1
|
Ismatullah H, Jabeen I, Kiani YS. Structural and functional insight into a new emerging target IP 3R in cancer. J Biomol Struct Dyn 2024; 42:2170-2196. [PMID: 37070253 DOI: 10.1080/07391102.2023.2201332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
Calcium signaling has been identified as an important phenomenon in a plethora of cellular processes. Inositol 1,4,5-trisphosphate receptors (IP3Rs) are ER-residing intracellular calcium (Ca2+) release channels responsible for cell bioenergetics by transferring calcium from the ER to the mitochondria. The recent availability of full-length IP3R channel structure has enabled the researchers to design the IP3 competitive ligands and reveal the channel gating mechanism by elucidating the conformational changes induced by ligands. However, limited knowledge is available for IP3R antagonists and the exact mechanism of action of these antagonists within a tumorigenic environment of a cell. Here in this review a summarized information about the role of IP3R in cell proliferation and apoptosis has been discussed. Moreover, structure and gating mechanism of IP3R in the presence of antagonists have been provided in this review. Additionally, compelling information about ligand-based studies (both agonists and antagonists) has been discussed. The shortcomings of these studies and the challenges toward the design of potent IP3R modulators have also been provided in this review. However, the conformational changes induced by antagonists for channel gating mechanism still display some major drawbacks that need to be addressed. However, the design, synthesis and availability of isoform-specific antagonists is a rather challenging one due to intra-structural similarity within the binding domain of each isoform. HighlightsThe intricate complexity of IP3R's in cellular processes declares them an important target whereby, the recently solved structure depicts the receptor's potential involvement in a complex network of processes spanning from cell proliferation to cell death.Pharmacological inhibition of IP3R attenuates the proliferation or invasiveness of cancers, thus inducing necrotic cell death.Despite significant advancements, there is a tremendous need to design new potential hits to target IP3R, based upon 3D structural features and pharmacophoric patterns.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Humaira Ismatullah
- Department of Sciences, School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Ishrat Jabeen
- Department of Sciences, School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Yusra Sajid Kiani
- Department of Sciences, School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
2
|
Effect of mate tea consumption on rapid force production after eccentric exercise: a randomized, controlled, crossover study. SPORT SCIENCES FOR HEALTH 2020. [DOI: 10.1007/s11332-020-00669-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
3
|
Bazzucchi I, Patrizio F, Ceci R, Duranti G, Sgrò P, Sabatini S, Di Luigi L, Sacchetti M, Felici F. The Effects of Quercetin Supplementation on Eccentric Exercise-Induced Muscle Damage. Nutrients 2019; 11:nu11010205. [PMID: 30669587 PMCID: PMC6356612 DOI: 10.3390/nu11010205] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/21/2018] [Accepted: 01/16/2019] [Indexed: 11/23/2022] Open
Abstract
The aim of the present investigation was to test the hypothesis that quercetin (Q) may prevent the strength loss and neuromuscular impairment associated with eccentric exercise-induced muscle damage (EEIMD). Twelve young men (26.1 ± 3.1 years) ingested either Q (1000 mg/day) or placebo (PLA) for 14 days using a randomized, double-blind, crossover study design. Participants completed a comprehensive neuromuscular (NM) evaluation before, during and after an eccentric protocol able to induce a severe muscle damage (10 sets of 10 maximal lengthening contractions). The NM evaluation comprised maximal voluntary isometric contraction (MVIC) and force–velocity relationship assessments with simultaneous recording of electromyographic signals (EMG) from the elbow flexor muscles. Soreness, resting arm angle, arm circumference, plasma creatine kinase (CK) and lactate dehydrogenase (LDH) were also assessed. Q supplementation significantly increased the isometric strength recorded during MVIC compared to baseline (+4.7%, p < 0.05). Moreover, the torque and muscle fiber conduction velocity (MFCV) decay recorded during the eccentric exercise was significant lower in Q compared to PLA. Immediately after the EEIMD, isometric strength, the force–velocity relationship and MFCV were significantly lower when participants were given PLA rather than Q. Fourteen days of Q supplementation seems able to attenuate the severity of muscle weakness caused by eccentric-induced myofibrillar disruption and sarcolemmal action potential propagation impairment.
Collapse
Affiliation(s)
- Ilenia Bazzucchi
- Laboratory of Exercise Physiology-Department of Movement, Human and Health Sciences, Università degli Studi di Roma "Foro Italico", Piazza Lauro De Bosis 6, 00135 Roma, Italy.
| | - Federica Patrizio
- Laboratory of Exercise Physiology-Department of Movement, Human and Health Sciences, Università degli Studi di Roma "Foro Italico", Piazza Lauro De Bosis 6, 00135 Roma, Italy.
| | - Roberta Ceci
- Laboratory of Biochemistry of Movement-Department of Movement, Human and Health Sciences, Università degli Studi di Roma "Foro Italico", Piazza Lauro De Bosis 6, 00135 Roma, Italy.
| | - Guglielmo Duranti
- Laboratory of Biochemistry of Movement-Department of Movement, Human and Health Sciences, Università degli Studi di Roma "Foro Italico", Piazza Lauro De Bosis 6, 00135 Roma, Italy.
| | - Paolo Sgrò
- Endocrinology Unit-Department of Movement, Human and Health Sciences, Università degli Studi di Roma "Foro Italico", Piazza Lauro De Bosis 6, 00135 Roma, Italy.
| | - Stefania Sabatini
- Laboratory of Biochemistry of Movement-Department of Movement, Human and Health Sciences, Università degli Studi di Roma "Foro Italico", Piazza Lauro De Bosis 6, 00135 Roma, Italy.
| | - Luigi Di Luigi
- Endocrinology Unit-Department of Movement, Human and Health Sciences, Università degli Studi di Roma "Foro Italico", Piazza Lauro De Bosis 6, 00135 Roma, Italy.
| | - Massimo Sacchetti
- Laboratory of Exercise Physiology-Department of Movement, Human and Health Sciences, Università degli Studi di Roma "Foro Italico", Piazza Lauro De Bosis 6, 00135 Roma, Italy.
| | - Francesco Felici
- Laboratory of Exercise Physiology-Department of Movement, Human and Health Sciences, Università degli Studi di Roma "Foro Italico", Piazza Lauro De Bosis 6, 00135 Roma, Italy.
| |
Collapse
|
4
|
The acute effect of Quercetin on muscle performance following a single resistance training session. Eur J Appl Physiol 2018; 118:1021-1031. [DOI: 10.1007/s00421-018-3834-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 02/16/2018] [Indexed: 12/29/2022]
|
5
|
Peoples JN, Taylor DG, Katchman AN, Ebert SN. Intact calcium signaling in adrenergic-deficient embryonic mouse hearts. Biochem Biophys Res Commun 2018; 495:2547-2552. [PMID: 29288665 DOI: 10.1016/j.bbrc.2017.12.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 12/26/2017] [Indexed: 11/30/2022]
Abstract
Mouse embryos that lack the ability to produce the adrenergic hormones, norepinephrine (NE) and epinephrine (EPI), due to disruption of the dopamine beta-hydroxylase (Dbh-/-) gene inevitably perish from heart failure during mid-gestation. Since adrenergic stimulation is well-known to enhance calcium signaling in developing as well as adult myocardium, and impairments in calcium signaling are typically associated with heart failure, we hypothesized that adrenergic-deficient embryonic hearts would display deficiencies in cardiac calcium signaling relative to adrenergic-competent controls at a developmental stage immediately preceding the onset of heart failure, which first appears beginning or shortly after mouse embryonic day 10.5 (E10.5). To test this hypothesis, we used ratiometric fluorescent calcium imaging techniques to measure cytosolic calcium transients, [Ca2+]i in isolated E10.5 mouse hearts. Our results show that spontaneous [Ca2+]i oscillations were intact and robustly responded to a variety of stimuli including extracellular calcium (5 mM), caffeine (5 mM), and NE (100 nM) in a manner that was indistinguishable from controls. Further, we show similar patterns of distribution (via immunofluorescent histochemical staining) and activity (via patch-clamp recording techniques) for the major voltage-gated plasma membrane calcium channel responsible for the L-type calcium current, ICa,L, in adrenergic-deficient and control embryonic cardiac cells. These results demonstrate that despite the absence of vital adrenergic hormones that consistently leads to embryonic lethality in vivo, intracellular and extracellular calcium signaling remain essentially intact and functional in embryonic mouse hearts through E10.5. These findings suggest that adrenergic stimulation is not required for the development of intracellular calcium oscillations or extracellular calcium signaling through ICa,L and that aberrant calcium signaling does not likely contribute to the onset of heart failure in this model.
Collapse
Affiliation(s)
- Jessica N Peoples
- Burnett School of Biomedical Sciences, Division of Metabolic and Cardiovascular Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL 32827, United States
| | - David G Taylor
- Burnett School of Biomedical Sciences, Division of Metabolic and Cardiovascular Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL 32827, United States
| | - Alexander N Katchman
- Department of Pharmacology, Georgetown University Medical Center, 3900 Reservoir Rd, NW, Washington, DC 20007, United States
| | - Steven N Ebert
- Burnett School of Biomedical Sciences, Division of Metabolic and Cardiovascular Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL 32827, United States.
| |
Collapse
|
6
|
Poillot C, Bichraoui H, Tisseyre C, Bahemberae E, Andreotti N, Sabatier JM, Ronjat M, De Waard M. Small efficient cell-penetrating peptides derived from scorpion toxin maurocalcine. J Biol Chem 2012; 287:17331-17342. [PMID: 22433862 DOI: 10.1074/jbc.m112.360628] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Maurocalcine is the first demonstrated example of an animal toxin peptide with efficient cell penetration properties. Although it is a highly competitive cell-penetrating peptide (CPP), its relatively large size of 33 amino acids and the presence of three internal disulfide bridges may hamper its development for in vitro and in vivo applications. Here, we demonstrate that several efficient CPPs can be derived from maurocalcine by replacing Cys residues by isosteric 2-aminobutyric acid residues and sequence truncation down to peptides of up to 9 residues in length. A surprising finding is that all of the truncated maurocalcine analogues possessed cell penetration properties, indicating that the maurocalcine is a highly specialized CPP. Careful examination of the cell penetration properties of the truncated analogues indicates that several maurocalcine-derived peptides should be of great interest for cell delivery applications where peptide size matters.
