1
|
Schwab B, Yin J. Computational multigene interactions in virus growth and infection spread. Virus Evol 2023; 10:vead082. [PMID: 38361828 PMCID: PMC10868543 DOI: 10.1093/ve/vead082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/29/2023] [Accepted: 12/19/2023] [Indexed: 02/17/2024] Open
Abstract
Viruses persist in nature owing to their extreme genetic heterogeneity and large population sizes, which enable them to evade host immune defenses, escape antiviral drugs, and adapt to new hosts. The persistence of viruses is challenging to study because mutations affect multiple virus genes, interactions among genes in their impacts on virus growth are seldom known, and measures of viral fitness are yet to be standardized. To address these challenges, we employed a data-driven computational model of cell infection by a virus. The infection model accounted for the kinetics of viral gene expression, functional gene-gene interactions, genome replication, and allocation of host cellular resources to produce progeny of vesicular stomatitis virus, a prototype RNA virus. We used this model to computationally probe how interactions among genes carrying up to eleven deleterious mutations affect different measures of virus fitness: single-cycle growth yields and multicycle rates of infection spread. Individual mutations were implemented by perturbing biophysical parameters associated with individual gene functions of the wild-type model. Our analysis revealed synergistic epistasis among deleterious mutations in their effects on virus yield; so adverse effects of single deleterious mutations were amplified by interaction. For the same mutations, multicycle infection spread indicated weak or negligible epistasis, where single mutations act alone in their effects on infection spread. These results were robust to simulation in high- and low-host resource environments. Our work highlights how different types and magnitudes of epistasis can arise for genetically identical virus variants, depending on the fitness measure. More broadly, gene-gene interactions can differently affect how viruses grow and spread.
Collapse
Affiliation(s)
- Bradley Schwab
- Wisconsin Institute for Discovery, Chemical and Biological Engineering, University of Wisconsin-Madison, 330 N. Orchard Street, Madison, WI 53715, USA
| | - John Yin
- Wisconsin Institute for Discovery, Chemical and Biological Engineering, University of Wisconsin-Madison, 330 N. Orchard Street, Madison, WI 53715, USA
| |
Collapse
|
2
|
Dorokhov YL, Alexandrova NM, Miroshnichenko NA, Atabekov JG. Stimulation by aurintricarboxylic acid of tobacco mosaic virus-specific RNA synthesis and production of informosome-like infection-specific ribonucleoprotein. Virology 2008; 135:395-405. [PMID: 18639817 DOI: 10.1016/0042-6822(84)90195-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/1983] [Accepted: 02/11/1984] [Indexed: 11/19/2022]
Abstract
It was shown that aurintricarboxylic acid (ATA), a well-known inhibitor of protein synthesis, markedly stimulates the synthesis of tobacco mosaic virus (TMV)-specific RNA species of the intermediate (I) class (apparent molecular weights 1.1-1.3 x 10(6) and 0.6-0.8 x 10(6)). No stimulation by ATA of full-length genomic TMV RNA or the subgenomic TMV RNA coding for TMV coat protein was detected. Informosome-like infection-specific ribonucleoprotein (vRNP) particles different from mature TMV particles were found in the TMV-infected cells (Yu. L. Dorokhov, N. M. Alexandrova, N. A. Miroshnichenko, and J. G. Atabekov, 1983, Virology 127, 237-252). It is shown here that [3H]uridine incorporation into vRNP RNAs was markedly stimulated in the presence of ATA. vRNP can be released from the TMV-specific polyribosomes by EDTA treatment, which suggests that it is involved in the translation process. The results of the pulse-chase experiments (including those in which TMV RNA synthesis is blocked by 2-thiouracil) suggest that vRNP does not serve as a precursor for mature virion.
Collapse
Affiliation(s)
- Y L Dorokhov
- Laboratory of Molecular Biology and Bioorganic Chemistry, and Department of Virology, Lomonosov State University, USSR
| | | | | | | |
Collapse
|
3
|
Lim KI, Lang T, Lam V, Yin J. Model-based design of growth-attenuated viruses. PLoS Comput Biol 2006; 2:e116. [PMID: 16948530 PMCID: PMC1557587 DOI: 10.1371/journal.pcbi.0020116] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Accepted: 07/24/2006] [Indexed: 11/18/2022] Open
Abstract
Live-virus vaccines activate both humoral and cell-mediated immunity, require only a single boosting, and generally provide longer immune protection than killed or subunit vaccines. However, growth of live-virus vaccines must be attenuated to minimize their potential pathogenic effects, and mechanisms of attenuation by conventional serial-transfer viral adaptation are not well-understood. New methods of attenuation based on rational engineering of viral genomes may offer a potentially greater control if one can link defined genetic modifications to changes in virus growth. To begin to establish such links between genotype and growth phenotype, we developed a computer model for the intracellular growth of vesicular stomatitis virus (VSV), a well-studied, nonsegmented, negative-stranded RNA virus. Our model incorporated established regulatory mechanisms of VSV while integrating key wild-type infection steps: hijacking of host resources, transcription, translation, and replication, followed by assembly and release of progeny VSV particles. Generalization of the wild-type model to allow for genome rearrangements matched the experimentally observed attenuation ranking for recombinant VSV strains that altered the genome position of their nucleocapsid gene. Finally, our simulations captured previously reported experimental results showing how altering the positions of other VSV genes has the potential to attenuate the VSV growth while overexpressing the immunogenic VSV surface glycoprotein. Such models will facilitate the engineering of new live-virus vaccines by linking genomic manipulations to controlled changes in virus gene-expression and growth.
