1
|
Li OQ, Yue H, DeHart AR, Roytenberg R, Aguilar R, Olanipekun O, Bai F, Liu J, Fedorova O, Kennedy D, Thompson E, Pierre SV, Li W. Sodium/Potassium ATPase Alpha 1 Subunit Fine-tunes Platelet GPCR Signaling Function and is Essential for Thrombosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593923. [PMID: 38798556 PMCID: PMC11118499 DOI: 10.1101/2024.05.13.593923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background Thrombosis is a major cause of myocardial infarction and ischemic stroke. The sodium/potassium ATPase (NKA), comprising α and β subunits, is crucial in maintaining intracellular sodium and potassium gradients. However, the role of NKA in platelet function and thrombosis remains unclear. Methods We utilized wild-type (WT, α1+/+) and NKA α1 heterozygous (α1+/-) mice, aged 8 to 16 weeks, of both sexes. An intravital microscopy-based, FeCl3-induced carotid artery injury thrombosis model was employed for in vivo thrombosis assessment. Platelet transfusion assays were used to evaluate platelet NKA α1 function on thrombosis. Human platelets isolated from healthy donors and heart failure patients treated with/without digoxin were used for platelet function and signaling assay. Complementary molecular approaches were used for mechanistic studies. Results NKA α1 haplodeficiency significantly reduced its expression on platelets without affecting sodium homeostasis. It significantly inhibited 7.5% FeCl3-induced thrombosis in male but not female mice without disturbing hemostasis. Transfusion of α1+/-, but not α1+/+, platelets to thrombocytopenic WT mice substantially prolonged thrombosis. Treating WT mice with low-dose ouabain or marinobufagenin, both binding NKA α1 and inhibiting its ion-transporting function, markedly inhibited thrombosis in vivo. NKA α1 formed complexes with leucine-glycine-leucine (LGL)-containing platelet receptors, including P2Y12, PAR4, and thromboxane A2 receptor. This binding was significantly attenuated by LGL>SFT mutation or LGL peptide. Haplodeficiency of NKA α1 in mice or ouabain treatment of human platelets notably inhibited ADP-induced platelet aggregation. While not affecting 10% FeCl3-induced thrombosis, NKA α1 haplodeficiency significantly prolonged thrombosis time in mice treated with an ineffective dose of clopidogrel. Conclusion NKA α1 plays an essential role in enhancing platelet activation through binding to LGL-containing platelet GPCRs. NKA α1 haplodeficiency or inhibition with low-dose ouabain and marinobufagenin significantly inhibited thrombosis and sensitized clopidogrel's anti-thrombotic effect. Targeting NKA α1 emerges as a promising antiplatelet and antithrombotic therapeutic strategy.
Collapse
Affiliation(s)
- Oliver Q. Li
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV, USA
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV, USA
| | - Hong Yue
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV, USA
| | - Autumn R. DeHart
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV, USA
| | - Renat Roytenberg
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV, USA
| | - Rodrigo Aguilar
- Department of Medicine, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV, USA
| | - Olalekan Olanipekun
- Department of Medicine, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV, USA
| | - Fang Bai
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV, USA
| | - Jiang Liu
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV, USA
| | - Olga Fedorova
- National Institute on Aging, Laboratory of Cardiovascular Science of Biomedical Research Center Baltimore, MD, USA
| | - David Kennedy
- Department of Medicine, University of Toledo, Toledo, OH, USA
| | - Ellen Thompson
- Department of Medicine, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV, USA
| | - Sandrine V. Pierre
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV, USA
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV, USA
| | - Wei Li
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV, USA
| |
Collapse
|
2
|