Collapse
Affiliation(s)
- Cathy Poillot
- INSERM U836, Grenoble Neuroscience Institute, Site Santé La Tronche, Chemin Fortuné Ferrini, BP 170, 38042 Grenoble Cedex 9, France; Université Joseph Fourier, 38041 Grenoble, France
| | - Hicham Bichraoui
- INSERM U836, Grenoble Neuroscience Institute, Site Santé La Tronche, Chemin Fortuné Ferrini, BP 170, 38042 Grenoble Cedex 9, France; Université Joseph Fourier, 38041 Grenoble, France
| | - Céline Tisseyre
- INSERM U836, Grenoble Neuroscience Institute, Site Santé La Tronche, Chemin Fortuné Ferrini, BP 170, 38042 Grenoble Cedex 9, France; Université Joseph Fourier, 38041 Grenoble, France
| | - Eloi Bahemberae
- INSERM U836, Grenoble Neuroscience Institute, Site Santé La Tronche, Chemin Fortuné Ferrini, BP 170, 38042 Grenoble Cedex 9, France; Université Joseph Fourier, 38041 Grenoble, France
| | | | | | - Michel Ronjat
- INSERM U836, Grenoble Neuroscience Institute, Site Santé La Tronche, Chemin Fortuné Ferrini, BP 170, 38042 Grenoble Cedex 9, France; Université Joseph Fourier, 38041 Grenoble, France
| | - Michel De Waard
- INSERM U836, Grenoble Neuroscience Institute, Site Santé La Tronche, Chemin Fortuné Ferrini, BP 170, 38042 Grenoble Cedex 9, France; Université Joseph Fourier, 38041 Grenoble, France; Smartox Biotechnologies, Biopolis, 5 Avenue du Grand Sablon, 38700 La Tronche, France.
| |
Collapse
|
7
|
Both basic and acidic amino acid residues of IpTx(a) are involved in triggering substate of RyR1. J Biomed Biotechnol 2011; 2011:386384. [PMID: 22007141 PMCID: PMC3192407 DOI: 10.1155/2011/386384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/05/2011] [Accepted: 08/10/2011] [Indexed: 12/02/2022] Open
Abstract
Imperatoxin A (IpTxa) is known to modify the gating of skeletal ryanodine receptor (RyR1). In this paper, the ability of charged aa residues of IpTxa to induce substate of native RyR1 in HSR was examined. Our results show that the basic residues (e.g., Lys19, Lys20, Lys22, Arg23, and Arg24) are important for producing substate of RyR1. In addition, other basic residues (e.g., Lys30, Arg31, and Arg33) near the C-terminus and some acidic residues (e.g., Glu29, Asp13, and Asp2) are also involved in the generation of substate. Residues such as Lys8 and Thr26 may be involved in the self-regulation of substate of RyR1, since alanine substitution of the aa residues led to a drastic conversion to the substate. The modifications of the channel gating by the wild-type and mutant toxins were similar in purified RyR1. Taken together, the specific charge distributions on the surface of IpTxa are essential for regulation of the channel gating of RyR1.
Collapse
|
8
|
Song DW, Lee JG, Youn HS, Eom SH, Kim DH. Ryanodine receptor assembly: A novel systems biology approach to 3D mapping. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 105:145-61. [DOI: 10.1016/j.pbiomolbio.2010.09.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 09/14/2010] [Accepted: 09/28/2010] [Indexed: 10/19/2022]
|
9
|
Murayama T, Kurebayashi N. Two ryanodine receptor isoforms in nonmammalian vertebrate skeletal muscle: possible roles in excitation-contraction coupling and other processes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2010; 105:134-44. [PMID: 21029746 DOI: 10.1016/j.pbiomolbio.2010.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 10/13/2010] [Accepted: 10/19/2010] [Indexed: 01/13/2023]
Abstract
The ryanodine receptor (RyR) is a Ca(2+) release channel in the sarcoplasmic reticulum in vertebrate skeletal muscle and plays an important role in excitation-contraction (E-C) coupling. Whereas mammalian skeletal muscle predominantly expresses a single RyR isoform, RyR1, skeletal muscle of many nonmammalian vertebrates expresses equal amounts of two distinct isoforms, α-RyR and β-RyR, which are homologues of mammalian RyR1 and RyR3, respectively. In this review we describe our current understanding of the functions of these two RyR isoforms in nonmammalian vertebrate skeletal muscle. The Ca(2+) release via the RyR channel can be gated by two distinct modes: depolarization-induced Ca(2+) release (DICR) and Ca(2+)-induced Ca(2+) release (CICR). In frog muscle, α-RyR acts as the DICR channel, whereas β-RyR as the CICR channel. However, several lines of evidence suggest that CICR by β-RyR may make only a minor contribution to Ca(2+) release during E-C coupling. Comparison of frog and mammalian RyR isoforms highlights the marked differences in the patterns of Ca(2+) release mediated by RyR1 and RyR3 homologues. Interestingly, common features in the Ca(2+) release patterns are noticed between β-RyR and RyR1. We will discuss possible roles and significance of the two RyR isoforms in E-C coupling and other processes in nonmammalian vertebrate skeletal muscle.
Collapse
Affiliation(s)
- Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, Japan
| | | |
Collapse
|
10
|
Poillot C, Dridi K, Bichraoui H, Pêcher J, Alphonse S, Douzi B, Ronjat M, Darbon H, De Waard M. D-Maurocalcine, a pharmacologically inert efficient cell-penetrating peptide analogue. J Biol Chem 2010; 285:34168-80. [PMID: 20610396 DOI: 10.1074/jbc.m110.104919] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Maurocalcine has been the first demonstrated animal toxin acting as a cell-penetrating peptide. Although it possesses competitive advantages, its use as a cell-penetrating peptide (CPP) requires that analogues be developed that lack its characteristic pharmacological activity on ryanodine-sensitive calcium channels without affecting its cell-penetrating and vector efficiencies. Here, we present the synthesis, three-dimensional (1)H NMR structure, and activity of D-maurocalcine. We demonstrate that it possesses all of the desired features for an excellent CPP: preserved structure, lack of pharmacological action, conserved vector properties, and absence of cell toxicity. This is the first report of a folded/oxidized animal toxin in its D-diastereomer conformation for use as a CPP. The protease resistance of this new peptide analogue, combined with its efficient cell penetration at concentrations devoid of cell toxicity, suggests that D-maurocalcine should be an excellent vector for in vivo applications.
Collapse
Affiliation(s)
- Cathy Poillot
- Grenoble Institute of Neuroscience, INSERM U836, Site Santé de la Tronche, Bâtiment Edmond J Safra, Chemin Fortuné Ferrini, BP170, 38042 Grenoble Cedex 9, France
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Calcium-induced calcium release (CICR) was first discovered in skeletal muscle. CICR is defined as Ca2+ release by the action of Ca2+ alone without the simultaneous action of other activating processes. CICR is biphasically dependent on Ca2+ concentration; is inhibited by Mg2+, procaine, and tetracaine; and is potentiated by ATP, other adenine compounds, and caffeine. With depolarization of the sarcoplasmic reticulum (SR), a potential change of the SR membrane in which the luminal side becomes more negative, CICR is activated for several seconds and is then inactivated. All three types of ryanodine receptors (RyRs) show CICR activity. At least one RyR, RyR1, also shows non-CICR Ca2+ release, such as that triggered by the t-tubule voltage sensor, by clofibric acid, and by SR depolarization. Maximum rates of CICR, at the optimal Ca2+ concentration in the presence of physiological levels of ATP and Mg2+ determined in skinned fibers and fragmented SR, are much lower than the rate of physiological Ca2+ release. The primary event of physiological Ca2+ release, the Ca2+ spark, is the simultaneous opening of multiple channels, the coordinating mechanism of which does not appear to be CICR because of the low probability of CICR opening under physiological conditions. The coordination may require Ca2+, but in that case, some other stimulus or stimuli must be provided simultaneously, which is not CICR by definition. Thus CICR does not appear to contribute significantly to physiological Ca2+ release. On the other hand, CICR appears to play a key role in caffeine contracture and malignant hyperthermia. The potentiation of voltage-activated Ca2+ release by caffeine, however, does not seem to occur through secondary CICR, although the site where caffeine potentiates voltage-activated Ca2+ release might be the same site where caffeine potentiates CICR.
Collapse
|
12
|
Beard NA, Wei L, Cheung SN, Kimura T, Varsányi M, Dulhunty AF. Phosphorylation of skeletal muscle calsequestrin enhances its Ca2+ binding capacity and promotes its association with junctin. Cell Calcium 2009; 44:363-73. [PMID: 19230141 DOI: 10.1016/j.ceca.2008.01.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Calcium signaling, intrinsic to skeletal and cardiac muscle function, is critically dependent on the amount of calcium stored within the sarcoplasmic reticulum. Calsequestrin, the main calcium buffer in the sarcoplasmic reticulum, provides a pool of calcium for release through the ryanodine receptor and acts as a luminal calcium sensor for the channel via its interactions with triadin and junctin. We examined the influence of phosphorylation of calsequestrin on its ability to store calcium, to polymerise and to regulate ryanodine receptors by binding to triadin and junctin. Our hypothesis was that these parameters might be altered by phosphorylation of threonine 353, which is located near the calcium and triadin/junctin binding sites. Although phosphorylation increased the calcium binding capacity of calsequestrin nearly 2-fold, it did not alter calsequestrin polymerisation, its binding to triadin or junctin or inhibition of ryanodine receptor activity at 1 mM luminal calcium. Phosphorylation was required for calsequestrin binding to junctin when calcium concentration was low (100 nM), and ryanodine receptors were activated by dephosphorylated calsequestrin when it bound to triadin alone. These novel data shows that phosphorylated calsequestrin is required for high capacity calcium buffering and suggest that ryanodine receptor inhibition by calsequestrin is mediated by junctin.
Collapse
Affiliation(s)
- Nicole A Beard
- John Curtin School of Medical Research, Australian National University, PO Box 334, Canberra, Australian Capital Territory 2601, Australia.
| | | | | | | | | | | |
Collapse
|
13
|
Ram N, Weiss N, Texier-Nogues I, Aroui S, Andreotti N, Pirollet F, Ronjat M, Sabatier JM, Darbon H, Jacquemond V, De Waard M. Design of a disulfide-less, pharmacologically inert, and chemically competent analog of maurocalcine for the efficient transport of impermeant compounds into cells. J Biol Chem 2008; 283:27048-56. [PMID: 18621738 DOI: 10.1074/jbc.m804727200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Maurocalcine is a 33-mer peptide initially isolated from the venom of a Tunisian scorpion. It has proved itself valuable as a pharmacological activator of the ryanodine receptor and has helped the understanding of the molecular basis underlying excitation-contraction coupling in skeletal muscles. Because of its positively charged nature, it is also an innovative vector for the cell penetration of various compounds. We report a novel maurocalcine analog with improved properties: (i) the complete loss of pharmacological activity, (ii) preservation of the potent ability to carry cargo molecules into cells, and (iii) coupling chemistries not affected by the presence of internal cysteine residues of maurocalcine. We did this by replacing the six internal cysteine residues of maurocalcine by isosteric 2-aminobutyric acid residues and by adding an additional N-terminal biotinylated lysine (for a proof of concept analog) or an N-terminal cysteine residue (for a chemically competent coupling analogue). Additional replacement of a glutamate residue by alanyl at position 12 further improves the potency of these analogues. Coupling to several cargo molecules or nanoparticles are presented to illustrate the cell penetration potency and usefulness of these pharmacologically inactive analogs.
