1
|
Keeney MT, Rocha EM, Hoffman EK, Farmer K, Di Maio R, Weir J, Wagner WG, Hu X, Clark CL, Castro SL, Scheirer A, Fazzari M, De Miranda BR, Pintchovski SA, Shrader WD, Pagano PJ, Hastings TG, Greenamyre JT. LRRK2 regulates production of reactive oxygen species in cell and animal models of Parkinson's disease. Sci Transl Med 2024; 16:eadl3438. [PMID: 39356746 DOI: 10.1126/scitranslmed.adl3438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/30/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024]
Abstract
Oxidative stress has long been implicated in Parkinson's disease (PD) pathogenesis, although the sources and regulation of reactive oxygen species (ROS) production are poorly defined. Pathogenic mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are associated with increased kinase activity and a greater risk of PD. The substrates and downstream consequences of elevated LRRK2 kinase activity are still being elucidated, but overexpression of mutant LRRK2 has been associated with oxidative stress, and antioxidants reportedly mitigate LRRK2 toxicity. Here, using CRISPR-Cas9 gene-edited HEK293 cells, RAW264.7 macrophages, rat primary ventral midbrain cultures, and PD patient-derived lymphoblastoid cells, we found that elevated LRRK2 kinase activity was associated with increased ROS production and lipid peroxidation and that this was blocked by inhibitors of either LRRK2 kinase or NADPH oxidase 2 (NOX2). Oxidative stress induced by the pesticide rotenone was ameliorated by LRRK2 kinase inhibition and was absent in cells devoid of LRRK2. In a rat model of PD induced by rotenone, a LRRK2 kinase inhibitor prevented the lipid peroxidation and NOX2 activation normally seen in nigral dopaminergic neurons in this model. Mechanistically, LRRK2 kinase activity was shown to regulate phosphorylation of serine-345 in the p47phox subunit of NOX2. This, in turn, led to translocation of p47phox from the cytosol to the membrane-associated gp91phox (NOX2) subunit, activation of the NOX2 enzyme complex, and production of ROS. Thus, LRRK2 kinase activity may drive cellular ROS production in PD through the regulation of NOX2 activity.
Collapse
Affiliation(s)
- Matthew T Keeney
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Emily M Rocha
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eric K Hoffman
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kyle Farmer
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Roberto Di Maio
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Julie Weir
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Weston G Wagner
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xiaoping Hu
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Courtney L Clark
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sandra L Castro
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Abigail Scheirer
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marco Fazzari
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Briana R De Miranda
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | - Patrick J Pagano
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Teresa G Hastings
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J Timothy Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Seo YS, Park JM, Kim JH, Lee MY. Cigarette Smoke-Induced Reactive Oxygen Species Formation: A Concise Review. Antioxidants (Basel) 2023; 12:1732. [PMID: 37760035 PMCID: PMC10525535 DOI: 10.3390/antiox12091732] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Smoking is recognized as a significant risk factor for numerous disorders, including cardiovascular diseases, respiratory conditions, and various forms of cancer. While the exact pathogenic mechanisms continue to be explored, the induction of oxidative stress via the production of excess reactive oxygen species (ROS) is widely accepted as a primary molecular event that predisposes individuals to these smoking-related ailments. This review focused on how cigarette smoke (CS) promotes ROS formation rather than the pathophysiological repercussions of ROS and oxidative stress. A comprehensive analysis of existing studies revealed the following key ways through which CS imposes ROS burden on biological systems: (1) ROS, as well as radicals, are intrinsically present in CS, (2) CS constituents generate ROS through chemical reactions with biomolecules, (3) CS stimulates cellular ROS sources to enhance production, and (4) CS disrupts the antioxidant system, aggravating the ROS generation and its functions. While the evidence supporting these mechanisms is chiefly based on in vitro and animal studies, the direct clinical relevance remains to be fully elucidated. Nevertheless, this understanding is fundamental for deciphering molecular events leading to oxidative stress and for developing intervention strategies to counter CS-induced oxidative stress.
Collapse
Affiliation(s)
| | | | | | - Moo-Yeol Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Goyang-si 10326, Gyeonggi-do, Republic of Korea; (Y.-S.S.); (J.-M.P.); (J.-H.K.)
| |
Collapse
|
3
|
Thimmappa PY, Vasishta S, Ganesh K, Nair AS, Joshi MB. Neutrophil (dys)function due to altered immuno-metabolic axis in type 2 diabetes: implications in combating infections. Hum Cell 2023:10.1007/s13577-023-00905-7. [PMID: 37115481 DOI: 10.1007/s13577-023-00905-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/31/2023] [Indexed: 04/29/2023]
Abstract
Metabolic and inflammatory pathways are highly interdependent, and both systems are dysregulated in Type 2 diabetes (T2D). T2D is associated with pre-activated inflammatory signaling networks, aberrant cytokine production and increased acute phase reactants which leads to a pro-inflammatory 'feed forward loop'. Nutrient 'excess' conditions in T2D with hyperglycemia, elevated lipids and branched-chain amino acids significantly alter the functions of immune cells including neutrophils. Neutrophils are metabolically active cells and utilizes energy from glycolysis, stored glycogen and β-oxidation while depending on the pentose phosphate pathway for NADPH for performing effector functions such as chemotaxis, phagocytosis and forming extracellular traps. Metabolic changes in T2D result in constitutive activation and impeded acquisition of effector or regulatory activities of neutrophils and render T2D subjects for recurrent infections. Increased flux through the polyol and hexosamine pathways, elevated production of advanced glycation end products (AGEs), and activation of protein kinase C isoforms lead to (a) an enhancement in superoxide generation; (b) the stimulation of inflammatory pathways and subsequently to (c) abnormal host responses. Neutrophil dysfunction diminishes the effectiveness of wound healing, successful tissue regeneration and immune surveillance against offending pathogens. Hence, Metabolic reprogramming in neutrophils determines frequency, severity and duration of infections in T2D. The present review discusses the influence of the altered immuno-metabolic axis on neutrophil dysfunction along with challenges and therapeutic opportunities for clinical management of T2D-associated infections.
