1
|
Tseng YT, Sung YC, Liu CY, Lo KY. Translation initiation factor eIF4G1 modulates assembly of the polypeptide exit tunnel region in yeast ribosome biogenesis. J Cell Sci 2022; 135:275526. [PMID: 35615984 DOI: 10.1242/jcs.259540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/12/2022] [Indexed: 01/24/2023] Open
Abstract
eIF4G is an important eukaryotic translation initiation factor. In this study, eIF4G1, one of the eIF4G isoforms, was shown to directly participate in biogenesis of the large (60S) ribosomal subunit in Saccharomyces cerevisiae cells. Mutation of eIF4G1 decreased the amount 60S ribosomal subunits significantly. The C-terminal fragment of eIF4G1 could complement the function in 60S biogenesis. Analyses of its purified complex with mass spectrometry indicated that eIF4G1 associated with the pre-60S form directly. Strong genetic and direct protein-protein interactions were observed between eIF4G1 and Ssf1 protein. Upon deletion of eIF4G1, Ssf1, Rrp15, Rrp14 and Mak16 were abnormally retained on the pre-60S complex. This purturbed the loading of Arx1 and eL31 at the polypeptide exit tunnel (PET) site and the transition to a Nog2 complex. Our data indicate that eIF4G1 is important in facilitating PET maturation and 27S processing correctly. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Yun-Ting Tseng
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Cheng Sung
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| | - Ching-Yu Liu
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| | - Kai-Yin Lo
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
2
|
Osemwenkhae OP, Sakuno T, Hirano Y, Asakawa H, Hayashi-Takanaka Y, Haraguchi T, Hiraoka Y. Human Ebp1 rescues the synthetic lethal growth of fission yeast cells lacking Cdb4 and Nup184. Genes Cells 2020; 25:288-295. [PMID: 32049412 DOI: 10.1111/gtc.12757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 11/29/2022]
Abstract
Cdb4 is a protein with unknown functions that binds to curved DNA in vitro in the fission yeast Schizosaccharomyces pombe. Homologues of Cdb4 were identified in a wide range of eukaryotes, including human Ebp1. Both S. pombe Cdb4 and human Ebp1 are nonpeptidase members of the methionine aminopeptidase family. It has been reported that Ebp1 homologues are involved in cell growth regulation and differentiation. However, opposing functions have also been considered and debated upon, and the precise biological functions of this conserved protein are largely unknown. S. pombe cdb4 is a nonessential gene, and no obvious phenotypes have been detected in cells with cdb4 gene deletion. In this study, we identified nup184, encoding a component of the nuclear pore complex, as a gene responsible for the synthetic lethal phenotype associated with cdb4. Furthermore, the synthetic lethal phenotype of Cdb4 was suppressed by over-expression of human Ebp1, suggesting that it has conserved crucial functions in S. pombe Cdb4 and human Ebp1. This synthetic lethal phenotype associated with Cdb4 and Nup184 provides a molecular genetics tool to study the functions of S. pombe Cdb4 and its conserved members of proteins, including human Ebp1.
Collapse
Affiliation(s)
- Osaretin P Osemwenkhae
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Takeshi Sakuno
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Yasuhiro Hirano
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Haruhiko Asakawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | | | - Tokuko Haraguchi
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| | - Yasushi Hiraoka
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe, Japan
| |
Collapse
|
3
|
Hoernstein SNW, Mueller SJ, Fiedler K, Schuelke M, Vanselow JT, Schuessele C, Lang D, Nitschke R, Igloi GL, Schlosser A, Reski R. Identification of Targets and Interaction Partners of Arginyl-tRNA Protein Transferase in the Moss Physcomitrella patens. Mol Cell Proteomics 2016; 15:1808-22. [PMID: 27067052 DOI: 10.1074/mcp.m115.057190] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Indexed: 12/15/2022] Open
Abstract
Protein arginylation is a posttranslational modification of both N-terminal amino acids of proteins and sidechain carboxylates and can be crucial for viability and physiology in higher eukaryotes. The lack of arginylation causes severe developmental defects in moss, affects the low oxygen response in Arabidopsis thaliana and is embryo lethal in Drosophila and in mice. Although several studies investigated impact and function of the responsible enzyme, the arginyl-tRNA protein transferase (ATE) in plants, identification of arginylated proteins by mass spectrometry was not hitherto achieved. In the present study, we report the identification of targets and interaction partners of ATE in the model plant Physcomitrella patens by mass spectrometry, employing two different immuno-affinity strategies and a recently established transgenic ATE:GUS reporter line (Schuessele et al., 2016 New Phytol. , DOI: 10.1111/nph.13656). Here we use a commercially available antibody against the fused reporter protein (β-glucuronidase) to pull down ATE and its interacting proteins and validate its in vivo interaction with a class I small heatshock protein via Förster resonance energy transfer (FRET). Additionally, we apply and modify a method that already successfully identified arginylated proteins from mouse proteomes by using custom-made antibodies specific for N-terminal arginine. As a result, we identify four arginylated proteins from Physcomitrella patens with high confidence.Data are available via ProteomeXchange with identifier PXD003228 and PXD003232.
Collapse
Affiliation(s)
- Sebastian N W Hoernstein
- From the ‡Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Stefanie J Mueller
- From the ‡Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Kathrin Fiedler
- From the ‡Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Marc Schuelke
- From the ‡Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Jens T Vanselow
- §Rudolf Virchow Center for Experimental Biomedicine, University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| | - Christian Schuessele
- From the ‡Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Daniel Lang
- From the ‡Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Roland Nitschke
- ¶ZBSA - Centre for Biological Systems Analysis, Life Imaging Center, University Freiburg, Habsburgerstr. 49, 79104 Freiburg, Germany; ‡‡BIOSS - Centre for Biological Signalling Studies, 79104 Freiburg, Germany
| | - Gabor L Igloi
- ‖Institute of Biology 3, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Andreas Schlosser
- §Rudolf Virchow Center for Experimental Biomedicine, University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| | - Ralf Reski
- From the ‡Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany; ¶ZBSA - Centre for Biological Systems Analysis, Life Imaging Center, University Freiburg, Habsburgerstr. 49, 79104 Freiburg, Germany; **FRIAS - Freiburg Institute for Advanced Studies, 79104 Freiburg, Germany; ‡‡BIOSS - Centre for Biological Signalling Studies, 79104 Freiburg, Germany
| |
Collapse
|
4
|
Kang JM, Ju JW, Kim JY, Ju HL, Lee J, Lee KH, Lee WJ, Sohn WM, Kim TS, Na BK. Expression and biochemical characterization of a type I methionine aminopeptidase of Plasmodium vivax. Protein Expr Purif 2015; 108:48-53. [PMID: 25595410 DOI: 10.1016/j.pep.2015.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/06/2015] [Accepted: 01/07/2015] [Indexed: 11/20/2022]
Abstract
Methionine aminopeptidases (MetAPs), ubiquitous enzymes that play an important role in nascent protein maturation, have been recognized as attractive targets for the development of drugs against pathogenic protozoa including Plasmodium spp. Here, we characterized partial biochemical properties of a type I MetAP of Plasmodium vivax (PvMetAP1). PvMetAP1 had the typical amino acid residues essential for metal binding and substrate binding sites, which are well conserved in the type I MetAP family enzymes. Recombinant PvMetAP1 showed activity in a broad range of neutral pHs, with optimum activity at pH 7.5. PvMetAP1 was stable under neutral and alkaline pHs, but was relatively unstable under acidic conditions. PvMetAP1 activity was highly increased in the presence of Mn(2+), and was effectively inhibited by a metal chelator, EDTA. Fumagillin and aminopeptidase inhibitors, amastatin and bestatin, also showed an inhibitory effect on PvMetAP1. The enzyme had a highly specific hydrolytic activity for N-terminal methionine. These results collectively suggest that PvMetAP1 belongs to the family of type I MetAPs and may play a pivotal role for the maintenance of P. vivax physiology by mediating protein maturation and processing of the parasite.
