1
|
Oshlag JZ, Devasthanam AS, Tomasi TB. Mild hyperthermia enhances the expression and induces oscillations in the Dicer protein. Int J Hyperthermia 2013; 29:51-61. [PMID: 23311378 DOI: 10.3109/02656736.2012.753471] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE To investigate whether mild heat stress at 39.5°C altered Dicer protein and miRNA expression patterns in several cell types. METHODS Multiple human and mouse cell types were cultured during the course of 9 h at temperatures from 37°C to 39.5°C. Dicer mRNA levels and microRNAs were quantified by TaqMan RT-qPCR assays and Dicer protein by western blotting. RESULTS Dicer protein was substantially elevated on western analysis in response to heat stress at 39.5°C in the absence of significant changes in Dicer mRNA by RT-qPCR. CONCLUSIONS Heat-induced regulation of Dicer expression occurs primarily post- transcriptionally, and the expression levels of Dicer protein are increased and often oscillate in response to fever-range hyperthermia in multiple mouse and human cells. Our studies suggest a potential role for Dicer and microRNAs in the response to mild thermal stress. Additional studies on the mechanisms involved in the stress-induced oscillations of Dicer protein and microRNAs will be of interest.
Collapse
Affiliation(s)
- Julian Z Oshlag
- Laboratory of Molecular Medicine, Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | |
Collapse
|
2
|
Heikkila JJ. Heat shock protein gene expression and function in amphibian model systems. Comp Biochem Physiol A Mol Integr Physiol 2010; 156:19-33. [DOI: 10.1016/j.cbpa.2010.01.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 01/26/2010] [Accepted: 01/29/2010] [Indexed: 12/22/2022]
|
3
|
Yang J, Bridges K, Chen KY, Liu AYC. Riluzole increases the amount of latent HSF1 for an amplified heat shock response and cytoprotection. PLoS One 2008; 3:e2864. [PMID: 18682744 PMCID: PMC2481402 DOI: 10.1371/journal.pone.0002864] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 07/04/2008] [Indexed: 11/19/2022] Open
Abstract
Background Induction of the heat shock response (HSR) and increased expression of the heat shock proteins (HSPs) provide mechanisms to ensure proper protein folding, trafficking, and disposition. The importance of HSPs is underscored by the understanding that protein mis-folding and aggregation contribute centrally to the pathogenesis of neurodegenerative diseases. Methodology/Principal Findings We used a cell-based hsp70-luciferease reporter gene assay system to identify agents that modulate the HSR and show here that clinically relevant concentrations of the FDA-approved ALS drug riluzole significantly increased the heat shock induction of hsp70-luciferse reporter gene. Immuno-Western and -cytochemical analysis of HSF1 show that riluzole increased the amount of cytosolic HSF1 to afford a greater activation of HSF1 upon heat shock. The increased HSF1 contributed centrally to the cytoprotective activity of riluzole as hsf1 gene knockout negated the synergistic activity of riluzole and conditioning heat shock to confer cell survival under oxidative stress. Evidence of a post-transcriptional mechanism for the increase in HSF1 include: quantitation of mRNAhsf1 by RT-PCR showed no effect of either heat shock or riluzole treatment; riluzole also increased the expression of HSF1 from a CMV-promoter; analysis of the turnover of HSF1 by pulse chase and immunoprecipitation show that riluzole slowed the decay of [35S]labeled-HSF1. The effect of riluzole on HSF1 was qualitatively different from that of MG132 and chloroquine, inhibitors of the proteasome and lysosome, respectively, and appeared to involve the chaperone-mediated autophagy pathway as RNAi-mediated knockdown of CMA negated its effect. Conclusion/Significance We show that riluzole increased the amount of HSF1 to amplify the HSR for cytoprotection. Our study provides novel insight into the mechanism that regulates HSF1 turnover, and identifies the degradation of HSF1 as a target for therapeutics intervention.
