1111/bph.13406] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/24/2015] [Accepted: 12/03/2015] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND AND PURPOSE Endothelin-1 (ET-1) reduces insulin-stimulated glucose uptake in skeletal muscle, inducing insulin resistance. Here, we have determined the molecular mechanisms underlying negative regulation by ET-1 of insulin signalling. EXPERIMENTAL APPROACH We used the rat L6 skeletal muscle cells fully differentiated into myotubes. Changes in the phosphorylation of Akt was assessed by Western blotting. Effects of ET-1 on insulin-stimulated glucose uptake was assessed with [(3) H]-2-deoxy-d-glucose ([(3) H]2-DG). The C-terminus region of GPCR kinase 2 (GRK2-ct), a dominant negative GRK2, was overexpressed in L6 cells using adenovirus-mediated gene transfer. GRK2 expression was suppressed by transfection of the corresponding short-interfering RNA (siRNA). KEY RESULTS In L6 myotubes, insulin elicited sustained Akt phosphorylation at Thr(308) and Ser(473) , which was suppressed by ET-1. The inhibitory effects of ET-1 were prevented by treatment with a selective ETA receptor antagonist and a Gq protein inhibitor, overexpression of GRK2-ct and knockdown of GRK2. Insulin increased [(3) H]2-DG uptake rate in a concentration-dependent manner. ET-1 noncompetitively antagonized insulin-stimulated [(3) H]2-DG uptake. Blockade of ETA receptors, overexpression of GRK2-ct and knockdown of GRK2 prevented the ET-1-induced suppression of insulin-stimulated [(3) H]2-DG uptake. In L6 myotubes overexpressing FLAG-tagged GRK2, ET-1 facilitated the interaction of endogenous Akt with FLAG-GRK2. CONCLUSIONS AND IMPLICATIONS Activation of ETA receptors with ET-1 suppressed insulin-induced Akt phosphorylation at Thr(308) and Ser(473) and [(3) H]2-DG uptake in a GRK2-dependent manner in skeletal muscle cells. These findings suggest that ETA receptors and GRK2 are potential targets for overcoming insulin resistance.
Collapse
Affiliation(s)
- Takahiro Horinouchi
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Akimasa Hoshi
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Takuya Harada
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Tsunaki Higa
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Sarita Karki
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Koji Terada
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Tsunehito Higashi
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Yosuke Mai
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Prabha Nepal
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Yuichi Mazaki
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| | - Soichi Miwa
- Department of Cellular Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo City, Japan
| |
Collapse
|
42
|
Halls ML, Yeatman HR, Nowell CJ, Thompson GL, Gondin AB, Civciristov S, Bunnett NW, Lambert NA, Poole DP, Canals M. Plasma membrane localization of the μ-opioid receptor controls spatiotemporal signaling. Sci Signal 2016; 9:ra16. [PMID: 26861044 DOI: 10.1126/scisignal.aac9177] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Differential regulation of the μ-opioid receptor (MOR), a G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor, contributes to the clinically limiting effects of opioid analgesics, such as morphine. We used biophysical approaches to quantify spatiotemporal MOR signaling in response to different ligands. In human embryonic kidney (HEK) 293 cells overexpressing MOR, morphine caused a Gβγ-dependent increase in plasma membrane-localized protein kinase C (PKC) activity, which resulted in a restricted distribution of MOR within the plasma membrane and induced sustained cytosolic extracellular signal-regulated kinase (ERK) signaling. In contrast, the synthetic opioid peptide DAMGO ([d-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin) enabled receptor redistribution within the plasma membrane, resulting in transient increases in cytosolic and nuclear ERK activity, and, subsequently, receptor internalization. When Gβγ subunits or PKCα activity was inhibited or when the carboxyl-terminal phosphorylation sites of MOR were mutated, morphine-activated MOR was released from its restricted plasma membrane localization and stimulated a transient increase in cytosolic and nuclear ERK activity in the absence of receptor internalization. Thus, these data suggest that the ligand-induced redistribution of MOR within the plasma membrane, and not its internalization, controls its spatiotemporal signaling.