Collapse
Affiliation(s)
- Pooja Yedehalli Thimmappa
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, Karnataka, 576104, India
| | - Sampara Vasishta
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, Karnataka, 576104, India
| | - Kailash Ganesh
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, Karnataka, 576104, India
| | - Aswathy S Nair
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, Karnataka, 576104, India
| | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, Karnataka, 576104, India.
| |
Collapse
|
4
|
Impaired p47phox phosphorylation in neutrophils from patients with p67phox-deficient chronic granulomatous disease. Blood 2022; 139:2512-2522. [PMID: 35108370 DOI: 10.1182/blood.2021011134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 12/10/2021] [Indexed: 11/20/2022] Open
Abstract
Superoxide production by the phagocyte reduced NAD phosphate (NADPH) oxidase is essential for innate immunity as shown in chronic granulomatous disease (CGD), an immunodeficiency disease resulting from mutations in 1 of its genes. The NADPH oxidase is composed of 2 membrane proteins (gp91phox/NOX2 and p22phox) and 4 cytosolic proteins (p47phox, p67phox, p40phox, and Rac1/2). The phosphorylation of p47phox is required for NADPH oxidase activation in cells. As p47phox and p67phox can form a tight complex in cells, we hypothesized that p67phox could regulate p47phox phosphorylation. To investigate this hypothesis, we used phospho-specific antibodies against 5 major p47phox-phosphorylated sites (Ser304, Ser315, Ser320, Ser328, and Ser345) and neutrophils from healthy donors and from p67phox-/- CGD patients. Results showed that formyl-methionyl-leucyl-phenylalanine and phorbol myristate acetate induced a time- and a concentration-dependent phosphorylation of p47phox on Ser304, Ser315, Ser320, and Ser328 in healthy human neutrophils. Interestingly, in neutrophils and Epstein-Barr virus-transformed B lymphocytes from p67phox-/- CGD patients, phosphorylation of p47phox on serine residues was dramatically reduced. In COSphox cells, the presence of p67phox led to increased phosphorylation of p47phox. In vitro studies showed that recombinant p47phox was phosphorylated on Ser304, Ser315, Ser320, and Ser328 by different PKC isoforms and the addition of recombinant p67phox alone or in combination with p40phox potentiated this process. Thus, p67phox and p40phox are required for optimal p47phox phosphorylation on Ser304, Ser315, Ser320, and Ser328 in intact cells. Therefore, p67phox and p40phox are novel regulators of p47phox-phosphorylation.
Collapse
|
5
|
Du ZD, Yu S, Qi Y, Qu TF, He L, Wei W, Liu K, Gong SS. NADPH oxidase inhibitor apocynin decreases mitochondrial dysfunction and apoptosis in the ventral cochlear nucleus of D-galactose-induced aging model in rats. Neurochem Int 2018; 124:31-40. [PMID: 30578839 DOI: 10.1016/j.neuint.2018.12.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/01/2018] [Accepted: 12/17/2018] [Indexed: 01/17/2023]
Abstract
Presbycusis has become a common sensory deficit in humans. Oxidative damage to mitochondrial DNA and mitochondrial dysfunction is strongly associated with the aging of the auditory system. A previous study established a mimetic rat model of aging using D-galactose (D-gal) and first reported that NADPH oxidase-dependent mitochondrial oxidative damage and apoptosis in the ventral cochlear nucleus (VCN) might contribute to D-gal-induced central presbycusis. In this study, we investigated the effects of apocynin, an NADPH oxidase inhibitor, on mitochondrial dysfunction and mitochondria-dependent apoptosis in the VCN of D-gal-induced aging model in rats. Our data showed that apocynin decreased NADPH oxidase activity, H2O2 levels, mitochondrial DNA common deletion, and 8-hydroxy-2-deoxyguanosine (8-OHdG) expression and increased total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-Px) activity in the VCN of D-gal-induced aging model in rats. Moreover, apocynin also decreased the protein levels of phospho-p47phox (p-p47phox), tumor necrosis factor alpha (TNFα), and uncoupling protein 2 (UCP2) in the VCN of D-gal-induced aging model in rats. Meanwhile, apocynin alleviated mitochondrial ultrastructure damage and enhanced ATP production and mitochondrial membrane potential (MMP) levels in the VCN of D-gal-induced aging model in rats. Furthermore, apocynin inhibited cytochrome c (Cyt c) translocation from mitochondria to the cytoplasm and suppressed caspase 3-dependent apoptosis in the VCN of D-gal-induced aging model in rats. Consequently, our findings suggest that neuronal survival promoted by an NADPH oxidase inhibitor is a potentially effective method to enhance the resistance of neurons to central presbycusis.