Blaustein MP, Hamlyn JM. Sensational site: the sodium pump ouabain-binding site and its ligands. Am J Physiol Cell Physiol 2024; 326:C1120-C1177. [PMID: 38223926 PMCID: PMC11193536 DOI: 10.1152/ajpcell.00273.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
Cardiotonic steroids (CTS), used by certain insects, toads, and rats for protection from predators, became, thanks to Withering's trailblazing 1785 monograph, the mainstay of heart failure (HF) therapy. In the 1950s and 1960s, we learned that the CTS receptor was part of the sodium pump (NKA) and that the Na+/Ca2+ exchanger was critical for the acute cardiotonic effect of digoxin- and ouabain-related CTS. This "settled" view was upended by seven revolutionary observations. First, subnanomolar ouabain sometimes stimulates NKA while higher concentrations are invariably inhibitory. Second, endogenous ouabain (EO) was discovered in the human circulation. Third, in the DIG clinical trial, digoxin only marginally improved outcomes in patients with HF. Fourth, cloning of NKA in 1985 revealed multiple NKA α and β subunit isoforms that, in the rodent, differ in their sensitivities to CTS. Fifth, the NKA is a cation pump and a hormone receptor/signal transducer. EO binding to NKA activates, in a ligand- and cell-specific manner, several protein kinase and Ca2+-dependent signaling cascades that have widespread physiological effects and can contribute to hypertension and HF pathogenesis. Sixth, all CTS are not equivalent, e.g., ouabain induces hypertension in rodents while digoxin is antihypertensinogenic ("biased signaling"). Seventh, most common rodent hypertension models require a highly ouabain-sensitive α2 NKA and the elevated blood pressure is alleviated by EO immunoneutralization. These numerous phenomena are enabled by NKA's intricate structure. We have just begun to understand the endocrine role of the endogenous ligands and the broad impact of the ouabain-binding site on physiology and pathophysiology.
Collapse
Affiliation(s)
- Mordecai P Blaustein
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - John M Hamlyn
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
3
|
Blaustein MP, Gottlieb SS, Hamlyn JM, Leenen FHH. Whither digitalis? What we can still learn from cardiotonic steroids about heart failure and hypertension. Am J Physiol Heart Circ Physiol 2022; 323:H1281-H1295. [PMID: 36367691 DOI: 10.1152/ajpheart.00362.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cloning of the "Na+ pump" (Na+,K+-ATPase or NKA) and identification of a circulating ligand, endogenous ouabain (EO), a cardiotonic steroid (CTS), triggered seminal discoveries regarding EO and its NKA receptor in cardiovascular function and the pathophysiology of heart failure (HF) and hypertension. Cardiotonic digitalis preparations were a preferred treatment for HF for two centuries, but digoxin was only marginally effective in a large clinical trial (1997). This led to diminished digoxin use. Missing from the trial, however, was any consideration that endogenous CTS might influence digitalis' efficacy. Digoxin, at therapeutic concentrations, acutely inhibits NKA but, remarkably, antagonizes ouabain's action. Prolonged treatment with ouabain, but not digoxin, causes hypertension in rodents; in this model, digoxin lowers blood pressure (BP). Furthermore, NKA-bound ouabain and digoxin modulate different protein kinase signaling pathways and have disparate long-term cardiovascular effects. Reports of "brain ouabain" led to the elucidation of a new, slow neuromodulatory pathway in the brain; locally generated EO and the α2 NKA isoform help regulate sympathetic drive to the heart and vasculature. The roles of EO and α2 NKA have been studied by EO assay, ouabain-resistant mutation of α2 NKA, and immunoneutralization of EO with ouabain-binding Fab fragments. The NKA α2 CTS binding site and its endogenous ligand are required for BP elevation in many common hypertension models and full expression of cardiac remodeling and dysfunction following pressure overload or myocardial infarction. Understanding how endogenous CTS impact hypertension and HF pathophysiology and therapy should foster reconsideration of digoxin's therapeutic utility.