Collapse
Affiliation(s)
- Michelle L Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Holly R Yeatman
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Cameron J Nowell
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Georgina L Thompson
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Arisbel Batista Gondin
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Srgjan Civciristov
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Nigel W Bunnett
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. Department of Anesthesia and Perioperative Medicine, Monash University, Melbourne, Victoria 3004, Australia. Department of Pharmacology, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Nevin A Lambert
- Department of Toxicology and Pharmacology, Georgia Regents University, Augusta, GA 30912, USA
| | - Daniel P Poole
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Meritxell Canals
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| |
Collapse
|
43
|
Abstract
The variety of physiological functions controlled by dopamine in the brain and periphery is mediated by the D1, D2, D3, D4 and D5 dopamine GPCRs. Drugs acting on dopamine receptors are significant tools for the management of several neuropsychiatric disorders including schizophrenia, bipolar disorder, depression and Parkinson's disease. Recent investigations of dopamine receptor signalling have shown that dopamine receptors, apart from their canonical action on cAMP-mediated signalling, can regulate a myriad of cellular responses to fine-tune the expression of dopamine-associated behaviours and functions. Such signalling mechanisms may involve alternate G protein coupling or non-G protein mechanisms involving ion channels, receptor tyrosine kinases or proteins such as β-arrestins that are classically involved in GPCR desensitization. Another level of complexity is the growing appreciation of the physiological roles played by dopamine receptor heteromers. Applications of new in vivo techniques have significantly furthered the understanding of the physiological functions played by dopamine receptors. Here we provide an update of the current knowledge regarding the complex biology, signalling, physiology and pharmacology of dopamine receptors.
Collapse
|
44
|
Kurowski P, Gawlak M, Szulczyk P. Muscarinic receptor control of pyramidal neuron membrane potential in the medial prefrontal cortex (mPFC) in rats. Neuroscience 2015; 303:474-88. [PMID: 26186898 DOI: 10.1016/j.neuroscience.2015.07.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 07/08/2015] [Indexed: 11/19/2022]
Abstract
Damage to the cholinergic input to the prefrontal cortex has been implicated in neuropsychiatric disorders. Cholinergic endings release acetylcholine, which activates nicotinic and/or G-protein-coupled muscarinic receptors. Muscarinic receptors activate transduction systems, which control cellular effectors that regulate the membrane potential in medial prefrontal cortex (mPFC) neurons. The mechanisms responsible for the cholinergic-dependent depolarization of mPFC layer V pyramidal neurons in slices obtained from young rats were elucidated in this study. Glutamatergic and GABAergic transmission as well as tetrodotoxin (TTX)-sensitive Na(+) and voltage-dependent Ca(++) currents were eliminated. Cholinergic receptor stimulation by carbamoylcholine chloride (CCh; 100 μM) evoked depolarization (10.0 ± 1.3 mV), which was blocked by M1/M4 (pirenzepine dihydrochloride, 2 μM) and M1 (VU 0255035, 5 μM) muscarinic receptor antagonists and was not affected by a nicotinic receptor antagonist (mecamylamine hydrochloride, 10 μM). CCh-dependent depolarization was attenuated by extra- (20 μM) or intracellular (50 μM) application of an inhibitor of the βγ-subunit-dependent transduction system (gallein). It was also inhibited by intracellular application of a βγ-subunit-binding peptide (GRK2i, 10μM). mPFC pyramidal neurons express Nav1.9 channels. CCh-dependent depolarization was abolished in the presence of antibodies against Nav1.9 channels in the intracellular solution and augmented by the presence of ProTx-I toxin (100 nM) in the extracellular solution. CCh-induced depolarization was not affected by the following reagents: intracellular transduction system blockers, including U-73122 (10 μM), chelerythrine chloride (5 μM), SQ 22536 (100 μM) and H-89 (2 μM); channel blockers, including Ba(++) ions (200 μM), apamin (100 nM), flufenamic acid (200 μM), 2-APB (200 μM), SKF 96365 (50 μM), and ZD 7288 (50 μM); and a Na(+)/Ca(++) exchanger blocker, benzamil (20 μM). We conclude that muscarinic M1 receptor-dependent depolarization in mPFC pyramidal neurons is evoked by the activation of Nav1.9 channels and that the signal transduction pathway involves G-protein βγ subunits.
