1
|
Substrate delivery mechanism and the role of membrane curvature in factor X activation by extrinsic tenase. J Theor Biol 2017; 435:125-133. [DOI: 10.1016/j.jtbi.2017.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 07/14/2017] [Accepted: 09/16/2017] [Indexed: 10/18/2022]
|
2
|
Abstract
Coagulation factor VIIa (FVIIa) is an intrinsically poor serine protease that requires assistance from its cofactor tissue factor (TF) to trigger the extrinsic pathway of blood coagulation. TF stimulates FVIIa through allosteric maturation of its active site and by facilitating substrate recognition. The surface dependence of the latter property allowed us to design a potent membrane-triggered activity switch in FVIIa by engineering a disulfide cross-link between an allosterically silent FVIIa variant and soluble TF. These results show that optimization of substrate recognition remote from the active site represents a promising new route to simultaneously enhance and localize the procoagulant activity of FVIIa for therapeutic purposes. Recombinant factor VIIa (FVIIa) variants with increased activity offer the promise to improve the treatment of bleeding episodes in patients with inhibitor-complicated hemophilia. Here, an approach was adopted to enhance the activity of FVIIa by selectively optimizing substrate turnover at the membrane surface. Under physiological conditions, endogenous FVIIa engages its cell-localized cofactor tissue factor (TF), which stimulates activity through membrane-dependent substrate recognition and allosteric effects. To exploit these properties of TF, a covalent complex between FVIIa and the soluble ectodomain of TF (sTF) was engineered by introduction of a nonperturbing cystine bridge (FVIIa Q64C-sTF G109C) in the interface. Upon coexpression, FVIIa Q64C and sTF G109C spontaneously assembled into a covalent complex with functional properties similar to the noncovalent wild-type complex. Additional introduction of a FVIIa-M306D mutation to uncouple the sTF-mediated allosteric stimulation of FVIIa provided a final complex with FVIIa-like activity in solution, while exhibiting a two to three orders-of-magnitude increase in activity relative to FVIIa upon exposure to a procoagulant membrane. In a mouse model of hemophilia A, the complex normalized hemostasis upon vascular injury at a dose of 0.3 nmol/kg compared with 300 nmol/kg for FVIIa.
Collapse
|
3
|
Ke K, Yuan J, Morrissey JH. Tissue factor residues that putatively interact with membrane phospholipids. PLoS One 2014; 9:e88675. [PMID: 24516673 PMCID: PMC3916442 DOI: 10.1371/journal.pone.0088675] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 01/08/2014] [Indexed: 11/19/2022] Open
Abstract
Blood clotting is initiated by the two-subunit enzyme consisting of the plasma protease, factor VIIa (the catalytic subunit), bound to the integral membrane protein, tissue factor (the regulatory subunit). Molecular dynamics simulations have predicted that certain residues in the tissue factor ectodomain interact with phosphatidylserine headgroups to ensure optimal positioning of the tissue factor/factor VIIa complex relative to its membrane-bound protein substrates, factors IX and X. In this study, we individually mutated to alanine all the putative phosphatidylserine-interactive residues in the tissue factor ectodomain and measured their effects on tissue factor cofactor function (activation of factors IX and X by tissue factor/factor VIIa, and clotting of plasma). Some tissue factor mutants exhibited decreased activity in all three assays, with the most profound defects observed from mutations in or near the flexible loop from Lys159 to Gly164. The decreased activity of all of these tissue factor mutants could be partially or completely overcome by increasing the phosphatidylserine content of tissue factor-liposomes. Additionally, yeast surface display was used to screen a random library of tissue factor mutants for enhanced factor VIIa binding. Surprisingly, mutations at a single amino acid (Lys165) predominated, with the Lys165→Glu mutant exhibiting a 3-fold enhancement in factor VIIa binding affinity. Our studies reveal the functional contributions of residues in the C-terminal half of the tissue factor ectodomain that are implicated in interacting with phosphatidylserine headgroups to enhance tissue factor cofactor activity, possibly by allosterically modulating the conformation of the adjacent substrate-binding exosite region of tissue factor.
Collapse
Affiliation(s)
- Ke Ke
- Department of Biochemistry, University of Illinois, Urbana, Illinois, United States of America
| | - Jian Yuan
- Department of Biochemistry, University of Illinois, Urbana, Illinois, United States of America
| | - James H. Morrissey
- Department of Biochemistry, University of Illinois, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
4
|
Peraramelli S, Thomassen S, Heinzmann A, Rosing J, Hackeng TM, Hartmann R, Scheiflinger F, Dockal M. Direct inhibition of factor VIIa by TFPI and TFPI constructs. J Thromb Haemost 2013; 11:704-14. [PMID: 23347185 DOI: 10.1111/jth.12152] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 01/09/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND Tissue factor pathway inhibitor (TFPI) is a multi-Kunitz domain protease inhibitor that down-regulates the extrinsic coagulation pathway by inhibiting FXa and FVIIa. OBJECTIVES To investigate the role of the three Kunitz domains (KDs) of TFPI in FVIIa inhibition using full-length TFPI (TFPIfl ) and truncated TFPI constructs. METHODS Inhibition of FVIIa with/without relipidated tissue factor (TF) or soluble TF (sTF) by TFPIfl /TFPI constructs was quantified with a FVIIa-specific chromogenic substrate. RESULTS AND CONCLUSIONS TFPIfl inhibited TF-FVIIa via a monophasic reaction, which is rather slow at low TFPIfl concentrations (t½ ≈ 5 min at 2 nm TFPI) and has a Ki of 4.6 nm. In the presence of sTF and without TF, TFPIfl was a poor FVIIa inhibitor, with Ki values of 122 nm and 1118 nm, respectively. This indicates that phospholipids and TF significantly contribute to FVIIa inhibition by TFPIfl . TFPI constructs without the KD3-c-terminus (TFPI1-150 and KD1-KD2) were 7-10-fold less effective than TFPIfl in inhibiting TF-FVIIa and sTF-FVIIa, indicating that the KD3-C-terminus significantly contributes to direct inhibition of FVIIa by TFPI. Compared with KD1-KD2, KD1 was a poor TF-FVIIa inhibitor (Ki =434 nm), which shows that the KD2 domain of TFPI also contributes to FVIIa inhibition. Protein S stimulated TF-FVIIa inhibition by TFPIfl (Ki =0.7 nm). In the presence of FXa, a tight quaternary TF-FVIIa-TFPI-FXa complex is formed with TFPIfl , TFPI1-150 and KD1-KD2, with Ki values of < 0.15 nm, 0.5 nm and 0.8 nm, respectively, indicating the KD3-C-terminus is not a prerequisite for quaternary complex formation. Phospholipids and the Gla-domain of FXa are required for quaternary complex formation.