Collapse
Affiliation(s)
- Zheng-De Du
- Department of Otorhinolaryngology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing, 100050, China
| | - Shukui Yu
- Department of Otorhinolaryngology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing, 100050, China
| | - Yue Qi
- Department of Otorhinolaryngology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing, 100050, China
| | - Teng-Fei Qu
- Department of Otorhinolaryngology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing, 100050, China
| | - Lu He
- Department of Otorhinolaryngology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing, 100050, China
| | - Wei Wei
- Department of Otology, Shengjing Hospital, China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Ke Liu
- Department of Otorhinolaryngology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing, 100050, China.
| | - Shu-Sheng Gong
- Department of Otorhinolaryngology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing, 100050, China.
| |
Collapse
|
6
|
Mavrommatis A, Chronopoulou EG, Sotirakoglou K, Labrou NE, Zervas G, Tsiplakou E. The impact of the dietary supplementation level with schizochytrium sp, on the oxidative capacity of both goats’ organism and milk. Livest Sci 2018. [DOI: 10.1016/j.livsci.2018.10.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
7
|
Belambri SA, Rolas L, Raad H, Hurtado-Nedelec M, Dang PMC, El-Benna J. NADPH oxidase activation in neutrophils: Role of the phosphorylation of its subunits. Eur J Clin Invest 2018; 48 Suppl 2:e12951. [PMID: 29757466 DOI: 10.1111/eci.12951] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/08/2018] [Indexed: 12/14/2022]
Abstract
Neutrophils are key cells of innate immunity and during inflammation. Upon activation, they produce large amounts of superoxide anion (O2 -. ) and ensuing reactive oxygen species (ROS) to kill phagocytized microbes. The enzyme responsible for O2 -. production is called the phagocyte NADPH oxidase. This is a multicomponent enzyme system that becomes active after assembly of four cytosolic proteins (p47phox , p67phox , p40phox and Rac2) with the transmembrane proteins (p22phox and gp91phox , which form the cytochrome b558 ). gp91phox represents the catalytic subunit of the NADPH oxidase and is also called NOX2. NADPH oxidase-derived ROS are essential for microbial killing and innate immunity; however, excessive ROS production induces tissue injury and prolonged inflammatory reactions that contribute to inflammatory diseases. Thus, NADPH oxidase activation must be tightly regulated in time and space to limit ROS production. NADPH oxidase activation is regulated by several processes such as phosphorylation of its components, exchange of GDP/GTP on Rac2 and binding of p47phox and p40phox to phospholipids. This review aims to provide new insights into the role of the phosphorylation of the NADPH oxidase components, that is gp91phox , p22phox , p47phox , p67phox and p40phox , in the activation of this enzyme.
Collapse
Affiliation(s)
- Sahra A Belambri
- Centre de Recherche sur l'Inflammation (CRI), INSERM-U1149, CNRS-ERL8252, Laboratoire d'Excellence Inflamex, Université Paris Diderot-Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France.,Laboratoire de Biochimie Appliquée, Équipe de Recherche: Stress Oxydatif et Inflammation, Département de Biochimie, Faculté des Sciences De la Nature et de la Vie, Université Ferhat Abbes 1, Sétif, Algérie
| | - Loïc Rolas
- Centre de Recherche sur l'Inflammation (CRI), INSERM-U1149, CNRS-ERL8252, Laboratoire d'Excellence Inflamex, Université Paris Diderot-Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Houssam Raad
- Centre de Recherche sur l'Inflammation (CRI), INSERM-U1149, CNRS-ERL8252, Laboratoire d'Excellence Inflamex, Université Paris Diderot-Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Margarita Hurtado-Nedelec
- Centre de Recherche sur l'Inflammation (CRI), INSERM-U1149, CNRS-ERL8252, Laboratoire d'Excellence Inflamex, Université Paris Diderot-Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France.,Département d'Immunologie et d'Hématologie, UF Dysfonctionnements Immunitaires, HUPNVS, Hôpital Bichat, Paris, France
| | - Pham My-Chan Dang
- Centre de Recherche sur l'Inflammation (CRI), INSERM-U1149, CNRS-ERL8252, Laboratoire d'Excellence Inflamex, Université Paris Diderot-Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Jamel El-Benna
- Centre de Recherche sur l'Inflammation (CRI), INSERM-U1149, CNRS-ERL8252, Laboratoire d'Excellence Inflamex, Université Paris Diderot-Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France
| |
Collapse
|
8
|
Sesquiterpene lactone from Artemisia argyi induces gastric carcinoma cell apoptosis via activating NADPH oxidase/reactive oxygen species/mitochondrial pathway. Eur J Pharmacol 2018; 837:164-170. [PMID: 30075222 DOI: 10.1016/j.ejphar.2018.07.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 12/27/2022]
Abstract
Apoptosis is an essential type of programmed cell death. Previous studies have demonstrated that a wide range of natural-derived anticancer agents induce apoptosis by trigging oxidative stress. Artemisia argyi is a traditional Chinese herb for treating diverse diseases including dyspepsia, arthroncus, and anaphylactic disease. In this study, sesquiterpene lactone 3 (SL3), a bioactive ingredient isolated from Artemisia argyi was found to show obvious inhibitory effect on two gastric carcinoma cells. Mechanism study revealed that SL3 promoted the membrane translocation of p47, activated nicotinamide adenine dinucleotide (NADPH) oxidase, and evaluated intracellular reactive oxygen species production, leading to the activation of mitochondria-dependent caspase apoptosis pathway. Collectively, these findings show that SL3 is a promising anticancer candidate against gastric carcinoma by activating NADPH oxidase/reactive oxygen species/mitochondrial pathway.