Collapse
Affiliation(s)
- P Kurowski
- Laboratory of Physiology and Pathophysiology, Centre for Preclinical Research and Technology, The Medical University of Warsaw, Banacha 1B, Warsaw 02-097, Poland
| | - M Gawlak
- Laboratory of Physiology and Pathophysiology, Centre for Preclinical Research and Technology, The Medical University of Warsaw, Banacha 1B, Warsaw 02-097, Poland
| | - P Szulczyk
- Laboratory of Physiology and Pathophysiology, Centre for Preclinical Research and Technology, The Medical University of Warsaw, Banacha 1B, Warsaw 02-097, Poland.
| |
Collapse
|
45
|
G-protein βγ subunits are positive regulators of Kv7.4 and native vascular Kv7 channel activity. Proc Natl Acad Sci U S A 2015; 112:6497-502. [PMID: 25941381 DOI: 10.1073/pnas.1418605112] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kv7.4 channels are a crucial determinant of arterial diameter both at rest and in response to endogenous vasodilators. However, nothing is known about the factors that ensure effective activity of these channels. We report that G-protein βγ subunits increase the amplitude and activation rate of whole-cell voltage-dependent K(+) currents sensitive to the Kv7 blocker linopirdine in HEK cells heterologously expressing Kv7.4, and in rat renal artery myocytes. In excised patch recordings, Gβγ subunits (2-250 ng /mL) enhanced the open probability of Kv7.4 channels without changing unitary conductance. Kv7 channel activity was also augmented by stimulation of G-protein-coupled receptors. Gallein, an inhibitor of Gβγ subunits, prevented these stimulatory effects. Moreover, gallein and two other structurally different Gβγ subunit inhibitors (GRK2i and a β-subunit antibody) abolished Kv7 channel currents in the absence of either Gβγ subunit enrichment or G-protein-coupled receptor stimulation. Proximity ligation assay revealed that Kv7.4 and Gβγ subunits colocalized in HEK cells and renal artery smooth muscle cells. Gallein disrupted this colocalization, contracted whole renal arteries to a similar degree as the Kv7 inhibitor linopirdine, and impaired isoproterenol-induced relaxations. Furthermore, mSIRK, which disassociates Gβγ subunits from α subunits without stimulating nucleotide exchange, relaxed precontracted arteries in a linopirdine-sensitive manner. These results reveal that Gβγ subunits are fundamental for Kv7.4 activation and crucial for vascular Kv7 channel activity, which has major consequences for the regulation of arterial tone.
Collapse
|
46
|
Sierra-Fonseca JA, Najera O, Martinez-Jurado J, Walker EM, Varela-Ramirez A, Khan AM, Miranda M, Lamango NS, Roychowdhury S. Nerve growth factor induces neurite outgrowth of PC12 cells by promoting Gβγ-microtubule interaction. BMC Neurosci 2014; 15:132. [PMID: 25552352 PMCID: PMC4302597 DOI: 10.1186/s12868-014-0132-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 11/27/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Assembly and disassembly of microtubules (MTs) is critical for neurite outgrowth and differentiation. Evidence suggests that nerve growth factor (NGF) induces neurite outgrowth from PC12 cells by activating the receptor tyrosine kinase, TrkA. G protein-coupled receptors (GPCRs) as well as heterotrimeric G proteins are also involved in regulating neurite outgrowth. However, the possible connection between these pathways and how they might ultimately converge to regulate the assembly and organization of MTs during neurite outgrowth is not well understood. RESULTS Here, we report that Gβγ, an important component of the GPCR pathway, is critical for NGF-induced neuronal differentiation of PC12 cells. We have found that NGF promoted the interaction of Gβγ with MTs and stimulated MT assembly. While Gβγ-sequestering peptide GRK2i inhibited neurite formation, disrupted MTs, and induced neurite damage, the Gβγ activator mSIRK stimulated neurite outgrowth, which indicates the involvement of Gβγ in this process. Because we have shown earlier that prenylation and subsequent methylation/demethylation of γ subunits are required for the Gβγ-MTs interaction in vitro, small-molecule inhibitors (L-28 and L-23) targeting prenylated methylated protein methyl esterase (PMPMEase) were tested in the current study. We found that these inhibitors disrupted Gβγ and ΜΤ organization and affected cellular morphology and neurite outgrowth. In further support of a role of Gβγ-MT interaction in neuronal differentiation, it was observed that overexpression of Gβγ in PC12 cells induced neurite outgrowth in the absence of added NGF. Moreover, overexpressed Gβγ exhibited a pattern of association with MTs similar to that observed in NGF-differentiated cells. CONCLUSIONS Altogether, our results demonstrate that βγ subunit of heterotrimeric G proteins play a critical role in neurite outgrowth and differentiation by interacting with MTs and modulating MT rearrangement.