Collapse
Affiliation(s)
- S Peraramelli
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, University Maastricht, Maastricht, Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Butenas S. Tissue factor structure and function. SCIENTIFICA 2012; 2012:964862. [PMID: 24278763 PMCID: PMC3820524 DOI: 10.6064/2012/964862] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 11/19/2012] [Indexed: 06/02/2023]
Abstract
Tissue factor (TF) is an integral membrane protein that is essential to life. It is a component of the factor VIIa-TF complex enzyme and plays a primary role in both normal hemostasis and thrombosis. With a vascular injury, TF becomes exposed to blood and binds plasma factor VIIa, and the resulting complex initiates a series of enzymatic reactions leading to clot formation and vascular sealing. Many cells, both healthy, and tumor cells, produce detectable amounts of TF, especially when they are stimulated by various agents. Despite the relative simplicity and small size of TF, there are numerous contradictory reports about the synthesis and presentation of TF on blood cells and circulation in normal blood either on microparticles or as a soluble protein. Another subject of controversy is related to the structure/function of TF. It has been almost commonly accepted that cell-surface-associated TF has low (if any) activity, that is, is "encrypted" and requires specific conditions/reagents to become active, that is, "decrypted." However there is a lack of agreement related to the mechanism and processes leading to alterations in TF function. In this paper TF structure, presentation, and function, and controversies concerning these features are discussed.
Collapse
Affiliation(s)
- Saulius Butenas
- Department of Biochemistry, University of Vermont, 208 South Park Drive, Room 235A, Colchester, VT 05446, USA
| |
Collapse
|
6
|
Martínez-Martínez I, Ordóñez A, Pedersen S, de la Morena-Barrio M, Navarro-Fernández J, Kristensen S, Miñano A, Padilla J, Vicente V, Corral J. Heparin affinity of factor VIIa: Implications on the physiological inhibition by antithrombin and clearance of recombinant factor VIIa. Thromb Res 2011; 127:154-60. [DOI: 10.1016/j.thromres.2010.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 11/02/2010] [Accepted: 11/08/2010] [Indexed: 11/25/2022]
|
7
|
Casey BJ, Behrens AM, Hess JR, Wu ZJ, Griffith BP, Kofinas P. FVII Dependent Coagulation Activation in Citrated Plasma by Polymer Hydrogels. Biomacromolecules 2010; 11:3248-55. [DOI: 10.1021/bm101147w] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brendan J. Casey
- Fischell Department of Bioengineering, University of Maryland, 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, United States, Department of Pathology, University of Maryland School of Medicine, University of Maryland Medical Center, Blood Bank N2W50a, Baltimore, Maryland 21201, United States, and Department of Surgery, University of Maryland School of Medicine, Medical School Teaching Facility Building Room 434F, 10 South Pine Street, Baltimore, Maryland 21201, United States
| | - Adam M. Behrens
- Fischell Department of Bioengineering, University of Maryland, 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, United States, Department of Pathology, University of Maryland School of Medicine, University of Maryland Medical Center, Blood Bank N2W50a, Baltimore, Maryland 21201, United States, and Department of Surgery, University of Maryland School of Medicine, Medical School Teaching Facility Building Room 434F, 10 South Pine Street, Baltimore, Maryland 21201, United States
| | - John R. Hess
- Fischell Department of Bioengineering, University of Maryland, 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, United States, Department of Pathology, University of Maryland School of Medicine, University of Maryland Medical Center, Blood Bank N2W50a, Baltimore, Maryland 21201, United States, and Department of Surgery, University of Maryland School of Medicine, Medical School Teaching Facility Building Room 434F, 10 South Pine Street, Baltimore, Maryland 21201, United States
| | - Zhongjun J. Wu
- Fischell Department of Bioengineering, University of Maryland, 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, United States, Department of Pathology, University of Maryland School of Medicine, University of Maryland Medical Center, Blood Bank N2W50a, Baltimore, Maryland 21201, United States, and Department of Surgery, University of Maryland School of Medicine, Medical School Teaching Facility Building Room 434F, 10 South Pine Street, Baltimore, Maryland 21201, United States
| | - Bartley P. Griffith
- Fischell Department of Bioengineering, University of Maryland, 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, United States, Department of Pathology, University of Maryland School of Medicine, University of Maryland Medical Center, Blood Bank N2W50a, Baltimore, Maryland 21201, United States, and Department of Surgery, University of Maryland School of Medicine, Medical School Teaching Facility Building Room 434F, 10 South Pine Street, Baltimore, Maryland 21201, United States
| | - Peter Kofinas
- Fischell Department of Bioengineering, University of Maryland, 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, United States, Department of Pathology, University of Maryland School of Medicine, University of Maryland Medical Center, Blood Bank N2W50a, Baltimore, Maryland 21201, United States, and Department of Surgery, University of Maryland School of Medicine, Medical School Teaching Facility Building Room 434F, 10 South Pine Street, Baltimore, Maryland 21201, United States
| |
Collapse
|
8
|
Abstract
Cell exposed tissue factor (TF) is generally in a low procoagulant ("cryptic") state, and requires an activation step (decryption) to exhibit its full procoagulant potential. Recent data suggest that TF decryption may be regulated by the redox environment through the oxidoreductase activity of protein disulfide isomerase (PDI). In this article we review PDI contribution to different models of TF decryption, namely the disulfide switch model and the phosphatidylserine dynamics, and hypothesize on PDI contribution to TF self-association and association with lipid domains. Experimental evidence debate the disulfide switch model of TF decryption and its regulation by PDI. More recently we showed that PDI oxidoreductase activity regulates the phosphatidylserine equilibrium at the plasma membrane. Interestingly, PDI reductase activity could maintain TF in the reduced monomeric form, while also maintaining low exposure of PS, both states correlated with low procoagulant function. In contrast, PDI inhibition or oxidants may promote the adverse effects with a net increase in coagulation. The relative contribution of disulfide isomerization and PS exposure needs to be further analyzed to understand the redox control of TF procoagulant function. For the moment however TF regulation remains cryptic.