Collapse
|
9
|
Dang DK, Shin EJ, Kim DJ, Tran HQ, Jeong JH, Jang CG, Ottersen OP, Nah SY, Hong JS, Nabeshima T, Kim HC. PKCδ-dependent p47phox activation mediates methamphetamine-induced dopaminergic neurotoxicity. Free Radic Biol Med 2018; 115:318-337. [PMID: 29269308 PMCID: PMC7074955 DOI: 10.1016/j.freeradbiomed.2017.12.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 11/29/2017] [Accepted: 12/15/2017] [Indexed: 12/11/2022]
Abstract
Protein kinase C (PKC) has been recognized to activate NADPH oxidase (PHOX). However, the interaction between PKC and PHOX in vivo remains elusive. Treatment with methamphetamine (MA) resulted in a selective increase in PKCδ expression out of PKC isoforms. PKCδ co-immunoprecipitated with p47phox, and facilitated phosphorylation and membrane translocation of p47phox. MA-induced increases in PHOX activity and reactive oxygen species were attenuated by knockout of p47phox or PKCδ. In addition, MA-induced impairments in the Nrf-2-related glutathione synthetic system were also mitigated by knockout of p47phox or PKCδ. Glutathione-immunoreactivity was co-localized in Iba-1-labeled microglial cells and in NeuN-labeled neurons, but not in GFAP-labeled astrocytes, reflecting the necessity for self-protection against oxidative stress by mainly microglia. Buthionine-sulfoximine, an inhibitor of glutathione biosynthesis, potentiated microglial activation and pro-apoptotic changes, leading to dopaminergic losses. These neurotoxic processes were attenuated by rottlerin, a pharmacological inhibitor of PKCδ, genetic inhibitions of PKCδ [i.e., PKCδ knockout mice (KO) and PKCδ antisense oligonucleotide (ASO)], or genetic inhibition of p47phox (i.e., p47phox KO or p47phox ASO). Rottlerin did not exhibit any additive effects against the protective activity offered by genetic inhibition of p47phox. Therefore, we suggest that PKCδ is a critical regulator for p47phox activation induced by MA, and that Nrf-2-dependent GSH induction via inhibition of PKCδ or p47phox, is important for dopaminergic protection against MA insult.
Collapse
Affiliation(s)
- Duy-Khanh Dang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Dae-Joong Kim
- Department of Anatomy and Cell Biology, Medical School, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Hai-Quyen Tran
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ole Petter Ottersen
- Laboratory of Molecular Neuroscience, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Jau-Shyong Hong
- Neuropharmacology Section, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Toshitaka Nabeshima
- Nabeshima Laboratory, Graduate School of Pharmaceutical Sciences, Meijo University, Nagoya 468-8503, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea.
| |
Collapse
|
10
|
DeCoursey TE. The intimate and controversial relationship between voltage-gated proton channels and the phagocyte NADPH oxidase. Immunol Rev 2017; 273:194-218. [PMID: 27558336 DOI: 10.1111/imr.12437] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
One of the most fascinating and exciting periods in my scientific career entailed dissecting the symbiotic relationship between two membrane transporters, the Nicotinamide adenine dinucleotide phosphate reduced form (NADPH) oxidase complex and voltage-gated proton channels (HV 1). By the time I entered this field, there had already been substantial progress toward understanding NADPH oxidase, but HV 1 were known only to a tiny handful of cognoscenti around the world. Having identified the first proton currents in mammalian cells in 1991, I needed to find a clear function for these molecules if the work was to become fundable. The then-recent discoveries of Henderson, Chappell, and colleagues in 1987-1988 that led them to hypothesize interactions of both molecules during the respiratory burst of phagocytes provided an excellent opportunity. In a nutshell, both transporters function by moving electrical charge across the membrane: NADPH oxidase moves electrons and HV 1 moves protons. The consequences of electrogenic NADPH oxidase activity on both membrane potential and pH strongly self-limit this enzyme. Fortunately, both consequences specifically activate HV 1, and HV 1 activity counteracts both consequences, a kind of yin-yang relationship. Notwithstanding a decade starting in 1995 when many believed the opposite, these are two separate molecules that function independently despite their being functionally interdependent in phagocytes. The relationship between NADPH oxidase and HV 1 has become a paradigm that somewhat surprisingly has now extended well beyond the phagocyte NADPH oxidase - an industrial strength producer of reactive oxygen species (ROS) - to myriad other cells that produce orders of magnitude less ROS for signaling purposes. These cells with their seven NADPH oxidase (NOX) isoforms provide a vast realm of mechanistic obscurity that will occupy future studies for years to come.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL, USA
| |
Collapse
|
11
|
Kil IS, Lee JH, Yoon SH, Bae YS, Kim S, Shin SW, Park JW. S-Nitrosylation of p47(phox) enhances phosphorylation by casein kinase 2. Redox Rep 2015; 20:228-33. [PMID: 26018922 DOI: 10.1179/1351000215y.0000000014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
OBJECTIVES Leukocyte NADPH oxidase, which is active in neutrophils, is a membrane-bound enzyme that catalyzes the reduction of oxygen to O2(-) by using NADPH as an electron donor. Previously, we reported that casein kinase 2 (CK2), a ubiquitous and highly conserved Ser/Thr kinase, is responsible for p47(phox) phosphorylation and that phosphorylation of p47(phox) by CK2 regulates the deactivation of NADPH oxidase. METHODS Here, we report that the residue Cys(196) of p47(phox) is a target of S-nitrosylation by S-nitrosothiol and peroxynitrite and that this modification enhanced phosphorylation of p47(phox) by CK2. RESULTS S-Nitrosylated p47(phox) enhanced CK2 b subunit binding, presumably due to alterations in protein conformation. DISCUSSION Taken together, we propose that S-nitrosylation of p47(phox) regulates the deactivation of NADPH oxidase via enhancement of p47(phox) phosphorylation by CK2.
Collapse
|
12
|
Abstract
Rac and PI3Ks are intracellular signal transducers able to regulate multiple signaling pathways fundamental for cell behavior. PI3Ks are lipid kinases that produce phosphorylated lipids which, in turn, transduce extracellular cues within the cell, while Rac is a small G protein that impacts on actin organization. Compelling evidence indicates that in multiple circumstances the 2 signaling pathways appear intermingled. For instance, phosphorylated lipids produced by PI3Ks recruit and activate GEF and GAP proteins, key modulators of Rac function. Conversely, PI3Ks interact with activated Rac, leading to Rac signaling amplification. This review summarizes the molecular mechanisms underlying the cross-talk between Rac and PI3K signaling in 2 different processes, cell migration and ROS production.
