1
|
Lameiras P, Nuzillard JM. Tailoring the nuclear Overhauser effect for the study of small and medium-sized molecules by solvent viscosity manipulation. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 123:1-50. [PMID: 34078536 DOI: 10.1016/j.pnmrs.2020.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 11/06/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
The nuclear Overhauser effect (NOE) is a consequence of cross-relaxation between nuclear spins mediated by dipolar coupling. Its sensitivity to internuclear distances has made it an increasingly important tool for the determination of through-space atom proximity relationships within molecules of sizes ranging from the smallest systems to large biopolymers. With the support of sophisticated FT-NMR techniques, the NOE plays an essential role in structure elucidation, conformational and dynamic investigations in liquid-state NMR. The efficiency of magnetization transfer by the NOE depends on the molecular rotational correlation time, whose value depends on solution viscosity. The magnitude of the NOE between 1H nuclei varies from +50% when molecular tumbling is fast to -100% when it is slow, the latter case corresponding to the spin diffusion limit. In an intermediate tumbling regime, the NOE may be vanishingly small. Increasing the viscosity of the solution increases the motional correlation time, and as a result, otherwise unobservable NOEs may be revealed and brought close to the spin diffusion limit. The goal of this review is to report the resolution of structural problems that benefited from the manipulation of the negative NOE by means of viscous solvents, including examples of molecular structure determination, conformation elucidation and mixture analysis (the ViscY method).
Collapse
Affiliation(s)
- Pedro Lameiras
- Université de Reims Champagne-Ardenne, CNRS, ICMR UMR 7312, 51097 Reims, France
| | - Jean-Marc Nuzillard
- Université de Reims Champagne-Ardenne, CNRS, ICMR UMR 7312, 51097 Reims, France
| |
Collapse
|
2
|
|
3
|
Effects of Leucin-Enkephalins on Surface Characteristics and Morphology of Model Membranes Composed of Raft-Forming Lipids. J Membr Biol 2015; 249:229-38. [DOI: 10.1007/s00232-015-9862-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/28/2015] [Indexed: 12/21/2022]
|
4
|
Tsanova A, Georgiev G, Lalchev Z. In VitroApplication of Langmuir Monolayer Model to StudyIn VivoBiological Systems. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/50yrtimb.2011.0034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
5
|
Tsanova A, Jordanova A, Dzimbova T, Pajpanova T, Golovinsky E, Lalchev Z. Interaction of methionine-enkephalins with raft-forming lipids: monolayers and BAM experiments. Amino Acids 2013; 46:1159-68. [PMID: 24357114 DOI: 10.1007/s00726-013-1647-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 12/11/2013] [Indexed: 12/27/2022]
Abstract
Enkephalins (Tyr-Gly-Gly-Phe-Met/Leu) are opioid peptides with proven antinociceptive action in organism. They interact with opioid receptors belonging to G-protein coupled receptor superfamily. It is known that these receptors are located preferably in membrane rafts composed mainly of sphingomyelin (Sm), cholesterol (Cho), and phosphatidylcholine. In the present work, using Langmuir's monolayer technique in combination with Wilhelmy's method for measuring the surface pressure, the interaction of synthetic methionine-enkephalin and its amidated derivative with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), Sm, and Cho, as well as with their double and triple mixtures, was studied. From the pressure/area isotherms measured, the compressional moduli of the lipids and lipid-peptide monolayers were determined. Our results showed that the addition of the synthetic enkephalins to the monolayers studied led to change in the lipid monolayers characteristics, which was more evident in enkephalinamide case. In addition, using Brewster angle microscopy (BAM), the surface morphology of the lipid monolayers, before and after the injection of both enkephalins, was determined. The BAM images showed an increase in surface density of the mixed surface lipids/enkephalins films, especially with double and triple component lipid mixtures. This effect was more pronounced for the enkephalinamide as well. These observations showed that there was an interaction between the peptides and the raft-forming lipids, which was stronger for the amidated peptide, suggesting a difference in folding of both enkephalins. Our research demonstrates the potential of lipid monolayers for elegant and simple membrane models to study lipid-peptide interactions at the plane of biomembranes.
Collapse
Affiliation(s)
- A Tsanova
- Faculty of Medicine, St. Kliment Ohridski University of Sofia, 1 Kozyak Str., 1407, Sofia, Bulgaria,
| | | | | | | | | | | |
Collapse
|
6
|
Magic angle spinning NMR study of interaction of N-terminal sequence of dermorphin (Tyr-d-Ala-Phe-Gly) with phospholipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2579-87. [DOI: 10.1016/j.bbamem.2012.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 06/05/2012] [Accepted: 06/18/2012] [Indexed: 01/02/2023]
|
7
|
Comparative study of the interaction of synthetic methionine-enkephalin and its amidated derivate with monolayers of zwitterionic and negatively charged phospholipids. Amino Acids 2010; 42:253-60. [DOI: 10.1007/s00726-010-0803-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 10/29/2010] [Indexed: 11/26/2022]
|
8
|
Sul S, Feng Y, Le U, Tobias DJ, Ge NH. Interactions of tyrosine in Leu-enkephalin at a membrane-water interface: an ultrafast two-dimensional infrared study combined with density functional calculations and molecular dynamics simulations. J Phys Chem B 2010; 114:1180-90. [PMID: 20017523 DOI: 10.1021/jp9105844] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The interactions of neuropeptides and membranes play an important role in peptide hormone function. Our current understanding of peptide-membrane interactions remains limited due to the paucity of experimental techniques capable of probing such interactions. In this work, we study the nature of opioid peptide-membrane interactions using ultrafast two-dimensional infrared (2D IR) spectroscopy. The high temporal resolution of 2D IR is particularly suited for studying highly flexible opioid peptides. We investigate the location of the tyrosine (Tyr) side chain of leucine-enkephalin (Lenk) in lipid bilayer membranes by measuring spectral diffusion of the phenolic ring vibrational mode in three different systems: Lenk in lipid bilayer membranes (bicelles), Lenk in deuterated water, and p-cresol in deuterated water. Frequency-frequency correlation functions obtained from waiting-time-dependent 2D IR spectra reveal an ultrafast decaying component with an approximately 1 ps time constant that is common for all three systems. On the basis of density functional theory calculations and molecular dynamics simulations, this spectral diffusion component is attributed to hydrogen-bond dynamics of the phenolic hydroxyl group interacting with bulk water. Unlike p-cresol in water, both Lenk systems exhibit static spectral inhomogeneity, which can be attributed to conformational distributions of Lenk that do not interconvert within 4 ps. Our results suggest that the Tyr side chain of Lenk in bicelles is located at the water-abundant region at the membrane-water interface and not embedded into the hydrophobic core.