Collapse
Affiliation(s)
- Narendra Ram
- Research Group 3 Calcium Channels, Functions, and Pathologies, Unité Inserm 836, Grenoble Institute of Neuroscience, Université Joseph Fourier, Site Santé, BP 170, 38042 Grenoble Cedex 09, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Baran I, Ganea C, Baran V. A two-gate model for the ryanodine receptor with allosteric modulation by caffeine and quercetin. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 37:793-806. [DOI: 10.1007/s00249-008-0271-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 12/22/2007] [Accepted: 01/17/2008] [Indexed: 12/01/2022]
|
15
|
Mabrouk K, Ram N, Boisseau S, Strappazzon F, Rehaim A, Sadoul R, Darbon H, Ronjat M, De Waard M. Critical amino acid residues of maurocalcine involved in pharmacology, lipid interaction and cell penetration. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:2528-40. [PMID: 17888395 DOI: 10.1016/j.bbamem.2007.06.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Revised: 06/05/2007] [Accepted: 06/07/2007] [Indexed: 11/22/2022]
Abstract
Maurocalcine (MCa) is a 33-amino acid residue peptide that was initially identified in the Tunisian scorpion Scorpio maurus palmatus. This peptide triggers interest for three main reasons. First, it helps unravelling the mechanistic basis of Ca(2+) mobilization from the sarcoplasmic reticulum because of its sequence homology with a calcium channel domain involved in excitation-contraction coupling. Second, it shows potent pharmacological properties because of its ability to activate the ryanodine receptor. Finally, it is of technological value because of its ability to carry cell-impermeable compounds across the plasma membrane. Herein, we characterized the molecular determinants that underlie the pharmacological and cell-penetrating properties of maurocalcine. We identify several key amino acid residues of the peptide that will help the design of cell-penetrating analogues devoid of pharmacological activity and cell toxicity. Close examination of the determinants underlying cell penetration of maurocalcine reveals that basic amino acid residues are required for an interaction with negatively charged lipids of the plasma membrane. Maurocalcine analogues that penetrate better have also stronger interaction with negatively charged lipids. Conversely, less effective analogues present a diminished ability to interact with these lipids. These findings will also help the design of still more potent cell penetrating analogues of maurocalcine.
Collapse
Affiliation(s)
- Kamel Mabrouk
- Laboratoire Chimie Biologie et Radicaux Libre, Universite Aix-Marseille, Avenue Escadrille Normandie Niemen, 13397 Marseille, France
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Shahbazzadeh D, Srairi-Abid N, Feng W, Ram N, Borchani L, Ronjat M, Akbari A, Pessah I, De Waard M, El Ayeb M. Hemicalcin, a new toxin from the Iranian scorpion Hemiscorpius lepturus which is active on ryanodine-sensitive Ca2+ channels. Biochem J 2007; 404:89-96. [PMID: 17291197 PMCID: PMC1868827 DOI: 10.1042/bj20061404] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the present work, we purified and characterized a novel toxin named hemicalcin from the venom of the Iranian chactoid scorpion Hemiscorpius lepturus where it represents 0.6% of the total protein content. It is a 33-mer basic peptide reticulated by three disulfide bridges, and that shares between 85 and 91% sequence identity with four other toxins, all known or supposed to be active on ryanodine-sensitive calcium channels. Hemicalcin differs from these other toxins by seven amino acids at positions 9 (leucine/arginine), 12 (alanine/glutamic acid), 13 (aspartic acid/asparagine), 14 (lysine/asparagine), 18 (serine/glycine), 26 (threonine/alanine) and 28 (proline/isoleucine/alanine). In spite of these differences, hemicalcin remains active on ryanodine-sensitive Ca2+ channels, since it increases [3H]ryanodine binding on RyR1 (ryanodine receptor type 1) and triggers Ca2+ release from sarcoplasmic vesicles. Bilayer lipid membrane experiments, in which the RyR1 channel is reconstituted and its gating properties are analysed, indicate that hemicalcin promotes an increase in the opening probability at intermediate concentration and induces a long-lasting subconductance level of 38% of the original amplitude at higher concentrations. Mice intracerebroventricular inoculation of 300 ng of hemicalcin induces neurotoxic symptoms in vivo, followed by death. Overall, these data identify a new biologically active toxin that belongs to a family of peptides active on the ryanodine-sensitive channel.
Collapse
Affiliation(s)
- Delavar Shahbazzadeh
- *Laboratoire des Venins et Toxines, Institut Pasteur de Tunis, 13 place Pasteur, Tunis, BP-74, 1002 Tunisia
- †Biotechnology Department, Institute Pasteur of Iran, P.O. Box 13164, Tehran, Iran
| | - Najet Srairi-Abid
- *Laboratoire des Venins et Toxines, Institut Pasteur de Tunis, 13 place Pasteur, Tunis, BP-74, 1002 Tunisia
- To whom correspondence should be addressed (email )
| | - Wei Feng
- ‡Department of Veterinary Medicine-Molecular Biosciences and Center for Children's Environmental Health, University of California Davis, One Shields Avenue, Davis, CA 95616, U.S.A
| | - Narendra Ram
- §INSERM U607, Canaux Calciques, Fonctions et Pathologies, Département Réponse et Dynamique Cellulaire, Commissariat à l'Energie Atomique, 17 rue des Martyrs, 38054 Grenoble Cedex 09, France
| | - Lamia Borchani
- *Laboratoire des Venins et Toxines, Institut Pasteur de Tunis, 13 place Pasteur, Tunis, BP-74, 1002 Tunisia
| | - Michel Ronjat
- §INSERM U607, Canaux Calciques, Fonctions et Pathologies, Département Réponse et Dynamique Cellulaire, Commissariat à l'Energie Atomique, 17 rue des Martyrs, 38054 Grenoble Cedex 09, France
| | - Abolfazl Akbari
- ∥Razi Vaccine & Serum Research Institute, 31975/148 Karaj, Iran
| | - Isaac N. Pessah
- ‡Department of Veterinary Medicine-Molecular Biosciences and Center for Children's Environmental Health, University of California Davis, One Shields Avenue, Davis, CA 95616, U.S.A
| | - Michel De Waard
- §INSERM U607, Canaux Calciques, Fonctions et Pathologies, Département Réponse et Dynamique Cellulaire, Commissariat à l'Energie Atomique, 17 rue des Martyrs, 38054 Grenoble Cedex 09, France
| | - Mohamed El Ayeb
- *Laboratoire des Venins et Toxines, Institut Pasteur de Tunis, 13 place Pasteur, Tunis, BP-74, 1002 Tunisia
| |
Collapse
|
17
|
Seo IR, Moh S, Lee E, Meissner G, Kim D. Aldolase potentiates DIDS activation of the ryanodine receptor in rabbit skeletal sarcoplasmic reticulum. Biochem J 2006; 399:325-33. [PMID: 16817780 PMCID: PMC1609923 DOI: 10.1042/bj20060701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
DIDS (4,4'-di-isothiocyanostilbene-2,2'-disulfonate), an anion channel blocker, triggers Ca2+ release from skeletal muscle SR (sarcoplasmic reticulum). The present study characterized the effects of DIDS on rabbit skeletal single Ca2+-release channel/RyR1 (ryanodine receptor type 1) incorporated into a planar lipid bilayer. When junctional SR vesicles were used for channel incorporation (native RyR1), DIDS increased the mean P(o) (open probability) of RyR1 without affecting unitary conductance when Cs+ was used as the charge carrier. Lifetime analysis of single RyR1 activities showed that 10 microM DIDS induced reversible long-lived open events (P(o)=0.451+/-0.038) in the presence of 10 microM Ca2+, due mainly to a new third component for both open and closed time constants. However, when purified RyR1 was examined in the same condition, 10 microM DIDS became considerably less potent (P(o)=0.206+/-0.025), although the caffeine response was similar between native and purified RyR1. Hence we postulated that a DIDS-binding protein, essential for the DIDS sensitivity of RyR1, was lost during RyR1 purification. DIDS-affinity column chromatography of solubilized junctional SR, and MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight) MS analysis of the affinity-column-associated proteins, identified four major DIDS-binding proteins in the SR fraction. Among them, aldolase was the only protein that greatly potentiated DIDS sensitivity. The association between RyR1 and aldolase was further confirmed by co-immunoprecipitation and aldolase-affinity batch-column chromatography. Taken together, we conclude that aldolase is physically associated with RyR1 and could confer a considerable potentiation of the DIDS effect on RyR1.
Collapse
Affiliation(s)
- In-Ra Seo
- *Department of Life Science, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Sang Hyun Moh
- *Department of Life Science, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Eun Hui Lee
- †Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Gerhard Meissner
- ‡Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, U.S.A
| | - Do Han Kim
- *Department of Life Science, Gwangju Institute of Science and Technology, Gwangju, Korea
- To whom correspondence should be addressed (email )
| |
Collapse
|
18
|
Paydar MJ, Pousti A, Farsam H, Amanlou M, Mehr SE, Dehpour AR. Effects of diltiazem or verapamil on calcium uptake and release from chicken skeletal muscle sarcoplasmic reticulum. Can J Physiol Pharmacol 2006; 83:967-75. [PMID: 16391705 DOI: 10.1139/y05-062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to determine the effects of 2 Ca2+ channel blockers, verapamil and diltiazem, on calcium loading (active Ca2+ uptake) and the following Ca2+ release induced by silver ion (Ag+) and Ca2+ from the membrane of heavy sarcoplasmic reticulum (SR) of chicken skeletal muscle. A fluorescent probe technique was employed to determine the calcium movement through the SR. Pretreatment of the medium with diltiazem and verapamil resulted in a significant decrease in the active Ca2+ uptake, with IC50 of about 290 micromol/L for verapamil and 260 micromol/L for diltiazem. Inhibition of Ca2+ uptake was not due to the development of a substantial drug-dependent leak of Ca2+ from the SR. It might, in part, have been mediated by a direct inhibitory effect of these drugs on the Ca2+ ATPase activity of the SR Ca2+ pump. We confirmed that Ca2+ channel blockers, administered after SR Ca2+ loading and before induction of Ca2+ release, caused a dose-dependent inhibition of both Ca2+- and Ag+-induced Ca2+ release rate. Moreover, if Ca2+ channel blockers were administered prior to SR Ca2+ loading, in spite of Ca2+ uptake inhibition the same reduction in Ca2+- and Ag+-induced Ca2+ release rate was seen. We showed that the inhibition of Ag+-induced Ca2+ release by L-channel blockers is more sensitive than Ca2+-induced Ca2+ release inhibition, so the IC50 for Ag+- and Ca2+-induced Ca2+ release was about 100 and 310 micromol/L for verapamil and 79 and 330 micromol/L for diltiazem, respectively. Our results support the evidence that Ca2+ channel blockers affect muscle microsome of chicken skeletal muscle by 2 independent mechanisms: first, reduction of Ca2+ uptake rate and Ca2+-ATPase activity inhibition, and second, inhibition of both Ag+- and Ca2+-induced Ca2+ release by Ca2+ release channels. These findings confirm the direct effect of Ca2+ channel blockers on calcium release channels. Our results suggest that even if the SR is incompletely preloaded with Ca2+ because of inhibition of Ca2+ uptake by verapamil and diltiazem, no impairment in Ca2+ release occurs.