Collapse
Affiliation(s)
- Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-751, Republic of Korea
| | - Jung-Won Ju
- Division of Malaria and Parasitic Diseases, National Institute of Health, Korea Centers for Disease Control and Prevention, Osong 363-951, Republic of Korea
| | - Jung-Yeon Kim
- Division of Malaria and Parasitic Diseases, National Institute of Health, Korea Centers for Disease Control and Prevention, Osong 363-951, Republic of Korea
| | - Hye-Lim Ju
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-751, Republic of Korea
| | - Jinyoung Lee
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-751, Republic of Korea
| | - Kon Ho Lee
- Department of Microbiology, Institute of Health Sciences and PMBBRC, Gyeongsang National University School of Medicine, Jinju 660-751, Republic of Korea
| | - Won-Ja Lee
- Division of Malaria and Parasitic Diseases, National Institute of Health, Korea Centers for Disease Control and Prevention, Osong 363-951, Republic of Korea
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-751, Republic of Korea
| | - Tong-Soo Kim
- Department of Tropical Medicine, and Inha Research Institute for Medical Sciences, Inha University School of Medicine, Incheon 400-712, Republic of Korea
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-751, Republic of Korea.
| |
Collapse
|
5
|
Cokol M, Weinstein ZB, Yilancioglu K, Tasan M, Doak A, Cansever D, Mutlu B, Li S, Rodriguez-Esteban R, Akhmedov M, Guvenek A, Cokol M, Cetiner S, Giaever G, Iossifov I, Nislow C, Shoichet B, Roth FP. Large-scale identification and analysis of suppressive drug interactions. CHEMISTRY & BIOLOGY 2014; 21:541-551. [PMID: 24704506 PMCID: PMC4281482 DOI: 10.1016/j.chembiol.2014.02.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 01/26/2014] [Accepted: 02/07/2014] [Indexed: 11/29/2022]
Abstract
One drug may suppress the effects of another. Although knowledge of drug suppression is vital to avoid efficacy-reducing drug interactions or discover countermeasures for chemical toxins, drug-drug suppression relationships have not been systematically mapped. Here, we analyze the growth response of Saccharomyces cerevisiae to anti-fungal compound ("drug") pairs. Among 440 ordered drug pairs, we identified 94 suppressive drug interactions. Using only pairs not selected on the basis of their suppression behavior, we provide an estimate of the prevalence of suppressive interactions between anti-fungal compounds as 17%. Analysis of the drug suppression network suggested that Bromopyruvate is a frequently suppressive drug and Staurosporine is a frequently suppressed drug. We investigated potential explanations for suppressive drug interactions, including chemogenomic analysis, coaggregation, and pH effects, allowing us to explain the interaction tendencies of Bromopyruvate.
Collapse
Affiliation(s)
- Murat Cokol
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; Nanotechnology Research and Application Center, Sabanci University, Istanbul 34956, Turkey.
| | - Zohar B Weinstein
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Kaan Yilancioglu
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Murat Tasan
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Allison Doak
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Dilay Cansever
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Beste Mutlu
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Siyang Li
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Raul Rodriguez-Esteban
- Department of Computational Biology, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT 06877, USA
| | - Murodzhon Akhmedov
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - Aysegul Guvenek
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - Melike Cokol
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - Selim Cetiner
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - Guri Giaever
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Ivan Iossifov
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Corey Nislow
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Brian Shoichet
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Frederick P Roth
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Center for Cancer Systems Biology, Dana-Farber Cancer Institute, One Jimmy Fund Way, Boston, MA 02215, USA; Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada; Departments of Molecular Genetics and Computer Science, University of Toronto, Toronto, ON M5S 3E1, Canada.
| |
Collapse
|
6
|
Gion WR, Davis-Taber RA, Regier DA, Fung E, Medina L, Santora LC, Bose S, Ivanov AV, Perilli-Palmer BA, Chumsae CM, Matuck JG, Kunes YZ, Carson GR. Expression of antibodies using single open reading frame (sORF) vector design: Demonstration of manufacturing feasibility. MAbs 2013; 5:595-607. [PMID: 23774760 PMCID: PMC3906313 DOI: 10.4161/mabs.25161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/21/2013] [Accepted: 05/23/2013] [Indexed: 01/13/2023] Open
Abstract
Efficient production of large quantities of therapeutic antibodies is becoming a major goal of the pharmaceutical industry. We developed a proprietary expression system using a polyprotein precursor-based approach to antibody expression in mammalian cells. In this approach, the coding regions for heavy and light chains are included within a single open reading frame (sORF) separated by an in-frame intein gene. A single mRNA and subsequent polypeptide are produced upon transient and stable transfection into HEK293 and CHO cells, respectively. Heavy and light chains are separated by the autocatalytic action of the intein and antibody processing proceeds to produce active, secreted antibody. Here, we report advances in sORF technology toward establishment of a viable manufacturing platform for therapeutic antibodies in CHO cells. Increasing expression levels and improving antibody processing by intein and signal peptide selection are discussed.
Collapse
|
7
|
Zhang F, Bhat S, Gabelli SB, Chen X, Miller MS, Nacev BA, Cheng YL, Meyers DJ, Tenney K, Shim JS, Crews P, Amzel LM, Ma D, Liu JO. Pyridinylquinazolines selectively inhibit human methionine aminopeptidase-1 in cells. J Med Chem 2013; 56:3996-4016. [PMID: 23634668 DOI: 10.1021/jm400227z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Methionine aminopeptidases (MetAPs), which remove the initiator methionine from nascent peptides, are essential in all organisms. While MetAP2 has been demonstrated to be a therapeutic target for inhibiting angiogenesis in mammals, MetAP1 seems to be vital for cell proliferation. Our earlier efforts identified two structural classes of human MetAP1 (HsMetAP1)-selective inhibitors (1-4), but all of them failed to inhibit cellular HsMetAP1. Using Mn(II) or Zn(II) to activate HsMetAP1, we found that 1-4 could only effectively inhibit purified HsMetAP1 in the presence of physiologically unachievable concentrations of Co(II). In an effort to seek Co(II)-independent inhibitors, a novel structural class containing a 2-(pyridin-2-yl)quinazoline core has been discovered. Many compounds in this class potently and selectively inhibited HsMetAP1 without Co(II). Subsequently, we demonstrated that 11j, an auxiliary metal-dependent inhibitor, effectively inhibited HsMetAP1 in primary cells. This is the first report that an HsMetAP1-selective inhibitor is effective against its target in cells.
Collapse
Affiliation(s)
- Feiran Zhang
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Zhang P, Yang X, Zhang F, Gabelli SB, Wang R, Zhang Y, Bhat S, Chen X, Furlani M, Amzel LM, Liu JO, Ma D. Pyridinylpyrimidines selectively inhibit human methionine aminopeptidase-1. Bioorg Med Chem 2013; 21:2600-17. [PMID: 23507151 DOI: 10.1016/j.bmc.2013.02.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/03/2013] [Accepted: 02/11/2013] [Indexed: 11/17/2022]
Abstract
Cellular protein synthesis is initiated with methionine in eukaryotes with few exceptions. Methionine aminopeptidases (MetAPs) which catalyze the process of N-terminal methionine excision are essential for all organisms. In mammals, type 2 MetAP (MetAP2) is known to be important for angiogenesis, while type 1 MetAP (MetAP1) has been shown to play a pivotal role in cell proliferation. Our previous high-throughput screening of a commercial compound library uncovered a novel class of inhibitors for both human MetAP1 (HsMetAP1) and human MetAP2 (HsMetAP2). This class of inhibitors contains a pyridinylpyrimidine core. To understand the structure-activity relationship (SAR) and to search for analogues of 2 with greater potency and higher HsMetAP1-selectivity, a total of 58 analogues were acquired through either commercial source or by in-house synthesis and their inhibitory activities against HsMetAP1 and HsMetAP2 were determined. Through this systematic medicinal chemistry analysis, we have identified (1) 5-chloro-6-methyl-2-pyridin-2-ylpyrimidine as the minimum element for the inhibition of HsMetAP1; (2) 5'-chloro as the favored substituent on the pyridine ring for the enhanced potency against HsMetAP1; and (3) long C4 side chains as the essentials for higher HsMetAP1-selectivity. At the end of our SAR campaign, 25b, 25c, 26d and 30a-30c are among the most selective and potent inhibitors of purified HsMetAP1 reported to date. In addition, we also performed crystallographic analysis of one representative inhibitor (26d) in complex with N-terminally truncated HsMetAP1.