Collapse
Affiliation(s)
- Jorge A Sierra-Fonseca
- />Neuromodulation Disorders Cluster, Border Biomedical Research Center, University of Texas, El Paso, TX 79968 USA
- />Department of Biological Sciences, University of Texas, El Paso, TX 79968 USA
- />Present Address: Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Omar Najera
- />Neuromodulation Disorders Cluster, Border Biomedical Research Center, University of Texas, El Paso, TX 79968 USA
- />Department of Biological Sciences, University of Texas, El Paso, TX 79968 USA
| | - Jessica Martinez-Jurado
- />Neuromodulation Disorders Cluster, Border Biomedical Research Center, University of Texas, El Paso, TX 79968 USA
- />Department of Biological Sciences, University of Texas, El Paso, TX 79968 USA
| | - Ellen M Walker
- />Neuromodulation Disorders Cluster, Border Biomedical Research Center, University of Texas, El Paso, TX 79968 USA
- />Department of Biological Sciences, University of Texas, El Paso, TX 79968 USA
| | - Armando Varela-Ramirez
- />Cytometry Screening and Imaging Core facility, Border Biomedical Research Center, University of Texas, El Paso, TX 79968 USA
- />Department of Biological Sciences, University of Texas, El Paso, TX 79968 USA
| | - Arshad M Khan
- />Neuromodulation Disorders Cluster, Border Biomedical Research Center, University of Texas, El Paso, TX 79968 USA
- />Department of Biological Sciences, University of Texas, El Paso, TX 79968 USA
| | - Manuel Miranda
- />Neuromodulation Disorders Cluster, Border Biomedical Research Center, University of Texas, El Paso, TX 79968 USA
- />Department of Biological Sciences, University of Texas, El Paso, TX 79968 USA
| | - Nazarius S Lamango
- />College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307 USA
| | - Sukla Roychowdhury
- />Neuromodulation Disorders Cluster, Border Biomedical Research Center, University of Texas, El Paso, TX 79968 USA
- />Department of Biological Sciences, University of Texas, El Paso, TX 79968 USA
| |
Collapse
|
47
|
Keum D, Baek C, Kim DI, Kweon HJ, Suh BC. Voltage-dependent regulation of CaV2.2 channels by Gq-coupled receptor is facilitated by membrane-localized β subunit. ACTA ACUST UNITED AC 2014; 144:297-309. [PMID: 25225550 PMCID: PMC4178937 DOI: 10.1085/jgp.201411245] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The pathway through which preferentially GqPCRs inhibit CaV2.2 channels depends on which β subunits are present. G protein–coupled receptors (GPCRs) signal through molecular messengers, such as Gβγ, Ca2+, and phosphatidylinositol 4,5-bisphosphate (PIP2), to modulate N-type voltage-gated Ca2+ (CaV2.2) channels, playing a crucial role in regulating synaptic transmission. However, the cellular pathways through which GqPCRs inhibit CaV2.2 channel current are not completely understood. Here, we report that the location of CaV β subunits is key to determining the voltage dependence of CaV2.2 channel modulation by GqPCRs. Application of the muscarinic agonist oxotremorine-M to tsA-201 cells expressing M1 receptors, together with CaV N-type α1B, α2δ1, and membrane-localized β2a subunits, shifted the current-voltage relationship for CaV2.2 activation 5 mV to the right and slowed current activation. Muscarinic suppression of CaV2.2 