Collapse
Affiliation(s)
- Jingxian Yang
- Department of Cell Biology and Neuroscience, Rutgers State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Kristen Bridges
- Department of Cell Biology and Neuroscience, Rutgers State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Kuang Yu Chen
- Department of Chemistry and Chemical Biology, Rutgers State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Alice Y.-C. Liu
- Department of Cell Biology and Neuroscience, Rutgers State University of New Jersey, Piscataway, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
4
|
Schmid K, Haslbeck M, Buchner J, Somoza V. Induction of Heat Shock Proteins and the Proteasome System by Casein-Nɛ-(Carboxymethyl)lysine andNɛ-(Carboxymethyl)lysine in Caco-2 Cells. Ann N Y Acad Sci 2008; 1126:257-61. [DOI: 10.1196/annals.1433.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
5
|
Heikkila JJ, Kaldis A, Morrow G, Tanguay RM. The use of the Xenopus oocyte as a model system to analyze the expression and function of eukaryotic heat shock proteins. Biotechnol Adv 2007; 25:385-95. [PMID: 17459646 DOI: 10.1016/j.biotechadv.2007.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 03/21/2007] [Accepted: 03/21/2007] [Indexed: 11/26/2022]
Abstract
The analysis of the expression and function of heat shock protein (hsp) genes, a class of molecular chaperones, has been greatly aided by studies carried out with Xenopus oocytes. The large size of the oocyte facilitates microinjection of DNA, mRNA or protein, permits manual dissection of nuclei, and allows certain assays to be performed with single oocytes. These and other characteristics were useful in identifying the cis- and trans-acting factors involved in hsp gene transcription as well as the role of chaperones and co-chaperones in the repression and activation of heat shock factor. Xenopus oocytes were used to examine heat shock protein (HSP) molecular chaperone function as well as their involvement in intracellular trafficking, maturation, and secretion of protein. Possible new areas of research with this system include the role of membranes in the heat shock response, involvement of HSPs in viral replication and maturation, and in vivo NMR spectroscopy of microinjected HSPs.
Collapse
Affiliation(s)
- John J Heikkila
- Department of Biology, University of Waterloo, Waterloo, ON, Canada N2L 3G1.
| | | | | | | |
Collapse
|
6
|
Abstract
Protein stability is critical to the outcome of nearly all thermally mediated applications to biomaterials such as thermal therapies (including cryosurgery), burn injury, and biopreservation. As such, it is imperative to understand as much as possible about how a protein loses stability and to what extent we can control this through the thermal environment as well as through chemical or mechanical modification of the protein environment. This review presents an overview of protein stability in terms of denaturation due to temperature alteration (predominantly high and some low) and its modification by use of chemical additives, pH modification as well as modification of the mechanical environment (stress) of the proteins such as collagen. These modifiers are able to change the kinetics of protein denaturation during heating. While pH can affect the activation energy (or activation enthalpy) and the frequency factor (or activation entropy) of the denaturation kinetics, many other chemical and mechanical modifiers only affect the frequency factor (activation entropy). Often, the modification affecting activation entropy appears to be linked to the hydration of the protein. While the heat-induced denaturation of proteins is reasonably well understood, the heat denaturation of structural proteins (e.g., collagen) within whole tissues remains an area of active research. In addition, while some literature exists on protein denaturation during cold temperatures, relatively little is known about the kinetics of protein denaturation during both freezing and drying. Further understanding of this kinetics will have an important impact on applications ranging from preservation of biomaterials and pharmaceutics to cryosurgery. Interestingly, both freezing and drying involve drastic shifts in the hydration of the proteins. It is clear that understanding protein hydration at the molecular, cellular, and tissue level will be important to the future of this evolving area.
Collapse
Affiliation(s)
- John C Bischof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
7
|
Aufricht C. Heat-shock protein 70: molecular supertool? Pediatr Nephrol 2005; 20:707-13. [PMID: 15782306 DOI: 10.1007/s00467-004-1812-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Revised: 12/09/2004] [Accepted: 12/14/2004] [Indexed: 10/25/2022]
Abstract
The cellular stress response decreases cellular injury, either via primary induction of cytoresistance or by secondary enhancement of cellular repair mechanisms. The most frequently studied and best understood effectors of the cellular stress response are the heat shock proteins (HSP). HSP are among the oldest tools in the cellular protein machinery, demonstrating extremely high conservation of the genetic code since bacteria. Molecular chaperons, with the HSP-70 being the prototype, cooperate in transport and folding of proteins, preventing aggregation, and even resolubilizing injured proteins. Increasing evidence supports a role for HSP during the recovery from renal ischemia, in particular in cellular salvage from apoptotic cell death and cytoskeletal restoration. Recent studies also report the potential for biomolecular profiling of newborns for the risk of acute renal failure. In peritoneal dialysis novel data suggest the use of HSP expression for biocompatibility testing. More importantly, HSP are prime therapeutic candidates for clinical situations associated with predictable insults, such as organ procurement in transplant medicine and repetitive exposure to hyperosmolar and acidotic peritoneal dialysis fluids. The next challenge will be to define the regulatory pathways of the cellular stress response in these models to introduce novel therapeutic interventions, such as new pharmaceutics enhancing the HSP expression.