Collapse
Affiliation(s)
- Soohwan Sul
- Department of Chemistry, University of California, Irvine, California 92697-2025, USA
| | | | | | | | | |
Collapse
|
9
|
Unruh JR, Kuczera K, Johnson CK. Conformational heterogeneity of a leucine enkephalin analogue in aqueous solution and sodium dodecyl sulfate micelles: comparison of time-resolved FRET and molecular dynamics simulations. J Phys Chem B 2009; 113:14381-92. [PMID: 19780516 PMCID: PMC2780025 DOI: 10.1021/jp903302k] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have undertaken time-resolved Förster resonance energy transfer (FRET) and molecular dynamics simulations to analyze conformations and conformational heterogeneity of an analogue of leucine enkephalin in solution and in the presence of sodium dodecyl sulfate (SDS) micelles. Enkephalins are opioid pentapeptides that interact with opioid receptors in the central nervous system. We used time-correlated single-photon counting to detect energy transfer between the N-terminal tyrosine and a tryptophan residue substituted for phenylalanine at the 4 position. FRET from Tyr to Trp was measured over a temperature range from 5 to 55 degrees C in aqueous solution. By taking into account Tyr rotamer interconversion rates measured previously, we determined average distances between Tyr and Trp for the two populated rotameric conformations of Tyr. Molecular dynamics simulations (100 ns) support this analysis and indicate extensive conformational heterogeneity. The simulations also predict that the FRET orientational factor is correlated with the Tyr-Trp separation. Failure to account for the correlation between orientation and distance results in errors that appear to be largely offset in the leucine enkephalin analogue (YGGWL) by a weighting bias inherent in the R(-6) dependence of the energy-transfer rate. The Tyr lifetimes decrease upon titration of the peptides with SDS, indicating formation of compact conformations of the peptide in the micelle environment. This result is consistent with the conjecture that the lipid environment may induce formation of bioactive conformations of the peptide.
Collapse
Affiliation(s)
- Jay R. Unruh
- Department of Chemistry, University of Kansas, Lawrence, KS 66045
| | - Krzysztof Kuczera
- Department of Chemistry, University of Kansas, Lawrence, KS 66045
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| | - Carey K. Johnson
- Department of Chemistry, University of Kansas, Lawrence, KS 66045
| |
Collapse
|
10
|
D'ALAGNI MARIA, GULLÁ PATRIZIA, RODA LGIORGIO, ROSCETTI GIANNA. In vitvo interactions of opioid peptides with phospholipids. ACTA ACUST UNITED AC 2009. [DOI: 10.1111/j.1399-3011.1990.tb00057.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Tsanova A, Jordanova A, Pajpanova T, Golovinski E, Lalchev Z. Effects of Cholesterol—Sphingomyelin Interactions on Penetration of Neuropeptides to their Monolayers. BIOTECHNOL BIOTEC EQ 2009. [DOI: 10.1080/13102818.2009.10818465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
12
|
Tsanova A, Dacheva D, Penchev V, Georgiev GA, Pajpanova T, Golovinski E, Lalchev Z. Comparative Study of the Interaction Between Synthetic Methionine-Enkephalin and Monolayers of Zwitterionic and Negatively Charged Phospholipids. BIOTECHNOL BIOTEC EQ 2009. [DOI: 10.1080/13102818.2009.10818463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
13
|
Cai X, Dass C. Conformational analysis of dynorphin A (1-13) using hydrogen-deuterium exchange and tandem mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2007; 13:409-417. [PMID: 18417761 DOI: 10.1255/ejms.898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Trifluoroethanol (TFE)-induced conformational changes in dynorphin A (1-13) were investigated using charge-state distribution (CSD) and hydrogen-deuterium exchange (HDX), combined with electrospray ionization (ESI) mass spectrometry (MS). Individual amino acids involved in secondary structural elements were identified by collision-induced dissociation-tandem mass spectrometry (MS/MS). It was observed that dynorphin A (1-13) largely exists in an unfolded conformation and a folded structure in increasing concentrations of TFE. In 50% TFE, it forms an alpha-helix that encompasses residues 1-9 and remains flexible from residues 10 to 13.
Collapse
Affiliation(s)
- Xianmei Cai
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA
| | | |
Collapse
|
14
|
Kimura T. Human Opioid Peptide Met-Enkephalin Binds to Anionic Phosphatidylserine in High Preference to Zwitterionic Phosphatidylcholine: Natural-Abundance 13C NMR Study on the Binding State in Large Unilamellar Vesicles. Biochemistry 2006; 45:15601-9. [PMID: 17176081 DOI: 10.1021/bi061641v] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A human opioid neuropeptide, Met-enkephalin (M-Enk: Tyr1-Gly2-Gly3-Phe4-Met5), having no net charge binds to anionic phosphatidylserine (PS) in high preference to zwitterionic phosphatidylcholine (PC). The binding mechanism in the PS and PC bilayers was studied on the basis of the inter- and intramolecular interaction data obtained by natural-abundance 13C nuclear magnetic resonance (NMR) of the peptide. Prominent upfield changes of the 13C resonance were observed in the C-terminal residue upon binding to PS, whereas no such marked change was observed upon binding to PC. The upfield chemical shift changes with their characteristic carbon site dependence are ascribed to the electrostatic binding between the peptide C-terminal CO2- and the PS headgroup NH3+. Despite the net negative charge of the PS bilayer surface, M-Enk thus anchors the negatively charged C-terminus. In the N-terminal residue, on the other hand, marked downfield chemical shift changes are observed upon binding to both the PS and PC bilayers, the magnitude of the changes being much larger in the PS system. The downfield changes with their characteristic carbon site dependence are ascribed to the electrostatic binding between the peptide N-terminal NH3+ and the lipid headgroup negative charge(s) (CO2- or PO4- in PS, PO4- in PC). Perturbation on the signal half-widths due to membrane binding also indicates the preferential and deeper binding of M-Enk on the PS membrane surface than on the PC membrane surface. Local charge cancellation takes place efficiently between M-Enk termini and the PS headgroups and compensates for the strong electrostatic hydration of the ionic groups. Distribution of the charged (positive and negative) and uncharged sites in the headgroups along the bilayer normal is responsible for the marked difference between PS and PC headgroups in controlling the binding state of the zwitterionic M-Enk.