activity was relieved by strong depolarizing prepulses. Moreover, when the C terminus of β-adrenergic receptor kinase (which binds Gβγ) was coexpressed with N-type channels, inhibition of CaV2.2 current after M1 receptor activation was markedly reduced and delayed, whereas the delay between PIP2 hydrolysis and inhibition of CaV2.2 current was decreased. When the Gβγ-insensitive CaV2.2 α1C-1B chimera was expressed, voltage-dependent inhibition of calcium current was virtually abolished, suggesting that M1 receptors act through Gβγ to inhibit CaV2.2 channels bearing membrane-localized CaV β2a subunits. Expression of cytosolic β subunits such as β2b and β3, as well as the palmitoylation-negative mutant β2a(C3,4S), reduced the voltage dependence of M1 muscarinic inhibition of CaV2.2 channels, whereas it increased inhibition mediated by PIP2 depletion. Together, our results indicate that, with membrane-localized CaV β subunits, CaV2.2 channels are subject to Gβγ-mediated voltage-dependent inhibition, whereas cytosol-localized β subunits confer more effective PIP2-mediated voltage-independent regulation. Thus, the voltage dependence of GqPCR regulation of calcium channels can be determined by the location of isotype-specific CaV β subunits.
Collapse
Affiliation(s)
- Dongil Keum
- Department of Brain Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, South Korea
| | - Christina Baek
- Department of Brain Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, South Korea
| | - Dong-Il Kim
- Department of Brain Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, South Korea
| | - Hae-Jin Kweon
- Department of Brain Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, South Korea
| | - Byung-Chang Suh
- Department of Brain Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, South Korea
| |
Collapse
|
48
|
Meiri D, Marshall CB, Mokady D, LaRose J, Mullin M, Gingras AC, Ikura M, Rottapel R. Mechanistic insight into GPCR-mediated activation of the microtubule-associated RhoA exchange factor GEF-H1. Nat Commun 2014; 5:4857. [PMID: 25209408 DOI: 10.1038/ncomms5857] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 07/31/2014] [Indexed: 12/15/2022] Open
Abstract
The RhoGEF GEF-H1 can be sequestered in an inactive state on polymerized microtubules by the dynein motor light-chain Tctex-1. Phosphorylation of GEF-H1 Ser885 by PKA or PAK kinases creates an inhibitory 14-3-3-binding site. Here we show a new mode of GEF-H1 activation in response to the G-protein-coupled receptor (GPCR) ligands lysophosphatidic acid (LPA) or thrombin that is independent of microtubule depolymerization. LPA/thrombin stimulates disassembly of the GEF-H1:dynein multi-protein complex through the concerted action of Gα and Gβγ. Gα binds directly to GEF-H1 and displaces it from Tctex-1, while Gβγ binds to Tctex-1 and disrupts its interaction with the dynein intermediate chain, resulting in the release of GEF-H1. Full activation of GEF-H1 requires dephosphorylation of Ser885 by PP2A, which is induced by thrombin. The coordinated displacement of GEF-H1 from microtubules by G-proteins and its dephosphorylation by PP2A demonstrate a multistep GEF-H1 activation and present a unique mechanism coupling GPCR signalling to Rho activation.