Collapse
Affiliation(s)
- Christoph Aufricht
- Kinderdialyse Wien, Department of Pediatrics, Medical University of Vienna, Austria.
| |
Collapse
|
8
|
Mao H, Wang Y, Li Z, Ruchalski KL, Yu X, Schwartz JH, Borkan SC. Hsp72 interacts with paxillin and facilitates the reassembly of focal adhesions during recovery from ATP depletion. J Biol Chem 2004; 279:15472-80. [PMID: 14718530 DOI: 10.1074/jbc.m313484200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cytoprotective effect of heat stress proteins on epithelial cell detachment, an important cause of acute, ischemic renal failure, was examined after ATP depletion by evaluating focal adhesion complex (FAC) integrity. The intracellular distribution of FAC proteins (paxillin, talin, and vinculin) was assessed by immunohistochemistry before, during, and after exposure of renal epithelial cells to metabolic inhibitors. The resulting ATP depletion caused reversible re-distribution of all three proteins from focal adhesions to the cytosol. Paxillin, a key adaptor protein, was selected as a surrogate marker for FAC integrity in subsequent studies. Prior heat stress increased hsp72, a molecular chaperone, in both the Triton X-100-soluble and -insoluble protein fractions. Compared with ATP depleted control, heat stress significantly decreased paxillin and hsp72 shift from the Triton X-100 soluble to the insoluble protein fraction (an established marker of denaturation and aggregation); increased paxillin-hsp72 interaction detected by co-immunoprecipitation; enhanced paxillin extractability from Triton X-100-insoluble precipitates, increased the reformation of focal adhesions, and improved cell attachment (p < 0.05). To determine whether hsp72 mediates protection afforded by heat stress, cells were infected with adenovirus containing human hsp72 or empty vector. Hsp72 overexpression increased its interaction with paxillin and improved focal adhesion reformation during recovery, mimicking the protective effects of heat stress. These data suggest that hsp72 facilitates the reassembly of focal adhesions and improves cell attachment by reducing paxillin denaturation and increasing its re-solubilization after ATP depletion.
Collapse
Affiliation(s)
- Haiping Mao
- Department of Nephrology, First Affiliated Hospital, Zhongshan University, GuangZhou, China 510080
| | | | | | | | | | | | | |
Collapse
|
9
|
Cai Q, Ferraris JD, Burg MB. Greater tolerance of renal medullary cells for a slow increase in osmolality is associated with enhanced expression of HSP70 and other osmoprotective genes. Am J Physiol Renal Physiol 2004; 286:F58-67. [PMID: 13129850 DOI: 10.1152/ajprenal.00037.2003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In tests of osmotic tolerance of renal inner medullary cells in tissue culture, osmolality has usually been increased in a single step, whereas in vivo the increase occurs gradually over several hours. We previously found that more passage 2 mouse inner medullary epithelial (p2mIME) cells survive a linear increase in NaCl and urea from 640 to 1,640 mosmol/kgH2O over 20 h (which is similar to the change that may occur in vivo) than they do a step increase. The present studies examine accompanying differences in gene expression. Among mRNAs of genes known to be protective, tonicity-responsive enhancer binding protein and aldose reductase increase with a linear but decrease with a step increase; betaine transporter BGT1 decreases with a step but not a linear increase; heat shock protein 70.1 (HSP70.1) and HSP70.3 increase more with a linear than a step increase; and osmotic stress protein 94 and heme oxygenase-1 increase with a linear but decrease with a step increase. mRNAs for known urea-responsive proteins, GADD153 and Egr-1, increase with both a step and linear increase. A step increase in urea alone reduces mRNAs, similar to the combination of NaCl and urea, but a step increase in NaCl alone does not. HSP70 protein increases substantially with a linear rise in osmolality but does not change significantly with a step rise. We speculate that poorer survival of p2mIME cells with a step than with linear increase in NaCl and urea is accounted for, at least in part, by urea-induced suppression of protective genes, particularly HSP70.