Collapse
Affiliation(s)
- Kwang-il Lim
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Tobias Lang
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Vy Lam
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - John Yin
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
4
|
Coccia E, Krust B, Hovanessian A. Specific inhibition of viral protein synthesis in HIV-infected cells in response to interferon treatment. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31623-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
5
|
Garfinkel M, Katze M. Translational control by influenza virus. Selective and cap-dependent translation of viral mRNAs in infected cells. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50435-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
6
|
Agy MB, Wambach M, Foy K, Katze MG. Expression of cellular genes in CD4 positive lymphoid cells infected by the human immunodeficiency virus, HIV-1: evidence for a host protein synthesis shut-off induced by cellular mRNA degradation. Virology 1990; 177:251-8. [PMID: 2353454 DOI: 10.1016/0042-6822(90)90478-a] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have investigated the effects of HIV-1 infection on cellular gene expression in two different human CD4 positive lymphoid cell lines: CEM and C8166 cells. As a prerequisite for this study it was necessary to develop virus-cell culture systems in which greater than 90% of the cells could be near synchronously infected by HIV-1. Further, since HIV-1 is a cytopathic virus, it was essential that cellular gene expression be examined in virus-infected cells which remained viable. After meeting these requirements, we measured cellular RNA and protein levels in virus-infected lymphocytes. In the cell lines examined the levels of cellular protein synthesis markedly decreased at times when viral-specific protein synthesis was increasing. Both Northern and slot blot analysis revealed that the declines in host protein synthesis were due, at least in part, to declines in steady state levels of cellular mRNAs. Runoff assays with nuclei isolated from infected cells demonstrated that the decreases in cellular mRNA levels were not due to declines in cellular RNA polymerase II transcription rates. To determine if the decreases in cellular protein synthesis also might be due to specific translational controls exerted by HIV-1, we compared the polysome association of cellular RNAs in infected and uninfected C8166 cells. The polysome distribution of cellular mRNAs was virtually identical in mock- and HIV-1-infected cells although, as expected, the total amount of cellular mRNAs were significantly lower in virus-infected cells. Taken together, these results suggest that HIV-1 may encode mechanisms to inhibit cellular protein synthesis, likely as a result of cellular mRNA degradation, rather than specific blocks in cellular mRNA translation.
Collapse
Affiliation(s)
- M B Agy
- Department of Microbiology, University of Washington, Seattle 98195
| | | | | | | |
Collapse
|
7
|
Homann HE, Hofschneider PH, Neubert WJ. Sendai virus gene expression in lytically and persistently infected cells. Virology 1990; 177:131-40. [PMID: 1693801 DOI: 10.1016/0042-6822(90)90467-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sendai virus RNA species were quantitated in lytically and persistently infected cultured cells by Northern blot hybridization to region- and strand-specific cloned cDNA probes. Levels of NP, P and M mRNA in lytically infected cells were equally high, but F and HN mRNA were present in about 3-fold, and L mRNA in 30-fold, lower amounts, reflecting transcriptional attenuation especially at the M-F and HN-L gene junction. Two persistently infected cell lines, which release only 1% of the virus particles of lytically infected cells, were shown to contain only 4- to 8-fold-less amounts of each viral mRNA and 2- to 3-fold-less genomic RNA than lytically infected cells. Additionally, transcription was neither defective nor more attenuated as compared to the lytical infection. Taken together the results suggest the existence of an additional regulatory mechanism for the virus release. A cell-associated state of infection therefore seems to be achievable by a relatively weak general reduction of the copy numbers of viral mRNA and genomic RNA.
Collapse
Affiliation(s)
- H E Homann
- Abteilung für Virusforschung, Max-Planck-Institut für Biochemie, Martinsried, Federal Republic of Germany
| | | | | |
Collapse
|
8
|
Lawson TG, Cladaras MH, Ray BK, Lee KA, Abramson RD, Merrick WC, Thach RE. Discriminatory interaction of purified eukaryotic initiation factors 4F plus 4A with the 5' ends of reovirus messenger RNAs. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68637-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
9
|
Abstract
This article provides an overview of the use of mathematical and computer modelling in furthering the understanding of protein synthesis. In particular, we discuss issues such as the nature of the rate limiting step(s), error rates, tRNA-codon adaptation, codon bias, attenuation control, and problems of selection and error corrections, focussing on their theoretical treatment.