Collapse
Affiliation(s)
- Tomohiro Kimura
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
15
|
Sankararamakrishnan R. Recognition of GPCRs by Peptide Ligands and Membrane Compartments theory: Structural Studies of Endogenous Peptide Hormones in Membrane Environment. Biosci Rep 2006; 26:131-58. [PMID: 16773462 DOI: 10.1007/s10540-006-9014-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
One of the largest family of cell surface proteins, G-protein coupled receptors (GPCRs) regulate virtually all known physiological processes in mammals. With seven transmembrane segments, they respond to diverse range of extracellular stimuli and represent a major class of drug targets. Peptidergic GPCRs use endogenous peptides as ligands. To understand the mechanism of GPCR activation and rational drug design, knowledge of three-dimensional structure of receptor–ligand complex is important. The endogenous peptide hormones are often short, flexible and completely disordered in aqueous solution. According to “Membrane Compartments Theory”, the flexible peptide binds to the membrane in the first step before it recognizes its receptor and the membrane-induced conformation is postulated to bind to the receptor in the second step. Structures of several peptide hormones have been determined in membrane-mimetic medium. In these studies, micelles, reverse micelles and bicelles have been used to mimic the cell membrane environment. Recently, conformations of two peptide hormones have also been studied in receptor-bound form. Membrane environment induces stable secondary structures in flexible peptide ligands and membrane-induced peptide structures have been correlated with their bioactivity. Results of site-directed mutagenesis, spectroscopy and other experimental studies along with the conformations determined in membrane medium have been used to interpret the role of individual residues in the peptide ligand. Structural differences of membrane-bound peptides that belong to the same family but differ in selectivity are likely to explain the mechanism of receptor selectivity and specificity of the ligands. Knowledge of peptide 3D structures in membrane environment has potential applications in rational drug design.
Collapse
|
16
|
Blomberg D, Kreye P, Fowler C, Brickmann K, Kihlberg J. Synthesis and biological evaluation of leucine enkephalin turn mimetics. Org Biomol Chem 2006; 4:416-23. [PMID: 16446799 DOI: 10.1039/b515618a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cyclic Leu-enkephalin mimetic containing a 7-membered ring, and two linear analogues, has been prepared on solid phase. In the cyclic mimetic the intramolecular (1-4) hydrogen bond found in crystalline Leu-enkephalin has been replaced by an ethylene bridge. In addition, the amide bond between Tyr1 and Gly2 has been replaced by a methylene ether isostere and Gly3 has been deleted. The two linear analogues both contain the methylene ether isostere instead of the Tyr1-Gly2 amide bond and the shorter of the two lacks Gly3. The three compounds, and a beta-turn mimetic analogous to the 7-membered turn mimetic but with Gly3 included, were evaluated for specific binding to micro- and delta-opioid receptors in rat brain membranes. With the exception of the beta-turn mimetic the three other Leu-enkephalin analogues all bound with varying affinity to the micro- and delta-opioid receptors. From the results it could be concluded that Leu-enkephalin binds in a turn conformation to the opiate receptors, but that this conformation is not a (1-4) beta-turn.
Collapse
Affiliation(s)
- David Blomberg
- Organic Chemistry, Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden
| | | | | | | | | |
Collapse
|
17
|
Kimura T, Okamura E, Matubayasi N, Asami K, Nakahara M. NMR study on the binding of neuropeptide achatin-I to phospholipid bilayer: the equilibrium, location, and peptide conformation. Biophys J 2005; 87:375-85. [PMID: 15240472 PMCID: PMC1304359 DOI: 10.1529/biophysj.103.038950] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular mechanism of the binding of neuropeptide achatin-I (Gly-D-Phe-Ala-Asp) to large unilamellar vesicles of zwitterionic egg-yolk phosphatidylcholine (EPC) was investigated by means of natural-abundance (13)C and high-resolution (of 0.01 Hz order) (1)H NMR spectroscopy. The binding equilibrium was found to be sensitive to the ionization state of the N-terminal NH(3)(+) group in achatin-I; the de-ionization of NH(3)(+) decreases the bound fraction of the peptide from approximately 15% to nearly none. The electrostatic attraction between the N-terminal positive NH(3)(+) group and the negative PO(4)(-) group in the EPC headgroup plays an important role in controlling the equilibrium. Analysis of the (13)C chemical shifts (delta) of EPC showed that the binding location of the peptide within the bilayer is the polar region between the glycerol and ester groups. The binding caused upfield changes Delta delta of the (13)C resonance for almost all the carbon sites in achatin-I. The changes Delta delta for the ionic Asp at the C-terminus are more than five times as large as those for the other residues. The drastic changes for Asp result from the dehydration of the ionic CO(2)(-) groups, which are strongly hydrated by electrostatic interactions in bulk water. The side-chain conformational equilibria of the aromatic d-Phe and ionic Asp residues were both affected by the binding, and the induced changes in the equilibria appear to reflect the peptide-lipid hydrophobic interactions.
Collapse
Affiliation(s)
- Tomohiro Kimura
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | |
Collapse
|
18
|
Cai X, Dass C. Structural characterization of methionine and leucine enkephalins by hydrogen/deuterium exchange and electrospray ionization tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2005; 19:1-8. [PMID: 15568184 DOI: 10.1002/rcm.1739] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Conformational changes in two endogenous opioid active pentapeptides methionine enkephalin (Met-enk) and leucine enkephalin (Leu-enk) induced by trifluoroethanol (TFE) were identified using hydrogen/deuterium exchange (HDX), coupled with electrospray ionization (ESI) mass spectrometry. The exchange features in individual amino acid residues were characterized by acquiring tandem mass spectra of the deuterated peptides. The exact identity of the labile hydrogens involved in HDX reveals that the monomer forms of both peptides adopt an unfolded conformation in aqueous solvent, but prefer the 5-->2 beta-turn secondary structure under the membrane-mimetic environment. The ESI mass spectra of Met-enk and Leu-enk also reveal that the dimer structure of these peptides coexists with the monomer conformation. The extent of the dimer structure is dependent on the peptide concentration and nature of the solvent. The non-polar solvents facilitate the dimer formation.
