1
|
Chandrasekaran R, Mathieu C, Sheth R, Cheng AP, Fong D, McCormack R, El-Gabalawy H, Alishetty S, Paige M, Hoemann CD. UDP-glucose dehydrogenase (UGDH) activity is suppressed by peroxide and promoted by PDGF in fibroblast-like synoviocytes: Evidence of a redox control mechanism. PLoS One 2022; 17:e0274420. [PMID: 36107941 PMCID: PMC9477357 DOI: 10.1371/journal.pone.0274420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
UDP-glucose dehydrogenase (UGDH) generates essential precursors of hyaluronic acid (HA) synthesis, however mechanisms regulating its activity are unclear. We used enzyme histostaining and quantitative image analysis to test whether cytokines that stimulate HA synthesis upregulate UGDH activity. Fibroblast-like synoviocytes (FLS, from N = 6 human donors with knee pain) were cultured, freeze-thawed, and incubated for 1 hour with UDP-glucose, NAD+ and nitroblue tetrazolium (NBT) which allows UGDH to generate NADH, and NADH to reduce NBT to a blue stain. Compared to serum-free medium, FLS treated with PDGF showed 3-fold higher UGDH activity and 6-fold higher HA release, but IL-1beta/TGF-beta1 induced 27-fold higher HA release without enhancing UGDH activity. In selected proliferating cells, UGDH activity was lost in the cytosol, but preserved in the nucleus. Cell-free assays led us to discover that diaphorase, a cytosolic enzyme, or glutathione reductase, a nuclear enzyme, was necessary and sufficient for NADH to reduce NBT to a blue formazan dye in a 1-hour timeframe. Primary synovial fibroblasts and transformed A549 fibroblasts showed constitutive diaphorase/GR staining activity that varied according to supplied NADH levels, with relatively stronger UGDH and diaphorase activity in A549 cells. Unilateral knee injury in New Zealand White rabbits (N = 3) stimulated a coordinated increase in synovial membrane UGDH and diaphorase activity, but higher synovial fluid HA in only 2 out of 3 injured joints. UGDH activity (but not diaphorase) was abolished by N-ethyl maleimide, and inhibited by peroxide or UDP-xylose. Our results do not support the hypothesis that UGDH is a rate-liming enzyme for HA synthesis under catabolic inflammatory conditions that can oxidize and inactivate the UGDH active site cysteine. Our novel data suggest a model where UGDH activity is controlled by a redox switch, where intracellular peroxide inactivates, and high glutathione and diaphorase promote UGDH activity by maintaining the active site cysteine in a reduced state, and by recycling NAD+ from NADH.
Collapse
Affiliation(s)
- Ramya Chandrasekaran
- Department of Bioengineering, George Mason University, Manassas, Virginia, United States of America
| | - Colleen Mathieu
- Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | - Rishi Sheth
- Department of Bioengineering, George Mason University, Manassas, Virginia, United States of America
| | - Alexandre P. Cheng
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | - David Fong
- Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | - Robert McCormack
- Department of Orthopedic Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Hani El-Gabalawy
- Department of Medicine and Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Suman Alishetty
- Department of Bioengineering, George Mason University, Manassas, Virginia, United States of America
| | - Mikell Paige
- Department of Chemistry & Biochemistry, George Mason University, Manassas, Virginia, United States of America
| | - Caroline D. Hoemann
- Department of Bioengineering, George Mason University, Manassas, Virginia, United States of America
- Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, QC, Canada
- * E-mail:
| |
Collapse
|
2
|
Yin S, Kong JQ. Transcriptome-guided gene isolation and functional characterization of UDP-xylose synthase and UDP-D-apiose/UDP-D-xylose synthase families from Ornithogalum caudatum Ait. PLANT CELL REPORTS 2016; 35:2403-2421. [PMID: 27591771 DOI: 10.1007/s00299-016-2044-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/23/2016] [Indexed: 06/06/2023]
Abstract
The present study first identified the involvement of OcUAXS2 and OcUXS1-3 in anticancer polysaccharides biosynthesis in O. caudatum. UDP-xylose synthase (UXS) and UDP-D-apiose/UDP-D-xylose synthase (UAXS), both capable of converting UDP-D-glucuronic acid to UDP-D-xylose, are believed to transfer xylosyl residue to anticancer polysaccharides biosynthesis in Ornithogalum caudatum Ait. However, the cDNA isolation and functional characterization of genes encoding the two enzymes from O. caudatum has never been documented. Previously, the transcriptome sequencing of O. caudatum was performed in our laboratory. In this study, a total of six and two unigenes encoding UXS and UAXS were first retrieved based on RNA-Seq data. The eight putative genes were then successfully isolated from transcriptome of O. caudatum by reverse transcription polymerase chain reaction (RT-PCR). Phylogenetic analysis revealed the six putative UXS isoforms can be classified into three types, one soluble and two distinct putative membrane-bound. Moreover, the two UAXS isoenzymes were predicted to be soluble forms. Subsequently, these candidate cDNAs were characterized to be bona fide genes by functional expression in Escherichia coli individually. Although UXS and UAXS catalyzed the same reaction, their biochemical properties varied significantly. It is worth noting that a ratio switch of UDP-D-xylose/UDP-D-apiose for UAXS was established, which is assumed to be helpful for its biotechnological application. Furthermore, a series of mutants were generated to test the function of NAD+ binding motif GxxGxxG. Most importantly, the present study determined the involvement of OcUAXS2 and OcUXS1-3 in xylose-containing polysaccharides biosynthesis in O. caudatum. These data provide a comprehensive knowledge for UXS and UAXS families in plants.