Collapse
Affiliation(s)
- Qi Cai
- National Heart, Lung and Blood Institute, National Institutes of Health, Bldg. 10, Rm. 6N319, Bethesda, MD 20892-1603, USA.
| | | | | |
Collapse
|
10
|
Chapter 15 Factors Underlying the Selective Vulnerability of Motor Neurons to Neurodegeneration. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1877-3419(09)70116-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
11
|
Paroo Z, Meredith MJ, Locke M, Haist JV, Karmazyn M, Noble EG. Redox signaling of cardiac HSF1 DNA binding. Am J Physiol Cell Physiol 2002; 283:C404-11. [PMID: 12107049 DOI: 10.1152/ajpcell.00051.2002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Experiments involving chemical induction of the heat shock response in simple biological systems have generated the hypothesis that protein denaturation and consequential binding of heat shock transcription factor 1 (HSF1) to proximal heat shock elements (HSEs) on heat shock protein (hsp) genes are the result of oxidation and/or depletion of intracellular thiols. The purpose of the present investigation was to determine the role of redox signaling of HSF1 in the intact animal in response to physiological and pharmacological perturbations. Heat shock and exercise induced HSF1-HSE DNA binding in the rat myocardium (P < 0.001) in the absence of changes in reduced glutathione (GSH), the major nonprotein thiol in the cell. Ischemia-reperfusion, which decreased GSH content (P < 0.05), resulted in nonsignificant HSF1-HSE formation. This dissociation between physiological induction of HSF1 and changes in GSH was not gender dependent. Pharmacological ablation of GSH with L-buthionine-[S,R]-sulfoximine (BSO) treatment increased myocardial HSF1-HSE DNA binding in estrogen-naive animals (P = 0.007). Thus, although physiological induction of HSF1-HSE DNA binding is likely regulated by mediators of protein denaturation other than cellular redox status, the proposed signaling pathway may predominate with pharmacological oxidation and may represent a plausible and accessible strategy in the development of HSP-based therapies.
Collapse
Affiliation(s)
- Zain Paroo
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada N6A 3K7
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
The normal milieu of the kidney includes hypoxia, large osmotic fluxes, and an enormous amount of fluid/solute reabsorption. Renal adaptation to these conditions requires a host of molecular chaperones that stabilize protein conformation, target nascent proteins to their final intracellular destination, and prevent protein aggregation. Under physiologic or pharmacologic stress, inducible molecular chaperones provide additional mechanisms for repairing or degrading non-native proteins and for inhibiting stress-induced apoptosis. In contrast to intracellular chaperones, chaperones present on the cell surface regulate the immune system and have cytokine-like effects. A diverse range of chaperones and chaperone functions provide the renal cell with an armamentarium of responses to improve the chances of survival.
Collapse
Affiliation(s)
- Steven C Borkan
- Evans Biomedical Research Center, Boston Medical Center, Renal Section, 650 Albany Street, Boston, Massachusetts 02118-2518, USA.
| | | |
Collapse
|
13
|
Verbeke P, Clark BF, Rattan SI. Modulating cellular aging in vitro: hormetic effects of repeated mild heat stress on protein oxidation and glycation. Exp Gerontol 2000; 35:787-94. [PMID: 11053669 DOI: 10.1016/s0531-5565(00)00143-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Intracellular and extracellular proteins are subject to a variety of spontaneous non-enzymatic modifications which affect their structure, function and stability. Protein oxidation and glycation are tightly linked and are implicated in the development of many pathological consequences of aging. Although multiple endogenous pathways in the cell can prevent the formation of oxidized and glycated proteins, and repair and degrade abnormal proteins, such abnormal proteins do accumulate during aging. The heat shock response involving the family of stress-proteins or the so-called heat shock proteins (HSP), represents the quickest and highly conserved response to proteotoxic insults. Since repeated mild heat stress is able to prevent the onset of various age-related changes during cellular aging in vitro, we suggest that treatments which increase HSP expression should reduce the extent of accumulation of abnormal proteins during aging. Such modulation of aging is an example of hormesis, which is characterized by the beneficial effects resulting from the cellular responses to mild repeated stress.
Collapse
Affiliation(s)
- P Verbeke
- Danish Centre for Molecular Gerontology, Laboratory of Cellular Ageing, Department of Molecular and Structural Biology, University of Aarhus, Gustav Wieds Vej 10-C, DK-8000, Aarhus, Denmark
| | | | | |
Collapse
|
14
|
Sconzo G, Palla F, Agueli C, Spinelli G, Giudice G, Cascino D, Geraci F. Constitutive hsp70 is essential to mitosis during early cleavage of Paracentrotus lividus embryos: the blockage of constitutive hsp70 impairs mitosis. Biochem Biophys Res Commun 1999; 260:143-9. [PMID: 10381358 DOI: 10.1006/bbrc.1999.0782] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Localization of constitutive hsp70 in eggs and early embryos of sea urchin Paracentrotus lividus is shown by means of in situ immunostaining. An accumulation of this protein is shown in the mitotic structures (asters, spindles and centrosomes). Microinjection of anti-hsp70 antibodies into eggs causes impairment of formation of mitotic structures and of cell division. This impairment goes from a complete mitotic block, to irregular mitotic apparatus formation with irregular cleavage, depending upon the antibody concentration. The localization of hsp70 after antibody microinjection is also described. Blockage of mitotic apparatus formation by nocodazole also blocks the concentration of hsp70 molecules observed in nontreated eggs. That the constitutive hsp70 plays a role in sea urchin mitosis is indicated.