Collapse
Affiliation(s)
- Pengtao Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
The roles of thiol oxidoreductases in yeast replicative aging. Mech Ageing Dev 2010; 131:692-9. [PMID: 20934449 DOI: 10.1016/j.mad.2010.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 09/22/2010] [Accepted: 09/30/2010] [Indexed: 01/01/2023]
Abstract
Thiol-based redox reactions are involved in the regulation of a variety of biological functions, such as protection against oxidative stress, signal transduction and protein folding. Some proteins involved in redox regulation have been shown to modulate life span in organisms from yeast to mammals. To assess the role of thiol oxidoreductases in aging on a genome-wide scale, we analyzed the replicative life span of yeast cells lacking known and candidate thiol oxidoreductases. The data suggest the role of several pathways in controlling yeast replicative life span, including thioredoxin reduction, protein folding and degradation, peroxide reduction, PIP3 signaling, and ATP synthesis.
Collapse
|
10
|
Xiao Q, Zhang F, Nacev BA, Liu JO, Pei D. Protein N-terminal processing: substrate specificity of Escherichia coli and human methionine aminopeptidases. Biochemistry 2010; 49:5588-99. [PMID: 20521764 DOI: 10.1021/bi1005464] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methionine aminopeptidase (MetAP) catalyzes the hydrolytic cleavage of the N-terminal methionine from newly synthesized polypeptides. The extent of removal of methionyl from a protein is dictated by its N-terminal peptide sequence. Earlier studies revealed that MetAPs require amino acids containing small side chains (e.g., Gly, Ala, Ser, Cys, Pro, Thr, and Val) as the P1' residue, but their specificity at positions P2' and beyond remains incompletely defined. In this work, the substrate specificities of Escherichia coli MetAP1, human MetAP1, and human MetAP2 were systematically profiled by screening against a combinatorial peptide library and kinetic analysis of individually synthesized peptide substrates. Our results show that although all three enzymes require small residues at the P1' position, they have differential tolerance for Val and Thr at this position. The catalytic activity of human MetAP2 toward Met-Val peptides is consistently 2 orders of magnitude higher than that of MetAP1, suggesting that MetAP2 is responsible for processing proteins containing N-terminal Met-Val and Met-Thr sequences in vivo. At positions P2'-P5', all three MetAPs have broad specificity but are poorly active toward peptides containing a proline at the P2' position. In addition, the human MetAPs disfavor acidic residues at the P2'-P5' positions. The specificity data have allowed us to formulate a simple set of rules that can reliably predict the N-terminal processing of E. coli and human proteins.
Collapse
Affiliation(s)
- Qing Xiao
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
11
|
Rowe JD, Harbertson JF, Osborne JP, Freitag M, Lim J, Bakalinsky AT. Systematic identification of yeast proteins extracted into model wine during aging on the yeast lees. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:2337-2346. [PMID: 20108898 DOI: 10.1021/jf903660a] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Total protein and protein-associated mannan concentrations were measured, and individual proteins were identified during extraction into model wines over 9 months of aging on the yeast lees following completion of fermentations by seven wine strains of Saccharomyces cerevisiae. In aged wines, protein-associated mannan increased about 6-fold (+/-66%), while total protein only increased 2-fold (+/-20%), which resulted in a significantly greater protein-associated mannan/total protein ratio for three strains. A total of 219 proteins were identified among all wine samples taken over the entire time course. Of the 17 "long-lived" proteins detected in all 9 month samples, 13 were cell wall mannoproteins, and four were glycolytic enzymes. Most cytosolic proteins were not detected after 6 months. Native mannosylated yeast invertase was assayed for binding to wine tannin and was found to have a 10-fold lower affinity than nonglycosylated bovine serum albumin. Enrichment of mannoproteins in the aged model wines implies greater solution stability than other yeast proteins and the possibility that their contributions to wine quality may persist long after bottling.
Collapse
Affiliation(s)
- Jeffrey D Rowe
- Food Science and Technology, Oregon State University, Corvallis, Oregon 97331-6602, USA
| | | | | | | | | | | |
Collapse
|
12
|
Jajcanin-Jozić N, Deller S, Pavkov T, Macheroux P, Abramić M. Identification of the reactive cysteine residues in yeast dipeptidyl peptidase III. Biochimie 2009; 92:89-96. [PMID: 19825391 DOI: 10.1016/j.biochi.2009.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 09/24/2009] [Indexed: 11/24/2022]
Abstract
Dipeptidyl peptidases III (DPPs III) form a distinct metallopeptidase family characterized by the unique HEXXGH motif. High susceptibility to inactivation by organomercurials suggests the presence of a reactive cysteine residue(s) in, or close to, their active site. Yeast DPP III contains five Cys, none of which is absolutely conserved within the family. In order to identify reactive residue(s), site-directed mutagenesis on yeast His(6)-tagged DPP III was employed to substitute specifically all five cysteine residues to serine. The variant enzymes thus obtained were enzymatically active and showed an overall structure not greatly affected by the mutations as judged by circular dichroism. Analysis by native and SDS-PAGE under non-reducing conditions revealed the existence of a monomeric and dimeric form in all DPP III proteins except in the C130S, implying that dimerization of yeast DPP III is mediated by the surface-exposed cysteine 130. The investigation of the effect of thiol reagent 4,4'-dithiodipyridine (DTDP) on all five Cys to Ser single protein variants showed that Cys639 and Cys518 are more reactive than the remainder. Only the C639S mutant protein displayed the remarkable resistance against p-hydroxy-mercuribenzoate (pHMB) indicating that modification of Cys639 is responsible for the fast inactivation of yeast DPP III by this sulfhydryl reagent.
Collapse
|
13
|
Datta B. Roles of P67/MetAP2 as a tumor suppressor. Biochim Biophys Acta Rev Cancer 2009; 1796:281-92. [PMID: 19716858 DOI: 10.1016/j.bbcan.2009.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 08/12/2009] [Accepted: 08/22/2009] [Indexed: 12/17/2022]
Abstract
A precise balance between growth promoting signals and growth inhibitory signals plays important roles in the maintenance of healthy mammalian cells. Any deregulation of this critical balance converts normal cells into abnormal or cancerous cells. Several macromolecules are being identified and characterized that are involved in the regulation of cell signaling pathways that connect to the cell cycle and thus they play roles as tumor promoters or tumor suppressors. In situ tumor formation needs active angiogenesis, a process that generates new blood vessels from existing ones either by splitting or sprouting. Several small molecule inhibitors and proteins have been identified as inhibitors of angiogenesis. One such protein, p67/MetAP2 also known as methionine aminopeptidase 2 (MetAP2), has been shown to bind covalently to fumagillin and its derivatives that have anti-angiogenic activity. In addition to fumagillin or its derivatives, several other small molecule inhibitors of p67/MetAP2 have been recently identified and some of these drugs are in phase III trials for cancer therapy. Although molecular details of actions toward tumor suppression by these drugs are largely unknown, a significant progress has been made to understand the structure-function relationship of p67/MetAP2 and its roles in the maintenance of the levels of phosphorylation of the proportional, variant-subunit of eukaryotic initiation factor 2 (eIF2 proportional, variant) and extracellular signal-regulated kinases 1 and 2 (ERK1/2). In this article, roles of p67/MetAP2 in the suppression of cancer development are also discussed.