Collapse
Affiliation(s)
- Narcis I Popescu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|
9
|
Butenas S, Orfeo T, Mann KG. Tissue factor in coagulation: Which? Where? When? Arterioscler Thromb Vasc Biol 2009; 29:1989-96. [PMID: 19592470 DOI: 10.1161/atvbaha.108.177402] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Tissue factor (TF) is an integral membrane protein, normally separated from the blood by the vascular endothelium, which plays a key role in the initiation of blood coagulation. With a perforating vascular injury, TF becomes exposed to blood and binds plasma factor VIIa. The resulting complex initiates a series of enzymatic reactions leading to clot formation and vascular sealing. In some pathological states, circulating blood cells express TF as a result of exposure to an inflammatory stimulus leading to intravascular clotting, vessel occlusion, and thrombotic pathology. Numerous controversies have arisen related to the influence of structural features of TF, its presentation, and its function. There are contradictory reports about the synthesis and presentation of TF on blood cells and the presence (or absence) of functionally active TF circulating in normal blood either on microparticles or as a soluble protein. In this review we discuss TF structure-function relationships and the role of TF during various phases of the blood coagulation process. We also highlight controversies concerning the expression/presence of TF on various cells and in blood in normal and pathological states.
Collapse
Affiliation(s)
- Saulius Butenas
- Department of Biochemistry, University of Vermont, 208 South Park Drive, Suite 2, Room 235A, Colchester, VT 05446, USA.
| | | | | |
Collapse
|
10
|
The influence of different glycosylation patterns on factor VII biological activity. Biochimie 2009; 91:1123-30. [PMID: 19524011 DOI: 10.1016/j.biochi.2009.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 05/29/2009] [Indexed: 11/24/2022]
Abstract
In this study the bioactivity of three differently glycosylated blood coagulation factor VII (FVII) variants (human plasma FVII, recombinant human FVII produced in CHO and BHK cell cultures) were analyzed and compared. Surface plasmon resonance studies of FVII interaction with soluble and full length TF together with FVII autoactivation assays revealed that BHK-derived FVII has the highest bioactivity, while human plasma and CHO-derived FVII showed very similar bioactivity. The affinity of FVII variants to TF correlates with FVII autoactivation rates--the higher the affinity, the faster the autoactivation rate.
Collapse
|
11
|
Tolerance and threshold in the extrinsic coagulation system. Math Biosci 2008; 211:226-54. [DOI: 10.1016/j.mbs.2007.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 05/22/2007] [Accepted: 07/20/2007] [Indexed: 11/19/2022]
|
12
|
Abstract
The research aims of our laboratory are to provide a realistic description of biologic processes involved in protection from hemorrhage and the evolution of thrombosis. To evaluate these processes, we use 4 models of coagulation ranging from 1) studies of blood exiting from microvascular wounds in humans through 2) minimally altered whole blood induced to clot by tissue factor (TF) to 3) reconstitution of the blood coagulation proteome with purified components and to 4) mathematical descriptions of the chemical processes and dynamics that occur. The integration of these 4 models permits comprehensive analyses of the blood coagulation system and predictions of its behavior under normal and pathologic conditions. Data accumulated thus far have led to advances in our understanding of 1) the processes occurring during the initiation and propagation phases of thrombin generation, 2) the roles for individual proteins involved in blood coagulation and its regulation, 3) defects in thrombin generation and clot formation in hemophilia, 4) actions and limitations of pharmacologic agents used to control hemorrhage, thrombosis, and chronic cardiovascular disease, and 5) the relationship between genotypic and phenotypic features of an individual's plasma proteome and his/her immediate and long-term thrombotic risk.
Collapse
|
13
|
Versteeg HH, Ruf W. Tissue factor coagulant function is enhanced by protein-disulfide isomerase independent of oxidoreductase activity. J Biol Chem 2007; 282:25416-24. [PMID: 17613528 DOI: 10.1074/jbc.m702410200] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Protein-disulfide isomerase (PDI) switches tissue factor (TF) from coagulation to signaling by targeting the allosteric Cys186-Cys209 disulfide. Here, we further characterize the interaction of purified PDI with TF. We find that PDI enhances factor VIIa-dependent substrate factor X activation 5-10-fold in the presence of wild-type, oxidized soluble TF but not TF mutants that contain an unpaired Cys186 or Cys209. PDI-accelerated factor Xa generation was blocked by bacitracin but not influenced by inhibition of vicinal thiols, reduction of PDI, changes in redox gradients, or covalent thiol modification of reduced PDI by N-ethylmaleimide or methyl-methanethiosulfonate, which abolished PDI oxidoreductase but not chaperone activity. PDI had no effect on fully active TF on either negatively charged phospholipids or in activating detergent, indicating that PDI selectively acts upon cryptic TF to facilitate ternary complex formation and macromolecular substrate turnover. PDI activation was reduced upon mutation of TF residues in proximity to the macromolecular substrate binding site, consistent with a primary interaction of PDI with TF. PDI enhanced TF coagulant activity on microvesicles shed from cells, suggesting that PDI plays a role as an activating chaperone for circulating cryptic TF.
Collapse
Affiliation(s)
- Henri H Versteeg
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
14
|
Peng ZC, Cai X, Zhang YG, Kong DS, Guo HS, Liang W, Tang QQ, Song HY, Ma D. A novel anti-tissue factor monoclonal antibody with anticoagulant potency derived from synthesized multiple antigenic peptide through blocking FX combination with TF. Thromb Res 2007; 121:85-93. [PMID: 17573098 DOI: 10.1016/j.thromres.2007.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 02/11/2007] [Accepted: 03/02/2007] [Indexed: 10/23/2022]
Abstract
Tissue factor (TF) has been implicated in the pathogenesis of various thrombotic disorders. Monoclonal antibodies (mAb) that specifically target TF may have potential as antithrombotic therapy. We designed a unique TF peptide (TFP) that was specific for the binding site to factor X (FX). This peptide was used to develop TF mAb that block the coagulation cascade by interfering with the combination of FX with the TF/FVIIa complex. Chemically synthesized TFP coupled to polylysine matrix was used as multiple antigenic peptide (TF-MAP) and this was used to immunize Balb/c mice for the preparation of hybridomas. One hybridoma cell line released an antibody, named TF4A12, which had high anticoagulant potency (by dilute prothrombin time assay). Western blotting showed that TF4A12 could bind TF-MAP and the soluble TF extracellular domain (sTF(1-219)). Results of FX activation assay and amidolytic activity assay showed that the anticoagulant ability of TF4A12 is due to blocking FX, but not FVII, binding to TF. Our study identified an efficient method of developing TF mAb that could block the coagulation cascade.