Collapse
Affiliation(s)
- Mordecai P Blaustein
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Stephen S Gottlieb
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - John M Hamlyn
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Frans H H Leenen
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Matchkov VV, Krivoi II. Specialized Functional Diversity and Interactions of the Na,K-ATPase. Front Physiol 2016; 7:179. [PMID: 27252653 PMCID: PMC4879863 DOI: 10.3389/fphys.2016.00179] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/04/2016] [Indexed: 12/22/2022] Open
Abstract
Na,K-ATPase is a protein ubiquitously expressed in the plasma membrane of all animal cells and vitally essential for their functions. A specialized functional diversity of the Na,K-ATPase isozymes is provided by molecular heterogeneity, distinct subcellular localizations, and functional interactions with molecular environment. Studies over the last decades clearly demonstrated complex and isoform-specific reciprocal functional interactions between the Na,K-ATPase and neighboring proteins and lipids. These interactions are enabled by a spatially restricted ion homeostasis, direct protein-protein/lipid interactions, and protein kinase signaling pathways. In addition to its "classical" function in ion translocation, the Na,K-ATPase is now considered as one of the most important signaling molecules in neuronal, epithelial, skeletal, cardiac and vascular tissues. Accordingly, the Na,K-ATPase forms specialized sub-cellular multimolecular microdomains which act as receptors to circulating endogenous cardiotonic steroids (CTS) triggering a number of signaling pathways. Changes in these endogenous cardiotonic steroid levels and initiated signaling responses have significant adaptive values for tissues and whole organisms under numerous physiological and pathophysiological conditions. This review discusses recent progress in the studies of functional interactions between the Na,K-ATPase and molecular microenvironment, the Na,K-ATPase-dependent signaling pathways and their significance for diversity of cell function.
Collapse
Affiliation(s)
| | - Igor I Krivoi
- Department of General Physiology, St. Petersburg State University St. Petersburg, Russia
| |
Collapse
|
5
|
Song H, Karashima E, Hamlyn JM, Blaustein MP. Ouabain-digoxin antagonism in rat arteries and neurones. J Physiol 2013; 592:941-69. [PMID: 24344167 DOI: 10.1113/jphysiol.2013.266866] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
'Classic' cardiotonic steroids (CTSs) such as digoxin and ouabain selectively inhibit Na+, K+ -ATPase (the Na+ pump) and, via Na+ / Ca2+ exchange (NCX), exert cardiotonic and vasotonic effects. CTS action is more complex than previously thought: prolonged subcutaneous administration of ouabain, but not digoxin, induces hypertension, and digoxin antagonizes ouabain's hypertensinogenic effect. We studied the acute interactions between CTSs in two indirect assays of Na+ pump function: myogenic tone (MT) in isolated, pressurized rat mesenteric small arteries, and Ca2+ signalling in primary cultured rat hippocampal neurones. The 'classic' CTSs (0.3-10 nm) behaved as 'agonists': all increased MT70 (MT at 70 mmHg) and augmented glutamate-evoked Ca2+ (Fura-2) signals. We then tested one CTS in the presence of another. Most CTSs could be divided into ouabain-like (ouabagenin, dihydroouabain (DHO), strophanthidin) or digoxin-like CTS (digoxigenin, digitoxin, bufalin). Within each group, the CTSs were synergistic, but ouabain-like and digoxin-like CTSs antagonized one another in both assays: For example, the ouabain-evoked (3 nm) increases in MT70 and neuronal Ca2+ signals were both greatly attenuated by the addition of 10 nm digoxin or 10 nm bufalin, and vice versa. Rostafuroxin (PST2238), a digoxigenin derivative that displaces 3H-ouabain from Na+, K+ -ATPase, and attenuates some forms of hypertension, antagonized the effects of ouabain, but not digoxin. SEA0400, a Na+ / Ca2+ exchanger (NCX) blocker, antagonized the effects of both ouabain and digoxin. CTSs bind to the α subunit of pump αβ protomers. Analysis of potential models suggests that, in vivo, Na+ pumps function as tetraprotomers ((αβ)4) in which the binding of a single CTS to one protomer blocks all pumping activity. The paradoxical ability of digoxin-like CTSs to reactivate the ouabain-inhibited complex can be explained by de-oligomerization of the tetrameric state. The interactions between these common CTSs may be of considerable therapeutic relevance.