Collapse
Affiliation(s)
- Bansidhar Datta
- Department of Chemistry, Kent State University, Kent, OH 44242, USA.
| |
Collapse
|
14
|
Wiltschi B, Wenger W, Nehring S, Budisa N. Expanding the genetic code ofSaccharomyces cerevisiaewith methionine analogues. Yeast 2008; 25:775-86. [DOI: 10.1002/yea.1632] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
15
|
Narayanan SS, Ramanujan A, Krishna S, Nampoothiri KM. Purification and biochemical characterization of methionine aminopeptidase (MetAP) from Mycobacterium smegmatis mc2155. Appl Biochem Biotechnol 2008; 151:512-21. [PMID: 18594775 DOI: 10.1007/s12010-008-8227-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2007] [Accepted: 03/20/2008] [Indexed: 11/26/2022]
Abstract
The methionine aminopeptidase (MetAP) catalyzes the removal of amino terminal methionine from newly synthesized polypeptide. MetAP from Mycobacterium smegmatis mc(2) 155 was purified from the culture lysate in four sequential steps to obtain a final purification fold of 22. The purified enzyme exhibited a molecular weight of approximately 37 kDa on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Activity staining was performed to detect the methionine aminopeptidase activity on native polyacrylamide gel. The enzyme was characterized biochemically, using L-methionine p-nitroanilide as substrate. The enzyme was found to have a temperature and pH optimum of 50 degrees C and 8.5, respectively, and was found to be stable at 50 degrees C with half-life more than 8 h. The enzyme activity was enhanced by Mg(2+) and Co(2+) and was inhibited by Fe(2+) and Cu(2+). The enzyme activity inhibited by EDTA is restored in presence of Mg(2+) suggesting the possible role of Mg(2+) as metal cofactor of the enzyme in vitro.
Collapse
Affiliation(s)
- Sai Shyam Narayanan
- Biotechnology Division, National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala, India
| | | | | | | |
Collapse
|
16
|
Lee HS, Kim YJ, Bae SS, Jeon JH, Lim JK, Jeong BC, Kang SG, Lee JH. Cloning, expression, and characterization of a methionyl aminopeptidase from a hyperthermophilic archaeon Thermococcus sp. NA1. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2006; 8:425-32. [PMID: 16761197 DOI: 10.1007/s10126-005-6124-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 01/13/2006] [Indexed: 05/10/2023]
Abstract
Genomic analysis of a hyperthermophilic archaeon Thermococcus sp. NA1 revealed the presence of an 885-bp open reading frame encoding a protein of 295 amino acids with a calculated molecular mass of 32,981 Da. Analysis of the deduced amino acid sequence showed that amino acid residues important for catalytic activity and the metal binding ligands conserved in all of methionyl aminopeptidases (MetAP) were also conserved and belonged to type IIa MetAP. The protein, designated TNA1_MetAP (Thermococcus sp. NA1 MetAP), was cloned and expressed in Escherichia coli. The recombinant enzyme was a Mn(2+)-, Ni(2+)-, Fe(2+)-, or Co(2+)-dependent metallopeptidase. Optimal MetAP activity against L: -methionine p-nitroanilide (Met-pNA) (K (m) = 0.68 mM) occurred at pH 7.0 and 80 to 90 degrees C. The MetAP was very unstable compared to Pyrococcus furiosus MetAP, which was completely inactivated by heating at 80 degrees C for 5 min. It seemed likely that the cysteine residue (Cys53) played a critical role in regulating the thermostability of TNA1_MetAP.
Collapse
Affiliation(s)
- H S Lee
- Korean Ocean Research & Development Institute, Ansan, P.O. Box 29, Seoul, 425-600, Korea.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Mitra S, Dygas-Holz AM, Jiracek J, Zertova M, Zakova L, Holz RC. A new colorimetric assay for methionyl aminopeptidases: examination of the binding of a new class of pseudopeptide analog inhibitors. Anal Biochem 2006; 357:43-9. [PMID: 16844071 DOI: 10.1016/j.ab.2006.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Revised: 06/07/2006] [Accepted: 06/09/2006] [Indexed: 11/18/2022]
Abstract
A direct and convenient spectrophotometric assay has been developed for methionine aminopeptidases (MetAPs). The method employs the hydrolysis of a substrate that is a methionyl analogue of p-nitroaniline (L-Met-p-NA), which releases the chromogenic product p-nitroaniline. This chromogenic product can be monitored continuously using a UV-Vis spectrophotometer set at 405 nm. The assay was tested with the type I MetAP from Escherichia coli (EcMetAP-I) and the type II MetAP from Pyrococcus furiosus (PfMetAP-II). Using L-Met-p-NA, the kinetic constants k(cat) and K(m) were determined for EcMetAP-I and PfMetAP-II and were compared with those obtained with a "standard" high-performance liquid chromatography (HPLC) discontinuous assay. The assay has also been used to determine the temperature dependence of the kinetic constant k(cat) for PfMetAP-II as well as to screen two novel pseudopeptide inhibitors of MetAPs. The results demonstrate that L-Met-p-NA provides a fast, convenient, and effective substrate for both type I and type II MetAPs and that this substrate can be used to quickly screen inhibitors of MetAPs.
Collapse
Affiliation(s)
- Sanghamitra Mitra
- Department of Chemistry and Biochemistry, Utah State University, Logan, 84322, USA
| | | | | | | | | | | |
Collapse
|
18
|
Leszczyniecka M, Bhatia U, Cueto M, Nirmala NR, Towbin H, Vattay A, Wang B, Zabludoff S, Phillips PE. MAP1D, a novel methionine aminopeptidase family member is overexpressed in colon cancer. Oncogene 2006; 25:3471-8. [PMID: 16568094 DOI: 10.1038/sj.onc.1209383] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
N-terminal methionine removal is an important cellular process required for proper biological activity, subcellular localization, and eventual degradation of many proteins. The enzymes that catalyze this reaction are called Methionine Aminopeptidases (MAPs). To date, only two MAP family members, MAP1A and MAP2, have been well characterized and studied in mammals. In our studies, we have cloned a full length MAP1D gene. Expression and purification of full length recombinant protein shows that the sequence encodes an enzyme with MAP activity. MAP1D is overexpressed in colon cancer cell lines and in colon tumors as compared to matched normal tissue samples. Downregulation of MAP1D expression by shRNA in HCT-116 colon carcinoma cells reduces anchorage-independant growth in soft agar. These data suggest that MAP1D is a potentially oncogenic, novel member of the MAP gene family that may play an important role in colon tumorigenesis.
Collapse
|
19
|
Zhang H, Huang H, Cali A, Takvorian PM, Feng X, Zhou G, Weiss LM. Investigations into microsporidian methionine aminopeptidase type 2: a therapeutic target for microsporidiosis. Folia Parasitol (Praha) 2005; 52:182-92. [PMID: 16004378 PMCID: PMC3109671 DOI: 10.14411/fp.2005.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The Microsporidia have been reported to cause a wide range of clinical diseases particularly in patients that are immunosuppressed. They can infect virtually any organ system and cases of gastrointestinal infection, encephalitis, ocular infection, sinusitis, myositis and disseminated infection are well described in the literature. While benzimidazoles such as albendazole are active against many species of Microsporidia, these drugs do not have significant activity against Enterocytozoon bieneusi. Fumagillin, ovalicin and their analogues have been demonstrated to have antimicrosporidial activity in vitro and in animal models of microsporidiosis. Fumagillin has also been demonstrated to have efficacy in human infections due to E. bieneusi. Fumagillin is an irreversible inhibitor of methionine aminopeptidase type 2 (MetAP2). Homology cloning employing the polymerase chain reaction was used to identify the MetAP2 gene from the human pathogenic microsporidia Encephalitozoon cuniculi, Encephalitozoon hellem, Encephalitozoon intestinalis, Brachiola algerae and E. bieneusi. The full-length MetAP2 coding sequence was obtained for all of the Encephalitozoonidae. Recombinant E. cuniculi MetAP2 was produced in baculovirus and purified using chromatographic techniques. The in vitro activity and effect of the inhibitors bestatin and TNP-470 on this recombinant microsporidian MetAP2 was characterized. An in silico model of E. cuniculi MetAP2 was developed based on crystallographic data on human MetAP2. These reagents provide new tools for the development of in vitro assay systems to screen candidate compounds for use as new therapeutic agents for the treatment of microsporidiosis.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Zheng Y, Roberts RJ, Kasif S, Guan C. Characterization of two new aminopeptidases in Escherichia coli. J Bacteriol 2005; 187:3671-7. [PMID: 15901689 PMCID: PMC1112042 DOI: 10.1128/jb.187.11.3671-3677.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two genes in the Escherichia coli genome, ypdE and ypdF, have been cloned and expressed, and their products have been purified. YpdF is shown to be a metalloenzyme with Xaa-Pro aminopeptidase activity and limited methionine aminopeptidase activity. Genes homologous to ypdF are widely distributed in bacterial species. The unique feature in the sequences of the products of these genes is a conserved C-terminal domain and a variable N-terminal domain. Full or partial deletion of the N terminus in YpdF leads to the loss of enzymatic activity. The conserved C-terminal domain is homologous to that of the methionyl aminopeptidase (encoded by map) in E. coli. However, YpdF and Map differ in their preference for the amino acid next to the initial methionine in the peptide substrates. The implication of this difference is discussed. ypdE is the immediate downstream gene of ypdF, and its start codon overlaps with the stop codon of ypdF by 1 base. YpdE is shown to be a metalloaminopeptidase and has a broad exoaminopeptidase activity.