Collapse
Affiliation(s)
- G von Heijne
- Department of Theoretical Physics, Royal Institute of Technology, Stockholm, Sweden
| | | | | |
Collapse
|
10
|
Hanic-Joyce P, Singer R, Johnston G. Molecular characterization of the yeast PRT1 gene in which mutations affect translation initiation and regulation of cell proliferation. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)61583-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
11
|
Katze MG, DeCorato D, Krug RM. Cellular mRNA translation is blocked at both initiation and elongation after infection by influenza virus or adenovirus. J Virol 1986; 60:1027-39. [PMID: 3023655 PMCID: PMC253342 DOI: 10.1128/jvi.60.3.1027-1039.1986] [Citation(s) in RCA: 75] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
During influenza virus infection, protein synthesis is maintained at high levels and a dramatic switch from cellular to viral protein synthesis occurs despite the presence of high levels of functional cellular mRNAs in the cytoplasm of infected cells (M. G. Katze and R. M. Krug, Mol. Cell. Biol. 4:2198-2206, 1984). To determine the step at which the block in cellular mRNA translation occurs, we compared the polysome association of several representative cellular mRNAs (actin, glyceraldehyde-3-phosphate dehydrogenase, and pHe7 mRNAs) in infected and uninfected HeLa cells. We showed that most of these cellular mRNAs remained polysome associated after influenza viral infection, indicating that the elongation of the proteins encoded by these cellular mRNAs was severely inhibited. Because the polysomes containing these cellular mRNAs did not increase in size but either remained the same size or decreased in size, the initiation step in cellular protein synthesis must also have been defective. Several control experiments established that the cellular mRNAs sedimenting in the polysome region of sucrose gradients were in fact associated with polyribosomes. Most definitively, puromycin treatment of infected cells caused the dissociation of polysomes and the release of cellular, as well as viral, mRNAs from the polysomes, indicating that the cellular mRNAs were associated with polysomes that were capable of forming at least a single peptide bond. A similar analysis was performed with HeLa cells infected by adenovirus, which also dramatically shuts down cellular protein synthesis. Again, it was found that most of the cellular mRNAs, which were translatable in reticulocyte extracts, remained associated with polysomes and that there was a combined initiation-elongation block to cellular protein synthesis. In cells infected by both adenovirus and influenza virus, influenza viral mRNAs were on larger polysomes than were several late adenoviral mRNAs with comparably sized coding regions. In addition, after influenza virus superinfection of cells infected by the adenovirus mutant dl331, a situation in which there is a limitation in the amount of functional initiation factor eIF-2 (M. G. Katze, B. M. Detjen, B. Safer, and R. M. Krug, Mol. Cell. Biol. 6:1741-1750, 1986), influenza viral mRNAs, but not late adenoviral mRNAs, were on polysomes. These results indicate that influenza viral mRNAs are better initiators of translation than are late adenoviral mRNAs.
Collapse
|
12
|
Friesen PD, Rueckert RR. Early and late functions in a bipartite RNA virus: evidence for translational control by competition between viral mRNAs. J Virol 1984; 49:116-24. [PMID: 6690707 PMCID: PMC255432 DOI: 10.1128/jvi.49.1.116-124.1984] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
It has been shown previously that Drosophila cells infected with black beetle virus synthesize an early viral protein, protein A, a putative element of the viral RNA polymerase. Synthesis of protein A declines sharply by 6 h postinfection, whereas synthesis of viral coat protein alpha continues for at least 14 h. The early shutoff in protein A synthesis occurred despite the presence of equimolar proportions of the mRNAs for proteins A and alpha, RNAs 1 and 2, respectively. We have now been able to mimic this translational discrimination in a cell-free protein-synthesizing system prepared from infected or uninfected Drosophila cells, thus allowing further analysis of the mechanism by which translation of RNA 1 is selectively turned off. The results revealed no evidence for control by virus-encoded proteins or by virus-induced modification of mRNAs by the cell-free system. Rather, with increasing RNA concentration, viral RNA 1 was outcompeted by its genomic partner, RNA 2. This suggests that the early shutoff in intracellular synthesis of protein A is due to decreasing ability of RNA 1 to compete for a rate-controlling translational factor(s) as the concentration of viral RNAs accumulates within the infected cell.