Collapse
Affiliation(s)
- Sen Yin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Ministry of Health Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Qiang Kong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Ministry of Health Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Walsh RM, Polizzi SJ, Kadirvelraj R, Howard WW, Wood ZA. Man o' war mutation in UDP-α-D-xylose synthase favors the abortive catalytic cycle and uncovers a latent potential for hexamer formation. Biochemistry 2015; 54:807-19. [PMID: 25521717 DOI: 10.1021/bi501357c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The man o' war (mow) phenotype in zebrafish is characterized by severe craniofacial defects due to a missense mutation in UDP-α-d-xylose synthase (UXS), an essential enzyme in proteoglycan biosynthesis. The mow mutation is located in the UXS dimer interface ∼16 Å away from the active site, suggesting an indirect effect on the enzyme mechanism. We have examined the structural and catalytic consequences of the mow mutation (R236H) in the soluble fragment of human UXS (hUXS), which shares 93% sequence identity with the zebrafish enzyme. In solution, hUXS dimers undergo a concentration-dependent association to form a tetramer. Sedimentation velocity studies show that the R236H substitution induces the formation of a new hexameric species. Using two new crystal structures of the hexamer, we show that R236H and R236A substitutions cause a local unfolding of the active site that allows for a rotation of the dimer interface necessary to form the hexamer. The disordered active sites in the R236H and R236A mutant constructs displace Y231, the essential acid/base catalyst in the UXS reaction mechanism. The loss of Y231 favors an abortive catalytic cycle in which the reaction intermediate, UDP-α-d-4-keto-xylose, is not reduced to the final product, UDP-α-d-xylose. Surprisingly, the mow-induced hexamer is almost identical to the hexamers formed by the deeply divergent UXS homologues from Staphylococcus aureus and Helicobacter pylori (21% and 16% sequence identity, respectively). The persistence of a latent hexamer-building interface in the human enzyme suggests that the ancestral UXS may have been a hexamer.
Collapse
Affiliation(s)
- Richard M Walsh
- Department of Biochemistry and Molecular Biology, University of Georgia , Athens, Georgia 30602, United States
| | | | | | | | | |
Collapse
|
4
|
Polizzi SJ, Walsh RM, Peeples WB, Lim JM, Wells L, Wood ZA. Human UDP-α-D-xylose synthase and Escherichia coli ArnA conserve a conformational shunt that controls whether xylose or 4-keto-xylose is produced. Biochemistry 2012; 51:8844-55. [PMID: 23072385 DOI: 10.1021/bi301135b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Human UDP-α-D-xylose synthase (hUXS) is a member of the short-chain dehydrogenase/reductase family of nucleotide-sugar modifying enzymes. hUXS contains a bound NAD(+) cofactor that it recycles by first oxidizing UDP-α-D-glucuronic acid (UGA), and then reducing the UDP-α-D-4-keto-xylose (UX4O) to produce UDP-α-D-xylose (UDX). Despite the observation that purified hUXS contains a bound cofactor, it has been reported that exogenous NAD(+) will stimulate enzyme activity. Here we show that a small fraction of hUXS releases the NADH and UX4O intermediates as products during turnover. The resulting apoenzyme can be rescued by exogenous NAD(+), explaining the apparent stimulatory effect of added cofactor. The slow release of NADH and UX4O as side products by hUXS is reminiscent of the Escherichia coli UGA decarboxylase (ArnA), a related enzyme that produces NADH and UX4O as products. We report that ArnA can rebind NADH and UX4O to slowly make UDX. This means that both enzymes share the same catalytic machinery, but differ in the preferred final product. We present a bifurcated rate equation that explains how the substrate is shunted to the distinct final products. Using a new crystal structure of hUXS, we identify the structural elements of the shunt and propose that the local unfolding of the active site directs reactants toward the preferred products. Finally, we present evidence that the release of NADH and UX4O involves a cooperative conformational change that is conserved in both enzymes.