Collapse
Affiliation(s)
- Carlo C Campa
- a Molecular Biotechnology Center; Department of Molecular Biotechnology and Health Sciences; University of Torino ; Torino , Italy
| | | | | | | | | |
Collapse
|
13
|
Nanduri J, Vaddi DR, Khan SA, Wang N, Makarenko V, Semenza GL, Prabhakar NR. HIF-1α activation by intermittent hypoxia requires NADPH oxidase stimulation by xanthine oxidase. PLoS One 2015; 10:e0119762. [PMID: 25751622 PMCID: PMC4353619 DOI: 10.1371/journal.pone.0119762] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/16/2015] [Indexed: 11/19/2022] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1) mediates many of the systemic and cellular responses to intermittent hypoxia (IH), which is an experimental model that simulates O2 saturation profiles occurring with recurrent apnea. IH-evoked HIF-1α synthesis and stability are due to increased reactive oxygen species (ROS) generated by NADPH oxidases, especially Nox2. However, the mechanisms by which IH activates Nox2 are not known. We recently reported that IH activates xanthine oxidase (XO) and the resulting increase in ROS elevates intracellular calcium levels. Since Nox2 activation requires increased intracellular calcium levels, we hypothesized XO-mediated calcium signaling contributes to Nox activation by IH. We tested this possibility in rat pheochromocytoma PC12 cells subjected to IH consisting alternating cycles of hypoxia (1.5% O2 for 30 sec) and normoxia (21% O2 for 5 min). Kinetic analysis revealed that IH-induced XO preceded Nox activation. Inhibition of XO activity either by allopurinol or by siRNA prevented IH-induced Nox activation, translocation of the cytosolic subunits p47phox and p67phox to the plasma membrane and their interaction with gp91phox. ROS generated by XO also contribute to IH-evoked Nox activation via calcium-dependent protein kinase C stimulation. More importantly, silencing XO blocked IH-induced upregulation of HIF-1α demonstrating that HIF-1α activation by IH requires Nox2 activation by XO.
Collapse
Affiliation(s)
- Jayasri Nanduri
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, Illinois, United States of America
| | - Damodara Reddy Vaddi
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, Illinois, United States of America
| | - Shakil A. Khan
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, Illinois, United States of America
| | - Ning Wang
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, Illinois, United States of America
| | - Vladislav Makarenko
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, Illinois, United States of America
| | - Gregg L. Semenza
- Vascular Program, Institute for Cell Engineering; Department of Pediatrics, Medicine, Oncology, Radiation Oncology and Biological Chemistry; and Mckusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Nanduri R. Prabhakar
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
14
|
Vlahos R, Selemidis S. NADPH Oxidases as Novel Pharmacologic Targets against Influenza A Virus Infection. Mol Pharmacol 2014; 86:747-59. [DOI: 10.1124/mol.114.095216] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
15
|
Sun YT, Shieh CC, Delpire E, Shen MR. K⁺-Cl⁻ cotransport mediates the bactericidal activity of neutrophils by regulating NADPH oxidase activation. J Physiol 2012; 590:3231-43. [PMID: 22526882 DOI: 10.1113/jphysiol.2011.225300] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Neutrophilic phagocytosis is an essential component of innate immunity. During phagocytosis, the generation of bactericidal hypochlorous acid(HOCl) requires the substrates, Cl− and superoxide produced by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase to kill the internalized pathogens. Here we show that the neutrophilic K+–Cl− cotransporter (KCC) constitutes aCl− permeation pathway and mediates the bactericidal activity by regulating NADPH oxidase activation. Dihydroindenyloxy alkanoic acid (DIOA), a KCC inhibitor, suppressed the toxin- or chemical-induced efflux of 36Cl− or 86Rb+, and diminished the production of superoxide in human and murine neutrophils. Inhibition of KCC activity or knockdown of KCC expression, in particular KCC3, reduced the phosphorylation as well as the membrane recruitment of oxidase components. Activated neutrophils displayed a significant colocalization of KCC3 and early endosomal marker, indicating that KCC3 could be localized on the phagosomes once neutrophils are activated. The NADPH oxidase activity and the phosphorylation level of oxidase component were 50% lower in the neutrophils isolated from KCC3−/− mice than in the neutrophils isolated from KCC3+/+ mice.Mortality rate after intraperitoneal challenge with Staphylococcus aureus was higher in KCC3−/− mice, and the bacterial clearance was impaired in the survivors.We conclude that, in activated neutrophil, NADPH oxidase complexes are associated with KCC3 at the plasma membrane and are internalized to form phagosomes, where KCC activity and expression level affect the production of oxidants.
Collapse
Affiliation(s)
- Yuan-Ting Sun
- Institute of Clinical Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan
| | | | | | | |
Collapse
|
16
|
Ambruso DR, Ellison MA, Thurman GW, Leto TL. Peroxiredoxin 6 translocates to the plasma membrane during neutrophil activation and is required for optimal NADPH oxidase activity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:306-15. [PMID: 22178385 DOI: 10.1016/j.bbamcr.2011.11.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 11/16/2011] [Accepted: 11/18/2011] [Indexed: 11/27/2022]
Abstract
Neutrophils provide the first line of defense against microbial invasion in part through production of reactive oxygen species (ROS) which is mediated through activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase generating superoxide anion (O2-). The phagocyte oxidase (phox) has multiple protein components that assemble on the plasma membrane in stimulated neutrophils. We recently described a protein in neutrophils, peroxiredoxin 6 (Prdx6), which has both peroxidase and phospholipase A2 (PLA2) activities and enhances oxidase activity in an SDS-activated, cell-free system. The function of Prdx6 in phox activity is further investigated. In reconstituted phox-competent K562 cells, siRNA-mediated suppression of Prdx6 resulted in decreased NADPH oxidase activity in response to formyl-methionyl-leucyl-phenylalanine (fMLP) or phorbol myristate acetate (PMA). In neutrophils stimulated with PMA, Prdx6 translocated to plasma membrane as demonstrated by Western blot and confocal microscopy. Translocation of Prdx6 in phox competent K562 cells required both p67phox and p47phox. In addition, plasma membrane from PMA-stimulated, oxidase competent K562 cells with siRNA-mediated Prdx6 suppression contained less p47phox and p67phox compared to cells in which Prdx6 was not decreased. Cell-free oxidase assays showed that recombinant Prdx6 did not alter the Km for NADPH, but increased the Vmax for O2- production in a saturable, Prdx6 concentration-dependent manner. Recombinant proteins with mutations in Prdx (C47S) and phospholipase (S32A) activity both enhanced cell-free phox activity to the same extent as wild type protein. Prdx6 supports retention of the active oxidase complex in stimulated plasma membrane, and results with mutant proteins imply that Prdx6 serves an additional biochemical or structural role in supporting optimal NADPH oxidase activity.