Collapse
Affiliation(s)
- David Meiri
- Department of Biology, Technion Israel Institute of Technology, Haifa 32000, Israel
| | - Christopher B Marshall
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, 101 College Street, Room 12-704, Toronto Medical Discovery Tower, Toronto, Ontario, Canada M5G 1L7
| | - Daphna Mokady
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, 101 College Street, Room 12-704, Toronto Medical Discovery Tower, Toronto, Ontario, Canada M5G 1L7
| | - Jose LaRose
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, 101 College Street, Room 12-704, Toronto Medical Discovery Tower, Toronto, Ontario, Canada M5G 1L7
| | - Michael Mullin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Room 992A, Toronto, Ontario, Canada M5G 1X5
| | - Anne-Claude Gingras
- 1] Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Room 992A, Toronto, Ontario, Canada M5G 1X5 [2] Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Mitsuhiko Ikura
- 1] Princess Margaret Cancer Centre, University Health Network, University of Toronto, 101 College Street, Room 12-704, Toronto Medical Discovery Tower, Toronto, Ontario, Canada M5G 1L7 [2] Department of Medical Biophysics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Robert Rottapel
- 1] Princess Margaret Cancer Centre, University Health Network, University of Toronto, 101 College Street, Room 12-704, Toronto Medical Discovery Tower, Toronto, Ontario, Canada M5G 1L7 [2] Department of Medical Biophysics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8 [3] Department of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8 [4] Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8 [5] Division of Rheumatology, St Michael's Hospital, 30 Bond Street, Toronto, Ontario, Canada M5B 1W8
| |
Collapse
|
49
|
Min C, Zheng M, Zhang X, Caron MG, Kim KM. Novel roles for β-arrestins in the regulation of pharmacological sequestration to predict agonist-induced desensitization of dopamine D3 receptors. Br J Pharmacol 2014; 170:1112-29. [PMID: 23992580 DOI: 10.1111/bph.12357] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 07/24/2013] [Accepted: 08/18/2013] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE In addition to typical GPCR kinase (GRK)-/β-arrestin-dependent internalization, dopamine D3 receptor employed an additional GRK-independent sequestration pathway. In this study, we investigated the molecular mechanism of this novel sequestration pathway. EXPERIMENTAL APPROACH Radioligand binding, flow cytometry and cell surface biotinylation assay were used to characterize trafficking properties of D2 and D3 receptors. Serine/threonine and N-linked glycosylation mutants of the D3 receptor were utilized to locate receptor regions involved in pharmacological sequestration and desensitization. Various point mutants of the D2 and D3 receptors, whose sequestration and desensitization properties were altered, were combined with knockdown cells of GRKs or β-arrestins to functionally correlate pharmacological sequestration and desensitization. KEY RESULTS The D3 receptor, but not the D2 receptor, showed characteristic trafficking behaviour in which receptors were shifted towards the more hydrophobic domains within the plasma membrane without translocation into other intracellular compartments. Among various amino acid residues tested, S145/S146, C147 and N12/19 were involved in pharmacological sequestration and receptor desensitization. Both pharmacological sequestration and desensitization of D3 receptor required β-arrestins, and functional relationship was observed between two processes when it was tested for D3 receptor variants and agonists. CONCLUSIONS AND IMPLICATIONS Pharmacological sequestration of D3 receptor accompanies movement of cell surface receptors into a more hydrophobic fraction within the plasma membrane and renders D3 receptor inaccessible to hydrophilic ligands. Pharmacological sequestration is correlated with desensitization of the D3 receptor in a Gβγ- and β-arrestin-dependent manner. This study provides new insights into molecular mechanism governing GPCR trafficking and desensitization.
Collapse
Affiliation(s)
- C Min
- Department of Pharmacology, College of Pharmacy, Drug Development Research Institute, Chonnam National University, Gwang-Ju, 500-757, Korea
| | | | | | | | | |
Collapse
|
50
|
White SM, North LM, Haines E, Goldberg M, Sullivan LM, Pressly JD, Weber DS, Park F, Regner KR. G-protein βγ subunit dimers modulate kidney repair after ischemia-reperfusion injury in rats. Mol Pharmacol 2014; 86:369-77. [PMID: 25028481 DOI: 10.1124/mol.114.092346] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Heterotrimeric G-proteins play a crucial role in the control of renal epithelial cell function during homeostasis and in response to injury. In this report, G-protein βγ subunit (Gβγ) dimer activity was evaluated during the process of tubular repair after renal ischemia-reperfusion injury (IRI) in male Sprague Dawley rats. Rats were treated with a small molecule inhibitor of Gβγ activity, gallein (30 or 100 mg/kg), 1 hour after reperfusion and every 24 hours for 3 additional days. After IRI, renal dysfunction was prolonged after the high-dose gallein treatment in comparison with vehicle treatment during the 7-day recovery period. Renal tubular repair in the outer medulla 7 days after IRI was significantly (P < 0.001) attenuated after treatment with high-dose gallein (100 mg/kg) in comparison with low-dose gallein (30 mg/kg), or the vehicle and fluorescein control groups. Gallein treatment significantly reduced (P < 0.05) the number of proliferating cell nuclear antigen-positive tubular epithelial cells at 24 hours after the ischemia-reperfusion phase in vivo. In vitro application of gallein on normal rat kidney (NRK-52E) proximal tubule cells significantly reduced (P < 0.05) S-phase cell cycle entry compared with vehicle-treated cells as determined by 5'-bromo-2'-deoxyuridine incorporation. Taken together, these data suggest that Gβγ signaling contributes to the maintenance and repair of renal tubular epithelium and may be a novel therapeutic target for the development of drugs to treat acute kidney injury.