Collapse
Affiliation(s)
- Xianmei Cai
- Department of Chemistry, The University of Memphis, TN 38152, USA
| | | |
Collapse
|
19
|
Marcotte I, Separovic F, Auger M, Gagné SM. A multidimensional 1H NMR investigation of the conformation of methionine-enkephalin in fast-tumbling bicelles. Biophys J 2004; 86:1587-600. [PMID: 14990485 PMCID: PMC1303993 DOI: 10.1016/s0006-3495(04)74226-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Accepted: 11/07/2003] [Indexed: 11/22/2022] Open
Abstract
Enkephalins are pentapeptides found in the central nervous system. It is believed that these neuropeptides interact with the nerve cell membrane to adopt a conformation suitable for their binding to an opiate receptor. In this work, we have determined the three-dimensional structure of methionine-enkephalin (Menk) in fast-tumbling bicelles using multidimensional (1)H NMR. Bicelles were selected as model membranes because both their bilayer organization and composition resemble those of natural biomembranes. The effect of the membrane composition on the peptide conformation was explored using both zwitterionic (PC bicelles) and negatively charged bicelles (Bic/PG). Pulsed field gradient experiments allowed the determination of the proportion of Menk bound to the model membranes. Approximately 60% of the water-soluble enkephalin was found to associate to the bicellar systems. Structure calculations from torsion angle and NOE-based distance constraints suggest the presence of both micro - and delta-selective conformers of Menk in each system and slightly different conformers in PC bicelles and Bic/PG. As opposed to previous studies of enkephalins in membrane mimetic systems, our results show that these opiate peptides could adopt several conformations in a membrane environment, which is consistent with the flexibility and poor selectivity of enkephalins.
Collapse
Affiliation(s)
- Isabelle Marcotte
- Département de Chimie, Centre de Recherche en Sciences et Ingénierie des Macromolécules, Université Laval, Québec, Québec, Canada, G1K 7P4
| | | | | | | |
Collapse
|
20
|
Chatterjee C, Mukhopadhyay C. Structural alterations of enkephalins in the presence of GM1 ganglioside micelles. Biopolymers 2003; 70:512-21. [PMID: 14648762 DOI: 10.1002/bip.10509] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The enkephalins are endogenous neurotransmitters and bind with high affinity at the delta-receptor. Gangliosides, the major glycans of nerve cells, known to interact both with receptors and ligands on the cell surface, have been implicated to modulate the actions of opioid receptors by allosteric regulation (Wu, G.; Lu, Z. H.; Wei, T. J.; Howells, R. D.; Christoffers, K.; Leeden R. W. Ann NY Acad Sci 1998, 845, 126-138). We have studied the interactions between enkephalins and monosialylated ganglioside GM1 using NMR spectroscopy and fluorescence. The structural models of enkephalins in the presence of GM1 micelles were generated using two-dimensional (1)H-ROESY experiments along with restrained molecular dynamics simulations. We report a conformational alteration of enkephalins in the presence of GM1 micelles.
Collapse
Affiliation(s)
- Chiradip Chatterjee
- Department of Chemistry, University of Calcutta, 92, A. P. C. Rd., Kolkata-700 009, India
| | | |
Collapse
|
21
|
Marcotte I, Dufourc EJ, Ouellet M, Auger M. Interaction of the neuropeptide met-enkephalin with zwitterionic and negatively charged bicelles as viewed by 31P and 2H solid-state NMR. Biophys J 2003; 85:328-39. [PMID: 12829487 PMCID: PMC1303088 DOI: 10.1016/s0006-3495(03)74477-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The interaction of the neuropeptide methionine-enkephalin (Menk) with bicelles was investigated by solid-state NMR. Bicelles composed of dimyristoylphosphatidylcholine (DMPC) and dicaproylphosphatidylcholine (DCPC) were modified to investigate the effect of the lipid headgroup and electrostatic charges on the association with Menk. A total of 10 mol % of DMPC was replaced by zwitterionic phosphatidylethanolamine (DMPE), anionic phosphatidylglycerol (DMPG), or phosphatidylserine (DMPS). The preparation of DMPE-doped bicelles (Bic/PE) is reported for the first time. The (31)P and (2)H NMR results revealed changes in the lipid dynamics when Menk interacts with the bicellar systems. (2)H NMR experiments showed a disordering effect of Menk on the lipid chains in all the bicelles except Bic/PG, whereas the study of the choline headgroups indicated a decreased order of the lipids only in Bic/PE and Bic/PG. Our results suggest that the insertion depth of Menk into bicelles is modulated by their composition, more specifically by the balance between hydrophobic and electrostatic interactions. Menk would be buried at the lipid polar/apolar interface, the depth of penetration into the hydrophobic membrane core following the scaling Bic > Bic/PE > Bic/PS at the slightly acidic pH used in this study. The peptide would not insert into the bilayer core of Bic/PG and would rather remain at the surface.
Collapse
Affiliation(s)
- Isabelle Marcotte
- Département de Chimie, Centre de Recherche en Sciences et Ingénierie des Macromolécules, Université Laval, Québec, Québec, Canada, G1K 7P4
| | | | | | | |
Collapse
|
22
|
Miskolzie M, Kotovych G. The NMR-derived conformation of neuropeptide AF, an orphan G-protein coupled receptor peptide. Biopolymers 2003; 69:201-15. [PMID: 12767123 DOI: 10.1002/bip.10359] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The tertiary structure of the pain modulating and anti-opiate neuropeptide, human neuropeptide AF (NPAF) (the sequence is AGEGLNSQFWSLAAPQRF-NH(2)), was determined by (1)H-NMR. The structure of NPAF was determined in two solvent systems, namely 50%/50% trifluoroethanol-d(3)/H(2)O (TFE/H(2)O) and in the cell membrane mimetic micelle, sodium dodecylsulfate-d(25) (SDS). The receptor for NPAF is an orphan G-protein coupled receptor, and the micellar SDS solvent system was used to emulate the cell membrane surface in line with the Cell Membrane Compartments Theory proposed by R. Schwyzer (Biopolymers, 1995, Vol. 37, pp. 5-16). In both solvent systems, NPAF was found to be primarily alpha-helical within the central portion of the molecule, from Asn(6) to Ala(14). The N-terminus was random in both solvent systems. In the SDS solution, the C-terminal tetrapeptide was structured and formed a type I beta-turn, whereas in TFE/H(2)O it was unstructured, showing the importance of the C-terminal tetrapeptide in receptor recognition. NPAF was found to associate with SDS, and was shown to be near the surface of the micelle by spin label studies with 5-doxyl-stearic acid.