Collapse
|
17
|
Ueyama T, Nakakita J, Nakamura T, Kobayashi T, Kobayashi T, Son J, Sakuma M, Sakaguchi H, Leto TL, Saito N. Cooperation of p40(phox) with p47(phox) for Nox2-based NADPH oxidase activation during Fcγ receptor (FcγR)-mediated phagocytosis: mechanism for acquisition of p40(phox) phosphatidylinositol 3-phosphate (PI(3)P) binding. J Biol Chem 2011; 286:40693-705. [PMID: 21956105 DOI: 10.1074/jbc.m111.237289] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During activation of the phagocyte (Nox2-based) NADPH oxidase, the cytoplasmic Phox complex (p47(phox)-p67(phox)-p40(phox)) translocates and associates with the membrane-spanning flavocytochrome b(558). It is unclear where (in cytoplasm or on membranes), when (before or after assembly), and how p40(phox) acquires its PI(3)P-binding capabilities. We demonstrated that in addition to conformational changes induced by H(2)O(2) in the cytoplasm, p40(phox) acquires PI(3)P-binding through direct or indirect membrane targeting. We also found that p40(phox) is essential when p47(phox) is partially phosphorylated during FcγR-mediated oxidase activation; however, p40(phox) is less critical when p47(phox) is adequately phosphorylated, using phosphorylation-mimicking mutants in HEK293(Nox2/FcγRIIa) and RAW264.7(p40/p47KD) cells. Moreover, PI binding to p47(phox) is less important when the autoinhibitory PX-PB1 domain interaction in p40(phox) is disrupted or when p40(phox) is targeted to membranes. Furthermore, we suggest that high affinity PI(3)P binding of the p40(phox) PX domain is critical during its accumulation on phagosomes, even when masked by the PB1 domain in the resting state. Thus, in addition to mechanisms for directly acquiring PI(3)P binding in the cytoplasm by H(2)O(2), p40(phox) can acquire PI(3)P binding on targeted membranes in a p47(phox)-dependent manner and functions both as a "carrier" of the cytoplasmic Phox complex to phagosomes and an "adaptor" of oxidase assembly on phagosomes in cooperation with p47(phox), using positive feedback mechanisms.
Collapse
Affiliation(s)
- Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wan ZH, Li WZ, Li YZ, Chen L, Li GH, Hu WF, Peng S, Yu JJ, Guo F. Poly(ADP‐Ribose) Polymerase Inhibition Improves Erectile Function in Diabetic Rats. J Sex Med 2011; 8:1002-14. [DOI: 10.1111/j.1743-6109.2010.01963.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Olavarría VH, Gallardo L, Figueroa JE, Mulero V. Lipopolysaccharide primes the respiratory burst of Atlantic salmon SHK-1 cells through protein kinase C-mediated phosphorylation of p47phox. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:1242-1253. [PMID: 20621116 DOI: 10.1016/j.dci.2010.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 07/01/2010] [Accepted: 07/01/2010] [Indexed: 05/29/2023]
Abstract
The superoxide-producing NADPH oxidase complex of phagocytes plays a crucial role in host defenses against microbial infection. NADPH oxidase consists of a membrane heterodimeric protein, composed of gp91phox and p22phox, and the cytosolic proteins, p40phox, p47phox and p67phox. In the present study, we clone and sequence the full-length cDNAs coding for the Atlantic salmon (Salmo salar) phagocyte NADPH oxidase components, p47phox, p67phox and gp91phox, using a homology cloning approach. The sequences of these cDNAs showed that the S. salar p47phox, p67phox and gp91phox genes contained single open reading frames, which encoded predicted proteins of 413, 504 and 565 amino acids, respectively. Comparison of the deduced amino acid sequences showed that the S. salar p47phox, p67phox and gp91phox sequences shared 51, 45 and 68% identity with those of human components, respectively. Despite this relatively low homology between salmon and mammalian NADPH oxidase subunits, their functional domains are highly conserved. We also found that the mRNA levels of p47phox, p67phox and gp91phox expression were higher in immune-related tissues, such as kidney, spleen and gill. In addition, infection of the salmon macrophage cell line SHK-1 with Piscirickettsia salmonis induced the expression of p47phox, but had no effect on p67phox and gp91phox expression. Finally, we show for the first time in fish that activation of macrophages with lipopolysaccharide promotes the activation of protein kinase C, which in turn phosphorylates p47phox, leading to NADPH oxidase activation and reactive oxygen species generation. Collectively, these results suggest that the mechanisms of activation of phagocyte NADPH oxidase are well conserved from fish to mammals.