Collapse
Affiliation(s)
- Mehrak Javadi Paydar
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Iran
| | | | | | | | | | | |
Collapse
|
19
|
Anyatonwu GI, Ehrlich BE. Organic cation permeation through the channel formed by polycystin-2. J Biol Chem 2005; 280:29488-93. [PMID: 15961385 DOI: 10.1074/jbc.m504359200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Polycystin-2 (PC2), a member of the transient receptor potential family of ion channels (TRPP2), forms a calcium-permeable cation channel. Mutations in PC2 lead to polycystic kidney disease. From the primary sequence and by analogy with other channels in this family, PC2 is modeled to have six transmembrane domains. However, most of the structural features of PC2, such as how large the channel is and how many subunits make up the pore of the channel, are unknown. In this study, we estimated the pore size of PC2 from the permeation properties of the channel. Organic cations of increasing size were used as current carriers through the PC2 channel after PC2 was incorporated into lipid bilayers. We found that dimethylamine, triethylamine, tetraethylammonium, tetrabutylammonium, tetrapropylammonium, and tetrapentylammonium were permeable through the PC2 channel. The slope conductance of the PC2 channel decreased as the ionic diameter of the organic cation increased. For each organic cation tested, the currents were inhibited by gadolinium and anti-PC2 antibody. Using the dimensions of the largest permeant cation, the minimum pore diameter of the PC2 channel was estimated to be at least 11 A. The large pore size suggests that the primary state of this channel found in vivo is closed to avoid rundown of cation gradients across the plasma membrane and excessive calcium leak from endoplasmic reticulum stores.
Collapse
Affiliation(s)
- Georgia I Anyatonwu
- Pharmacology and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
20
|
Beard NA, Casarotto MG, Wei L, Varsányi M, Laver DR, Dulhunty AF. Regulation of ryanodine receptors by calsequestrin: effect of high luminal Ca2+ and phosphorylation. Biophys J 2005; 88:3444-54. [PMID: 15731387 PMCID: PMC1305491 DOI: 10.1529/biophysj.104.051441] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Calsequestrin, the major calcium sequestering protein in the sarcoplasmic reticulum of muscle, forms a quaternary complex with the ryanodine receptor calcium release channel and the intrinsic membrane proteins triadin and junctin. We have investigated the possibility that calsequestrin is a luminal calcium concentration sensor for the ryanodine receptor. We measured the luminal calcium concentration at which calsequestrin dissociates from the ryanodine receptor and the effect of calsequestrin on the response of the ryanodine receptor to changes in luminal calcium. We provide electrophysiological and biochemical evidence that: 1), luminal calcium concentration of >/=4 mM dissociates calsequestrin from junctional face membrane, whereas in the range of 1-3 mM calsequestrin remains attached; 2), the association with calsequestrin inhibits ryanodine receptor activity, but amplifies its response to changes in luminal calcium concentration; and 3), under physiological calcium conditions (1 mM), phosphorylation of calsequestrin does not alter its ability to inhibit native ryanodine receptor activity when the anchoring proteins triadin and junctin are present. These data suggest that the quaternary complex is intact in vivo, and provides further evidence that calsequestrin is involved in the sarcoplasmic reticulum calcium signaling pathway and has a role as a luminal calcium sensor for the ryanodine receptor.
Collapse
Affiliation(s)
- Nicole A Beard
- John Curtin School of Medical Research, Australian Capital Territory, Australia.
| | | | | | | | | | | |
Collapse
|
21
|
Estève E, Mabrouk K, Dupuis A, Smida-Rezgui S, Altafaj X, Grunwald D, Platel JC, Andreotti N, Marty I, Sabatier JM, Ronjat M, De Waard M. Transduction of the scorpion toxin maurocalcine into cells. Evidence that the toxin crosses the plasma membrane. J Biol Chem 2005; 280:12833-9. [PMID: 15653689 PMCID: PMC2713311 DOI: 10.1074/jbc.m412521200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Maurocalcine (MCa) is a 33-amino-acid residue peptide toxin isolated from the scorpion Scorpio maurus palmatus. External application of MCa to cultured myotubes is known to produce Ca2+ release from intracellular stores. MCa binds directly to the skeletal muscle isoform of the ryanodine receptor, an intracellular channel target of the endoplasmic reticulum, and induces long lasting channel openings in a mode of smaller conductance. Here we investigated the way MCa proceeds to cross biological membranes to reach its target. A biotinylated derivative of MCa was produced (MCa(b)) and complexed with a fluorescent indicator (streptavidine-cyanine 3) to follow the cell penetration of the toxin. The toxin complex efficiently penetrated into various cell types without requiring metabolic energy (low temperature) or implicating an endocytosis mechanism. MCa appeared to share the same features as the so-called cell-penetrating peptides. Our results provide evidence that MCa has the ability to act as a molecular carrier and to cross cell membranes in a rapid manner (1-2 min), making this toxin the first demonstrated example of a scorpion toxin that translocates into cells.
Collapse
Affiliation(s)
- Eric Estève
- Canaux calciques , fonctions et pathologies
INSERM : U607CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble I17, rue des martyrs 38054 Grenoble,FR
- Biochimie - Ingénierie des protéines
CNRS : UMR6560Université de la Méditerranée - Aix-Marseille IIBoulevard Pierre Dramart 13916 Marseille Cedex 20,FR
| | - Kamel Mabrouk
- Biochimie - Ingénierie des protéines
CNRS : UMR6560Université de la Méditerranée - Aix-Marseille IIBoulevard Pierre Dramart 13916 Marseille Cedex 20,FR
| | - Alain Dupuis
- Canaux calciques , fonctions et pathologies
INSERM : U607CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble I17, rue des martyrs 38054 Grenoble,FR
| | - Sophia Smida-Rezgui
- Canaux calciques , fonctions et pathologies
INSERM : U607CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble I17, rue des martyrs 38054 Grenoble,FR
| | - Xavier Altafaj
- Canaux calciques , fonctions et pathologies
INSERM : U607CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble I17, rue des martyrs 38054 Grenoble,FR
| | - Didier Grunwald
- Canaux calciques , fonctions et pathologies
INSERM : U607CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble I17, rue des martyrs 38054 Grenoble,FR
| | - Jean-Claude Platel
- Canaux calciques , fonctions et pathologies
INSERM : U607CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble I17, rue des martyrs 38054 Grenoble,FR
| | - Nicolas Andreotti
- Biochimie - Ingénierie des protéines
CNRS : UMR6560Université de la Méditerranée - Aix-Marseille IIBoulevard Pierre Dramart 13916 Marseille Cedex 20,FR
| | - Isabelle Marty
- Canaux calciques , fonctions et pathologies
INSERM : U607CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble I17, rue des martyrs 38054 Grenoble,FR
| | - Jean-Marc Sabatier
- Biochimie - Ingénierie des protéines
CNRS : UMR6560Université de la Méditerranée - Aix-Marseille IIBoulevard Pierre Dramart 13916 Marseille Cedex 20,FR
| | - Michel Ronjat
- Canaux calciques , fonctions et pathologies
INSERM : U607CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble I17, rue des martyrs 38054 Grenoble,FR
| | - Michel De Waard
- Canaux calciques , fonctions et pathologies
INSERM : U607CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble I17, rue des martyrs 38054 Grenoble,FR
- * Correspondence should be adressed to: Michel De Waard
| |
Collapse
|
22
|
Yoshida M, Minamisawa S, Shimura M, Komazaki S, Kume H, Zhang M, Matsumura K, Nishi M, Saito M, Saeki Y, Ishikawa Y, Yanagisawa T, Takeshima H. Impaired Ca2+ store functions in skeletal and cardiac muscle cells from sarcalumenin-deficient mice. J Biol Chem 2004; 280:3500-6. [PMID: 15569689 DOI: 10.1074/jbc.m406618200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sarcalumenin (SAR), specifically expressed in striated muscle cells, is a Ca2+-binding protein localized in the sarcoplasmic reticulum (SR) of the intracellular Ca2+ store. By generating SAR-deficient mice, we herein examined its physiological role. The mutant mice were apparently normal in growth, health, and reproduction, indicating that SAR is not essential for fundamental muscle functions. SAR-deficient skeletal muscle carrying irregular SR ultrastructures retained normal force generation but showed slow relaxation phases after contractions. A weakened Ca2+ uptake activity was detected in the SR prepared from mutant muscle, indicating that SAR contributes to Ca2+ buffering in the SR lumen and also to the maintenance of Ca2+ pump proteins. Cardiac myocytes from SAR-deficient mice showed slow contraction and relaxation accompanied by impaired Ca2+ transients, and the mutant mice exhibited a number of impairments in cardiac performance as determined in electrocardiography, ventricular catheterization, and echocardiography. The results obtained demonstrate that SAR plays important roles in improving the Ca2+ handling functions of the SR in striated muscle.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Heart/physiopathology
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Electron
- Muscle Contraction
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle Fibers, Skeletal/ultrastructure
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Myocardial Contraction
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/ultrastructure
- Rats
Collapse
Affiliation(s)
- Morikatsu Yoshida
- Medical Chemistry and Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Protasi F, Shtifman A, Julian FJ, Allen PD. All three ryanodine receptor isoforms generate rapid cooling responses in muscle cells. Am J Physiol Cell Physiol 2003; 286:C662-70. [PMID: 14592807 DOI: 10.1152/ajpcell.00081.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The rapid cooling (RC) response in muscle is an increase in cytoplasmic Ca2+ concentration ([Ca2+]i) that is probably caused by Ca2+ release from the sarcoplasmic reticulum (SR). However, the molecular bases of this response have not been completely elucidated. Three different isoforms of the SR Ca2+ release channels, or ryanodine receptors (RyRs), have been isolated (RyR1, RyR2, and RyR3). In the current investigation, the RC response was studied in RyR-null muscle cells (1B5) before and after transduction with HSV-1 virions containing the cDNAs encoding for RyR1, RyR2, or RyR3. Cells were loaded with fluo 4-AM to monitor changes in [Ca2+]i and perfused with either cold ( approximately 0 degrees C), room temperature (RT), or RT buffer containing 40 mM caffeine. Control cells showed no significant response to cold or caffeine, whereas robust Ca2+ transients were recorded in response to both RC and caffeine in transduced cells expressing any one of the three RyR isoforms. Our data demonstrate directly that RyRs are responsible for the RC response and that all three isoforms respond in a similar manner. Ca2+ release from RyRs is likely caused by a RC-induced conformational change of the channel from the closed to the open state.
Collapse
Affiliation(s)
- Feliciano Protasi
- Department of Anesthesia Research, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachussetts 02115, USA.
| | | | | | | |
Collapse
|
24
|
Estève E, Smida-Rezgui S, Sarkozi S, Szegedi C, Regaya I, Chen L, Altafaj X, Rochat H, Allen P, Pessah IN, Marty I, Sabatier JM, Jona I, De Waard M, Ronjat M. Critical amino acid residues determine the binding affinity and the Ca2+ release efficacy of maurocalcine in skeletal muscle cells. J Biol Chem 2003; 278:37822-31. [PMID: 12869557 DOI: 10.1074/jbc.m305798200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Maurocalcine (MCa) is a 33 amino acid residue peptide toxin isolated from the scorpion Scorpio maurus palmatus. MCa and mutated analogues were chemically synthesized, and their interaction with the skeletal muscle ryanodine receptor (RyR1) was studied on purified RyR1, sarcoplasmic reticulum (SR) vesicles, and cultured myotubes. MCa strongly potentiates [3H]ryanodine binding on SR vesicles (7-fold at pCa 5) with an apparent EC50 of 12 nm. MCa decreases the sensitivity of [3H]ryanodine binding to inhibitory high Ca2+ concentrations and increases it to the stimulatory low Ca2+ concentrations. In the presence of MCa, purified RyR1 channels show long-lasting openings characterized by a conductance equivalent to 60% of the full conductance. This effect correlates with a global increase in Ca2+ efflux as demonstrated by MCa effects on Ca2+ release from SR vesicles. In addition, we show for the first time that external application of MCa to cultured myotubes produces a cytosolic Ca2+ increase due to Ca2+ release from 4-chloro-m-cresol-sensitive intracellular stores. Using various MCa mutants, we identified a critical role of Arg24 for MCa binding onto RyR1. All of the other MCa mutants are still able to modify [3H]ryanodine binding although with a decreased EC50 and a lower stimulation efficacy. All of the active mutants produce both the appearance of a subconductance state and Ca2+ release from SR vesicles. Overall, these data identify some amino acid residues of MCa that support the effect of this toxin on ryanodine binding, RyR1 biophysical properties, and Ca2+ release from SR.