Collapse
Affiliation(s)
- Samuel J Polizzi
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | | | | | | | | | | |
Collapse
|
5
|
Schutzbach J, Ankel H, Brockhausen I. Synthesis of cell envelope glycoproteins of Cryptococcus laurentii. Carbohydr Res 2007; 342:881-93. [PMID: 17316583 PMCID: PMC2600673 DOI: 10.1016/j.carres.2007.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2006] [Revised: 01/04/2007] [Accepted: 01/06/2007] [Indexed: 10/23/2022]
Abstract
Fungi of the genus Cryptococcus are encapsulated basidiomycetes that are ubiquitously found in the environment. These organisms infect both lower and higher animals. Human infections that are common in immune-compromised individuals have proven difficult to cure or even control with currently available antimycotics that are quite often toxic to the host. The virulence of Cryptococcus has been linked primarily to its polysaccharide capsule, but also to cell-bound glycoproteins. In this review, we show that Cryptococcus laurentii is an excellent model for studies of polysaccharide and glycoprotein synthesis in the more pathogenic relative C. neoformans. In particular, we will discuss the structure and biosynthesis of O-linked carbohydrates on cell envelope glycoproteins of C. laurentii. These O-linked structures are synthesized by at least four mannosyltransferases, two galactosyltransferases, and at least one xylosyltransferase that have been characterized. These glycosyltransferases have no known homologues in human tissues. Therefore, enzymes involved in the synthesis of cryptococcal glycoproteins, as well as related enzymes involved in capsule synthesis, are potential targets for the development of specific inhibitors for treatment of cryptococcal disease.
Collapse
Affiliation(s)
- John Schutzbach
- Department of Medicine, Queen's University, Etherington Hall, Kingston, Ontario, Canada K7L 3N6.
| | | | | |
Collapse
|
6
|
Ashikov A, Routier F, Fuhlrott J, Helmus Y, Wild M, Gerardy-Schahn R, Bakker H. The human solute carrier gene SLC35B4 encodes a bifunctional nucleotide sugar transporter with specificity for UDP-xylose and UDP-N-acetylglucosamine. J Biol Chem 2005; 280:27230-5. [PMID: 15911612 DOI: 10.1074/jbc.m504783200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The transport of nucleotide sugars from the cytoplasm into the Golgi apparatus is mediated by specialized type III proteins, the nucleotide sugar transporters (NSTs). Transport assays carried out in vitro with Golgi vesicles from mammalian cells showed specific uptake for a total of eight nucleotide sugars. When this study was started, NSTs with transport activities for all but two nucleotide sugars (UDP-Xyl and UDP-Glc) had been cloned. Aiming at identifying these elusive NSTs, bioinformatic methods were used to display putative NST sequences in the human genome. Ten open reading frames were identified, cloned, and heterologously expressed in yeast. Transport capabilities for UDP-Glc and UDP-Xyl were determined with Golgi vesicles isolated from transformed cells. Although a potential UDP-Glc transporter could not be identified due to the high endogenous transport background, the measurement of UDP-Xyl transport was possible on a zero background. Vesicles from yeast cells expressing the human gene SLC35B4 showed specific uptake of UDP-Xyl, and subsequent testing of other nucleotide sugars revealed a second activity for UDP-GlcNAc. Expression of the epitope-tagged SLC35B4 in mammalian cells demonstrated strict Golgi localization. Because decarboxylation of UDP-GlcA is known to produce UDP-Xyl directly in the endoplasmic reticulum and Golgi lumen, our data demonstrate that two ways exist to deliver UDP-Xyl to the Golgi apparatus.