Collapse
Affiliation(s)
- G Sconzo
- Dipartimento di Biologia Cellulare e dello Sviluppo Alberto Monroy, Università di Palermo, Palermo, Italy.
| | | | | | | | | | | | | |
Collapse
|
15
|
Freeman ML, Borrelli MJ, Meredith MJ, Lepock JR. On the path to the heat shock response: destabilization and formation of partially folded protein intermediates, a consequence of protein thiol modification. Free Radic Biol Med 1999; 26:737-45. [PMID: 10218664 DOI: 10.1016/s0891-5849(98)00258-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This review discusses the initial events that occur during oxidative stress that induce the synthesis of heat shock proteins. The focus is on non-native oxidation or modification of protein thiols and the destablization that can result. Proteins that contain non-native modified thiols can become destablized such that they unfold into molten globule-like intermediates at or below 37 degrees C, relieving Hsf-1 negative regulation, and inducing Hsp transcription.
Collapse
Affiliation(s)
- M L Freeman
- Department of Radiation Oncology, Vanderbilt Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | | | | | |
Collapse
|
16
|
Tomoyasu T, Ogura T, Tatsuta T, Bukau B. Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in Escherichia coli. Mol Microbiol 1998; 30:567-81. [PMID: 9822822 DOI: 10.1046/j.1365-2958.1998.01090.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The expression of heat shock genes in Escherichia coli is regulated by the antagonistic action of the transcriptional activator, the sigma32 subunit of RNA polymerase, and negative modulators. Modulators are the DnaK chaperone system, which inactivates and destabilizes sigma32, and the FtsH protease, which is largely responsible for sigma32 degradation. A yet unproven hypothesis is that the degree of sequestration of the modulators through binding to misfolded proteins determines the level of heat shock gene transcription. This hypothesis was tested by altering the modulator concentration in cells expressing dnaK, dnaJ and ftsH from IPTG and arabinose-controlled promoters. Small increases in levels of DnaK and the DnaJ co-chaperone (< 1.5-fold of wild type) resulted in decreased level and activity of sigma32 at intermediate temperature and faster shut-off of the heat shock response. Small decreases in their levels caused inverse effects and, furthermore, reduced the refolding efficiency of heat-denatured protein and growth at heat shock temperatures. Fewer than 1500 molecules of a substrate of the DnaK system, structurally unstable firefly luciferase, resulted in elevated levels of heat shock proteins and a prolonged shut-off phase of the heat shock response. In contrast, a decrease in FtsH levels increased the sigma32 levels, but the accumulated sigma32 was inactive, indicating that sequestration of FtsH alone cannot induce the heat shock response efficiently. DnaK and DnaJ thus constitute the primary stress-sensing and transducing system of the E. coli heat shock response, which detects protein misfolding with high sensitivity.
Collapse
Affiliation(s)
- T Tomoyasu
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Str. 7, D-79104 Freiburg, Germany
| | | | | | | |
Collapse
|
17
|
Scharf KD, Höhfeld I, Nover L. Heat stress response and heat stress transcription factors. J Biosci 1998. [DOI: 10.1007/bf02936124] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Aufricht C, Lu E, Thulin G, Kashgarian M, Siegel NJ, Van Why SK. ATP releases HSP-72 from protein aggregates after renal ischemia. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:F268-74. [PMID: 9486221 DOI: 10.1152/ajprenal.1998.274.2.f268] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The pattern of 72-kDa heat-shock protein (HSP-72) induction after renal ischemia suggests a role in restoring cell structure. HSP-72 activity in the repair and release from denatured and aggregated proteins requires ATP. Protein aggregates were purified from normal and ischemic rat renal cortex. The addition of ATP to cortical homogenates reduced HSP-72, Na(+)-K(+)-ATPase, and actin in aggregates subsequently isolated, suggesting that their interaction is ATP dependent. Altering ATP hydrolysis in the purified aggregates, however, had different effects. ATP released HSP-72 during reflow and preserved Na(+)-K(+)-ATPase association with aggregates at 2 h but had no effect in controls or at 6 h reflow and caused no change in actin. These results indicate that HSP-72 complexes with aggregated cellular proteins in an ATP-dependent manner and suggests that enhancing HSP-72 function after ischemic renal injury assists refolding and stabilization of Na(+)-K(+)-ATPase or aggregated elements of the cytoskeleton, allowing reassembly into a more organized state.