Collapse
Affiliation(s)
- Eric Estève
- INSERM EMI 9931, CEA, CIS, 17 Rue des Martyrs, 38054 Grenoble Cedex 09, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wagenknecht T, Hsieh CE, Rath BK, Fleischer S, Marko M. Electron tomography of frozen-hydrated isolated triad junctions. Biophys J 2002; 83:2491-501. [PMID: 12414683 PMCID: PMC1302335 DOI: 10.1016/s0006-3495(02)75260-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Cryoelectron microscopy and tomography have been applied for the first time to isolated, frozen-hydrated skeletal muscle triad junctions (triads) and terminal cisternae (TC) vesicles derived from sarcoplasmic reticulum. Isolated triads were selected on the basis of their appearance as two spherical TC vesicles attached to opposite sides of a flattened vesicle derived from a transverse tubule (TT). Foot structures (ryanodine receptors) were resolved within the gap between the TC vesicles and TT vesicles, and some residual ordering of the receptors into arrays was apparent. Organized dense layers, apparently containing the calcium-binding protein calsequestrin, were found in the lumen of TC vesicles underlying the foot structures. The lamellar regions did not directly contact the sarcoplasmic reticulum membrane, thereby creating an approximately 5-nm-thick zone that potentially constitutes a subcompartment for achieving locally elevated [Ca(2+) ] in the immediate vicinity of the Ca(2+)-conducting ryanodine receptors. The lumen of the TT vesicles contained globular mass densities of unknown origin, some of which form cross-bridges that may be responsible for the flattened appearance of the transverse tubules when viewed in cross-section. The spatial relationships among the TT membrane, ryanodine receptors, and calsequestrin-containing assemblage are revealed under conditions that do not use dehydration, heavy-metal staining, or chemical fixation, thus exemplifying the potential of cryoelectron microscopy and tomography to reveal structural detail of complex subcellular structures.
Collapse
Affiliation(s)
- T Wagenknecht
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201-0509, USA.
| | | | | | | | | |
Collapse
|
26
|
Obara Y, Aoki T, Kusano M, Ohizumi Y. Beta-eudesmol induces neurite outgrowth in rat pheochromocytoma cells accompanied by an activation of mitogen-activated protein kinase. J Pharmacol Exp Ther 2002; 301:803-11. [PMID: 12023507 DOI: 10.1124/jpet.301.3.803] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Beta-eudesmol, a sesquiterpenoid isolated from "So-jutsu" (Atractylodis lanceae rhizomas), is known to have various unique effects on the nervous system. We examined in detail the mechanism by which beta-eudesmol modified neuronal function using rat pheochromocytoma cells (PC-12). Beta-eudesmol at concentrations of 100 and 150 microM significantly induced neurite extension in PC-12 cells, which was accompanied, at the highest concentration, by suppression of [(3)H]thymidine incorporation. Beta-eudesmol at concentrations of 100 and 150 microM also evoked a significant increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) in these cells, as determined by the fura 2 assay. Much of this increase remained even after the extracellular Ca(2+) was chelated by EGTA. The [Ca(2+)](i) increase induced by beta-eudesmol was partially inhibited by the phosphoinositide-specific phospholipase C (PI-PLC) inhibitor 1-[6-[[17beta-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U-73122) (2 microM) under extracellular Ca(2+)-free conditions. Furthermore, beta-eudesmol, in a concentration-dependent fashion, caused an accumulation of inositol phosphates. beta-Eudesmol (150 microM) promoted phosphorylation of both mitogen-activated protein kinase (MAPK) and cAMP-responsive element binding protein in a time-dependent manner. These phosphorylations were suppressed by the MAPK kinase inhibitor 2-(2'-amino-3'-methoxyphenol)-oxanaphthalen-4-one (PD98059) (50 microM), U-73122 (2 microM), the calmodulin inhibitor N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W7) (1-10 microM), and the protein kinase A inhibitor N-[2-(4-bromocinnamylamino)ethyl]-5-isoquinoline (H89) (1-10 microM). Beta-eudesmol-induced neurite extension was significantly inhibited by both U-73122 (2 microM) and PD98059 (30 microM), suggesting the involvement of PI-PLC and MAPK in neurite outgrowth. Beta-eudesmol, being a small molecule, may therefore be a promising lead compound for potentiating neuronal function. Furthermore, the drug may be useful in helping to clarify the mechanisms underlying neuronal differentiation.
Collapse
Affiliation(s)
- Yutaro Obara
- Department of Pharmaceutical Molecular Biology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | | | | | | |
Collapse
|
27
|
Lee EH, Meissner G, Kim DH. Effects of quercetin on single Ca(2+) release channel behavior of skeletal muscle. Biophys J 2002; 82:1266-77. [PMID: 11867444 PMCID: PMC1301930 DOI: 10.1016/s0006-3495(02)75483-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Quercetin, a bioflavonoid, is known to affect Ca(2+) fluxes in sarcoplasmic reticulum, although its direct effect on Ca(2+) release channel (CRC) in sarcoplasmic reticulum has remained to be elucidated. The present study examined the effect of quercetin on the behavior of single skeletal CRC in planar lipid bilayer. The effect of caffeine was also studied for comparison. At very low [Ca(2+)](cis) (80 pM), quercetin activated CRC marginally, whereas at elevated [Ca(2+)](cis) (10 microM), both open probability (P(o)) and sensitivity to the drug increased markedly. Caffeine showed a similar tendency. Analysis of lifetimes for single CRC showed that quercetin and caffeine led to different mean open-time and closed-time constants and their proportions. Addition of 10 microM ryanodine to CRC activated by quercetin or caffeine led to the typical subconductance state (approximately 54%) and a subsequent addition of 5 microM ruthenium red completely blocked CRC activity. When 6 microM quercetin and 3 mM caffeine were added together to the cis side of CRC, a time-dependent increase of P(o) was observed (from mode 1 (0.376 +/- 0.043, n = 5) to mode 2 (0.854 +/- 0.062, n = 5)). On the other hand, no further activation was observed when quercetin was added after caffeine. Quercetin affected only the ascending phase of the bell-shaped Ca(2+) activation/inactivation curve, whereas caffeine affected both ascending and descending phases. [(3)H]ryanodine binding to sarcoplasmic reticulum showed that channel activity increased more by both quercetin and caffeine than by caffeine alone. These characteristic differences in the modes of activation of CRC by quercetin and caffeine suggest that the channel activation mechanisms and presumably the binding sites on CRC are different for the two drugs.
Collapse
Affiliation(s)
- Eun Hui Lee
- Department of Life Science, Kwangju Institute of Science and Technology, Kwangju 500-712, Korea
| | | | | |
Collapse
|
28
|
Koulen P, Cai Y, Geng L, Maeda Y, Nishimura S, Witzgall R, Ehrlich BE, Somlo S. Polycystin-2 is an intracellular calcium release channel. Nat Cell Biol 2002; 4:191-7. [PMID: 11854751 DOI: 10.1038/ncb754] [Citation(s) in RCA: 520] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Polycystin-2, the product of the gene mutated in type 2 autosomal dominant polycystic kidney disease (ADPKD), is the prototypical member of a subfamily of the transient receptor potential (TRP) channel superfamily, which is expressed abundantly in the endoplasmic reticulum (ER) membrane. Here, we show by single channel studies that polycystin-2 behaves as a calcium-activated, high conductance ER channel that is permeable to divalent cations. Epithelial cells overexpressing polycystin-2 show markedly augmented intracellular calcium release signals that are lost after carboxy-terminal truncation or by the introduction of a disease-causing missense mutation. These data suggest that polycystin-2 functions as a calcium-activated intracellular calcium release channel in vivo and that polycystic kidney disease results from the loss of a regulated intracellular calcium release signalling mechanism.
Collapse
Affiliation(s)
- Peter Koulen
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Scaramello CBV, Cunha VMN, Rodriguez JBR, Noël F. Characterization of subcellular fractions and distribution profiles of transport components involved in Ca(2+) homeostasis in rat vas deferens. J Pharmacol Toxicol Methods 2002; 47:93-8. [PMID: 12459148 DOI: 10.1016/s1056-8719(02)00205-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION The sarcoplasmic reticulum present in eukaryotic cells contains Ca(2+) pumps (SERCA type) that accumulate Ca(2+) from the cytosol and Ca(2+) channels, such as ryanodine receptors and inositol 1,4,5-trisphosphate receptors, that release Ca(2+) from the lumen of this organelle. The use of a preparation rich in sarcoplasmic reticulum vesicles and poorly contaminated with plasmalemmal vesicles would be a prerequisite for studies of Ca(2+) efflux through ryanodine and inositol 1,4,5-trisphosphate receptors, so the present work was aimed to characterize the distribution profiles of various markers of sarcoplasmic reticulum and plasma membrane among fractions obtained from rat vas deferens. METHODS Oxalate-dependent Ca(2+) uptake, thapsigargin-sensitive (Ca(2+)-Mg(2+)) ATPase activity and binding of [3H]ryanodine and [3H]inositol 1,4,5-trisphosphate were measured in the nuclear, mitochondrial, and microsomal fractions obtained by differential centrifugation of rat vas deferens homogenate. RESULTS The recovery of the thapsigargin-resistant (Ca(2+)-Mg(2+)) ATPase activity, supposed to label the plasma membrane, was the same among nuclear, mitochondrial, and microsomal fractions, whereas the recovery of the thapsigargin-sensitive (Ca(2+)-Mg(2+)) activity, oxalate-dependent Ca(2+) uptake, and [3H]inositol 1,4,5-trisphosphate binding, used as sarcoplasmic reticulum markers, was higher in nuclear fraction than in the others. The recovery profiles of the four sarcoplasmic reticulum markers, including [3H]ryanodine binding, were statistically the same among the different subcellular fractions. Caffeine, an agonist of ryanodine receptors, induced the release of 17% of Ca(2+) taken up by the vesicles present in the nuclear fraction but had no effect in microsomes. DISCUSSION Although this nuclear fraction is less purified in sarcoplasmic reticulum markers than the microsomal fraction, it is more suitable for studying Ca(2+) release through ryanodine receptors, primarily because it is less contaminated with vesicles from the plasma membrane which are able to take up Ca(2+) but are insensitive to caffeine.