Collapse
Affiliation(s)
- Angel Ashikov
- Zelluläre Chemie, Zentrum Biochemie, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
7
|
Zhang Q, Shirley N, Lahnstein J, Fincher GB. Characterization and expression patterns of UDP-D-glucuronate decarboxylase genes in barley. PLANT PHYSIOLOGY 2005; 138:131-41. [PMID: 15849307 PMCID: PMC1104169 DOI: 10.1104/pp.104.057869] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 01/04/2005] [Accepted: 01/04/2005] [Indexed: 05/17/2023]
Abstract
UDP-D-glucuronate decarboxylase (EC 4.1.1.35) catalyzes the synthesis of UDP-D-xylose from UDP-D-glucuronate in an essentially irreversible reaction that is believed to commit glycosyl residues to heteroxylan and xyloglucan biosynthesis. Four members of the barley (Hordeum vulgare) UDP-D-glucuronate decarboxylase gene family, designated HvUXS1 to HvUXS4, have been cloned and characterized. Barley HvUXS1 appears to be a cytosolic enzyme, while the others are predicted to be membrane-bound proteins with single transmembrane helices. Heterologous expression of a barley HvUXS1 cDNA in Escherichia coli yields a soluble enzyme that converts UDP-d-glucuronate to UDP-D-xylose, is associated with a single molecule of bound NAD+, and is subject to feedback inhibition by UDP-D-xylose. Quantitative PCR shows that the HvUXS1 mRNA is most abundant among the 4 HvUXS genes, accounting for more than 80% of total HvUXS transcripts in most of the tissues examined. The abundance of HvUXS1 mRNA is 10-fold higher in mature roots and stems than in leaves, developing grains, or floral tissues. Transcriptional activities of HvUXS2 and HvUXS4 genes are relatively high in mature roots, coleoptiles, and stems compared with root tips, leaves, and floral tissues, while HvUXS3 mRNA is low in all tissues. In barley leaf sections, levels of the most abundant mRNA, encoding HvUXS1, reflect the amount of soluble enzymic protein and activity. In selected tissues where HvUXS1 transcript levels are high, cell walls have higher arabinoxylan contents.
Collapse
Affiliation(s)
- Qisen Zhang
- Australian Centre for Plant Functional Genomics, School of Agriculture and Wine, University of Adelaide, South Australia 5064, Australia
| | | | | | | |
Collapse
|
8
|
Wheatley ER, Davies DR, Bolwell GP. Characterisation and immunolocation of an 87 kDa polypeptide associated with UDP-glucuronic acid decarboxylase activity from differentiating tobacco cells (Nicotiana tabacum L.). PHYTOCHEMISTRY 2002; 61:771-80. [PMID: 12453569 DOI: 10.1016/s0031-9422(02)00399-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
UDP-glucuronic acid decarboxylase catalyses the reaction responsible for the formation of UDP-xylose and commits assimilate for the biosynthesis of cell wall polysaccharides and glycosylation of proteins. Xylose-rich polymers such as xylans are a feature of dicot secondary walls. Thus a cell culture system of tobacco transformed with the ipt gene from Agrobacterium tumefaciens for cytokinin production and which when manipulated with auxin and sucrose leads to induction of xylogenesis, has been used as a source for purification of the enzyme. UDP-glucuronic acid decarboxylase was purified by ion-exchange, gel filtration and affinity chromatography on Reactive Brown-Agarose. The native enzyme had an apparent M(r) of 220,000 which yielded a single subunit of 87,000 when analysed on SDS-PAGE using silver staining. This appears to be a novel form of the enzyme since a gene family encoding polypeptides around M(r) 40,000 with homology to the fungal enzyme also exists in plants. Using an antibody raised to the native 87 kDa form of the enzyme, this decarboxylase was localised mainly to to cambium and differentiating vascular tissue in tobacco stem, consistent with a role in the provision of UDP-xylose for the synthesis of secondary wall xylan. Further analysis using immunogold electron microscopy localised the 87 kDa UDP-glucuronic acid decarboxylase to the cytosol of developing vascular tissue.