Collapse
Affiliation(s)
- Zhuo-Chun Peng
- Key Laboratory of Molecular Medicine, Ministry of Education, Shanghai Medical College, Fudan University, 200032, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Waters EK, Yegneswaran S, Morrissey JH. Raising the Active Site of Factor VIIa above the Membrane Surface Reduces Its Procoagulant Activity but Not Factor VII Autoactivation. J Biol Chem 2006; 281:26062-8. [PMID: 16835245 DOI: 10.1074/jbc.m604915200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tissue factor, the physiologic trigger of blood clotting, is the membrane-anchored protein cofactor for the plasma serine protease, factor VIIa. Tissue factor is hypothesized to position and align the active site of factor VIIa relative to the membrane surface for optimum proteolytic attack on the scissile bonds of membrane-bound protein substrates such as factor X. We tested this hypothesis by raising the factor VIIa binding site above the membrane surface by creating chimeras containing the tissue factor ectodomain linked to varying portions of the membrane-anchored protein, P-selectin. The tissue factor/P-selectin chimeras bound factor VIIa with high affinity and supported full allosteric activation of factor VIIa toward tripeptidyl-amide substrates. That the active site of factor VIIa was raised above the membrane surface when bound to tissue factor/P-selectin chimeras was confirmed using resonance energy transfer techniques in which appropriate fluorescent dyes were placed in the active site of factor VIIa and at the membrane surface. The chimeras were deficient in supporting factor X activation by factor VIIa due to decreased k(cat). The chimeras were also markedly deficient in clotting plasma, although incubating factor VII or VIIa with the chimeras prior to the addition of plasma restored much of their procoagulant activity. Interestingly, all chimeras fully supported tissue factor-dependent factor VII autoactivation. These studies indicate that proper positioning of the factor VII/VIIa binding site on tissue factor above the membrane surface is important for efficient rates of activation of factor X by this membrane-bound enzyme/cofactor complex.
Collapse
Affiliation(s)
- Emily K Waters
- Department of Biochemistry, College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
16
|
Waters EK, Morrissey JH. Restoring full biological activity to the isolated ectodomain of an integral membrane protein. Biochemistry 2006; 45:3769-74. [PMID: 16533060 PMCID: PMC2525505 DOI: 10.1021/bi052600m] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Integral membrane proteins, which include many cellular effector proteins and drug targets, can be difficult to produce, purify, and manipulate. Although the isolated ectodomains of many membrane proteins can be expressed as water soluble proteins, biological activity is frequently lost when these proteins are released from the membrane surface. An example is tissue factor, the integral membrane protein that triggers the blood clotting cascade and for which membrane anchoring is essential. Its isolated ectodomain (soluble tissue factor) can be expressed with high yield in bacteria but is orders of magnitude less active than the intact, membrane-anchored protein. We now report full restoration of biological activity to the isolated tissue factor ectodomain via the engineering of a hexahistidine tag onto its C-terminus and its use in combination with membrane bilayers containing nickel-chelating lipids. When soluble tissue factor was tethered to the membrane surface via such metal-chelating lipids, it bound factor VIIa with the same high affinity as wild-type tissue factor, and the resulting factor VIIa-tissue factor complexes supported factor X activation and factor VII autoactivation with essentially wild-type enzyme kinetic constants. Furthermore, when such bilayers were immobilized onto solid supports, they efficiently captured histidine-tagged soluble tissue factor directly from crude culture supernatants, with full biological activity, obviating the need for purification or laborious membrane reconstitution procedures. This strategy is rapid, efficient, scalable, and automatable and should be applicable to other integral membrane proteins, especially those with a single transmembrane domain. Applications include high-throughput screening of mutants or drugs, flow reactors, clinical assays, and point-of-care instrumentation.
Collapse
Affiliation(s)
- Emily K Waters
- Department of Biochemistry, College of Medicine, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
17
|
Huang X, Ding WQ, Vaught JL, Wolf RF, Morrissey JH, Harrison RG, Lind SE. A soluble tissue factor-annexin V chimeric protein has both procoagulant and anticoagulant properties. Blood 2005; 107:980-6. [PMID: 16195337 PMCID: PMC1895899 DOI: 10.1182/blood-2005-07-2733] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tissue factor (TF) initiates blood coagulation, but its expression in the vascular space requires a finite period of time. We hypothesized that targeting exogenous tissue factor to sites of vascular injury could lead to accelerated hemostasis. Since phosphatidylserine (PS) is exposed on activated cells at sites of vascular injury, we cloned the cDNA for a chimeric protein consisting of the extracellular domain of TF (called soluble TF or sTF) and annexin V, a human PS-binding protein. Both the sTF and annexin V domains had ligand-binding activities consistent with their native counterparts, and the chimera accelerated factor X activation by factor VIIa. The chimera exhibited biphasic effects upon blood coagulation. At low concentrations it accelerated blood coagulation, while at higher concentrations it acted as an anticoagulant. The chimera accelerated coagulation in the presence of either unfractionated or low-molecular-weight heparins more potently than factor VIIa and shortened the bleeding time of mice treated with enoxaparin. The sTF-annexin V chimera is a targeted procoagulant protein that may be useful in accelerating thrombin generation where PS is exposed to the vasculature, such as may occur at sites of vascular injury or within the vasculature of tumors.
Collapse
Affiliation(s)
- Xin Huang
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Butenas S, Bouchard BA, Brummel-Ziedins KE, Parhami-Seren B, Mann KG. Tissue factor activity in whole blood. Blood 2004; 105:2764-70. [PMID: 15604222 DOI: 10.1182/blood-2004-09-3567] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tissue factor (TF) is an integral membrane protein essential for hemostasis. During the past several years, a number of studies have suggested that physiologically active TF circulates in blood at concentrations greater than 30 pM either as a component of blood cells and microparticles or as a soluble plasma protein. In our studies using contact pathway-inhibited blood or plasma containing activated platelets, typically no clot is observed for 20 minutes in the absence of exogenous TF. An inhibitory anti-TF antibody also has no effect on the clotting time in the absence of exogenous TF. The addition of TF to whole blood at a concentration as low as 16 to 20 fM results in pronounced acceleration of clot formation. The presence of potential platelet TF activity was evaluated using ionophore-treated platelets and employing functional and immunoassays. No detectable TF activity or antigen was observed on quiescent or ionophore-stimulated platelets. Similarly, no TF antigen was detected on mononuclear cells in nonstimulated whole blood, whereas in lipopolysaccharide (LPS)-stimulated blood a significant fraction of monocytes express TF. Our data indicate that the concentration of physiologically active TF in non-cytokine-stimulated blood from healthy individuals cannot exceed and is probably lower than 20 fM.