Collapse
Affiliation(s)
- Sarah M White
- Department of Medicine, Division of Nephrology (S.M.W., L.M.N., E.H., M.G., K.R.R.), Cardiovascular Research Center (K.R.R.), Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, Tennessee (J.D.P., F.P.); and Department of Physiology, University of South Alabama, Mobile, Alabama (L.M.S., D.S.W.)
| | - Lauren M North
- Department of Medicine, Division of Nephrology (S.M.W., L.M.N., E.H., M.G., K.R.R.), Cardiovascular Research Center (K.R.R.), Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, Tennessee (J.D.P., F.P.); and Department of Physiology, University of South Alabama, Mobile, Alabama (L.M.S., D.S.W.)
| | - Emily Haines
- Department of Medicine, Division of Nephrology (S.M.W., L.M.N., E.H., M.G., K.R.R.), Cardiovascular Research Center (K.R.R.), Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, Tennessee (J.D.P., F.P.); and Department of Physiology, University of South Alabama, Mobile, Alabama (L.M.S., D.S.W.)
| | - Megan Goldberg
- Department of Medicine, Division of Nephrology (S.M.W., L.M.N., E.H., M.G., K.R.R.), Cardiovascular Research Center (K.R.R.), Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, Tennessee (J.D.P., F.P.); and Department of Physiology, University of South Alabama, Mobile, Alabama (L.M.S., D.S.W.)
| | - Lydia M Sullivan
- Department of Medicine, Division of Nephrology (S.M.W., L.M.N., E.H., M.G., K.R.R.), Cardiovascular Research Center (K.R.R.), Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, Tennessee (J.D.P., F.P.); and Department of Physiology, University of South Alabama, Mobile, Alabama (L.M.S., D.S.W.)
| | - Jeffrey D Pressly
- Department of Medicine, Division of Nephrology (S.M.W., L.M.N., E.H., M.G., K.R.R.), Cardiovascular Research Center (K.R.R.), Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, Tennessee (J.D.P., F.P.); and Department of Physiology, University of South Alabama, Mobile, Alabama (L.M.S., D.S.W.)
| | - David S Weber
- Department of Medicine, Division of Nephrology (S.M.W., L.M.N., E.H., M.G., K.R.R.), Cardiovascular Research Center (K.R.R.), Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, Tennessee (J.D.P., F.P.); and Department of Physiology, University of South Alabama, Mobile, Alabama (L.M.S., D.S.W.)
| | - Frank Park
- Department of Medicine, Division of Nephrology (S.M.W., L.M.N., E.H., M.G., K.R.R.), Cardiovascular Research Center (K.R.R.), Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, Tennessee (J.D.P., F.P.); and Department of Physiology, University of South Alabama, Mobile, Alabama (L.M.S., D.S.W.)
| | - Kevin R Regner
- Department of Medicine, Division of Nephrology (S.M.W., L.M.N., E.H., M.G., K.R.R.), Cardiovascular Research Center (K.R.R.), Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, Tennessee (J.D.P., F.P.); and Department of Physiology, University of South Alabama, Mobile, Alabama (L.M.S., D.S.W.)
| |
Collapse
|