Collapse
Affiliation(s)
- Christianne B V Scaramello
- Departamento de Farmacologia Básica e Clínica, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-590, Brazil
| | | | | | | |
Collapse
|
30
|
Beard NA, Sakowska MM, Dulhunty AF, Laver DR. Calsequestrin is an inhibitor of skeletal muscle ryanodine receptor calcium release channels. Biophys J 2002; 82:310-20. [PMID: 11751318 PMCID: PMC1302471 DOI: 10.1016/s0006-3495(02)75396-4] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
We provide novel evidence that the sarcoplasmic reticulum calcium binding protein, calsequestrin, inhibits native ryanodine receptor calcium release channel activity. Calsequestrin dissociation from junctional face membrane was achieved by increasing luminal (trans) ionic strength from 250 to 500 mM with CsCl or by exposing the luminal side of ryanodine receptors to high [Ca(2+)] (13 mM) and dissociation was confirmed with sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting. Calsequestrin dissociation caused a 10-fold increase in the duration of ryanodine receptor channel opening in lipid bilayers. Adding calsequestrin back to the luminal side of the channel after dissociation reversed this increased activity. In addition, an anticalsequestrin antibody added to the luminal solution reduced ryanodine receptor activity before, but not after, calsequestrin dissociation. A population of ryanodine receptors (approximately 35%) may have initially lacked calsequestrin, because their activity was high and was unaffected by increasing ionic strength or by anticalsequestrin antibody: their activity fell when purified calsequestrin was added and they then responded to antibody. In contrast to native ryanodine receptors, purified channels, depleted of triadin and calsequestrin, were not inhibited by calsequestrin. We suggest that calsequestrin reduces ryanodine receptor activity by binding to a coprotein, possibly to the luminal domain of triadin.
Collapse
Affiliation(s)
- Nicole A Beard
- Division of Biochemistry and Molecular Biology, John Curtin School of Medical Research, Australian National University, Canberra, ACT 0200, Australia
| | | | | | | |
Collapse
|
31
|
Shin DW, Ma J, Kim DH. The asp-rich region at the carboxyl-terminus of calsequestrin binds to Ca(2+) and interacts with triadin. FEBS Lett 2000; 486:178-82. [PMID: 11113462 DOI: 10.1016/s0014-5793(00)02246-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Calsequestrin (CSQ) is a high capacity Ca(2+) binding protein in the junctional sarcoplasmic reticulum of striated muscles, and has been shown to regulate the ryanodine receptor (RyR) through triadin and junctin. In order to identify the functional roles of specific regions on CSQ, several CSQ deletion mutants were prepared by molecular cloning and Escherichia coli expression. 45Ca(2+) overlay assay using a native gel system revealed that the major Ca(2+) binding motif of CSQ resides in the asp-rich region (amino acids 354-367). In an in vitro binding assay using a glutathione-S-transferase affinity column, the interaction between CSQ and triadin was found to be Ca(2+)-dependent, and the site of interaction was confined to the asp-rich region of CSQ. Our results suggest that the asp-rich region of CSQ could participate in the RyR-mediated Ca(2+) release process by offering a direct binding site to luminal Ca(2+) as well as triadin.
Collapse
Affiliation(s)
- D W Shin
- Department of Life Science, Kwangju Institute of Science and Technology, Kwangju, South Korea
| | | | | |
Collapse
|
32
|
Koulen P, Ehrlich BE. Reversible block of the calcium release channel/ryanodine receptor by protamine, a heparin antidote. Mol Biol Cell 2000; 11:2213-9. [PMID: 10888663 PMCID: PMC14914 DOI: 10.1091/mbc.11.7.2213] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Channel activity of the calcium release channel from skeletal muscle, ryanodine receptor type 1, was measured in the presence and absence of protamine sulfate on the cytoplasmic side of the channel. Single-channel activity was measured after incorporating channels into planar lipid bilayers. Optimally and suboptimally calcium-activated calcium release channels were inactivated by the application of protamine to the cytoplasmic side of the channel. Recovery of channel activity was not observed while protamine was present. The addition of protamine bound to agarose beads did not change channel activity, implying that the mechanism of action involves an interaction with the ryanodine receptor rather than changes in the bulk calcium concentration of the medium. The block of channel activity by protamine could be reversed either by removal by perfusion with buffer or by the addition of heparin to the cytoplasmic side of the channel. Microinjection of protamine into differentiated C(2)C(12) mouse muscle cells prevented caffeine-induced intracellular calcium release. The results suggest that protamine acts on the ryanodine receptor in a similar but opposite manner from heparin and that protamine can be used as a potent, reversible inhibitor of ryanodine receptor activity.
Collapse
Affiliation(s)
- P Koulen
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale University, New Haven, Connecticut 06520, USA. peter.hermen.med.yale.edu
| | | |
Collapse
|
33
|
Snyder SM, Palmer BM, Moore RL. A mathematical model of cardiocyte Ca(2+) dynamics with a novel representation of sarcoplasmic reticular Ca(2+) control. Biophys J 2000; 79:94-115. [PMID: 10866940 PMCID: PMC1300918 DOI: 10.1016/s0006-3495(00)76276-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Cardiac contraction and relaxation dynamics result from a set of simultaneously interacting Ca(2+) regulatory mechanisms. In this study, cardiocyte Ca(2+) dynamics were modeled using a set of six differential equations that were based on theories, equations, and parameters described in previous studies. Among the unique features of the model was the inclusion of bidirectional modulatory interplay between the sarcoplasmic reticular Ca(2+) release channel (SRRC) and calsequestrin (CSQ) in the SR lumen, where CSQ acted as a dynamic rather than simple Ca(2+) buffer, and acted as a Ca(2+) sensor in the SR lumen as well. The inclusion of this control mechanism was central in overcoming a number of assumptions that would otherwise have to be made about SRRC kinetics, SR Ca(2+) release rates, and SR Ca(2+) release termination when the SR lumen is assumed to act as a simple, buffered Ca(2+) sink. The model was sufficient to reproduce a graded Ca(2+)-induced Ca(2+) release (CICR) response, CICR with high gain, and a system with reasonable stability. As constructed, the model successfully replicated the results of several previously published experiments that dealt with the Ca(2+) dependence of the SRRC (, J. Gen. Physiol. 85:247-289), the refractoriness of the SRRC (, Am. J. Physiol. 270:C148-C159), the SR Ca(2+) load dependence of SR Ca(2+) release (, Am. J. Physiol. 268:C1313-C1329;, J. Biol. Chem. 267:20850-20856), SR Ca(2+) leak (, J. Physiol. (Lond.). 474:463-471;, Biophys. J. 68:2015-2022), SR Ca(2+) load regulation by leak and uptake (, J. Gen. Physiol. 111:491-504), the effect of Ca(2+) trigger duration on SR Ca(2+) release (, Am. J. Physiol. 258:C944-C954), the apparent relationship that exists between sarcoplasmic and sarcoplasmic reticular calcium concentrations (, Biophys. J. 73:1524-1531), and a variety of contraction frequency-dependent alterations in sarcoplasmic [Ca(2+)] dynamics that are normally observed in the laboratory, including rest potentiation, a negative frequency-[Ca(2+)] relationship, and extrasystolic potentiation. Furthermore, under the condition of a simulated Ca(2+) overload, an alternans-like state was produced. In summary, the current model of cardiocyte Ca(2+) dynamics provides an integrated theoretical framework of fundamental cellular Ca(2+) regulatory processes that is sufficient to predict a broad array of observable experimental outcomes.
Collapse
Affiliation(s)
- S M Snyder
- Department of Kinesiology and Applied Physiology, The University of Colorado Cardiovascular Institute (CUCVI), University of Colorado, Boulder, Colorado 80309-0354, USA
| | | | | |
Collapse
|
34
|
Xu L, Tripathy A, Pasek DA, Meissner G. Ruthenium red modifies the cardiac and skeletal muscle Ca(2+) release channels (ryanodine receptors) by multiple mechanisms. J Biol Chem 1999; 274:32680-91. [PMID: 10551824 DOI: 10.1074/jbc.274.46.32680] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effects of ruthenium red (RR) on the skeletal and cardiac muscle ryanodine receptors (RyRs) were studied in vesicle-Ca(2+) flux, [(3)H]ryanodine binding, and single channel measurements. In vesicle-Ca(2+) flux measurements, RR was more effective in inhibiting RyRs at 0.2 microM than 20 microM free Ca(2+). [(3)H]Ryanodine binding measurements suggested noncompetitive interactions between RR inhibition and Ca(2+) regulatory sites of RyRs. In symmetric 0.25 M KCl with 10-20 microM cytosolic Ca(2+), cytosolic RR decreased single channel activities at positive and negative holding potentials. In close to fully activated skeletal (20 microM Ca(2+) + 2 mM ATP) and cardiac (200 microM Ca(2+)) RyRs, cytosolic RR induced a predominant subconductance at a positive but not negative holding potential. Lumenal RR induced a major subconductance in cardiac RyR at negative but not positive holding potentials and several subconductances in skeletal RyR. The RR-related subconductances of cardiac RyR showed a nonlinear voltage dependence, and more than one RR molecule appeared to be involved in their formation. Cytosolic and lumenal RR also induced subconductances in Ca(2+)-conducting skeletal and cardiac RyRs recorded at 0 mV holding potential. These results suggest that RR inhibits RyRs and induces subconductances by binding to cytosolic and lumenal sites of skeletal and cardiac RyRs.
Collapse
Affiliation(s)
- L Xu
- Department of Biochemistry, University of North Carolina, Chapel Hill, North Carolina 27599-7260, USA
| | | | | | | |
Collapse
|
35
|
Nakahata N, Harada Y, Tsuji M, Kon-ya K, Shizuri Y, Ohizumi Y. Structure-activity relationship of gramine derivatives in Ca(2+) release from sarcoplasmic reticulum. Eur J Pharmacol 1999; 382:129-32. [PMID: 10528147 DOI: 10.1016/s0014-2999(99)00591-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
5,6-Dibromo-1,2-dimethylgramine evoked Ca(2+) release from skeletal muscle sarcoplasmic reticulum through ryanodine receptors in a concentration-dependent manner with an EC(50) of 22.2 microM. Since the EC(50) of caffeine was 0.885 mM, 5,6-dibromo-1,2-dimethylgramine was 40 times more sensitive than caffeine. Among 14 gramine derivatives having different substituents at N-1, C-2, C-5 or C-6 of the indole skeleton, we found that five derivatives were effective. Study of the structure-activity relationship for Ca(2+) release indicated that 1-methylation and/or both 5- and 6-bromination are important for Ca(2+) release. Thus, gramine derivatives are useful tools for the investigation of Ca(2+) release from sarcoplasmic reticulum.
Collapse
Affiliation(s)
- N Nakahata
- Department of Pharmaceutical Molecular Biology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai, Japan.
| | | | | | | | | | | |
Collapse
|
36
|
Suzuki A, Matsunaga K, Mimaki Y, Sashida Y, Ohizumi Y. Properties of amentoflavone, a potent caffeine-like Ca2+ releaser in skeletal muscle sarcoplasmic reticulum. Eur J Pharmacol 1999; 372:97-102. [PMID: 10374719 DOI: 10.1016/s0014-2999(99)00144-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Amentoflavone, like caffeine, caused a concentration-dependent increase in Ca2+ release from the heavy fraction of fragmented sarcoplasmic reticulum of rabbit skeletal muscle. The Ca2+ -releasing activity of amentoflavone was approximately 20 times more potent than that of caffeine. The bell-shaped profile of Ca2+ dependence for amentoflavone was almost the same as that for caffeine. Typical blockers of Ca2+ -induced Ca2+ release channels, such as Mg2+, procaine and ruthenium red, inhibited markedly amentoflavone- and caffeine-induced 45Ca2+ release. The maximum 45Ca2+ release in response to amentoflavone was not changed by caffeine, but was further increased by adenosine-5'-(beta,gamma-methylene) triphosphate. This compound enhanced [3H]ryanodine binding to the heavy fraction of fragmented sarcoplasmic reticulum with a decrease in K(D) but without a change in Bmax. These results suggest that amentoflavone, which does not contain a nitrogen atom, probably binds to the caffeine-binding site in Ca2+ channels and thus potentiates Ca2+ -induced Ca2+ release from the heavy fraction of fragmented sarcoplasmic reticulum.