Collapse
Affiliation(s)
- Saulius Butenas
- University of Vermont, Department of Biochemistry, Given Building, 89 Beaumont Ave, Burlington, VT 05405-0068, USA.
| | | | | | | | | |
Collapse
|
19
|
Kittur FS, Manithody C, Morrissey JH, Rezaie AR. The cofactor function of the N-terminal domain of tissue factor. J Biol Chem 2004; 279:39745-9. [PMID: 15252050 DOI: 10.1074/jbc.m406628200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tissue factor (TF) is an integral membrane protein cofactor for factor VIIa (fVIIa) that initiates the blood coagulation cascade during vascular injury. TF has two fibrinonectin type III-like domains, both of which make extensive interactions with both the light and heavy chains of fVIIa. In addition to interaction with fVIIa, the membrane proximal C-terminal domain of TF is also known to bind the natural substrates factors IX and X, thereby facilitating their assembly and recognition by fVIIa in the activation complex. Both fVIIa and TF are elongated proteins, and their complex appears to be positioned nearly perpendicular to the membrane surface. It is possible that, similar to fVIIa, the N-terminal domain of TF also contacts the natural substrates. To investigate this possibility, we substituted all 23 basic and acidic residues of the N-terminal domain of TF with Ala or Asn and expressed the mutants as soluble TF(2-219) in a novel expression/purification vector system in the periplasmic space of bacteria. Following purification to homogeneity, the cofactor properties of mutants in promoting the amidolytic and proteolytic activity of fVIIa were analyzed in appropriate kinetic assays. The amidolytic activity assays indicated that several charged residues spatially clustered at the junction of the N- and C-terminal domains of TF are required for high affinity interaction with fVIIa. On the other hand, the proteolytic activity assays revealed that none of the residues under study may be an interactive site for either factor IX or factor X. However, it was discovered the Arg(74) mutant of TF was defective in enhancing both the amidolytic and proteolytic activity of fVIIa, suggesting that this residue may be required for the allosteric activation of the protease.
Collapse
Affiliation(s)
- Farooqahmed S Kittur
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | | | | | | |
Collapse
|
20
|
Aras O, Shet A, Bach RR, Hysjulien JL, Slungaard A, Hebbel RP, Escolar G, Jilma B, Key NS. Induction of microparticle- and cell-associated intravascular tissue factor in human endotoxemia. Blood 2004; 103:4545-53. [PMID: 14988149 DOI: 10.1182/blood-2003-03-0713] [Citation(s) in RCA: 236] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The precise role of intravascular tissue factor (TF) remains poorly defined, due to the limited availability of assays capable of measuring circulating TF procoagulant activity (PCA). As a model of inflammation-associated intravascular thrombin generation, we studied 18 volunteers receiving an infusion of endotoxin. A novel assay that measures microparticle (MP)-associated TF PCA from a number of cellular sources (but not platelets) demonstrated an 8-fold increase in activity at 3 to 4 hours after endotoxin administration (P <.001), with a return to baseline by 8 hours. TF antigen-positive MPs isolated from plasma were visualized by electron microscopy. Interindividual MP-associated TF response to lipopolysaccharide (LPS) was highly variable. In contrast, a previously described assay that measures total (cell and MP-borne) whole-blood TF PCA demonstrated a more modest increase, with a peak in activity (1.3-fold over baseline; P <.000 01) at 3 to 4 hours, and persistence for more than 24 hours. This surprisingly modest increase in whole-blood TF activity is likely explained by a profound although transient LPS-induced monocytopenia. MP-associated TF PCA was highly correlated with whole-blood TF PCA and total number of circulating MPs, and whole-blood TF PCA was highly correlated with TF mRNA levels.
Collapse
Affiliation(s)
- Omer Aras
- Departments of Medicine (Hematology, Oncology and Transplantation) and Vascular Biology Center, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Brucato CL, Birr CA, Bruguera P, Ruiz JA, Sánchez-Martínez D. Expression of recombinant rabbit tissue factor in Pichia pastoris, and its application in a prothrombin time reagent. Protein Expr Purif 2002; 26:386-93. [PMID: 12460762 DOI: 10.1016/s1046-5928(02)00563-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Tissue factor (TF), or thromboplastin, is a cell membrane-associated glycoprotein composed, in full length, of cytoplasmic, transmembrane, and extracellular domains. It functions as a cofactor in a complex with factor VII (FVII), generating activated factor VII (FVIIa) and initiating blood coagulation. The prothrombin time (PT) assay uses TF as the in vitro activator of coagulation under defined conditions, and it is primarily used to diagnose and manage the extrinsic-pathway factor defficiencies. To overcome the limitations of natural-source TF, we have expressed the mature full-length recombinant rabbit TF (rRTF) protein in Pichia pastoris. Isolation, by purification by immobilized metal-affinity chromatography, of full-length rRTF was facilitated by engineering a (His)(6) tail on its C-terminus, which maximizes the selection of rRTF with intact transmembrane and cytoplasmic domains, critical for proper activity. A PT reagent that incorporates this purified rRTF has performance characteristics similar to those of PT reagents made with natural TF as indicated in method comparison studies, and shows lot-to-lot consistency and reproducibility.
Collapse
Affiliation(s)
- Cheryl L Brucato
- Research and Development, Instrumentation Laboratory, 113 Hartwell Ave, Lexington, MA 02421, USA
| | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- David J Perry
- Haemophilia Centre and Haemostasis Unit, Royal Free and University College Medical School, London, UK
| |
Collapse
|
23
|
Wyroba E, Satir BH. A comparative hybridization analysis of yeast DNA with Paramecium parafusin- and different phosphoglucomutase-specific probes. Biochem Cell Biol 2000. [DOI: 10.1139/o00-080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Molecular probes designed for the parafusin (PFUS), the Paramecium exocytic-sensitive phospho glyco protein, gave distinct hybridization patterns in Saccharomyces cerevisiae genomic DNA when compared with different phosphoglucomutase specific probes. These include two probes identical to segments of yeast phosphoglucomutase (PGM) genes 1 and 2. Neither of the PGM probes revealed the 7.4 and 5.9 kb fragments in Bgl II-cut yeast DNA digest detected with the 1.6 kb cloned PFUS cDNA and oligonucleotide constructed to the PFUS region (insertion 3 I-3) not found in other species. PCR amplification with PFUS-specific primers generated yeast DNA-species of the predicted molecular size which hybridized to the I-3 probe. A search of the yeast genome database produced an unassigned nucleotide sequence that showed 55% identity to parafusin gene and 37% identity to PGM2 (the major isoform of yeast phosphoglucomutase) within the amplified region.Key words: parafusin, phosphoglucomutase, yeast, hybridization, PCR.