Collapse
Affiliation(s)
- Mark Miskolzie
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | | |
Collapse
|
23
|
Palian MM, Boguslavsky VI, O'Brien DF, Polt R. Glycopeptide-membrane interactions: glycosyl enkephalin analogues adopt turn conformations by NMR and CD in amphipathic media. J Am Chem Soc 2003; 125:5823-31. [PMID: 12733923 DOI: 10.1021/ja0268635] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Four enkephalin analogues (Tyr-D-Thr-Gly-Phe-Leu-Ser-CONH(2), 1, and the related O-linked glycopeptides bearing the monosaccharide beta-glucose, 2, the disaccharide beta-maltose, 3, and the trisaccharide beta-maltotriose, 4) were synthesized, purified by HPLC, and biophysical studies were conducted to examine their interactions with membrane model systems. Glycopeptide 2 has been previously reported to penetrate the blood-brain barrier (BBB), and produce potent analgesia superior to morphine in mice (J. Med. Chem.2000, 43, 2586-90 and J. Pharm. Exp. Ther. 2001, 299, 967-972). The parent peptide and its three glycopeptide derivatives were studied in aqueous solution and in the presence of micelles using 2-D NMR, CD, and molecular mechanics (Monte Carlo studies). Consistent with previous conformational studies on cyclic opioid agonist glycopeptides, it was seen that glycosylation did not significantly perturb the peptide backbone in aqueous solution, but all four compounds strongly associated with 5-30 mM SDS or DPC micelles, and underwent profound membrane-induced conformational changes. Interaction was also observed with POPC:POPE:cholesterol lipid vesicles (LUV) in equilibrium dialysis experiments. Although the peptide backbones of 1-4 possessed random coil structures in water, in the presence of the lipid phase they each formed a nearly identical pair of structures, all with a stable beta-turn motif at the C-terminus. Use of spin labels (Mn(2+) and 5-DOXYL-stearic acid) allowed for the determination of the position and orientation of the compounds relative to the surface of the micelle.
Collapse
Affiliation(s)
- Michael M Palian
- Carl S. Marvel Laboratories, Department of Chemistry, The University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | |
Collapse
|
24
|
Chakraborty TK, Ghosh S, Jayaprakash S, Sarma JA, Ravikanth V, Diwan PV, Nagaraj R, Kunwar AC, Sharma JA. Synthesis and conformational studies of peptidomimetics containing furanoid sugar amino acids and a sugar diacid. J Org Chem 2000; 65:6441-57. [PMID: 11052087 DOI: 10.1021/jo000408e] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Furanoid sugar amino acids (1) were synthesized and used as dipeptide isosteres to induce interesting turn structures in small linear peptides. They belong to a new variety of designed hybrid structures that carry both amino and carboxyl groups on rigid furanose sugar rings. Four such molecules, 6-amino-2,5-anhydro-6-deoxy-D-gluconic acid (3, Gaa) and its mannonic (4, Maa), idonic (5, Iaa), and a 3,4-dideoxyidonic (6, ddIaa) congeners were synthesized. The synthesis followed a novel reaction path in which an intramolecular 5-exo S(N)2 opening of the hexose-derived terminal aziridine ring in 2 by the gamma-benzyloxy oxygen with concomitant debenzylation occurred during pyridinium dichromate oxidation of the primary delta-hydroxyl group to carboxyl function, leading to the formation of furanoid sugar amino acid frameworks in a single step. Incorporation of these furanoid sugar amino acids into Leu-enkephalin replacing its Gly-Gly portion gave analogues 8-11. Detailed structural analysis of these molecules by circular dichroism (CD) and various NMR techniques in combination with constrained molecular dynamics (MD) simulations revealed that two of these analogues, 8a and 10a, have folded conformations composed of an unusual nine-membered pseudo beta-turn-like structure with a strong intramolecular H-bond between LeuNH --> sugarC3-OH. This, in turn, brings the two aromatic rings of Tyr and Phe in close proximity, a prerequisite for biological activities of opioid peptides. The analgesic activities of 8a,b determined by mouse hot-plate and tail-clip methods were similar to that of Leu-enkephalin methyl ester. The syn disposition of the beta-hydroxycarboxyl motif on the sugar rings appears to be the driving force to nucleate the observed turn structures in some of these molecules (8 and 10). Repetition of the motif on both sides of a furanose ring resulted in a novel molecular design of sugar diacid, 2,5-anhydro-D-idaric acid (7, Idac). Bidirectional elongation of the diacid moieties of 7 with identical peptide strands led to the formation of a C2-symmetric reverse-turn mimetic 12 which displayed a very ordered structure consisting of identical intramolecular H-bonds at two ends between LeuNH --> sugar-OH, the same as in 8 and 10.
Collapse
Affiliation(s)
- T K Chakraborty
- Indian Institute of Chemical Technology and Centre for Cellular and Molecular Biology, Hyderabad, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kostov KS, Freed KF. Long-time dynamics of Met-enkephalin: comparison of theory with Brownian dynamics simulations. Biophys J 1999; 76:149-63. [PMID: 9876130 PMCID: PMC1302507 DOI: 10.1016/s0006-3495(99)77185-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A recent theory for the long time dynamics of flexible chain molecules is applied for the first time to a peptide of biological importance, the neurotransmitter met-enkephalin. The dynamics of met-enkephalin is considerably more complicated than that of the previously studied glycine oligomers; met-enkephalin contains the interesting motions of phenyl groups and of side chains relative to the backbone, motions that are present in general flexible peptides. The theory extends the generalized Rouse (GR) model used to study the dynamics of polymers by providing a systematic procedure for including the contributions from the memory function matrices neglected in the GR theory. The new method describes the dynamics by time correlation functions instead of individual trajectories. These correlation functions are analytically expressed in terms of a set of equilibrium averages and the eigenvalues and eigenfunctions of the diffusion operator. The predictions of the theory are compared with Brownian dynamics (BD) simulations, so that both theory and simulation use identical potential functions and solvent models. The theory thus contains no adjustable parameters. Inclusion of the memory function contributions profoundly affects the dynamics. The theory produces very good agreement with the BD simulations for the global motions of met-enkephalin. It also correctly predicts the long-time relaxation rate for local motions.