Collapse
Affiliation(s)
- A Suzuki
- Department of Pharmaceutical Molecular Biology, Faculty of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | | | | | |
Collapse
|
37
|
Matsunaga K, Nakatani K, Ishibashi M, Kobayashi J, Ohizumi Y. Amphidinolide B, a powerful activator of actomyosin ATPase enhances skeletal muscle contraction. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1427:24-32. [PMID: 10082984 DOI: 10.1016/s0304-4165(98)00175-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amphidinolide B caused a concentration-dependent increase in the contractile force of skeletal muscle skinned fibers. The concentration-contractile response curve for external Ca2+ was shifted to the left in a parallel manner, suggesting an increase in Ca2+ sensitivity. Amphidinolide B stimulated the superprecipitation of natural actomyosin. The maximum response of natural actomyosin to Ca2+ in superprecipitation was enhanced by it. Amphidinolide B increased the ATPase activity of myofibrils and natural actomyosin. The ATPase activity of actomyosin reconstituted from actin and myosin was enhanced in a concentration-dependent manner in the presence or absence of troponin-tropomyosin complex. Ca2+-, K+-EDTA- or Mg2+-ATPase of myosin was not affected by amphidinolide B. These results suggest that amphidinolide B enhances an interaction of actin and myosin directly and increases Ca2+ sensitivity of the contractile apparatus mediated through troponin-tropomyosin system, resulting in an increase in the ATPase activity of actomyosin and thus enhances the contractile response of myofilament.
Collapse
Affiliation(s)
- K Matsunaga
- Department of Pharmaceutical Molecular Biology, Faculty of Pharmaceutical Sciences, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai 980-8578,
| | | | | | | | | |
Collapse
|
38
|
Park KS, Kim TK, Kim DH. Cyclosporin A treatment alters characteristics of Ca2+-release channel in cardiac sarcoplasmic reticulum. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:H865-72. [PMID: 10070069 DOI: 10.1152/ajpheart.1999.276.3.h865] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic treatment with cyclosporin A (CsA) has been reported (H. S. Banijamali, M. H. ter Keurs, L. C. Paul, and H. E. ter Keurs. Cardiovasc. Res. 27: 1845-1854, 1993; I. Kingma, E. Harmsen, H. E. ter Keurs, H. Benediktsson, and L. C. Paul. Int. J. Cardiol. 31: 15-22, 1991) to induce reversible alterations of contractile properties in rat hearts. To define the molecular mechanisms underlying the physiological alterations, the Ca2+-release channel (CRC) and Ca2+-ATPase from sarcoplasmic reticulum in rats were examined. Ryanodine binding to whole homogenates of rat hearts shows time- and dose-dependent alterations in CRC properties by CsA. On 3 wk of treatment with 15 mg CsA. kg body wt-1. day-1, 1) maximal ryanodine binding (Bmax) decreased, 2) the dissociation constant of ryanodine (Kd) increased, 3) caffeine sensitivity of CRC increased, and 4) ruthenium red sensitivity of CRC decreased. On the other hand, Bmax and Kd of ryanodine binding in rat skeletal muscles were not changed. Ryanodine-sensitive oxalate-supported Ca2+ uptake in whole homogenates was lower in CsA-treated rat hearts than in control hearts, whereas total Ca2+ uptake in the presence of 500 M ryanodine was not changed. Functional experiments with rapamycin and Western blot analysis suggest that the CsA-induced alteration of ryanodine binding is due at least in part to an upregulation of calcineurin. The heart muscle-specific alterations of CRC could be responsible for the previously reported contractile changes of CsA-treated rat hearts.
Collapse
Affiliation(s)
- K S Park
- Department of Life Science, Kwangju Institute of Science and Technology, Kwangju 500-712, Korea
| | | | | |
Collapse
|
39
|
Huang CL. The influence of caffeine on intramembrane charge movements in intact frog striated muscle. J Physiol 1998; 512 ( Pt 3):707-21. [PMID: 9769415 PMCID: PMC2231229 DOI: 10.1111/j.1469-7793.1998.707bd.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
1. The influence of caffeine, applied over a 25-fold range of concentrations, on intramembrane charge movements was examined in intact voltage-clamped amphibian muscle fibres studied in the hypertonic gluconate-containing solutions that were hitherto reported to emphasize the features of qgamma at the expense of those of qbeta charge. 2. The total charge, Qmax, the transition voltage, V*, and the steepness factor, k, of the steady-state charge-voltage relationships, Q(V), were all conserved to values expected with significant contributions from the steeply voltage-dependent qgamma species (Qmax approximately 20 nC microF-1, V* approximately -50 mV, k approximately 8 mV) through all the applications of caffeine concentrations between 0.2 and 5.0 mM. This differs from recent reports from studies in cut as opposed to intact fibres. 3. The delayed transients that have been attributed to transitions within the qgamma charge persisted at low (0.2 mM) and intermediate (1.0 mM) caffeine concentrations. 4. In contrast, the time courses of such qgamma currents became more rapid and their waveforms consequently merged with the earlier qbeta decays at higher (5.0 mM) reagent concentrations. The charging records became single monotonic decays from which individual contributions could not be distinguished. This suggests that caffeine modified the kinetic properties of the qgamma system but preserved its steady-state properties. These findings thus differ from earlier reports that high caffeine concentrations enhanced the prominence of delayed transient components in cut fibres. 5. Caffeine (5.0 mM) and ryanodine (0.1 mM) exerted antagonistic actions upon qgamma charge movements. The addition of caffeine restored the delayed time courses that were lost in ryanodine-containing solutions, reversed the shift these produced in the steady-state charge-voltage relationship but preserved both the maximum charge, Qmax, and the steepness, k, of the steady-state Q(V) relationships. 6. Caffeine also antagonized the actions of tetracaine on the total available qgamma charge, but did so only at the low and not at the high applied concentrations. Thus, 0.2 mM caffeine restored the steady-state qgamma charge, the steepness of the overall Q(V) function and the appearance of delayed qgamma charge movements that had been previously abolished by the addition of 2.0 mM tetracaine. 7. In contrast, the higher applied (1.0 and 5.0 mM) caffeine concentrations paradoxically did not modify these actions of tetracaine. The total charge and voltage dependence of the Q(V) curves, and the amplitude and time course of charge movements remained at the reduced values expected for the tetracaine-resistant qbeta charge. 8. These results permit a scheme in which caffeine acts directly upon ryanodine receptor (RyR)-Ca2+ release channels whose consequent activation then dissociates them from the tubular dihydropyridine receptor (DHPR) voltage sensors that produce qgamma charge movement, with which they normally are coupled in reciprocal allosteric contact.
Collapse
Affiliation(s)
- C L Huang
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK.
| |
Collapse
|
40
|
Dettbarn C, Palade P. Ca2+ feedback on "quantal" Ca2+ release involving ryanodine receptors. Mol Pharmacol 1997; 52:1124-30. [PMID: 9396782 DOI: 10.1124/mol.52.6.1124] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The influence of luminal and cytoplasmic Ca2+ on the ability of ryanodine-sensitive stores to undergo multiple partial ("quantal") releases has been assessed. Increased luminal Ca2+ levels do indeed modulate sarcoplasmic reticulum Ca2+ release by lowering the threshold agonist concentration required to elicit release, but the decrease in luminal Ca2+ that accompanies a partial release is not sufficient by itself to terminate release. Similarly, an increase in cytoplasmic Ca2+ lowers the threshold agonist concentration required to elicit release; thus, the bulk cytoplasmic Ca2+ levels attained during a release would only stimulate further release, not terminate it before it reached completion. Very high cytoplasmic Ca2+ levels (1-3 mM) also triggered release but were unable to terminate release before reaching completion. Thus, even the high local cytoplasmic Ca2+ concentration that might accompany release would also not terminate release. It is concluded that Ca2+ feedback can modulate release through ryanodine receptors but that it does not account for the properties of quantal release. The low affinity inhibitor tetracaine induces a decrease in the extent of release that cannot be explained solely by heterogeneous caffeine sensitivity of the stores. The results are interpreted in terms of a scheme that includes (i) heterogeneous sensitivity of stores, conferred in part by differences in luminal Ca2+ content and (ii) adaptive behavior on the part of individual ryanodine receptors.
Collapse
Affiliation(s)
- C Dettbarn
- Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston 77555-0641, USA
| | | |
Collapse
|
41
|
Quinn KE, Ehrlich BE. Methanethiosulfonate derivatives inhibit current through the ryanodine receptor/channel. J Gen Physiol 1997; 109:255-64. [PMID: 9041453 PMCID: PMC2220055 DOI: 10.1085/jgp.109.2.255] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To identify regions of the ryanodine receptor (RyR) important for ion conduction we modified the channel with sulfhydryl-reacting compounds. After addition of methanethiosulfonate (MTS) compounds channel conductance was decreased while other channel properties, including channel regulation by ATP, caffeine, or Ca, were unaffected. The site of action was accessible to the MTS compounds from the cytoplasmic, but not the luminal, side of the channel. In addition, the hydrophilic MTS compounds were only effective when the channel was open, suggesting that the compounds covalently modify the channel from within the water-filled ion conducting pathway. The decrease in channel current amplitude occurred in a step-wise fashion and was irreversible and cumulative over time, eventually leading to the complete block of channel current. However, the time required for each consecutive modification during continuous exposure to the MTS compounds increased, suggesting that successive modification by the MTS compounds is not independent. These results are consistent with the hypothesis that the channel forms a wide vestibule on the cytoplasmic side and contains a much smaller opening on the luminal side. Furthermore, our results indicate that the MTS compounds can serve as functional markers for specific residues of the RyR to be identified in molecular studies.
Collapse
Affiliation(s)
- K E Quinn
- Department of Physiology, University of Connecticut Health Center, Farmington 06030, USA.
| | | |
Collapse
|
42
|
Yoshioka T, Shirota T, Tazoe T, Yamashita-Goto K. Calcium movement of sarcoplasmic reticulum from hindlimb suspended muscle. ACTA ASTRONAUTICA 1996; 38:209-212. [PMID: 11540780 DOI: 10.1016/0094-5765(96)00010-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The function of the sarcoplasmic reticulum (SR) was examined in the slow soleus and fast extensor digitorum longus (EDL) muscles of rats submitted to 14 days of weightlessness produced by hindlimb suspension (HS). Ca2+ uptake, Ca2+ release and passive Ca2+ leakage through the SR membrane were investigated using a method of caffeine-induced contracture on the single mechanically skinned fibers. In the SR of suspended soleus muscles, the rate of Ca2+ uptake was higher than in the control muscles. However, there was no difference between the suspended and control muscles in the rate of Ca2+ uptake of the SR in EDL after HS. In soleus muscles, Ca2+ movements of the SR from the suspended muscle acquired the properties that were similar to those of the control fast muscle. The study of Ca2+ leakage showed that the velocity and amount of passive Ca2+ leakage from SR in soleus and EDL were apparently increased after HS. The results suggested that the functional properties of the SR membrane in slow and fast muscles were changed after HS.