Collapse
Affiliation(s)
- Yu Zheng
- Bioinformatics Graduate Program, Boston University, Massachusetts 02215, USA.
| | | | | | | |
Collapse
|
21
|
RK-805, an endothelial-cell-growth inhibitor produced by Neosartorya sp., and a docking model with methionine aminopeptidase-2. Tetrahedron 2004. [DOI: 10.1016/j.tet.2003.09.104] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Mercado-Flores Y, Noriega-Reyes Y, RamÃrez-Zavala B, Hernández-RodrÃguez CÃ, Villa-Tanaca L. Purification and characterization of aminopeptidase (pumAPE) fromUstilago maydis. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09540.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
23
|
Hu X, Zhu J, Srivathsan S, Pei D. Peptidyl hydroxamic acids as methionine aminopeptidase inhibitors. Bioorg Med Chem Lett 2004; 14:77-9. [PMID: 14684302 DOI: 10.1016/j.bmcl.2003.10.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A new class of methionine aminopeptidase (MetAP) inhibitors, which contain an internal hydroxamate (N-acyl-N-alkylhydroxylamine) core as the metal-chelating group, has been designed, synthesized, and tested. The compounds exhibited reversible, competitive inhibition against Escherichia coli MetAP as well as human MetAP-1 and MetAP-2. The most potent inhibitor had a K(i) value of 2.5 microM and >20-fold selectivity toward E. coli MAP.
Collapse
Affiliation(s)
- Xubo Hu
- Department of Chemistry and Ohio State Biochemistry Program, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
24
|
Fu H, Dahlgren C, Bylund J. Subinhibitory concentrations of the deformylase inhibitor actinonin increase bacterial release of neutrophil-activating peptides: a new approach to antimicrobial chemotherapy. Antimicrob Agents Chemother 2003; 47:2545-50. [PMID: 12878517 PMCID: PMC166101 DOI: 10.1128/aac.47.8.2545-2550.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2002] [Revised: 03/10/2003] [Accepted: 05/24/2003] [Indexed: 11/20/2022] Open
Abstract
Bacterial protein synthesis starts with a formylated methionine residue, and this residue is sequentially cleaved away by a unique peptide deformylase (PDF) and a methionine aminopeptidase to generate mature proteins. The formylation-deformylation of proteins is a unique hallmark of bacterial metabolism and has recently become an attractive target for the development of antimicrobial agents. The innate immune system uses the formylation of bacterial proteins as a target, and professional phagocytes, e.g., neutrophils, express specific receptors for bacterium-derived formylated peptides. Activation of formyl peptide receptors (FPR) mediates neutrophil migration and the release of oxygen radicals and other antimicrobial substances from these cells. We hypothesize that the use of a PDF inhibitor would increase the production of proinflammatory peptides from the bacteria and thus trigger a more pronounced innate immune response. We tested this hypothesis by exposing Escherichia coli to subinhibitory doses of the PDF inhibitor actinonin and show that actinonin indeed increases the production and secretion of neutrophil-activating peptides that activate human neutrophils through FPR. These findings could be potentially used as a new approach to antibacterial chemotherapy.
Collapse
Affiliation(s)
- Huamei Fu
- The Phagocyte Research Laboratory, Department for Rheumatology and Inflammation Research, University of Göteborg, Göteborg, Sweden.
| | | | | |
Collapse
|
25
|
Vetro JA, Chang YH. Yeast methionine aminopeptidase type 1 is ribosome-associated and requires its N-terminal zinc finger domain for normal function in vivo. J Cell Biochem 2002; 85:678-88. [PMID: 11968008 DOI: 10.1002/jcb.10161] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Methionine aminopeptidase type 1 (MetAP1) cotranslationally removes N-terminal methionine from nascent polypeptides, when the second residue in the primary structure is small and uncharged. Eukaryotic MetAP1 has an N-terminal zinc finger domain not found in prokaryotic MetAPs. We hypothesized that the zinc finger domain mediates the association of MetAP1 with the ribosomes and have reported genetic evidence that it is important for the normal function of MetAP1 in vivo. In this study, the intracellular role of the zinc finger domain in yeast MetAP1 function was examined. Wild-type MetAP1 expressed in a yeast map1 null strain removed 100% of N-terminal methionine from a reporter protein, while zinc finger mutants removed only 31-35%. Ribosome profiles of map1 null expressing wild-type MetAP1 or one of three zinc finger mutants were compared. Wild-type MetAP1 was found to be an 80S translational complex-associated protein that primarily associates with the 60S subunit. Deletion of the zinc finger domain did not significantly alter the ribosome profile distribution of MetAP1. In contrast, single point mutations in the first or second zinc finger motif disrupted association of MetAP1 with the 60S subunit and the 80S translational complex. Together, these results indicate that the zinc finger domain is essential for the normal processing function of MetAP1 in vivo and suggest that it may be important for the proper functional alignment of MetAP1 on the ribosomes.
Collapse
Affiliation(s)
- Joseph A Vetro
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University Health Sciences Center, St. Louis, Missouri 63104, USA
| | | |
Collapse
|
26
|
Affiliation(s)
- L M Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | |
Collapse
|
27
|
Chen S, Vetro JA, Chang YH. The specificity in vivo of two distinct methionine aminopeptidases in Saccharomyces cerevisiae. Arch Biochem Biophys 2002; 398:87-93. [PMID: 11811952 DOI: 10.1006/abbi.2001.2675] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Saccharomyces cerevisiae, the essential function of amino-terminal methionine removal is provided cotranslationally by two methionine aminopeptidases (MetAP1 and MetAP2). To examine the individual processing efficiency of each MetAP in vivo, we measured the degree of N-terminal methionine cleavage from a series of mutated glutathione-S-transferase (GST) proteins isolated from yeast wild-type, a map1 deletion strain, a map2 deletion strain, and a map1 deletion strain overexpressing the MAP2 gene. We found that MetAP1 plays the major role in N-terminal methionine removal in yeast. Both MetAPs were less efficient when the second residue was Val, and MetAP2 was less efficient than MetAP1 when the second residue was Gly, Cys, or Thr. These findings indicate that MetAP1 and MetAP2 exhibit different cleavage efficiencies against the same substrates in vivo. Interestingly, although methionine is considered a stabilizing N-terminal residue, we found that retention of the initiator methionine on the Met-Ala-GST mutant protein drastically reduced its half-life in vivo.