Collapse
|
13
|
|
14
|
The role of mRNA competition in regulating translation. III. Comparison of in vitro and in vivo results. J Biol Chem 1981. [DOI: 10.1016/s0021-9258(19)68470-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
15
|
Godefroy-Colburn T, Thach R. The role of mRNA competition in regulating translation. IV. Kinetic model. J Biol Chem 1981. [DOI: 10.1016/s0021-9258(19)68471-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
16
|
Ignotz GG, Hokari S, DePhilip RM, Tsukada K, Lieberman I. Lodish model and regulation of ribosomal protein synthesis by insulin-deficient chick embryo fibroblasts. Biochemistry 1981; 20:2550-8. [PMID: 7016179 DOI: 10.1021/bi00512a029] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The production of ribosomal proteins in chick embryo fibroblasts that have been deprived of insulin is depressed in a much greater degree than that of most or all other cell proteins. Previous observations ruled out explanations for the preferential decrease in ribosomal protein formation that depend upon a selective destruction of ribosomal protein messages or a regulatory role for nascent ribosomal ribonucleic acid. The proposition has now been examined that ribosomal protein messenger ribonucleic acids (mRNAs) in the hormone-deficient chick embryo cells have a lower affinity for a limiting, early acting component of the initiating machinery than do most other cell messages and, in consequence, suffer from a translational disadvantage. The approach that was used depends upon the findings of Lodish and others that all mRNAs are not initiated with equal ease, that inhibitors of elongation favor the initiation of low-affinity mRNAs, and that agents that dampen an early step in initiation discriminate against the low-affinity messages. The idea was tested by comparing the effects of various inhibitors on the rates of synthesis of total cell protein and individual nonribosomal proteins, on the one hand, with those of individual ribosomal proteins, on the other. The results fit the Lodish model and are consistent with the conclusions that ribosomal protein mRNAs are more poorly initiated in the resulting fibroblasts than are most or all other cell messages and that this condition is largely or entirely responsible for the low rate of ribosomal protein formation.
Collapse
|
17
|
Iverson LE, Rose JK. Localized attenuation and discontinuous synthesis during vesicular stomatitis virus transcription. Cell 1981; 23:477-84. [PMID: 6258804 DOI: 10.1016/0092-8674(81)90143-4] [Citation(s) in RCA: 250] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We have analyzed the process of partial transcription termination (attenuation), which results in nonequimolar synthesis of vesicular stomatitis virus (VSV) mRNAs during sequential transcription. Comparison of the level of transcription of defined regions of the VSV genome by DNA-RNA hybridization shows that attenuation occurs at or near the intergenic regions, rather than nonspecifically throughout the genome. Transcription decreases 29-33% across the junctions of the N-NS, NS-M and M-G genes, resulting in a cumulative effect on gene expression. This is the first example of a site-specific attenuation mechanism in a eucaryotic system. Analysis of the kinetics of transcription in vitro shows that transcription appears to be discontinuous, with significant pauses (2.5-5.7 min) occurring at or near the intergenic regions. Such pauses may occur during polyadenylation by a "slippage" mechanism at the U7 sequences present at each gene junction, or may be due to some other process, such as initiation or capping, which is slow relative to transcription.
Collapse
|
18
|
Kozak M. Mechanism of mRNA recognition by eukaryotic ribosomes during initiation of protein synthesis. Curr Top Microbiol Immunol 1981; 93:81-123. [PMID: 7026182 DOI: 10.1007/978-3-642-68123-3_5] [Citation(s) in RCA: 83] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
19
|
Brown AJ, Hardman N. Utilization of polyadenylate mRNA during growth and starvation in Physarum polycephalum. EUROPEAN JOURNAL OF BIOCHEMISTRY 1980; 110:413-20. [PMID: 6108214 DOI: 10.1111/j.1432-1033.1980.tb04882.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The effect of growth on the efficiency of utilization of poly(A)-containing mRNA for translation has been investigated in microplasmodia of Physarum polycephalum. Measurement of the relative proportions of poly(A)-rich mRNA in polysomal and post-polysomal fractions isolated by sucrose density gradient centrifugation reveals that newly synthesized poly(A)-rich mRNA is present in increasing proportions in the polysomal region during exponential growth. However, the proportion of long-lived poly(A)-rich mRNA observed in actively-translating polysomes declines as starvation approaches. The ribonuclease content and morphology of the microplasmodia were monitored during growth and starvation in an effort to related this phenomenon to the onset of spherulation.
Collapse
|
20
|
|
21
|
Stulberg MP, Isham KR. Differential effects on RNA translation by a KC1 extract of reticulocyte ribosomes: characteristics of an inhibitory fraction. Biochem Biophys Res Commun 1979; 90:824-31. [PMID: 508347 DOI: 10.1016/0006-291x(79)91902-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Translation of capped and uncapped vesicular stomatitis virus and reovirus mRNA'S. Sensitivity to m7GpppAm and ionic conditions. J Biol Chem 1979. [DOI: 10.1016/s0021-9258(17)37940-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
23
|
|