Collapse
Affiliation(s)
- Víctor H Olavarría
- Department of Biochemistry, Faculty of Science, University Austral, Campus Isla Teja, Valdivia, Chile
| | | | | | | |
Collapse
|
20
|
The prolyl isomerase Pin1 acts as a novel molecular switch for TNF-alpha-induced priming of the NADPH oxidase in human neutrophils. Blood 2010; 116:5795-802. [PMID: 20956805 DOI: 10.1182/blood-2010-03-273094] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Neutrophils play a key role in host defense by releasing reactive oxygen species (ROS). However, excessive ROS production by neutrophil nicotinamide adenine dinucleotide phosphate (NADPH) oxidase can damage bystander tissues, thereby contributing to inflammatory diseases. Tumor necrosis factor-α (TNF-α), a major mediator of inflammation, does not activate NADPH oxidase but induces a state of hyperresponsiveness to subsequent stimuli, an action known as priming. The molecular mechanisms by which TNF-α primes the NADPH oxidase are unknown. Here we show that Pin1, a unique cis-trans prolyl isomerase, is a previously unrecognized regulator of TNF-α-induced NADPH oxidase hyperactivation. We first showed that Pin1 is expressed in neutrophil cytosol and that its activity is markedly enhanced by TNF-α. Inhibition of Pin1 activity with juglone or with a specific peptide inhibitor abrogated TNF-α-induced priming of neutrophil ROS production induced by N-formyl-methionyl-leucyl-phenylalanine peptide (fMLF). TNF-α enhanced fMLF-induced Pin1 and p47phox translocation to the membranes and juglone inhibited this process. Pin1 binds to p47phox via phosphorylated Ser345, thereby inducing conformational changes that facilitate p47phox phosphorylation on other sites by protein kinase C. These findings indicate that Pin1 is critical for TNF-α-induced priming of NADPH oxidase and for excessive ROS production. Pin1 inhibition could potentially represent a novel anti-inflammatory strategy.
Collapse
|
21
|
Jann NJ, Schmaler M, Ferracin F, Landmann R. TLR2 enhances NADPH oxidase activity and killing of Staphylococcus aureus by PMN. Immunol Lett 2010; 135:17-23. [PMID: 20875459 DOI: 10.1016/j.imlet.2010.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 09/06/2010] [Accepted: 09/17/2010] [Indexed: 12/21/2022]
Abstract
Toll-like receptors play an essential role in the detection of invading pathogens. TLR2 is expressed in high concentrations on neutrophils and has been implicated as a critical mediator inducing host antimicrobial defenses against Gram-positive bacteria. Neutrophil responses induced via TLR2 are likely to have important clinical consequences, since Gram-positive organisms, such as Staphylococcus aureus, are an increasingly important source of severe infections. In the present study, we report that TLR2 has a central role in killing of S. aureus by murine PMN via enhancement of NADPH oxidase activity. PMN from TLR2-deficient mice showed a similar inability to kill S. aureus in vitro and under in vivo-like conditions as PMN with a non-functional NADPH oxidase. This defect in killing by TLR2-deficient PMN was not related to phagocytosis but caused by delayed and reduced NADPH oxidase-mediated production of superoxide anion in response to S. aureus and other Gram-positive bacteria. The cause of this was independent of PI3K- and p38 signaling. The TLR2-enhanced induction of superoxide was a defect in proper NADPH oxidase assembly. We hypothesize that early activation of TLR2-signaling may enhance p47(phox) phosphorylation subsequent to phagocytosis-mediated phosphorylation. Summarized, these data demonstrate a novel role of TLR2 in the killing of S. aureus by ensuring a rapid activation of the NADPH oxidase complex.
Collapse
Affiliation(s)
- Naja J Jann
- Department of Biomedicine, Division of Infection Biology, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | | | | | | |
Collapse
|
22
|
Shao D, Segal AW, Dekker LV. Subcellular localisation of the p40phox component of NADPH oxidase involves direct interactions between the Phox homology domain and F-actin. Int J Biochem Cell Biol 2010; 42:1736-43. [PMID: 20637895 PMCID: PMC2938475 DOI: 10.1016/j.biocel.2010.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 07/06/2010] [Accepted: 07/08/2010] [Indexed: 11/24/2022]
Abstract
Cytosolic components of the NADPH oxidase interact with the actin cytoskeleton. These interactions are thought to be important for the activation of this enzyme system but they are poorly characterised at the molecular level. Here we have explored the interaction between the actin cytoskeleton and p40phox, one of the cytosolic components of NADPH oxidase. Full length p40phox expressed in COS cells co-localised with F-actin in a peripheral lamellar compartment. The co-localisation was lost after deletion of the Phox homology (PX) domain and the PX domain in isolation (p40PX) showed the same F-actin co-localisation as the full length protein. PX domains are known lipid-binding modules however, a mutant p40PX which did not bind lipids still co-localised with F-actin suggesting that lipid-independent interactions underlie the localisation. Affinity chromatography identified actin as a binding partner for p40PX in neutrophil extracts. Pure actin interacted with both p40phox and with p40PX suggesting it is a direct interaction. Disruption of the actin cytoskeleton with cytochalasin D resulted in actin rearrangement and concomitantly the localisation of full length p40phox proteins and that of p40PX changed. Thus p40PX is a dual F-actin/lipid-binding module and F-actin interactions with the PX domain dictate at least in part the intracellular localisation of the cytosolic p40phox subunit of the NADPH oxidase.