Collapse
Affiliation(s)
- K S Kostov
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637
| | | |
Collapse
|
26
|
Chakraborty TK, Jayaprakash S, Diwan PV, Nagaraj R, Jampani SRB, Kunwar AC. Folded Conformation in Peptides Containing Furanoid Sugar Amino Acids. J Am Chem Soc 1998. [DOI: 10.1021/ja9816685] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- T. K. Chakraborty
- Indian Institute of Chemical Technology and Centre for Cellular and Molecular Biology Hyderabad 500 007, India
| | - S. Jayaprakash
- Indian Institute of Chemical Technology and Centre for Cellular and Molecular Biology Hyderabad 500 007, India
| | - P. V. Diwan
- Indian Institute of Chemical Technology and Centre for Cellular and Molecular Biology Hyderabad 500 007, India
| | - R. Nagaraj
- Indian Institute of Chemical Technology and Centre for Cellular and Molecular Biology Hyderabad 500 007, India
| | - S. R. B. Jampani
- Indian Institute of Chemical Technology and Centre for Cellular and Molecular Biology Hyderabad 500 007, India
| | - A. C. Kunwar
- Indian Institute of Chemical Technology and Centre for Cellular and Molecular Biology Hyderabad 500 007, India
| |
Collapse
|
27
|
Kimura A, Kuni N, Fujiwara H. Conformation and Orientation of Met-enkephalin Analogues in a Lyotropic Liquid Crystal Studied by the Magic-Angle- and Near-Magic-Angle-Spinning Two-Dimensional Methodology in Nuclear Magnetic Resonance: Relationships between Activities and Membrane-Associated Structures. J Am Chem Soc 1997. [DOI: 10.1021/ja963344r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Atsuomi Kimura
- Contribution from the Faculty of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, and School of Allied Health Sciences, Faculty of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565, Japan
| | - Naohito Kuni
- Contribution from the Faculty of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, and School of Allied Health Sciences, Faculty of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565, Japan
| | - Hideaki Fujiwara
- Contribution from the Faculty of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, and School of Allied Health Sciences, Faculty of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565, Japan
| |
Collapse
|
28
|
Eisenmenger F, Hansmann UH. Global minimum configuration of a small peptide for the ECEPP/2 and ECEPP/3 force fields. Chem Phys Lett 1997. [DOI: 10.1016/s0009-2614(97)00180-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Schwyzer R, Moutevelis-Minakakis P, Kimura S, Gremlich HU. Lipid-induced secondary structures and orientations of (Leu5)-enkephalin: helical and crystallographic double-bend conformers revealed by IRATR and molecular modelling. J Pept Sci 1997; 3:65-81. [PMID: 9230472 DOI: 10.1002/(sici)1099-1387(199701)3:1<65::aid-psc90>3.0.co;2-q] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lipid-induced secondary structures and orientations of the two enantiomeric [Leu5]-enkephalins, L-Tyr-Gly-Gly-L-Phe-L-Leu, and D-Tyr-Gly-Gly-D-Phe-D-Leu, on flat multi-bilayers of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) were examined with polarized attenuated total reflection IR (IRATR) spectroscopy and molecular mechanics procedures. The membrane-bound peptides showed identical IR spectra in the amide I and II band regions that indicated membrane-induced secondary structures and specific orientations of the non-zwitterionic molecules. A Lorentzian band shape analysis based on second derivatives of the original curves and observed band polarizations suggested the presence of helical structures (beta III- and alpha-turns), oriented more or less perpendicular to the membrane surface. Other folded structures, e.g. beta I- and gamma turns, were not excluded. Molecular modelling of non-zwitterionic (Leu5)-enkephalin with two beta III-turns or an alpha-turn resulted in essentially four low-energy conformers containing (i) two beta III-turns, (ii) one alpha-turn, (iii) a beta III-turn fused to an alpha-turn, and (iv) a beta III-turn fused to a beta I-turn as in the crystallographic molecular conformation described by Aubry et al. [Biopolymers 28, 27-40 (1989)]. Zwitterionic [Leu5]-enkephalin with two beta III-turns collapsed to a C13 turn (a distorted alpha-turn) bridged by a gamma I-turn (v). The alignment of the amide I oscillators within the helical structures, (i), (ii) and (iii), and the double-bend structures, (iv) and (v), explained the observed amide I and II polarizations. Differences between these and other lipid-induced [Leu5]-enkephalin conformers reported in the literature may be caused by the lipid polymorphism of the model membranes used. Possible implications of the new conformers for the molecular mechanism of opioid receptor selection are discussed in terms of the membrane compartments theory.
Collapse
Affiliation(s)
- R Schwyzer
- Institute of Molecular Biology and Biophysics, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland
| | | | | | | |
Collapse
|
30
|
|
31
|
D'Alagni M, Delfini M, Di Nola A, Eisenberg M, Paci M, Roda LG, Veglia G. Conformational study of [Met5]enkephalin-Arg-Phe in the presence of phosphatidylserine vesicles. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 240:540-9. [PMID: 8856052 DOI: 10.1111/j.1432-1033.1996.0540h.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The interaction of [Met5]enkephalin-Arg.Phe with phosphatidylserine (PtdSer) was studied by circular dichroism (CD), two-dimensional nuclear magnetic resonance spectroscopy, hybrid distance geometry simulated annealing (DG-SA) and molecular dynamics (MD) calculations. The very low solubility of [Met5]enkephalin-Arg-Phe and the instability of the solution containing PtdSer vesicles at low pH values did not allow us to observe the amide proton resonances in the usual two-dimensional NMR work. NOESY cross-peaks of protons of side chains from two-dimensional NMR were converted into distances which were used as restraints for modelling with DG-SA and MD. Our results indicate that, in aqueous solutions at pH 7.68 [Met5]enkephalin-Arg-Phe exists in the absence of PtdSer as a random distribution of conformers, whereas in the presence of PtdSer it adopts conformations containing a common orientation of the bonds of C alpha 2, C alpha 3, C alpha 4, and C alpha 5, although different orientations of the peptide planes are consistent with the results. Two of the reported conformers from MD simulations are characterized by the presence of a 2<--4 gamma and inverse gamma turns centered on Gly3. A gradual decline of order was observed when moving from the central moiety of the peptide to both the N-terminus and C-terminus. Finally, the DG-SA and MD calculations resulted in a structure such that the orientation of the Phe4 and Met5 side chains favours hydrophobic interactions with the apolar portion of the PtdSer vesicle to form a hydrophobic cluster. These data support the hypothesis of a role of lipids to modify the conformation of [Met5]enkephalin-Arg-Phe to permit the interactions with the receptor site.