Collapse
Affiliation(s)
- Hong Song
- Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA. or
| | | | | | | |
Collapse
|
6
|
Kempner ES. Molecular size determination of enzymes by radiation inactivation. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 61:107-47. [PMID: 3281417 DOI: 10.1002/9780470123072.ch3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- E S Kempner
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland 20892
| |
Collapse
|
7
|
Kilańczyk E, Pałecz D, Bryszewska M. Effect of red laser light on Na+,K(+)-ATPase activity in human erythrocyte membranes sensitized with Zn-phthalocyanine. JOURNAL OF CLINICAL LASER MEDICINE & SURGERY 2002; 20:71-5. [PMID: 12017430 DOI: 10.1089/104454702753768043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The influence of laser light (670 nm) on human erythrocyte membrane Na+,K(+)-ATPase activity in the presence and absence of Zn-phthalocyanine (ZnPc) was studied. BACKGROUND DATA The response of erythrocyte membranes to low-power laser irradiation has not been fully elucidated. In our study, we focused on the studies on photo-induced changes of Na+,K(+)-ATPase activity. The erythrocyte membrane suspensions were incubated with 2 mM of ZnPc and next irradiated with energy doses of 19.1, 38.2, 57.3, 76.4, and 95.5 J x cm(-2). MATERIALS AND METHODS The activity of Na+,K(+)-ATPase was assayed colorimetrically at the wavelength of 820 nm and expressed in micromol of inorganic phosphate released from ATP per mg of protein. RESULTS The measurements of Na+,K(+)-ATPase activity in erythrocyte membranes incubated with ZnPc in the dark demonstrated that all concentrations of the dye (0.5, 1, 2, and 3 microM) stimulated enzyme activity. The concentration of 2 microM caused the smallest increase of enzyme activity, so this concentration was accepted for further studies. Irradiation of erythrocyte membranes in the presence of the dye (2 microM) significantly decreased Na+,K(+)-ATPase activity. Only for energy doses of 19.1 and 38.2 J x cm(-2) was the enzyme activity comparable to the activity of the control. CONCLUSION It was found that irradiation with all energy doses applied caused a rise of enzyme activity. In the presence of ZnPc, significant decrease of Na+,K(+)-ATPase activity was observed.
Collapse
Affiliation(s)
- Ewa Kilańczyk
- Department of General Biophysics, University of Lódź, Poland
| | | | | |
Collapse
|
8
|
Scheiner-Bobis G, Antonipillai J, Farley RA. Simultaneous binding of phosphate and TNP-ADP to FITC-modified NA+,K(+)-ATPase. Biochemistry 1993; 32:9592-9. [PMID: 8396968 DOI: 10.1021/bi00088a011] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Double-reciprocal plots of the rate of ATP hydrolysis by Na+,K(+)-ATPase versus ATP concentration are not linear, and may reflect either two distinct binding sites for ATP or a single ATP binding site whose affinity for the nucleotide alternates between high-affinity and low-affinity states. In order to determine whether multiple nucleotides or nucleotide analogs can bind simultaneously to Na,+,K(+)-ATPase, the effects of nucleotides on the hydrolysis of p-nitrophenyl phosphate and on the dephosphorylation rate of Na+,K(+)-ATPase modified by fluorescein 5'-isothiocyanate (FITC) were measured. FITC blocks the high-affinity binding site for ATP on the Na+K(+)-ATPase and inhibits ATP hydrolysis at ATP concentrations as high as 8.3 mM. The hydrolysis of p-nitrophenyl phosphate and phosphoenzyme formation from inorganic phosphate and Mg2+ were not affected by FITC modification. The p-nitrophenylphosphatase activity of unmodified Na+,K(+)-ATPase was stimulated by low concentrations of ATP (10-100 microM) and other nucleotides, and was inhibited at higher nucleotide concentrations. In contrast, there was no effect on p-nitrophenyl phosphate hydrolysis by FITC-modified Na,K(+)-ATPase at ATP concentrations less than 100 microM. The hydrolysis of p-nitrophenyl phosphate by FITC-modified Na+,K(+)-ATPase was inhibited at ATP concentrations greater than 100 microM. These observations demonstrate that the effects of ATP acting at high-affinity sites are absent in FITC-modified Na+,K(+)-ATPase but the effects of ATP acting at low-affinity sites are still observed. In unmodified Na+,K(+)-ATPase, the rate of dephosphorylation of the phosphoenzyme formed from inorganic phosphate and Mg2+ was inhibited by ATP.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- G Scheiner-Bobis