Collapse
Affiliation(s)
- C Aufricht
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520-8064, USA
| | | | | | | | | | | |
Collapse
|
19
|
Sconzo G, Geraci F, Melfi R, Cascino D, Spinelli G, Giudice G, Sirchia R. Sea urchin HSF activity in vitro and in transgenic embryos. Biochem Biophys Res Commun 1997; 240:436-41. [PMID: 9388497 DOI: 10.1006/bbrc.1997.7536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Evidence is provided for the presence at the physiological temperature of 20 degrees C of a heat shock transcriptor factor, HSF, in the nuclei of P.lividus embryos. This HSF is able to specifically bind in vitro the heat shock element, HSE, of the promoter of the hsp70 gene i.v., as suggested by DNA-protein binding reactions and DNAse I protection assays. Upon heat-shock, at the temperature of 31 degrees C, its ability to bind the HSE units becomes much higher. The HSF activated by heat-shock drives in vivo the transcription of the beta-galactosidase reporter gene in transgenic sea urchin gastrulae. An ATF-like transcription factor, widely described in other organisms but not at all in sea urchins, is also present in the nuclear extracts and is able to bind the consensus individuated in the hsp70 i.v. gene promoter.
Collapse
Affiliation(s)
- G Sconzo
- Dipartimento di Biologia Cellulare e dello Sviluppo Alberto Monroy, Università di Palermo, Italy.
| | | | | | | | | | | | | |
Collapse
|
20
|
Prudhomme C, Moreau N, Angelier N. Conditions for a heat shock response during oogenesis and embryogenesis of the amphibian Pleurodeles waltl. Dev Growth Differ 1997; 39:477-84. [PMID: 9352202 DOI: 10.1046/j.1440-169x.1997.t01-3-00009.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The optimal conditions capable of inducing an increase in HSP70 neosynthesis during development of the urodele amphibian Pleurodeles waltl were determined in this study. These conditions depend on temperature, heat shock duration and recovery duration. In oocytes, a heat shock response was repeatedly obtained at 37 degrees C for 15 min followed by 1 h recovery. These results provided evidence for heat shock response at every stage considered. An increase in HSP70 synthesis was noted throughout oogenesis, but it did not lead to an increase in the amount of soluble HSP70, except for stage VI oocytes. Such results suggest that from stage II to stage IV oocytes, an equilibrium occurs between the HSP70 used and the HSP70 neosynthesized. In contrast, in stage VI oocytes, heat shock led to overproduction of HSP70. During early development, the heat shock response was repeatedly obtained only from the gastrula stage with a 37 degrees C shock and a 15 min duration of treatment. Surprisingly, during cleavage stage, the soluble HSP70 total amount increased after heat shock at a time when no HSP70 neosynthesis occurred.
Collapse
Affiliation(s)
- C Prudhomme
- Groupe Gènes et Développement, UA 1135 Université Pierre et Marie Curie-Centre National de la Recherche Scientifique Laboratoire de Biologie Moléculaire et Cellulaire du Développement Bâtiment C, Paris, France
| | | | | |
Collapse
|
21
|
Mercier PA, Foksa J, Ovsenek N, Westwood JT. Xenopus heat shock factor 1 is a nuclear protein before heat stress. J Biol Chem 1997; 272:14147-51. [PMID: 9162043 DOI: 10.1074/jbc.272.22.14147] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Stress-induced expression of the heat shock (hs) genes in eukaryotes is mediated by a transcription factor known as heat shock factor 1 (HSF1). HSF1 is present in a latent, monomeric form in unstressed metazoan cells and upon exposure to heat or other forms of stress is converted to an "active" trimeric form, which binds the promoters of hs genes and induces their transcription. The conversion of HSF1 to its active form is hypothesized to be a multistep process involving (i) oligomerization of HSF1, plus (ii) additional changes in its physical conformation, (iii) changes in its phosphorylation state, and for some species (iv) translocation from the cytoplasm to the nucleus. Oligomerization of HSF appears to be essential for high affinity DNA binding, but it remains unclear whether the other steps occur in all organisms or what their mechanistic roles are. In this study we have examined if heat-induced cytoplasmic-nuclear translocation of HSF1 occurs in Xenopus oocytes. We observed that germinal vesicles (nuclei) that were physically dissected from unshocked Xenopus laevis oocytes contain no HSF1 binding activity. Interestingly, in vitro heat shock treatments of isolated nuclei from unshocked oocytes activated HSF1 binding, indicating that HSF1 must have been present in the unshocked nuclei prior to isolation. Induction of HSF1 binding was not observed in enucleated oocytes. Western blot analysis using an affinity-purified polyclonal antibody made against X. laevis HSF1 showed that HSF1 is present in equal amounts in unshocked and shocked oocytes and isolated nuclei. HSF1 was not detected in enucleated oocytes. These results clearly demonstrate that HSF1 is a nuclear protein in oocytes prior to exposure to stress. In Xenopus oocytes, therefore, HSF1 translocation from the cytoplasm to the nucleus is not part of the multistep process of HSF1 activation. These results also imply that the signals and/or factors involved in HSF1 activation must have their effect in the nuclear compartment.