Collapse
Affiliation(s)
- M D'Alagni
- Centro di Studio per la Chimica dei Recettori e delle Molecole Biologicamente Attive, C. N. R., Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
32
|
Kimura A, Kuni N, Fujiwara H. Orientation and Conformation of Met-enkephalin in a Liquid Crystal As Studied by Magic-Angle- and Near-Magic-Angle-Spinning Two-Dimensional NMR Spectroscopy. ACTA ACUST UNITED AC 1996. [DOI: 10.1021/jp953648k] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Atsuomi Kimura
- Faculty of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565, Japan
| | - Naohito Kuni
- Faculty of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565, Japan
| | - Hideaki Fujiwara
- Faculty of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565, Japan
| |
Collapse
|
33
|
Watts CR, Tessmer MR, Kallick DA. Structure of Leu5-enkephalin bound to a model membrane as determined by high-resolution NMR. ACTA ACUST UNITED AC 1995. [DOI: 10.1007/bf00128499] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Montcalm T, Cui W, Zhao H, Guarnieri F, Wilson SR. Simulated annealing of met-enkephalin: low energy states and their relevance to membrane-bound, solution and solid-state conformations. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/0166-1280(94)80093-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Graham WH, Carter ES, Hicks RP. Conformational analysis of Met-enkephalin in both aqueous solution and in the presence of sodium dodecyl sulfate micelles using multidimensional NMR and molecular modeling. Biopolymers 1992; 32:1755-64. [PMID: 1472657 DOI: 10.1002/bip.360321216] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Proton and 13C chemical shift assignments are reported for the neuropeptide Met-enkephalin (ME) in both aqueous solution and in the presence of 50 mM sodium dodecyl sulfate (SDS). Rotating frame nuclear Overhauser enhancement spectroscopy was used to qualitatively describe interproton distances. These distances were then used as restraints in the distance geometry based molecular modeling program Dspace, developed by Hare Research to generate sets of conformations of ME. The resulting aqueous solution conformations of ME were determined to exhibit characteristic of an extended random-coil polypeptide with no distinguishable secondary structure. The resulting set of solution conformations of ME in the presence of 50 mM SDS exhibited characteristics of an amphiphilic type IV beta turn that are stabilized by hydrophobic aromatic-aromatic interactions between the side chains of Tyr1 and Phe4.
Collapse
Affiliation(s)
- W H Graham
- Mississippi State University, Drawer CH Mississippi State 39762
| | | | | |
Collapse
|
36
|
Xu GY, Deber CM. Conformations of neurotensin in solution and in membrane environments studied by 2-D NMR spectroscopy. INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH 1991; 37:528-35. [PMID: 1917311 DOI: 10.1111/j.1399-3011.1991.tb00771.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Two-dimensional HOHAHA and ROESY nuclear magnetic resonance techniques are used to obtain complete proton resonance assignments and to perform a conformational investigation of the neuropeptide neurotensin (pGlu-Leu-Tyr-Glu-Asn-Lys-Pro-Arg-Arg-Pro-Tyr-Ile-Leu) in aqueous solution, methanol, and membrane-mimetic [deuterated sodium dodecylsulfate (SDS)] environments. Results suggest the absence of discernible elements of secondary structure in water and methanol. ROESY spectra confirm that Lys-Pro and Arg-Pro peptide bonds are all-trans, but that a significant population of cis Arg-Pro bonds arises in aqueous solution, which increases in the environment of SDS micelles. The conformational ensemble of the peptide is observed to narrow as it becomes bound through its cationic mid-region to SDS micelles, with the accompanying advent of local extended structure. The overall results indicate the inherent conformational flexibility of neurotensin, and emphasize the environmental dependence of conformation in peptides of medium length.
Collapse
Affiliation(s)
- G Y Xu
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
37
|
Picone D, D'Ursi A, Motta A, Tancredi T, Temussi PA. Conformational preferences of [Leu5]enkephalin in biomimetic media. Investigation by 1H NMR. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 192:433-9. [PMID: 2209598 DOI: 10.1111/j.1432-1033.1990.tb19245.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The conformation of [Leu5]enkephalin has been studied by 1H-NMR spectroscopy in media more like the actual environment in which the agonist-receptor interaction takes place than water, i.e. in three cryoprotective mixtures (dimethylformamide/water, methanol/water and ethylene glycol/water), in aqueous SDS and in two neat solvents, dimethylformamide and acetonitrile, whose dielectric constants (36.7 and 37.5) are intermediate between that of water and that of the lipid phase. In all cases examined, contrary to the studies in water or dimethylsulfoxide, we were able to detect numerous nuclear Overhauser effects, indicating that the media employed favour well-defined structures and/or reduce the internal motions of the peptide. Data from both organic solvents and cryoprotective mixtures suggest a 4----1 beta turn as the most probable structure of [Leu5]enkephalin in solution, whereas in SDS/H2O micelles the structural picture appears completely different, suggesting the presence of a 5----2 beta turn. The existence of two different preferred conformations of enkephalins may possibly be related to their ability to be effective towards both mu and delta opioid receptors.
Collapse
Affiliation(s)
- D Picone
- Dipartimento di Chimica, Università di Napoli Federico II, Italy
| | | | | | | | | |
Collapse
|
38
|
Pawagi AB, Deber CM. Ligand-dependent quenching of tryptophan fluorescence in human erythrocyte hexose transport protein. Biochemistry 1990; 29:950-5. [PMID: 2340286 DOI: 10.1021/bi00456a015] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
D-Glucose transport by the 492-residue human erythrocyte hexose transport protein may involve ligand-mediated conformational/positional changes. To examine this possibility, hydrophilic quencher molecules [potassium iodide and acrylamide (ACR)] were used to monitor the quenching of the total protein intrinsic fluorescence exhibited by the six protein tryptophan (Trp) residues in the presence and absence of substrate D-glucose, and in the presence of the inhibitors maltose and cytochalasin B. Protein fluorescence was found to be quenched under various conditions, ca. 14-24% by KI and ca. 25-33% by ACR, indicating that the bulk of the Trp residue population occurs in normally inaccessible hydrophobic regions of the erythrocyte membrane. However, in the presence of D-glucose, quenching by KI and ACR decreased an average of -3.4% and -4.4%, respectively; Stern-Volmer plots displayed decreased slopes in the presence of D-glucose, confirming the relatively reduced quenching. In contrast, quenching efficiency increased in the presence of maltose (+5.9%, +3.3%), while addition of cytochalasin B had no effect on fluorescence quenching. The overall results are interpreted in terms of ligand-activated movement of an initially aqueous-located protein segment containing a Trp residue into, or toward, the cellular membrane. Relocation of this segment, in effect, opens the D-glucose channel; maltose and cytochalasin B would thus inhibit transport by mechanisms which block this positional change. Conformational and hydropathy analyses suggested that the region surrounding Trp-388 is an optimal "dynamic segment" which, in response to ligand activation, could undergo the experimentally deduced aqueous/membrane domain transfer.