- Department of Physiology and Biophysics, University of Southern California, School of Medicine, Los Angeles 90033
| | | | | |
Collapse
|
9
|
Kwon HM. Radiation target sizes of the Na,K-ATPase and p-aminohippurate transport system in the basolateral membrane of renal proximal tubule. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1027:253-6. [PMID: 2168757 DOI: 10.1016/0005-2736(90)90315-f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Basolateral membrane vesicles made from rabbit kidney proximal tubules were frozen and irradiated with a high energy electron beam and the effects of irradiation on Na,K-ATPase activity, p-aminohippurate (PAH) transport, the membrane diffusion barrier and vesicle volume were measured. The vesicle volume and diffusion barrier were not significantly changed by radiation exposure. Na,K-ATPase activity was inactivated as a simple exponential function of radiation dose. Target size analysis of the data yielded a molecular size of 267 +/- 17 kDa, consistent with its existence as a (alpha beta)2 dimer. The carrier-mediated PAH uptake by basolateral membrane vesicles was also inactivated as a function of radiation dose. A target molecular size of 74 +/- 16 kDa was calculated for the PAH transport system. This study is the first measurement of the functional size of the organic acid transport system based directly on flux measurements.
Collapse
Affiliation(s)
- H M Kwon
- Department of Physiology, State University of New York, Buffalo
| |
Collapse
|
10
|
Hayashi Y, Mimura K, Matsui H, Takagi T. Minimum enzyme unit for Na+/K+-ATPase is the alpha beta-protomer. Determination by low-angle laser light scattering photometry coupled with high-performance gel chromatography for substantially simultaneous measurement of ATPase activity and molecular weight. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 983:217-29. [PMID: 2547448 DOI: 10.1016/0005-2736(89)90237-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The oligomeric state of canine renal NA+/K+ -ATPase solubilized by octaethylene glycol n-dodecyl ether (C12E8) was studied by means of low-angle laser light scattering photometry coupled with high-performance gel chromatography (HPGC). At around 0 degree C the solubilized enzyme was separated into the (alpha beta)2-diprotomeric and alpha beta-protomeric protein components with Mr values of 302,000 +/- 10,000 and 156,000 +/- 4,000, respectively, in approximately equal quantities. As the temperature of chromatography was increased toward 20 degrees C, the two protein components converged into a single major component. The Mr of this component depended on the monovalent cation included in the elution buffer, and was 255,000 or 300,000 in the presence of 0.1 M NaCl or 0.1 M KCl, respectively. A computer simulation technique showed that the solubilized enzyme was in a dissociation-association equilibrium of 2 protomers = diprotomer at 20 degrees C, and the difference in apparent Mr of the solubilized enzyme between the two species of monovalent cation was interpreted by an association constant (Ka) in the presence of 0.1 M KCl that was about 50-fold larger than in the presence of 0.1 M NaCl. In order to measure ATPase activity and Mr of the solubilized enzyme simultaneously, a TSKgel G3000SW column had been equilibrated and was eluted with an elution buffer containing 0.30 mg/ml C12E8 and 60 microgram/ml phosphatidylserine (bovine brain) as well as the ligands necessary for the enzyme to exhibit the activity at pH 7.0 and 20 degrees C. The solubilized enzyme was always eluted as a single protein component irrespective of the the amount of the protein applied to the column, ranging between 240 and 10 microgram. The Mr of the protein component, however, decreased from 214,000 and 158,000 with the decrease of the protein amount. The specific ATPase activity, however, remained constant at a level of 64 +/- 4% of that of the membrane-bound enzyme even in the range of protein concentration sufficiently low as to allow the enzyme to exist only in the protomeric form. Thus, the alpha beta-protomer is concluded to be the minimum functional unit for the ATPase activity. The value of Ka obtained from the concentration-dependent dissociation curve was 5 . 10(5) M-1 for the enzyme turning over, and 1.1 . 10(7) M-1 for the enzyme inhibited with ouabain. It was discussed, based on the values of Ka obtained, that the enzyme would exist as the diprotomer or the higher oligomer in the membrane.