Collapse
Affiliation(s)
- T Yoshioka
- Department of Physiology, St Marianna University School of Medicine, Kawasaki, Japan
| | | | | | | |
Collapse
|
43
|
Ohkura M, Ide T, Furukawa K, Kawasaki T, Kasai M, Ohizumi Y. Calsequestrin is essential for the Ca2+ release induced by myotoxin alpha in skeletal muscle sarcoplasmic reticulum. Can J Physiol Pharmacol 1995; 73:1181-5. [PMID: 8564886 DOI: 10.1139/y95-167] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Myotoxin alpha (MYTX), a polypeptide toxin purified from the venom of prairie rattlesnakes (Crotalus viridis viridis), induced Ca2+ release from the heavy fraction of skeletal sarcoplasmic reticulum (HSR), using a Ca2+ electrode. The effect of MYTX was nearly abolished by pretreatment with ryanodine, an alkaloid-based Ca2+ channel blocker. In the stopped-flow experiments, MYTX increased the choline+ permeability of HSR in the presence of calsequestrin (CS). Single channel recording experiments showed that in the presence of CS, the channel currents were markedly enhanced by MYTX applied to the cis side, but not to the trans side. However, in the absence of CS, MYTX failed to cause the excitatory effect in both the experiments. These results suggest that CS is essential for MYTX-induced Ca2+ release through the Ca2+ release channels in skeletal HSR.
Collapse
Affiliation(s)
- M Ohkura
- Department of Pharmaceutical Molecular Biology, Tohoku University, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
44
|
el-Hayek R, Yano M, Ikemoto N. A conformational change in the junctional foot protein is involved in the regulation of Ca2+ release from sarcoplasmic reticulum. Studies on polylysine-induced Ca2+ release. J Biol Chem 1995; 270:15634-8. [PMID: 7797562 DOI: 10.1074/jbc.270.26.15634] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We investigated both conformational changes in the junctional foot protein (JFP) and Ca2+ release from sarcoplasmic reticulum (SR) in parallel after stimulation of triadic vesicles by the JFP-specific ligand, polylysine. To monitor protein conformational change, the JFP was labeled in a site-directed fashion with the fluorescent conformational probe methylcoumarin acetate (MCA) (Kang, J. J., Tarcsafalvi, A., Carlos, A. D., Fujimoto, E., Shahrokh, Z., Thevenin, B. J.-M., Shohet, S. B., and Ikemoto, N. (1992) Biochemistry 31, 3288-3293). The induction of SR Ca2+ release by polylysine produced a rapid increase in the fluorescence intensity of the JFP-bound MCA. The polylysine concentration dependence of the fluorescence change was essentially the same as that of Ca2+ release, suggesting that the two events are tightly coupled. However, the rate constant of MCA fluorescence change was much larger than that of Ca2+ release; i.e. the conformational change preceded Ca2+ release. Prevention of protein conformational change by lysine (0.2 M) inhibited Ca2+ release from SR. Inhibition of Ca2+ release by Mg2+ (5 mM), however, had little effect on the conformational change. These results suggest that binding of polylysine to the JFP produces conformational changes in the protein, which in turn activates the Ca2+ channel, leading to Ca2+ release from the SR.
Collapse
Affiliation(s)
- R el-Hayek
- Boston Biomedical Research Institute, Massachusetts 02114, USA
| | | | | |
Collapse
|
45
|
Takahashi Y, Furukawa K, Kozutsumi D, Ishibashi M, Kobayashi J, Ohizumi Y. 4,6-Dibromo-3-hydroxycarbazole (an analogue of caffeine-like Ca2+ releaser), a novel type of inhibitor of Ca(2+)-induced Ca2+ release in skeletal muscle sarcoplasmic reticulum. Br J Pharmacol 1995; 114:941-8. [PMID: 7540095 PMCID: PMC1510309 DOI: 10.1111/j.1476-5381.1995.tb13295.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
1. 4,6-Dibromo-3-hydroxycarbazole (DBHC) was synthesized as an analogue of bromoeudistomin D (BED), a powerful Ca2+ releaser, and its pharmacological properties were examined. 2. In Ca2+ electrode experiments, DBHC (100 microM) markedly inhibited Ca2+ release from the heavy fraction of sarcoplasmic reticulum (HSR) induced by caffeine (1 mM) and BED (10 microM). 3. DBHC (0.1 to 100 microM) inhibited 45Ca2+ release induced by Ca2+ from HSR in a concentration-dependent manner. 4. DBHC (100 microM) abolished 45Ca2+ release induced by caffeine (1 mM) and BED (10 microM) in HSR. 5. Inhibitory effects of calcium-induced calcium release (CICR) blockers such as procaine, ruthenium red and Mg2+ on 45Ca2+ release were clearly observed at Ca2+ concentrations from pCa 7 to pCa 5.5, and were decreased at Ca2+ concentrations higher than pCa 5.5 or lower than pCa 7. However, DBHC decreased Ca2+ release induced by Ca2+ over the wide range of extravesicular Ca2+ concentrations. 6. [3H]-ryanodine binding to HSR was suppressed by ruthenium red, Mg2+ and procaine, but was not affected by DBHC up to 100 microM. 7. [3H]-ryanodine binding to HSR was enhanced by caffeine and BED. DBHC antagonized the enhancement in a concentration-dependent manner. 8. 9-[3H]-Methyl-7-bromo-eudistomin D, an 3H-labelled analogue of BED, specifically bound to HSR. Both DBHC and caffeine increased the KD value without affecting the Bmax value, indicating a competitive mode of inhibition. 9. These results suggest that DBHC binds to the caffeine binding site to block Ca2+ release from HSR. This drug is a novel type of inhibitor for the CICR channels in SR and may provide a useful tool for clarifying the Ca2+ releasing mechanisms in SR.
Collapse
Affiliation(s)
- Y Takahashi
- Department of Pharmaceutical Molecular Biology, Tohoku University, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Takahashi Y, Furukawa K, Ishibashi M, Kozutsumi D, Ishiyama H, Kobayashi J, Ohizumi Y. Structure-activity relationship of bromoeudistomin D, a powerful Ca2+ releaser in skeletal muscle sarcoplasmic reticulum. Eur J Pharmacol 1995; 288:285-93. [PMID: 7774672 DOI: 10.1016/0922-4106(95)90040-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bromoeudistomin D and 9-methyl-7-bromoeudistomin D which have a beta-carboline skeleton are powerful Ca2+ releasers from skeletal muscle sarcoplasmic reticulum exhibiting caffeine-like properties. We examined the effects of bromoeudistomin D analogues on Ca(2+)-induced Ca2+ release from skeletal muscle sarcoplasmic reticulum. Among bromoeudistomin D analogues, the Ca(2+)-releasing activities of carboline derivatives were higher than those of carbazole derivatives, suggesting that a carboline skeleton is significantly important for the manifestation of Ca(2+)-releasing activity and Ca2+ sensitivity of Ca(2+)-induced Ca2+ release. On the contrary, the analogues which have a carbazole skeleton and bromine at C-6 inhibit both Ca(2+)- and caffeine-induced Ca2+ release. 9-Methyl-substitution of the analogue elevated its Ca(2+)-releasing activity. Moreover, there is a close correlation between the enhancement of [3H]ryanodine binding to sarcoplasmic reticulum by the analogues and the activation of Ca2+ release by them. Bromoudistomin D analogues may provide valuable information about the structure-function relationship of the ryanodine receptor/Ca2+ release channels in skeletal muscle sarcoplasmic reticulum.
Collapse
Affiliation(s)
- Y Takahashi
- Department of Pharmaceutical Molecular Biology, Faculty of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Furukawa K, Funayama K, Ohkura M, Oshima Y, Tu AT, Ohizumi Y. Ca2+ release induced by myotoxin alpha, a radio-labellable probe having novel Ca2+ release properties in sarcoplasmic reticulum. Br J Pharmacol 1994; 113:233-9. [PMID: 7812616 PMCID: PMC1510074 DOI: 10.1111/j.1476-5381.1994.tb16199.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
1. Myotoxin alpha (MYTX), a polypeptide toxin purified from the venom of prairie rattlesnakes (Crotalus viridis viridis) induced Ca2+ release from the heavy fraction (HSR) but not the light fraction of skeletal sarcoplasmic reticulum at concentrations higher than 1 microM, followed by spontaneous Ca2+ reuptake by measuring extravesicular Ca2+ concentrations using the Ca2+ electrode. 2. The rate of 45Ca2+ release from HSR vesicles was markedly accelerated by MYTX in a concentration-dependent manner in the range of concentrations between 30 nM and 10 microM, indicating the most potent Ca2+ releaser in HSR. 3. The Ca2+ dependency of MYTX-induced 45Ca2+ release has a bell-shaped profile but it was quite different from that of caffeine, an inducer of Ca(2+)-induced Ca2+ release. 4. 45Ca2+ release induced by MYTX was remarkable in the range of pCa between 8 and 3, whereas that by caffeine was prominent in the range of pCa, i.e., between 7 and 5.5. 5. MYTX-induced 45Ca2+ release consists of both early and late components. The early component caused by MYTX at low concentrations (30-300 nM) completed within 20 s, while the late component induced by it at higher concentrations (> 0.3 microM) was maintained for at least 1 min. 6. Both the components were almost completely inhibited by inhibitors of Ca2+ such as Mg2+, ruthenium red and spermine. 7. 45Ca2+ release induced by caffeine or beta,gamma-methyleneadenosine 5'-triphosphate (AMP-PCP) was completely inhibited by high concentrations of procaine. Procaine abolished the early component but not the late one, suggesting that at least the early component is mediated through Ca(2+)-induced Ca2+ release channels. 8. On the basis of these results, the character of Ca2+ release induced by MYTX was quite different from that caused by caffeine or AMP-PCP, suggesting that MYTX induces Ca2+ release having novel properties in HSR. MYTX is the first polypeptide Ca2+ inducer and has become a useful pharmacological tool for clarifying the mechanism of Ca2+ release from skeletal muscle SR.
Collapse
Affiliation(s)
- K Furukawa
- Department of Pharmaceutical Molecular Biology, Pharmaceutical Institute Tohoku University, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Seino A, Furukawa K, Miura T, Yaginuma T, Momose K, Ohizumi Y. 3‘,3“,5‘,5”-Tetraiodophenolsulfonephthalein is a selective inhibitor of Ca(2+)-pumping ATPase in intracellular Ca2+ store. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32476-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
49
|
Donoso P, Hidalgo C. pH-sensitive calcium release in triads from frog skeletal muscle. Rapid filtration studies. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74410-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
50
|
Fang Y, Adachi M, Kobayashi J, Ohizumi Y. High affinity binding of 9-[3H]methyl-7-bromoeudistomin D to the caffeine-binding site of skeletal muscle sarcoplasmic reticulum. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(17)46674-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|