Collapse
Affiliation(s)
- A B Pawagi
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
39
|
Deber CM, Glibowicka M, Woolley GA. Conformations of proline residues in membrane environments. Biopolymers 1990; 29:149-57. [PMID: 2328283 DOI: 10.1002/bip.360290120] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although noted as hydrophilic residues with helix-breaking potential, proline residues are observed in putatively alpha-helical transmembrane (TM) segments of many channel-forming integral membrane proteins. In addition to the recognized property of X-Pro peptide bonds (where X = any amino acid) to occur in cis as well as trans isomeric states, the tertiary amide character of the X-Pro bond confers increased propensity for involvement of its carbonyl group in specific H-bonded structures (e.g., beta- and gamma-turns) and/or liganding interactions with positively charged species. To examine this latter situation in further detail, we identified Leu-Pro-Phe as a consensus sequence triad based on actual occurrences of intramembranous Pro residues in transport protein TM segments. Accordingly, we have undertaken the synthesis of hydrophobic peptides with potential membrane affinity, of which t-butyloxycarbonyl-L-Ala-L-Ala-L-Ala-L-Leu-L-Pro-L-Phe-OH (t-Boc-AAALPF-OH) is an initial compound. Partitioning of this peptide into model membrane environments composed of lipid micelles induces specific conformation(s) for the membrane-bound hexapeptide, as monitored by 75-MHz 13C-nmr spectral behavior of 13C-enriched Leu and Pro carbonyl carbons, and by 300-MHz 1H-nmr spectra of peptide alpha, beta, and aromatic protons. Data are interpreted in terms of an intramolecularly H-bonded inverse gamma-turn conformation in the membrane environment involving the Leu-Pro-Phe triad. The inherent structural instability of a Pro-containing segment in a TM helix due to the multiplicity of possible local conformations is discussed as a functional aspect of membrane-buried prolines in transport proteins.
Collapse
Affiliation(s)
- C M Deber
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | |
Collapse
|
40
|
Surewicz WK, Mantsch HH. The conformation of proteins and peptides in a membrane environment: an infrared spectroscopic approach. BIOTECHNOLOGY (READING, MASS.) 1990; 14:131-57. [PMID: 2183896 DOI: 10.1016/b978-0-409-90116-0.50015-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
41
|
Woolley GA, Deber CM. A lipid vesicle system for probing voltage-dependent peptide-lipid interactions: application to alamethicin channel formation. Biopolymers 1989; 28:267-72. [PMID: 2470433 DOI: 10.1002/bip.360280127] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A membrane potential is shown to be established in phosphatidylcholine/cholesterol unilamellar vesicles using valinomycin in conjunction with a potassium ion gradient; this potential is monitored using the externally added fluorescent dye Safranine O. In the same system, transmembrane calcium fluxes are then detected using the (internally trapped) fluorescent dye Quin-2. The calcium-transport behavior of the channel-forming peptide alamethicin is shown to be potential dependent in this system, in contrast to calcium transport by the ionophore Br-A23187, which is unaffected by the potential. The observation of this potential-dependent behavior for alamethicin suggests that this vesicle system may be suitable for direct spectroscopic observation of the voltage-gating process.
Collapse
|
42
|
Brandl CJ, Deber RB, Hsu LC, Woolley GA, Young XK, Deber CM. Evidence for similar function of transmembrane segments in receptor and membrane-anchored proteins. Biopolymers 1988; 27:1171-82. [PMID: 2850033 DOI: 10.1002/bip.360270710] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
43
|
Ponnusamy E, Eckert H, Fiat D. Synthesis of 17O isotope labeled Leu-enkephalin and 17O n.m.r. INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH 1988; 32:21-7. [PMID: 3220655 DOI: 10.1111/j.1399-3011.1988.tb00921.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Oxygen-17 isotope was introduced into the alpha-carboxyl group of glycine, 1-phenylalanine, 1-leucine and 1-tyrosine by acid catalyzed exchange of 17O from H2O(17) or by acid hydrolysis of respective amino acid methyl esters in H2O(17). Quantitative enrichment of glycine was achieved by acid hydrolysis of amino acetonitrile in H2O(17). For alpha-amino protection in amino acids t-butoxycarbonyl (Boc) group was employed for 17O labeled enkephalin synthesis. Five analogues of Leu-enkephalins (I-V) labeled with 17O at different amino acid residues were synthesized by solid phase method. 17O n.m.r. spectra were measured at 24.4 and 67.8 MHz for Leu-enkephalins 17O labeled at Gly2 and Phe4 positions. A downfield shift was observed for 17O labeled Gly2 Leu-enkephalin upon heating. This shift is indicative of the rupture of intramolecular hydrogen bonds. The preliminary results confirm the hypothesis that an intramolecular hydrogen bond exists between the carbonyl group of Gly2 and NH group of Leu5.
Collapse
Affiliation(s)
- E Ponnusamy
- Department of Physiology and Biophysics, University of Illinois, Chicago
| | | | | |
Collapse
|
44
|
|
45
|
Surewicz WK, Mantsch HH. Solution and membrane structure of enkephalins as studied by infrared spectroscopy. Biochem Biophys Res Commun 1988; 150:245-51. [PMID: 3337714 DOI: 10.1016/0006-291x(88)90512-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The backbone conformation of the two opioid pentapeptides Leu5-enkephalin and Met5-enkephalin was studied by the technique of resolution-enhanced infrared spectroscopy. In aqueous solution, the conformation-sensitive amide I bands of the two peptides are identical. The positions of these bands are consistent with the view that in aqueous solution both enkephalins exist as an ensemble of largely unfolded conformers. Interaction of Leu5- and Met5-enkephalins with bilayer membranes of ditetradecylphosphatidylcholine results in a substantial refolding of the peptide backbones. The conformation stabilized by the membrane environment is a hydrogen-bonded turn structure. Conformational transitions in enkephalins induced by a lipid environment may play a role in the specific interactions between these hormones and their receptor sites.
Collapse
Affiliation(s)
- W K Surewicz
- Division of Chemistry, National Research Coucil of Canada, Ottawa, Ontario
| | | |
Collapse
|
46
|
Woolley GA, Deber CM. Peptides in membranes: lipid-induced secondary structure of substance P. Biopolymers 1987; 26 Suppl:S109-21. [PMID: 2437975 DOI: 10.1002/bip.360260012] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
47
|
Zetta L, De Marco A, Zannoni G, Cestaro B. Evidence for a folded structure of Met-enkephalin in membrane mimetic systems: 1H-nmr studies in sodiumdodecylsulfate, lyso-phosphatidylcholine, and mixed lyso-phosphatidylcholine/sulfatide micelles. Biopolymers 1986; 25:2315-23. [PMID: 3801586 DOI: 10.1002/bip.360251209] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
48
|
POSTER COMMUNICATIONS. Br J Pharmacol 1986. [DOI: 10.1111/j.1476-5381.1986.tb14741.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
49
|
|