Collapse
|
24
|
Kirchhofer D, Lipari MT, Moran P, Eigenbrot C, Kelley RF. The tissue factor region that interacts with substrates factor IX and Factor X. Biochemistry 2000; 39:7380-7. [PMID: 10858285 DOI: 10.1021/bi000182+] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The enzymatic activity of coagulation factor VIIa is controlled by its cellular cofactor tissue factor (TF). TF binds factor VIIa with high affinity and, in addition, participates in substrate interaction through its C-terminal fibronectin type III domain. We analyzed surface-exposed residues in the C-terminal TF domain to more fully determine the area on TF important for substrate activation. Soluble TF (sTF) mutants were expressed in E. coli, and their ability to support factor VIIa-dependent substrate activation was measured in the presence of phospholipid vesicles or SW-13 cell membranes. The results showed that factor IX and factor X interacted with the same TF region located proximal to the putative phospholipid surface. According to the degree of activity loss of the sTF mutants, this TF region can be divided into a main region (residues Tyr157, Lys159, Ser163, Gly164, Lys165, Lys166, Tyr185) forming a solvent-exposed patch of 488 A(2) and an extended region which comprises an additional 7-8 residues, including the distally positioned Asn199, Arg200, and Asp204. Some of the identified TF residues, such as Trp158 and those within the loop Lys159-Lys165, are near the factor VIIa gamma-carboxyglutamic acid (Gla) domain, suggesting that the factor VIIa Gla-domain may also participate in substrate interaction. Moreover, the surface identified as important for substrate interaction carries a net positive charge, suggesting that charge interactions may significantly contribute to TF-substrate binding. The calculated surface-exposed area of this substrate interaction region is about 1100 A(2), which is approximately half the size of the TF area that is in contact with factor VIIa. Therefore, a substantial portion of the TF surface (3000 A(2)) is engaged in protein-protein interactions during substrate catalysis.
Collapse
Affiliation(s)
- D Kirchhofer
- Departments of Cardiovascular Research and Protein Engineering, Genentech, Inc., South San Francisco, California 94080, USA.
| | | | | | | | | |
Collapse
|
25
|
Shah AM, Kisiel W, Foster DC, Nelsestuen GL. Manipulation of the membrane binding site of vitamin K-dependent proteins: enhanced biological function of human factor VII. Proc Natl Acad Sci U S A 1998; 95:4229-34. [PMID: 9539719 PMCID: PMC22471 DOI: 10.1073/pnas.95.8.4229] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent studies suggested that modification of the membrane contact site of vitamin K-dependent proteins may enhance the membrane affinity and function of members of this protein family. The properties of a factor VII mutant, factor VII-Q10E32, relative to wild-type factor VII (VII, containing P10K32), have been compared. Membrane affinity of VII-Q10E32 was about 20-fold higher than that of wild-type factor VII. The rate of autoactivation VII-Q10E32 with soluble tissue factor was 100-fold faster than wild-type VII and its rate of activation by factor Xa was 30 times greater than that of wild-type factor VII. When combined with soluble tissue factor and phospholipid, activated factor VII-Q10E32 displayed increased activation of factor X. Its coagulant activity was enhanced in all types of plasma and with all sources of tissue factor tested. This difference in activity (maximum 50-fold) was greatest when coagulation conditions were minimal, such as limiting levels of tissue factor and/or phospholipid. Because of its enhanced activity, factor VII-Q10E32 and its derivatives may provide important reagents for research and may be more effective in treatment of bleeding and/or clotting disorders.
Collapse
Affiliation(s)
- A M Shah
- Department of Biochemistry, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN 55108, USA
| | | | | | | |
Collapse
|
26
|
Affiliation(s)
- D M Martin
- Biotechnology Centre of Oslo, University of Oslo, Norway
| | | | | |
Collapse
|
27
|
Shen L, Shah AM, Dahlbäck B, Nelsestuen GL. Enhancing the activity of protein C by mutagenesis to improve the membrane-binding site: studies related to proline-10. Biochemistry 1997; 36:16025-31. [PMID: 9440875 DOI: 10.1021/bi971730v] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bovine and human protein C show high homology in the amino acids of their GLA domains (amino-terminal 44 residues), despite the about 10-fold higher membrane affinity of the human protein. A proposed membrane contact site and mechanism suggested that this difference was largely due to the presence of proline at position 10 of bovine protein C versus histidine at position 10 of human protein C [McDonald, J.F., Shah, A.M., Schwalbe, R.A., Kisiel, W., Dahlback, B., and Nelsestuen, G.L. (1997) Biochemistry, 36, 5120-5127]. This study examined the impact of replacing proline-10 in bovine protein C with histidine, and the reverse change in human protein C. In both cases, the protein containing proline-10 showed lower membrane affinity, about 10-fold lower for bovine protein C and 5-fold lower for human protein C. As expected, activated human protein C (hAPC) containing proline at position 10 showed 2.4-3.5-fold lower activity than wild type hAPC, depending on the assay used. Most interesting was that bovine APC containing histidine-10 displayed up to 15-fold higher activity than wild type bAPC. This demonstrated the ability to improve both membrane contact and activity by mutation. This general strategy should be applicable to other vitamin K-dependent proteins, providing opportunities to study function as well as to produce proteins that may find use as promoters and inhibitors of blood coagulation in pathological states.