Collapse
Affiliation(s)
- Y Hayashi
- Department of Biochemistry, Kyorin University School of Medicine, Tokyo, Japan
| | | | | | | |
Collapse
|
11
|
Jensen J, Nørby JG. Membrane-bound Na,K-ATPase: target size and radiation inactivation size of some of its enzymatic reactions. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)81323-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
12
|
Scheiner-Bobis G, Fahlbusch K, Schoner W. Demonstration of cooperating alpha subunits in working (Na+ + K+)-ATPase by the use of the MgATP complex analogue cobalt tetrammine ATP. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 168:123-31. [PMID: 2822400 DOI: 10.1111/j.1432-1033.1987.tb13396.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The MgATP complex analogue cobalt-tetrammine-ATP [Co(NH3)4ATP] inactivates (Na+ + K+)-ATPase at 37 degrees C slowly in the absence of univalent cations. This inactivation occurs concomitantly with incorporation of radioactivity from [alpha-32P]Co(NH3)4ATP and from [gamma-32P]Co(NH3)4ATP into the alpha subunit. The kinetics of inactivation are consistent with the formation of a dissociable complex of Co(NH3)4ATP with the enzyme (E) followed by the phosphorylation of the enzyme: (Formula: see text). The dissociation constant of the enzyme-MgATP analogue complex at 37 degrees C is Kd = 500 microM, the inactivation rate constant k2 = 0.05 min-1. ATP protects the enzyme against the inactivation by Co(NH3)4ATP due to binding at a site from which it dissociates with a Kd of 360 microM. It is concluded, therefore, that Co(NH3)4ATP binds to the low-affinity ATP binding site of the E2 conformational state. K+, Na+ and Mg2+ protect the enzyme against the inactivation by Co(NH3)4ATP. Whilst Na+ or Mg2+ decrease the inactivation rate constant k2, K+ exerts its protective effect by increasing the dissociation constant of the enzyme.Co(NH3)4ATP complex. The Co(NH3)4ATP-inactivated (Na+ + K+)-ATPase, in contrast to the non-inactivated enzyme, incorporates [3H]ouabain. This indicates that the Co(NH3)4ATP-inactivated enzyme is stabilized in the E2 conformational state. Despite the inactivation of (Na+ + K+)-ATPase by Co(NH3)4ATP from the low-affinity ATP binding site, there is no change in the capacity of the high-affinity ATP binding site (Kd = 0.9 microM) nor of its capability to phosphorylate the enzyme Na+-dependently. Since (Na+ + K+)-ATPase is phosphorylated Na+-dependently from the high-affinity ATP binding site although the catalytic cycle is arrested in the E2 conformational state by specific modification of the low-affinity ATP binding site, it is concluded that both ATP binding sites coexist at the same time in the working sodium pump. This demonstration of interacting catalytic subunits in the E1 and E2 conformational states excludes the proposal that a single catalytic subunit catalyzes (Na+ + K+)-transport.
Collapse
Affiliation(s)
- G Scheiner-Bobis
- Institut für Biochemie und Endokrinologie, Justus-Liebig-Universität Giessen, Federal Republic of Germany
| | | | | |
Collapse
|
13
|
Abstract
Questions concerning the number of the ATP sites of the functional unit of (Na+ + K+)-ATPase (i.e., the sodium pump) have been at the center of the controversies on the mechanisms of the catalytic and transport functions of the enzyme. When the available data pertaining to the number of these sites are examined without any assumptions regarding the reaction mechanism, it is evident that although some relevant observations may be explained either by a single site or by multiple ATP sites, the remaining data dictate the existence of multiple sites on the functional unit. Also, while from much of the data it is clear that the multiple sites of the unit enzyme represent the interacting catalytic sites of an oligomer, it is not possible to rule out the existence of a distinct regulatory site for ATP in addition to the interacting catalytic sites. Regardless of the ultimate fate of the regulatory site, any realistic approach to the resolution of the kinetic mechanism of the sodium pump should include the consideration of the established site-site interactions of the oligomer.
Collapse
|