Collapse
Affiliation(s)
- P A Mercier
- Department of Zoology, Erindale College, University of Toronto, Mississauga, Ontario L5L 1C6, Canada
| | | | | | | |
Collapse
|
22
|
Sconzo G, Amore G, Capra G, Giudice G, Cascino D, Ghersi G. Identification and characterization of a constitutive HSP75 in sea urchin embryos. Biochem Biophys Res Commun 1997; 234:24-9. [PMID: 9168953 DOI: 10.1006/bbrc.1997.9996] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An antiserum against a hsp of the 70-kDa family was prepared, by means of a fusion protein, which was able to detect a constitutive 75-kDa hsc in the sea urchin P. lividus. This hsc was present both during oogenesis and at all developmental stages. A two-dimensional electrophoresis has revealed four isolectric forms of this 75-kDa hsc. The amino acid sequence of the fragment used to prepare the anti-hsp70 antibodies revealed a 43% identity with the corresponding part of sea urchin sperm receptor, and in mature eggs a brighter immunofluorescence was seen all around the cell cortex where the receptor for sea urchin sperm is localized. In oocytes the hsp75 was localized in the cytoplasms but not in the nuclei. In the embryos a higher hsp75 concentration was found in the portion facing the lumen of the cells which invaginate at gastrulation.
Collapse
Affiliation(s)
- G Sconzo
- Dipartimento di Biologia Cellulare e dello Sviluppo, Alberto Monroy Viale delle Scienze Università di Palermo, Italy.
| | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Winegarden NA, Wong KS, Sopta M, Westwood JT. Sodium salicylate decreases intracellular ATP, induces both heat shock factor binding and chromosomal puffing, but does not induce hsp 70 gene transcription in Drosophila. J Biol Chem 1996; 271:26971-80. [PMID: 8900183 DOI: 10.1074/jbc.271.43.26971] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Sodium salicylate has long been known to be an inducer of the heat shock puffs and presumably heat shock gene transcription in the polytene chromosomes of Drosophila salivary gland cells. Stress-induced transcription of the heat shock genes is mediated by the transcription factor known as Heat Shock Factor (HSF). In yeast, sodium salicylate has been reported to induce the DNA binding of HSF but not heat shock gene transcription itself, and similar findings have been reported in human cells. This apparent discrepancy in the induction of certain aspects of the heat shock response between these organisms prompted us to carefully reexamine the induction of the heat shock response in Drosophila salivary gland cells of third instar larvae and Drosophila tissue culture (SL2) cells. Sodium salicylate (3-30 mM) decreases intracellular ATP levels in SL2 cells and induces HSF binding activity in SL2 and salivary gland cells in a dose-dependent manner. Despite the induction of HSF binding and heat shock puffs in polytene chromosomes, we found no evidence for increased hsp 70 gene transcription suggesting that chromosomal puffing and gene transcription may be separable events. Salicylate did not induce the HSF hyperphosphorylation that is normally associated with HSF activation. Furthermore, salicylate (30 mM) prevented heat-induced hyperphosphorylation of HSF and hsp 70 gene transcription indicating that salicylate's inhibitory effect on hsp 70 transcription may be independent of its effect on HSF binding activity. We propose that the reduction in intracellular ATP caused by the addition of salicylate likely plays a role in the activation of HSF binding and the inhibition of both HSF hyperphosphorylation and hsp 70 gene transcription.