Collapse
Affiliation(s)
- Shaoping Chen
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, 1402 S. Grand Boulevard, St. Louis, Missouri 63104, USA
| | | | | |
Collapse
|
28
|
Bradshaw RA, Hope CJ, Yi E, Walker KW. Co- and Posttranslational Processing: The Removal of Methionine. CO- AND POSTTRANSLATIONAL PROTEOLYSIS OF PROTEINS 2002. [DOI: 10.1016/s1874-6047(02)80015-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
29
|
Apfel CM, Evers S, Hubschwerlen C, Pirson W, Page MG, Keck W. Peptide deformylase as an antibacterial drug target: assays for detection of its inhibition in Escherichia coli cell homogenates and intact cells. Antimicrob Agents Chemother 2001; 45:1053-7. [PMID: 11257015 PMCID: PMC90424 DOI: 10.1128/aac.45.4.1053-1057.2001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An assay was developed to determine the activity of peptide deformylase (PDF) inhibitors under conditions as close as possible to the physiological situation. The assay principle is the detection of N-terminal [35S]methionine labeling of a protein that contains no internal methionine. If PDF is active, the deformylation of the methionine renders the peptide a substrate for methionine aminopeptidase, resulting in the removal of the N-terminal methionine label. In the presence of a PDF inhibitor, the deformylation is blocked so that the N-formylated peptide is not processed and the label is detected. Using this assay, it is possible to determine the PDF activity under near-physiological conditions in a cell-free transcription-translation system as well as in intact bacterial cells.
Collapse
Affiliation(s)
- C M Apfel
- Pharma Research Basel, F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- B Polevoda
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | |
Collapse
|
31
|
Zhou Y, Guo XC, Yi T, Yoshimoto T, Pei D. Two continuous spectrophotometric assays for methionine aminopeptidase. Anal Biochem 2000; 280:159-65. [PMID: 10805534 DOI: 10.1006/abio.2000.4513] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two spectrophotometric assays have been developed for methionine aminopeptidases (MetAPs). The first method employs a thioester substrate which, upon enzymatic removal of the N-terminal methionine, generates a free thiol group. The released thiol is quantitated using Ellman's reagent. The MetAP reaction is conveniently monitored on a UV-VIS spectrophotometer in a continuous fashion, with the addition of an excess of Ellman's reagent into the assay reaction. Two tripeptide analogues were synthesized and found to be excellent substrates of both Escherichia coli MetAP and human MetAP2 (k(cat)/K(M) = 2.8 x 10(5) M(-1) s(-1) for the most reactive substrate). In the second assay method, the MetAP reaction is coupled to a prolyl aminopeptidase reaction using Met-Pro-p-nitroanilide as substrate. MetAP-catalyzed cleavage of the N-terminal methionine produces prolyl-p-nitroanilide, which is rapidly hydrolyzed by the prolyl aminopeptidase from Bacillus coagulans to release a chromogenic product, p-nitroaniline. This allows the MetAP reaction to be continuously monitored at 405 nm on a UV-VIS spectrophotometer. The assays have been applied to determine the pH optima and kinetic constants for the E. coli and human MetAPs as well as to screen MetAP inhibitors. These results demonstrate that the current assays are convenient, rapid, and sensitive methods for kinetic studies of MetAPs and effective tools for screening MetAP inhibitors.
Collapse
Affiliation(s)
- Y Zhou
- Department of Chemistry, The Ohio State University, Columbus 43210, USA
| | | | | | | | | |
Collapse
|
32
|
Herrera-Camacho I, Morales-Monterrosas R, Quiróz-Alvarez R. Aminopeptidase yscCo-II: a new cobalt-dependent aminopeptidase from yeast-purification and biochemical characterization. Yeast 2000; 16:219-29. [PMID: 10649451 DOI: 10.1002/(sici)1097-0061(200002)16:3<219::aid-yea523>3.0.co;2-j] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Saccharomyces cerevisiae aminopeptidase yscCo-II (APCo-II) was purified to apparent homogeneity by gel filtration, affinity chromatography and anion-exchange chromatography. APCo-II is an hexameric cobalt-dependent metallo-enzyme with an estimated native molecular mass of 290 kDa. Enzyme activity is only detected in the presence of cobalt ions at pH 7.0. Substrate specificity studies indicate that aminopeptidase yscCo-II cleaves only basic N-terminal residues. PMSF, Cu(2+), 1,10-phenanthroline and bestatin were found to be very strong inhibitors of aminopeptidase yscCo-II activity. Kinetic studies indicated that the enzyme has a similar K(m) and Ka(Co )(activation constant of cobalt) and, following extraction of cobalt from the enzyme, activity was recovered only after cobalt addition.
Collapse
Affiliation(s)
- I Herrera-Camacho
- Area de Bioquímica, Centro de Química del Instituto de Ciencias, Universidad Autónoma de Puebla, 72000 Puebla, México.
| | | | | |
Collapse
|
33
|
Abstract
Methionine aminopeptidases (MAPs) play important roles in protein processing. MAPs from various organisms, for example E. coli, S. typhimurium, P. furiosus, Saccharomyces cerevisiae, and porcine have been purified to homogeneity and their MAP activities have been tested in vitro and in vivo. The DNA sequence analyses of MAP genes from the above organisms reveal sequence homologies with other prokaryotic MAPs as well as with various eukaryotic homologues of rat p67. The cellular glycoprotein, p67 protects the alpha-subunit of eukaryotic initiation factor 2 (eIF2) from phosphorylation by its kinases. We call this POEP (protection of eIF2alpha phosphorylation) activity of p67. The POEP activity of p67 is observed in different stress-related situations such as during heme-deficiency of reticulocytes, serum starvation and heat-shock of mammalian cells, vaccinia virus infection of mammalian cells, baculovirus infection of insect cells, mitosis, apoptosis, and possibly during normal cell growth. The POEP activity of p67 is regulated by an enzyme, called p67-deglycosylase (p67-DG). When active, p67-DG inactivates p67 by removing its carbohydrate moieties. Remarkable amino acid sequence similarities at the C-terminus of rat p67 with its eukaryotic and prokaryotic homologues which have MAP activities, raise several important questions: i) does rat p67 have MAP activity?; and ii) if it does have MAP activity, how the two activities (POEP and MAP) of p67 are used by mammalian cells during their growth and differentiation. In this review, discussions have been made to evaluate both POEP and MAP activities of p67 and their possible involvement during normal growth and cancerous growth of mammalian cells.
Collapse
Affiliation(s)
- B Datta
- Department of Chemistry, University of Nebraska at Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
34
|
RAKSAKULTHAI ROCHARAKE, HAARD NORMANF. PURIFICATION AND CHARACTERIZATION OF AMINOPEPTIDASE FRACTIONS FROM SQUID (ILLEX ILLECEBROSUS) HEPATOPANCREAS. J Food Biochem 1999. [DOI: 10.1111/j.1745-4514.1999.tb00010.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Walker KW, Bradshaw RA. Yeast methionine aminopeptidase I. Alteration of substrate specificity by site-directed mutagenesis. J Biol Chem 1999; 274:13403-9. [PMID: 10224104 DOI: 10.1074/jbc.274.19.13403] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In eukaryotes, two isozymes (I and II) of methionine aminopeptidase (MetAP) catalyze the removal of the initiator methionine if the penultimate residue has a small radius of gyration (glycine, alanine, serine, threonine, proline, valine, and cysteine). Using site-directed mutagenesis, recombinant yeast MetAP I derivatives that are able to cleave N-terminal methionine from substrates that have larger penultimate residues have been expressed. A Met to Ala change at 329 (Met206 in Escherichia coli enzyme) produces an average catalytic efficiency 1.5-fold higher than the native enzyme on normal substrates and cleaves substrates containing penultimate asparagine, glutamine, isoleucine, leucine, methionine, and phenylalanine. Interestingly, the native enzyme also has significant activity with the asparagine peptide not previously identified as a substrate. Mutation of Gln356 (Gln233 in E. coli MetAP) to alanine results in a catalytic efficiency about one-third that of native with normal substrates but which can cleave methionine from substrates with penultimate histidine, asparagine, glutamine, leucine, methionine, phenylalanine, and tryptophan. Mutation of Ser195 to alanine had no effect on substrate specificity. None of the altered enzymes produced cleaved substrates with a fully charged residue (lysine, arginine, aspartic acid, or glutamic acid) or tyrosine in the penultimate position.