Collapse
Affiliation(s)
- L Shen
- Department of Clinical Chemistry, Malmö General Hospital and University of Lund, Malmö, Sweden
| | | | | | | |
Collapse
|
28
|
Abstract
AbstractOne approach to developing safer and more efficacious agents for the treatment of thrombotic disease involves the design and testing of inhibitors that block specific steps in the coagulation cascade. We describe here the development of a mutant of human tissue factor (TF ) as a specific antagonist of the extrinsic pathway of blood coagulation and the testing of this mutant in a rabbit model of arterial thrombosis. Alanine substitutions of Lys residues 165 and 166 in human TF have been shown previously to diminish the cofactor function of TF in support of factor X (FX) activation catalyzed by factor VIIa (FVIIa). The K165A:K166A mutations have been incorporated into soluble TF (sTF; residues 1-219) to generate the molecule “hTFAA.” hTFAA binds FVIIa with kinetics and affinity equivalent to wild-type sTF, but the hTFAA⋅FVIIa complex shows a 34-fold reduction in catalytic efficiency for FX activation relative to the activity measured for sTF⋅FVIIa. hTFAA inhibits the activation of FX catalyzed by the complex formed between FVIIa and relipidated TF(1-243). hTFAA prolongs prothrombin time (PT) determined with human plasma and relipidated TF(1-243) or membrane bound TF, and has no effect on activated partial thromboplastin time, but is 70-fold less potent as an inhibitor of PT with rabbit plasma. The rabbit homologue of this mutant (“rTFAA”) was produced and shown to have greater potency with rabbit plasma. Both hTFAA and rTFAA display an antithrombotic effect in a rabbit model of arterial thrombosis with rTFAA giving full efficacy at a lower dose than hTFAA. Compared to heparin doses of equal antithrombotic potential, hTFAA and rTFAA cause less bleeding as judged by measurements of the cuticle bleeding time. These results indicate that TF⋅FVIIa is a good target for the development of new anticoagulant drugs for the treatment of thrombotic disease.
Collapse
|
29
|
A Novel Specific Immunoassay for Plasma Two-Chain Factor VIIa: Investigation of FVIIa Levels in Normal Individuals and in Patients With Acute Coronary Syndromes. Blood 1997. [DOI: 10.1182/blood.v89.3.767] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractWe report the development of an enzyme-linked immunosorbent assay (ELISA) that is specific for factor VIIa (FVIIa). This assay uses a neoantigen specific capture antibody directed to the amino acid peptide sequence N terminal to the FVII cleavage activation site. The antibody exhibits ∼3,000-fold greater reactivity to FVIIa than FVII on a molar basis. Experiments using plasma with added (exogenous) human FVIIa gave quantitative recovery in the ELISA over a range of 0.20 to 3.2 ng/mL of FVIIa. The intra- and inter-assay coefficient of variation (CVs) of the ELISA are 4.5% and 9.8%, respectively. The ELISA shows excellent correlation (r = .99) with a functional assay (using recombinant soluble tissue factor) in detecting FVIIa added to plasma over the range 0.05 to 18.0 ng/mL. However, a major discrepancy exists between the two assays when normal endogenous plasma concentrations of FVIIa are measured. Using normal plasma (n = 14) the functional assay reported 3.10 ± 0.30 ng/mL (mean ± SE) whereas only 0.025 ± 0.010 ng/mL was detected in the same samples by the immunoassay. Patients (n = 43) presenting with acute coronary syndromes (myocardial infarction and unstable angina) exhibited elevations (P < .05) in immunologically detected FVIIa, 0.093 ± 0.013 ng/mL (mean ± SE) compared to patient controls (n = 20) contemporaneously admitted with noncardiac chest pain, 0.048 ± 0.007 ng/mL (mean ± SE). These elevations in the acute coronary syndromes were accompanied by increased (P < .05) and correlating prothrombin fragment F1 + 2 levels (Spearman correlation coefficient rs = .4, P < .01), demonstrating that thrombin generation is certainly associated with, and may even be caused by, extrinsic pathway activation.
Collapse
|
30
|
Huang Q, Neuenschwander PF, Rezaie AR, Morrissey JH. Substrate recognition by tissue factor-factor VIIa. Evidence for interaction of residues Lys165 and Lys166 of tissue factor with the 4-carboxyglutamate-rich domain of factor X. J Biol Chem 1996; 271:21752-7. [PMID: 8702971 DOI: 10.1074/jbc.271.36.21752] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Tissue factor (TF) is the protein cofactor for factor VIIa (FVIIa), the first serine protease of the clotting cascade. Previous studies using alanine mutagenesis have identified TF residues Lys165 and Lys166 as important for factor X (FX) activation, hypothesizing either that these residues interact with phospholipid head groups or that they directly or indirectly promote macromolecular substrate binding. In the recently reported x-ray crystal structure of the isolated extracellular domain of TF, both Lys165 and Lys166 are solvent-exposed and predicted to be near the phospholipid surface in intact TF. We hypothesized that these residues may in fact be ideally positioned to interact with the 4-carboxyglutamate-rich domain (Gla domain) of FX. We therefore predicted that mutations at Lys165 and Lys166 should have no effect on the activation of Gla domainless FX. To test this hypothesis, we mutated both residues Lys165 and Lys166 of TF to Ala, Glu, or Gln and examined the ability of these double mutants to support FVIIa-mediated activation of FX, Gla domainless FX, and factor IX (FIX). Each TF mutant was equivalent to wild-type TF in both FVIIa binding and promotion of FVIIa amidolytic activity. However, all three mutants were markedly deficient in supporting FIX and FX activation, with FX activation rates decreased more than FIX activation rates. In both reactions, the TF mutants exhibited different extents of activity: Gln165-Gln166 > Ala165-Ala166 > Glu165-Glu166. In sharp contrast, all three TF mutants were equivalent to wild-type TF in supporting activation of Gla domainless FX by FVIIa. Interestingly, the deficiency of the mutants in FX activation was less pronounced when Gla domainless FVIIa was used in place of native FVIIa. Together, these findings suggest that TF residues Lys165 and Lys166 contribute to a binding site for the Gla domain of FX (and perhaps other substrates) and that this interaction may be facilitated by the presence of the Gla domain of FVIIa.
Collapse
Affiliation(s)
- Q Huang
- Department of Pathology, University of Oklahoma Health Sciences Center
| | | | | | | |
Collapse
|
31
|
Payne MA, Neuenschwander PF, Johnson AE, Morrissey JH. Effect of soluble tissue factor on the kinetic mechanism of factor VIIa: enhancement of p-guanidinobenzoate substrate hydrolysis. Biochemistry 1996; 35:7100-6. [PMID: 8679536 DOI: 10.1021/bi9529770] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The mechanism by which the protein cofactor, tissue factor, enhances the activity of its cognate serine protease, coagulation factor VIIa (FVIIa), has been studied using the fluorogenic ester substrate 4-methylumbelliferyl p'-guanidinobenzoate (MUGB). Kinetic data were collected at pH 8.4 and pH 7.6 in the presence and absence of soluble tissue factor (sTF; recombinant human tissue factor containing only the extracellular domain). Pre-steady-state techniques allowed the determination of the individual rate constants for acylation (k2) and deacylation (k3) of the sTF.FVIIa complex as well as the dissociation constant for the noncovalent Michaelis complex with MUGB. Alternative methods were required for determination of these parameters for free FVIIa due to extremely slow hydrolysis of MUGB in the absence of sTF. Under all experimental conditions, deacylation was found to be rate-limiting. The major effect of sTF was to raise the affinity of FVIIa for MUGB (31-fold at pH 8.4 and 36-fold at pH 7.6); only minor changes in k2 and k3 were observed. Thus, we conclude that for the ester substrate MUGB, sTF exerts greater allosteric effects on substrate binding than on the later steps involved in the catalytic pathway.