Collapse
Affiliation(s)
- N A Winegarden
- Department of Zoology, Erindale College, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| | | | | | | |
Collapse
|
25
|
Liu H, Lightfoot R, Stevens JL. Activation of Heat Shock Factor by Alkylating Agents Is Triggered by Glutathione Depletion and Oxidation of Protein Thiols. J Biol Chem 1996. [DOI: 10.1074/jbc.271.9.4805] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
26
|
Hatayama T, Masoka T. Inhibition mechanism of HSP70 induction in murine FM3A cells maintained at low culture temperature. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1269:243-52. [PMID: 7495877 DOI: 10.1016/0167-4889(95)00126-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have shown previously that induction of HSP70 synthesis in murine FM3A and its mutant ts85 cells by heat shock is somehow modulated by culture temperature. In this study, we further examined activation of heat shock transcription factor (HSF) and induction kinetics of HSP70 synthesis and HSP70 mRNA in FM3A and ts85 cells maintained at 37 degrees C (37 degrees C-cells) and 33 degrees C (33 degrees C-cells). Upon exposure to heat shock, HSF was activated to a high level in 37 degrees C-FM3A cells, whereas HSF was activated only to a low level in the 33 degrees C-cells. The induction of HSP70 mRNA and HSP70 synthesis occurred successively in the 37 degrees C-cells but not in the 33 degrees C-cells. On the other hand, in both 37 and 33 degrees C-ts85 cells, activation of HSF, induction of HSP70 mRNA, and HSP70 synthesis occurred successively. Characteristically, protein synthesis in both 33 degrees C-FM3A and ts85 cells was significantly lower than in the respective 37 degrees C-cells, but constitutive HSP73 levels were similar among both the 37 and 33 degrees C-cells. Furthermore, inhibition of protein synthesis of FM3A cells did not influence the activation of HSF, but accelerated inactivation of the activated HSF. We discuss the possible inhibition mechanisms of activation of HSF in 33 degrees C-FM3A cells, regarding the function of HSP70 in both protein synthesis and repression of HSF.
Collapse
Affiliation(s)
- T Hatayama
- Department of Biochemistry, Kyoto Pharmaceutical University, Japan
| | | |
Collapse
|
27
|
Freeman ML, Borrelli MJ, Syed K, Senisterra G, Stafford DM, Lepock JR. Characterization of a signal generated by oxidation of protein thiols that activates the heat shock transcription factor. J Cell Physiol 1995; 164:356-66. [PMID: 7622581 DOI: 10.1002/jcp.1041640216] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The diazenecarbonyl derivative, diamide, was used to produce nonnative protein disulfides in Chinese hamster ovary cells in order to characterize the events that occur during thiol oxidation-induced denaturation that trigger induction of Hsp 70. We limit the term protein denaturation to a process involving a conformational rearrangement by which the ordered native structure of a protein changes to a more disordered structure. Protein thiol oxidation resulted in immediate destabilization of proteins, as assessed by differential scanning calorimetry (DSC). The DSC profile indicated both a decrease in the onset temperature for detection of denaturation and destabilization of a class of proteins with an average transition temperature (Tm) of 60 degrees C. Concomitant with destabilization was an increase in proteins associated with isolated nuclei. Thiol oxidation also induced heat shock transcription factor (HSF) binding activity, however, this was nearly undetectable immediately following diamide treatment: maximum activation occurred 3 hr following exposure. In contrast, heat shock denatured thermolabile proteins which exhibited a Tm of < or = 48 degrees C. Heat shock also resulted in a rapid increase in proteins associated with isolated nuclei and produced immediate and maximum activation of HSF binding. The accumulation of Hsp and Hsc 70 mRNA following thiol oxidation reflected the delay in HSF binding. Acquisition of HSF binding activity occurred immediately if diamide-treated cells were subsequently exposed to a heat shock, indicating that HSF was not inactivated by the diamide treatment. Ostensibly, the cellular system for detecting denatured/abnormal proteins failed to immediately recognize the signal generated by thiol oxidation. These results suggest that at least two processes are involved in the induction of Hsp 70 by nonnative disulfide bond formation: destabilization of protein structure resulting in denaturation and recognition of denatured protein.
Collapse
Affiliation(s)
- M L Freeman
- Vanderbilt Center for Radiation Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Reporter genes are widely used as a rapid and convenient means of measuring molecular genetic events. Their role in experimental strategies has expanded from analysis of the DNA sequences mediating RNA transcription to the broader ensemble of molecular events that define phenotype expression. The several genetic reporters available today impart a range of performance criteria to choose from, including assay convenience and reliability, sensitivity, linearity, simplicity and dynamics.
Collapse
|
29
|
hsc70 moderates the heat shock (stress) response in Xenopus laevis oocytes and binds to denatured protein inducers. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)40740-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|