Collapse
Affiliation(s)
- Edward R Wheatley
- School of Biological Sciences, Royal Holloway and Bedford New College, University of London, Surrey, Egham, UK
| | | | | |
Collapse
|
9
|
Harper AD, Bar-Peled M. Biosynthesis of UDP-xylose. Cloning and characterization of a novel Arabidopsis gene family, UXS, encoding soluble and putative membrane-bound UDP-glucuronic acid decarboxylase isoforms. PLANT PHYSIOLOGY 2002; 130:2188-98. [PMID: 12481102 PMCID: PMC166730 DOI: 10.1104/pp.009654] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2002] [Revised: 07/11/2002] [Accepted: 09/25/2002] [Indexed: 05/17/2023]
Abstract
UDP-xylose (Xyl) is an important sugar donor for the synthesis of glycoproteins, polysaccharides, various metabolites, and oligosaccharides in animals, plants, fungi, and bacteria. UDP-Xyl also feedback inhibits upstream enzymes (UDP-glucose [Glc] dehydrogenase, UDP-Glc pyrophosphorylase, and UDP-GlcA decarboxylase) and is involved in its own synthesis and the synthesis of UDP-arabinose. In plants, biosynthesis of UDP-Xyl is catalyzed by different membrane-bound and soluble UDP-GlcA decarboxylase (UDP-GlcA-DC) isozymes, all of which convert UDP-GlcA to UDP-Xyl. Because synthesis of UDP-Xyl occurs both in the cytosol and in membranes, it is not known which source of UDP-Xyl the different Golgi-localized xylosyltransferases are utilizing. Here, we describe the identification of several distinct Arabidopsis genes (named AtUXS for UDP-Xyl synthase) that encode functional UDP-GlcA-DC isoforms. The Arabidopsis genome contains five UXS genes and their protein products can be subdivided into three isozyme classes (A-C), one soluble and two distinct putative membrane bound. AtUxs from each class, when expressed in Escherichia coli, generate active UDP-GlcA-DC that converts UDP-GlcA to UDP-Xyl. Members of this gene family have a large conserved C-terminal catalytic domain (approximately 300 amino acids long) and an N-terminal variable domain differing in sequence and size (30-120 amino acids long). Isoforms of class A and B appear to encode putative type II membrane proteins with their catalytic domains facing the lumen (like Golgi-glycosyltransferases) and their N-terminal variable domain facing the cytosol. Uxs class C is likely a cytosolic isoform. The characteristics of the plant Uxs support the hypothesis that unique UDP-GlcA-DCs with distinct subcellular localizations are required for specific xylosylation events.
Collapse
Affiliation(s)
- April D Harper
- Complex Carbohydrate Research Center and Department of Plant Biology, University of Georgia, 220 Riverbend Road, Athens, Georgia 30602-4712, USA
| | | |
Collapse
|
10
|
Moriarity JL, Hurt KJ, Resnick AC, Storm PB, Laroy W, Schnaar RL, Snyder SH. UDP-glucuronate decarboxylase, a key enzyme in proteoglycan synthesis: cloning, characterization, and localization. J Biol Chem 2002; 277:16968-75. [PMID: 11877387 DOI: 10.1074/jbc.m109316200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UDP-glucuronate decarboxylase (UGD) catalyzes the formation of UDP-xylose from UDP-glucuronate. UDP-xylose is then used to initiate glycosaminoglycan biosynthesis on the core protein of proteoglycans. In a yeast two-hybrid screen with the protein kinase Akt (protein kinase B), we detected interactions with a novel sequence, which we cloned and expressed. The expressed protein displayed UGD activity but did not display the activities of homologous nucleotide sugar epimerases or dehydratases. We did not detect phosphorylation of UGD by Akt nor did we detect any influence of Akt on UGD activity. Effects of UGD on Akt kinase activity were also absent. Northern blot and Western blot analyses revealed the presence of UGD in multiple tissues and brain regions. Subcellular studies and histochemistry localized UGD protein to the perinuclear Golgi where xylosylation of proteoglycan core proteins is known to occur.