Collapse
Affiliation(s)
- K W Walker
- Department of Physiology and Biophysics, College of Medicine, University of California, Irvine, California 92697, USA
| | | |
Collapse
|
36
|
Larrabee JA, Thamrong-nawasawat T, Mon SY. High-pressure liquid chromatographic method for the assay of methionine aminopeptidase activity: application to the study of enzymatic inactivation. Anal Biochem 1999; 269:194-8. [PMID: 10094794 DOI: 10.1006/abio.1998.3086] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- J A Larrabee
- Department of Chemistry and Biochemistry, Middlebury College, Middlebury, Vermont 05753, USA.
| | | | | |
Collapse
|
37
|
Walker KW, Bradshaw RA. Yeast methionine aminopeptidase I can utilize either Zn2+ or Co2+ as a cofactor: a case of mistaken identity? Protein Sci 1998; 7:2684-7. [PMID: 9865965 PMCID: PMC2143902 DOI: 10.1002/pro.5560071224] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Yeast methionine aminopeptidase I (MetAP I) is one of two enzymes in Saccharomyces cerevisiae that is responsible for cotranslational cleavage of initiator methionines. It has previously been classified as a Co2+ metalloprotease in all prokaryotic and eukaryotic forms studied. However, treatment of recombinant apo-MetAP I with 12.5 microM Zn2+ produces an enzyme that is as active as that reconstituted with 200 microM Co2+. In the presence of physiological concentrations of reduced glutathione (GSH), Co-MetAP I is inactive, while the activity of Zn-MetAP I is increased more than 1.7-fold over Zn-MetAP I assayed in the absence of GSH. Given that the in vivo concentration of Zn2+ is at least 1,000-fold higher than that of Co2+, and that Co2+ is insoluble in physiological concentrations of GSH, it is probable that yeast MetAP I is actually a Zn2+ metalloprotease. Furthermore, unless there are extraordinary conditions that insulate or sequester them from this reducing milieu, that have yet to be identified, there are not likely to be any cytoplasmic enzymes that use free Co2+.
Collapse
Affiliation(s)
- K W Walker
- Department of Physiology and Biophysics, College of Medicine, University of California, Irvine 92697, USA
| | | |
Collapse
|
38
|
Bradshaw RA, Brickey WW, Walker KW. N-terminal processing: the methionine aminopeptidase and N alpha-acetyl transferase families. Trends Biochem Sci 1998; 23:263-7. [PMID: 9697417 DOI: 10.1016/s0968-0004(98)01227-4] [Citation(s) in RCA: 364] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Removal of the initiator methionine and/or acetylation of the alpha-amino group are among the earliest possible chemical modifications that occur during protein synthesis in eukaryotes. These events are catalyzed by methionine aminopeptidase and N alpha-acetyltransferase, respectively. Recent advances in the isolation and characterization of these enzymes indicate that they exist as isoforms that vary in cellular location, function, and evolutionary origins.
Collapse
Affiliation(s)
- R A Bradshaw
- Dept of Physiology and Biophysics, College of Medicine, University of California, Irvine 92697, USA
| | | | | |
Collapse
|
39
|
Klinkenberg M, Ling C, Chang YH. A dominant negative mutation in Saccharomyces cerevisiae methionine aminopeptidase-1 affects catalysis and interferes with the function of methionine aminopeptidase-2. Arch Biochem Biophys 1997; 347:193-200. [PMID: 9367524 DOI: 10.1006/abbi.1997.0345] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Methionine aminopeptidase (MetAP) enzymes require the metal ion cobalt, but little is known about the role of cobalt in the structural stability or catalysis of these enzymes. In Escherichia coli MetAP, for which a crystal structure is available, the five amino acid residues liganding the two cobalt ions are Asp97, Asp108, His171, Glu204, and Glu235. These five amino acids are conserved in all MetAPs sequenced to date. The C-terminal domain of the yeast Saccharomyces cerevisiae MetAP1 is 41% identical to E. coli MetAP and contains these cobalt coordinating residues. Using site-directed mutagenesis on the gene coding for yeast MetAP1, we replaced Asp219 (corresponding to Asp97 in E. coli MetAP) with Asn. The yeast D219N mutant enzyme has 10(3)-fold lower catalytic activity and a different substrate specificity when compared to wild-type yeast MetAP1. These results indicate that the side-chain of Asp219 is important for catalysis. Expression of D219N-MetAP1 in yeast causes a slow-growth phenotype and interferes with wild-type MetAP1 in a dominant manner. Expression of D219N-MetAP1 also affects the function of S. cerevisiae MetAP2.
Collapse
Affiliation(s)
- M Klinkenberg
- School of Medicine, Saint Louis University Health Sciences Center, 1402 South Grand Boulevard, St. Louis, Missouri 63104, USA
| | | | | |
Collapse
|
40
|
Griffith EC, Su Z, Turk BE, Chen S, Chang YH, Wu Z, Biemann K, Liu JO. Methionine aminopeptidase (type 2) is the common target for angiogenesis inhibitors AGM-1470 and ovalicin. CHEMISTRY & BIOLOGY 1997; 4:461-71. [PMID: 9224570 DOI: 10.1016/s1074-5521(97)90198-8] [Citation(s) in RCA: 347] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Angiogenesis, the formation of new blood vessels, is essential for tumor growth. The inhibition of angiogenesis is therefore emerging as a promising therapy for cancer. Two natural products, fumagillin and ovalicin, were discovered to be potent inhibitors of angiogenesis due to their inhibition of endothelial cell proliferation. An analog of fumagillin, AGM-1470, is currently undergoing clinical trials for the treatment of a variety of cancers. The underlying molecular mechanism of the inhibition of angiogenesis by these natural drugs has remained unknown. RESULTS Both AGM-1470 and ovalicin bind to a common bifunctional protein, identified by mass spectrometry as the type 2 methionine aminopeptidase (MetAP2). This protein also acts as an inhibitor of eukaryotic initiation factor 2alpha (elF-2alpha) phosphorylation. Both drugs potently inhibit the methionine aminopeptidase activity of MetAP2 without affecting its ability to block elF-2alpha phosphorylation. There are two types of methionine aminopeptidase found in eukaryotes, but only the type 2 enzyme is inhibited by the drugs. A series of analogs of fumagillin and ovalicin were synthesized and their potency for inhibition of endothelial cell proliferation and inhibition of methionine aminopeptidase activity was determined. A significant correlation was found between the two activities. CONCLUSIONS The protein MetAP2 is a common molecular target for both AGM-1470 and ovalicin. This finding suggests that MetAP2 may play a critical role in the proliferation of endothelial cells and may serve as a promising target for the development of new anti-angiogenic drugs.
Collapse
Affiliation(s)
- E C Griffith
- Center for Cancer Research, Massachusetts Institute of Technology, Department of Biology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Kwon SC, Park SJ, Cho JM. Purification and properties of an intracellular leucine aminopeptidase from the fungus,Penicillium citrinum strain IFO 6352. ACTA ACUST UNITED AC 1996. [DOI: 10.1007/bf01570145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Camadro JM, Labbe P. Cloning and characterization of the yeast HEM14 gene coding for protoporphyrinogen oxidase, the molecular target of diphenyl ether-type herbicides. J Biol Chem 1996; 271:9120-8. [PMID: 8621563 DOI: 10.1074/jbc.271.15.9120] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Protoporphyrinogen oxidase, which catalyzes the oxygen-dependent aromatization of protoporphyrinogen IX to protoporphyrin IX, is the molecular target of diphenyl ether type herbicides. The structural gene for the yeast protoporphyrinogen oxidase, HEM14, was isolated by functional complementation of a hem14-1 protoporphyrinogen oxidase-deficient yeast mutant, using a novel one-step colored screening procedure to identify heme-synthesizing cells. The hem14-1 mutation was genetically linked to URA3, a marker on chromosome V, and HEM14 was physically mapped on the right arm of this chromosome, between PRP22 and FAA2. Disruption of the HEM14 gene leads to protoporphyrinogen oxidase deficiency in vivo (heme deficiency and accumulation of heme precursors), and in vitro (lack of immunodetectable protein or enzyme activity). The HEM14 gene encodes a 539-amino acid protein (59,665 Da; pI 9.3) containing an ADP- beta alpha beta-binding fold similar to those of several other flavoproteins. Yeast protoporphyrinogen oxidase was somewhat similar to the HemY gene product of Bacillus subtilis and to the human and mouse protoporphyrinogen oxidases. Studies on protoporphyrinogen oxidase overexpressed in yeast and purified as wild-type enzyme showed that (i) the NH2-terminal mitochondrial targeting sequence of protoporphyrinogen oxidase is not cleaved during importation; (ii) the enzyme, as purified, had a typical flavin semiquinone absorption spectrum; and (iii) the enzyme was strongly inhibited by diphenyl ether-type herbicides and readily photolabeled by a diazoketone derivative of tritiated acifluorfen. The mutant allele hem14-1 contains two mutations, L422P and K424E, responsible for the inactive enzyme. Both mutations introduced independently in the wild-type HEM14 gene completely inactivated the protein when analyzed in an Escherichia coli expression system.