Collapse
Affiliation(s)
- M A Payne
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman 73019, USA
| | | | | | | |
Collapse
|
32
|
Abstract
In this study the activation of human factor VII by a variety of potential activators in the presence and absence of mixed phospholipid vesicles [25% phosphatidylserine (PS), 75% phosphatidylcholine (PC)] is evaluated. At the plasma concentration of factor VII, 10 nM, the activation rate of the zymogen by 0.05 nM factor Xa is anionic phospholipid (PCPS) dependent and achieves a maximum value of 18 pM/s at 5-20 microM PCPS; further increases in the levels of PCPS decrease the activation rate of factor VII. The maximum activation rate of factor VII (10 nM) by the factor VIIa-tissue factor complex (0.1 nM), 0.76 pM/s, is achieved at 200 microM PCPS. No detectable activation of 10 nM factor VII is observed under similar conditions when either thrombin (0.1 nM) or factor IXa (0.1 nM) is used as an activator. Factor VIIa (10 nM) and factor XIa (1 nM) are not observed to activate factor VII at detectable rates. The observed Michaelis-Menten constants (KM) for factor VII activation in the presence of PCPS at optimal concentrations vary from 1.2 microM for factor Xa to 3.2 microM for the factor VIIa-tissue factor complex. The highest catalytic constant (kcat) value (15.2 s-1) is observed for factor Xa-PCPS. The factor VIIa-tissue factor complex, factor IXa, and thrombin kcat values are 1.4, 0.32, and 0.061 s-1, respectively. Tissue factor does not increase the factor VII activation rate by factor Xa, factor IXa, or thrombin. Factor VIIIa in the presence of PCPS has no effect on factor VII activation by factor IXa. In contrast, factor Va decreases the factor VII activation rate by factor Xa, reaching saturation at concentrations consistent with complete prothrombinase complex formation. The formed prothrombinase complex activates factor VII at approximately 30% the rate of factor Xa bound to phospholipids. These data allow us to conclude that the predominant physiological factor VII activator is, most likely, membrane-bound factor Xa.
Collapse
Affiliation(s)
- S Butenas
- Department of Biochemistry, University of Vermont, Burlington 05405, USA
| | | |
Collapse
|
33
|
Camerer E, Kolstø AB, Prydz H. Cell biology of tissue factor, the principal initiator of blood coagulation. Thromb Res 1996; 81:1-41. [PMID: 8747518 DOI: 10.1016/0049-3848(95)00209-x] [Citation(s) in RCA: 269] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- E Camerer
- Biotechnology Centre of Oslo, University of Oslo, Norway
| | | | | |
Collapse
|
34
|
Moor E, Silveira A, van't Hooft F, Suontaka AM, Eriksson P, Blombäck M, Hamsten A. Coagulation factor VII mass and activity in young men with myocardial infarction at a young age. Role of plasma lipoproteins and factor VII genotype. Arterioscler Thromb Vasc Biol 1995; 15:655-64. [PMID: 7749878 DOI: 10.1161/01.atv.15.5.655] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Factor VII (FVII) coagulant activity has been proven to be associated with the risk of future fatal coronary heart disease (CHD) in middle-aged men. Recent studies have emphasized the role of triglyceride-rich lipoproteins and FVII genotype in determining plasma levels of FVII protein and activity. The present study was undertaken to examine whether FVII activity state and protein concentration in fasting plasma are altered in young men with proven myocardial infarction (MI) and examined the relations of FVII to subfractions of apo B-containing lipoproteins and the Arg-->Gln polymorphism in the FVII gene. Activated FVII (FVIIa) was determined by a clotting assay using soluble, recombinant, truncated tissue factor. A total of 94 men with a first MI before the age of 45 (mean age +/- SD, 39.6 +/- 4.5 years) were included in the study along with 99 population-based, age-matched control subjects. In addition to FVIIa and FVII antigen (FVII:Ag), a panel of FVII activity assays were included for comparison with previous work in this field. The plasma level of FVII:Ag was higher in patients than in control subjects when the entire groups were compared (537 +/- 128 versus 479 +/- 93 ng/mL, P < .001), the differences being accounted for by patients with hypertriglyceridemic lipoprotein phenotypes. In contrast, FVIIa was similar in patients and control subjects (4.6 +/- 1.4 versus 4.3 +/- 1.3 ng/mL, NS), which means that the proportion of FVIIa molecules was unaltered or even lower in the patients. As expected, the Arg-->Gln polymorphism significantly influenced both FVII mass and activity levels. In addition, presence of the Gln allele appeared to be associated with a lower proportion of fully active FVII molecules. The polymorphism also affected the relation between the plasma concentration of VLDL and FVII:Ag. The triglyceride content and particle number of all VLDL subfractions, irrespective of particle size, correlated fairly strongly with FVII mass determinations but not at all with FVIIa. HDL cholesterol concentration, on the other hand, presumably reflecting the efficiency of lipoprotein lipase-mediated lipolysis of VLDL, related significantly to the FVIIa level. The Arg-->Gln polymorphism, independent of lipoprotein effects, explained 5% to 10% of the variation in FVII mass and activity. In conclusion, the present findings speak against a role of FVII as a risk factor for CHD, because a significantly increased potential for activation of coagulation (ie, raised basal concentration of FVIIa) was not observed among young postinfarction patients.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- E Moor
- Division of Cardiology, King Gustaf V Research Institute, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
35
|
Dennis M, Lazarus R. Kunitz domain inhibitors of tissue factor-factor VIIa. I. Potent inhibitors selected from libraries by phage display. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31765-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
36
|
Neuenschwander P, Morrissey J. Roles of the membrane-interactive regions of factor VIIa and tissue factor. The factor VIIa Gla domain is dispensable for binding to tissue factor but important for activation of factor X. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37152-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|