Collapse
Affiliation(s)
- John L Moriarity
- Department of Neurological Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Bar-Peled M, Griffith CL, Doering TL. Functional cloning and characterization of a UDP- glucuronic acid decarboxylase: the pathogenic fungus Cryptococcus neoformans elucidates UDP-xylose synthesis. Proc Natl Acad Sci U S A 2001; 98:12003-8. [PMID: 11593010 PMCID: PMC59757 DOI: 10.1073/pnas.211229198] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
UDP-xylose is a sugar donor required for the synthesis of diverse and important glycan structures in animals, plants, fungi, and bacteria. Xylose-containing glycans are particularly abundant in plants and in the polysaccharide capsule that is the major virulence factor of the pathogenic fungus Cryptococcus neoformans. Biosynthesis of UDP-xylose is mediated by UDP-glucuronic acid decarboxylase, which converts UDP-glucuronic acid to UDP-xylose. Although this enzymatic activity was described over 40 years ago it has never been fully purified, and the gene encoding it has not been identified. We used homology to a bacterial gene, hypothesized to encode a related function, to identify a cryptococcal sequence as putatively encoding a UDP-glucuronic acid decarboxylase. A soluble 47-kDa protein derived from bacteria expressing the C. neoformans gene catalyzed conversion of UDP-glucuronic acid to UDP-xylose, as confirmed by NMR analysis. NADH, UDP, and UDP-xylose inhibit the activity. Close homologs of the cryptococcal gene, which we termed UXS1, appear in genome sequence data from organisms ranging from bacteria to humans.
Collapse
Affiliation(s)
- M Bar-Peled
- Complex Carbohydrate Research Center and Department of Botany, University of Georgia, Athens, GA 30602, USA.
| | | | | |
Collapse
|
12
|
Bai X, Wei G, Sinha A, Esko JD. Chinese hamster ovary cell mutants defective in glycosaminoglycan assembly and glucuronosyltransferase I. J Biol Chem 1999; 274:13017-24. [PMID: 10224052 DOI: 10.1074/jbc.274.19.13017] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proteoglycans of animal cells typically contain one or more heparan sulfate or chondroitin sulfate chains. These glycosaminoglycans assemble on a tetrasaccharide primer, -GlcAbeta1, 3Galbeta1,3Galbeta1,4Xylbeta-O-, attached to specific serine residues in the core protein. Studies of Chinese hamster ovary cell mutants defective in the first or second enzymes of the pathway (xylosyltransferase and galactosyltransferase I) show that the assembly of the primer occurs by sequential transfer of single monosaccharide residues from the corresponding high energy nucleotide sugar donor to the non-reducing end of the growing chain. In order to study the other reactions involved in linkage tetrasaccharide assembly, we have devised a powerful selection method based on induced resistance to a mitotoxin composed of basic fibroblast growth factor-saporin. One class of mutants does not incorporate 35SO4 and [6-3H]GlcN into glycosaminoglycan chains. Incubation of these cells with naphthol-beta-D-xyloside (Xylbeta-O-Np) resulted in accumulation of linkage region intermediates containing 1 or 2 mol of galactose (Galbeta1, 4Xylbeta-O-Np and Galbeta1, 3Galbeta1, 4Xylbeta-O-Np) and sialic acid (Siaalpha2,3Galbeta1, 3Galbeta1, 4Xylbeta-O-Np) but not any GlcA-containing oligosaccharides. Extracts of the mutants completely lacked UDP-glucuronic acid:Galbeta1,3Gal-R glucuronosyltransferase (GlcAT-I) activity, as measured by the transfer of GlcA from UDP-GlcA to Galbeta1,3Galbeta-O-naphthalenemethanol (<0.2 versus 3.6 pmol/min/mg). The mutation most likely lies in the structural gene encoding GlcAT-I since transfection of the mutant with a cDNA for GlcAT-I completely restored enzyme activity and glycosaminoglycan synthesis. These findings suggest that a single GlcAT effects the biosynthesis of common linkage region of both heparan sulfate and chondroitin sulfate in Chinese hamster ovary cells.
Collapse
Affiliation(s)
- X Bai
- Division of Cellular and Molecular Medicine, Glycobiology Program, University of California, San Diego, La Jolla, California 92093-0687, USA
| | | | | | | |
Collapse
|
13
|
|
14
|
Geller DH, Henry JG, Belch J, Schwartz NB. Co-purification and characterization of ATP-sulfurylase and adenosine-5'-phosphosulfate kinase from rat chondrosarcoma. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)48247-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
15
|
Jacobson ES, Payne WR. UDP glucuronate decarboxylase and synthesis of capsular polysaccharide in Cryptococcus neoformans. J Bacteriol 1982; 152:932-4. [PMID: 6752126 PMCID: PMC221555 DOI: 10.1128/jb.152.2.932-934.1982] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
UDP glucuronate decarboxylase activity was comparable in encapsulated and non-encapsulated strains of Cryptococcus neoformans, required NAD (K(a) = 0.2 mM), and was inhibited by NADH (K(i) = 0.1 mM) and UDP xylose.
Collapse
|
16
|
|