Collapse
Affiliation(s)
- J M Camadro
- Laboratoire de Biochimie des Porphyrines, Département de Microbiologie, Institut Jacques Monod, 2 Place Jussieu, F-75251 Paris Cedex 05, France
| | | |
Collapse
|
43
|
|
44
|
|
45
|
Zuo S, Guo Q, Ling C, Chang YH. Evidence that two zinc fingers in the methionine aminopeptidase from Saccharomyces cerevisiae are important for normal growth. MOLECULAR & GENERAL GENETICS : MGG 1995; 246:247-53. [PMID: 7862096 DOI: 10.1007/bf00294688] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Limited proteolysis of intact yeast methionine aminopeptidase (MAP1) with trypsin releases a 34 kDa fragment whose NH2-terminal sequence begins at Asp70, immediately following Lys69. These results suggest that yeast MAP may have a two-domain structure consisting of an NH2-terminal zinc finger domain and a C-terminal catalytic domain. To test this, a mutant MAP lacking residues 2-69 was generated, overexpressed, purified and analyzed. Metal ion analyses indicate that 1 mol of wild-type yeast MAP contains 2 mol of zinc ions and at least 1 mol of cobalt ion, whereas 1 mol of the truncated MAP lacking the putative zinc fingers contains only a trace amount of zinc ions but still contains one mole of cobalt ion. These results suggest that the two zinc ions observed in the native yeast MAP are located at the Cys/His rich region and the cobalt ion is located in the catalytic domain. The kcat and Km values of the purified truncated MAP are similar to those of the wild-type MAP when measured with peptide substrates in vitro and it appears to be as active as the wild-type MAP in vivo. However, the truncated MAP is significantly less effective in rescuing the slow growth phenotype of map mutant than the wild-type MAP. These findings suggest that the zinc fingers are essential for normal MAP function in vivo, even though the in vitro enzyme assays indicate that they are not involved in catalysis.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S Zuo
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, MO 63104
| | | | | | | |
Collapse
|
46
|
Yasuhara T, Nakai T, Ohashi A. Aminopeptidase Y, a new aminopeptidase from Saccharomyces cerevisiae. Purification, properties, localization, and processing by protease B. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36878-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
47
|
Skrtić I, Vitale L. Methionine-preferring broad specificity aminopeptidase from chicken egg-white. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. BIOCHEMISTRY AND MOLECULAR BIOLOGY 1994; 107:471-8. [PMID: 7749615 DOI: 10.1016/0305-0491(94)90213-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
From chicken egg-white a broad specificity aminopeptidase is isolated. The presence of high molecular mass, hydrophobic aminopeptidase is also revealed. Isolated enzyme hydrolysed aliphatic, aromatic and basic aminoacyl-2-naphthylamides, and di- to hexapeptides, with a preference for methionine at the NH2-end, and basic or bulky hydrophobic residue at the penultimate position. The enzyme is a hydrophilic, acidic glycoprotein of M(r) approximately 180,000, optimally active at pH 7.0-7.5 and at a temperature of 50 degrees C. Amastatin, bestatin and o-phenanthroline are strong, and puromycin, EDTA and iodoacetamide less potent, inhibitors. Co2+ activates the enzyme. The isolated enzyme can be classified as a methionine-preferring broad specificity aminopeptidase.
Collapse
Affiliation(s)
- I Skrtić
- Department of Organic Chemistry and Biochemistry, Ruder Bosković Institute, Zagreb, Croatia
| | | |
Collapse
|
48
|
Bendiak B, Ward LD, Simpson RJ. Proteins of the Golgi apparatus. Purification to homogeneity, N-terminal sequence, and unusually large Stokes radius of the membrane-bound form of UDP-galactose:N-acetylglucosamine beta 1-4galactosyltransferase from rat liver. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 216:405-17. [PMID: 8375379 DOI: 10.1111/j.1432-1033.1993.tb18158.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The Golgi marker enzyme, UDP-galactose:N-acetylglucosamine beta 1-4galactosyltransferase (beta 1-4GalT) was purified 44300-fold in its intact, membrane-bound form from rat liver membranes. The protein was isolated from detergent extracts as a high-M(r) form, having a Stokes radius approximating a globular protein of M(r) 440,000. It is comprised of a single protein component as observed on SDS/polyacrylamide gels, having an M(r) near 51,000, and does not have intermolecular disulfide cross-links. N-terminal sequencing of the enzyme demonstrated that it contains an N-terminal hydrophobic stretch deduced previously from cDNA encoding for the enzyme. Previous studies have indicated that the protein may be translated at either of two AUG sites near the 5' end of the mRNA [Russo, R. N., Shaper, N. L. & Shaper, J. H. (1990) J. Biol. Chem. 265, 3324-3331], giving rise to two polypeptides, one appended with 13 amino acids. In the work described here, evidence was only found for the sequence of the short form, missing a single methionine at the N-terminus. Mild proteolytic treatment cleaved the enzyme, giving rise to low-M(r) forms which were fully catalytically active and which, upon sequencing, were missing a 66-amino-acid stretch from the N-terminus (as compared to the mouse cDNA). Proteolytic treatment was accompanied by conversion of the form having a large Stokes radius to one approximating a globular protein with M(r) near 50,000. The N-terminal stretch appears to contribute to maintenance of the form having a large Stokes radius. This may be the result of interaction with a detergent micelle, dimerization or oligomerization, or interaction with some other large, non-protein molecule, although a detergent exchange still resulted in a form having a large Stokes radius.
Collapse
Affiliation(s)
- B Bendiak
- Department of Enzymology, University of Washington, Seattle
| | | | | |
Collapse
|
49
|
|
50
|
Tisljar U, Wolf DH. Purification and characterization of the cystinyl bond cleaving yeast aminopeptidase yscXVI. FEBS Lett 1993; 322:191-6. [PMID: 8482390 DOI: 10.1016/0014-5793(93)81566-i] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Aminopeptidase yscXVI was purified from the yeast Saccharomyces cerevisiae. By SDS-PAGE the enzyme has a molecular weight of 45,000 Da, and in chromatofocusing, elution was observed at pH 6.2. The synthetic substrate cystinyl-4-nitroanilide (Km 22.5 microM, Vmax 12.9 mU/mg) is cleaved most efficiently in the pH range 7-8. Besides cleaving this standard substrate, aminopeptidase yscXVI acts on several other 4-nitroanilide substrates with unsubstituted N-terminal L-amino acids. Highest hydrolysis rate was measured with Lys-4-nitroanilide and Leu-4-nitroanilide. The activity of aminopeptidase yscXVI is abolished by chelating agents and restored by Zn2+, Mn2+ and Co2+ ions. Bestatin and amastatin are both strong inhibitors of the enzyme, with Ki values of 0.53 microM and 0.93 microM, respectively. Aminopeptidase yscXVI is detectable in the logarithmic growth phase, stationary phase, and in starved cultures of yeast.
Collapse
Affiliation(s)
- U Tisljar
- Institut für Biochemie, Universität Stuttgart, Germany
| | | |
Collapse
|