Collapse
Affiliation(s)
- Dongmin Shao
- Department of Medicine, University College London, London, UK
| | | | | |
Collapse
|
23
|
McCaffrey RL, Schwartz JT, Lindemann SR, Moreland JG, Buchan BW, Jones BD, Allen LAH. Multiple mechanisms of NADPH oxidase inhibition by type A and type B Francisella tularensis. J Leukoc Biol 2010; 88:791-805. [PMID: 20610796 DOI: 10.1189/jlb.1209811] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Ft is a facultative intracellular pathogen that infects many cell types, including neutrophils. In previous work, we demonstrated that the type B Ft strain LVS disrupts NADPH oxidase activity throughout human neutrophils, but how this is achieved is incompletely defined. Here, we used several type A and type B strains to demonstrate that Ft-mediated NADPH oxidase inhibition is more complex than appreciated previously. We confirm that phagosomes containing Ft opsonized with AS exclude flavocytochrome b(558) and extend previous results to show that soluble phox proteins were also affected, as indicated by diminished phosphorylation of p47(phox) and other PKC substrates. However, a different mechanism accounts for the ability of Ft to inhibit neutrophil activation by formyl peptides, Staphylococcus aureus, OpZ, and phorbol esters. In this case, enzyme targeting and assembly were normal, and impaired superoxide production was characterized by sustained membrane accumulation of dysfunctional NADPH oxidase complexes. A similar post-assembly inhibition mechanism also diminished the ability of anti-Ft IS to confer neutrophil activation and bacterial killing, consistent with the limited role for antibodies in host defense during tularemia. Studies of mutants that we generated in the type A Ft strain Schu S4 demonstrate that the regulatory factor fevR is essential for NADPH oxidase inhibition, whereas iglI and iglJ, candidate secretion system effectors, and the acid phosphatase acpA are not. As Ft uses multiple mechanisms to block neutrophil NADPH oxidase activity, our data strongly suggest that this is a central aspect of virulence.
Collapse
|
24
|
Leto TL, Morand S, Hurt D, Ueyama T. Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases. Antioxid Redox Signal 2009; 11:2607-19. [PMID: 19438290 PMCID: PMC2782575 DOI: 10.1089/ars.2009.2637] [Citation(s) in RCA: 265] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nox family NADPH oxidases serve a variety of functions requiring reactive oxygen species (ROS) generation, including antimicrobial defense, biosynthetic processes, oxygen sensing, and redox-based cellular signaling. We explored targeting, assembly, and activation of several Nox family oxidases, since ROS production appears to be regulated both spatially and temporally. Nox1 and Nox3 are similar to the phagocytic (Nox2-based) oxidase, functioning as multicomponent superoxide-generating enzymes. Factors regulating their activities include cytosolic activator and organizer proteins and GTP-Rac. Their regulation varies, with the following rank order: Nox2 > Nox1 > Nox3. Determinants of subcellular targeting include: (a) formation of Nox-p22(phox) heterodimeric complexes allowing plasma membrane translocation, (b) phospholipids-binding specificities of PX domain-containing organizer proteins (p47(phox) or Nox organizer 1 (Noxo1 and p40(phox)), and (c) variably splicing of Noxo1 PX domains directing them to nuclear or plasma membranes. Dual oxidases (Duox1 and Duox2) are targeted by different mechanisms. Plasma membrane targeting results in H(2)O(2) release, not superoxide, to support extracellular peroxidases. Human Duox1 and Duox2 have no demonstrable peroxidase activity, despite their extensive homology with heme peroxidases. The dual oxidases were reconstituted by Duox activator 2 (Duoxa2) or two Duoxa1 variants, which dictate maturation, subcellular localization, and the type of ROS generated by forming stable complexes with Duox.
Collapse
Affiliation(s)
- Thomas L Leto
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | |
Collapse
|
25
|
El-Benna J, Dang PMC, Gougerot-Pocidalo MA, Marie JC, Braut-Boucher F. p47phox, the phagocyte NADPH oxidase/NOX2 organizer: structure, phosphorylation and implication in diseases. Exp Mol Med 2009; 41:217-25. [PMID: 19372727 DOI: 10.3858/emm.2009.41.4.058] [Citation(s) in RCA: 326] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Phagocytes such as neutrophils play a vital role in host defense against microbial pathogens. The anti-microbial function of neutrophils is based on the production of superoxide anion (O2 -), which generates other microbicidal reactive oxygen species (ROS) and release of antimicrobial peptides and proteins. The enzyme responsible for O2 - production is called the NADPH oxidase or respiratory burst oxidase. This multicomponent enzyme system is composed of two trans- membrane proteins (p22phox and gp91phox, also called NOX2, which together form the cytochrome b558) and four cytosolic proteins (p47phox, p67phox, p40phox and a GTPase Rac1 or Rac2), which assemble at membrane sites upon cell activation. NADPH oxidase activation in phagocytes can be induced by a large number of soluble and particulate agents. This process is dependent on the phosphorylation of the cytosolic protein p47phox. p47phox is a 390 amino acids protein with several functional domains: one phox homology (PX) domain, two src homology 3 (SH3) domains, an auto-inhibitory region (AIR), a proline rich domain (PRR) and has several phosphorylated sites located between Ser303 and Ser379. In this review, we will describe the structure of p47phox, its phosphorylation and discuss how these events regulate NADPH oxidase activation.
Collapse
Affiliation(s)
- Jame El-Benna
- Universite Paris 7 Denis Diderot, Faculte de Medecine, site Bichat, Paris, F-75018, France.
| | | | | | | | | |
Collapse
|
26
|
Abstract
The leukotoxins [9(10)-and 12(13)-EpOME] are produced by activated inflammatory leukocytes such as neutrophils. High EpOME levels are observed in disorders such as acute respiratory distress syndrome and in patients with extensive burns.Although the physiological significance of the EpOMEs remains poorly understood,in some systems, the EpOMEs act as a protoxin,with their corresponding epoxide hydrolase metabolites,9,10-and 12,13-DiHOME, specifically exerting toxicity.Both the EpOMEs and the DiHOMEs were also recently shown to have neutrophil chemotactic activity.We evaluated whether the neutrophil respiratory burst,a surge of oxidant production thought to play an important role in limiting certain bacterial and fungal infections,is modulated by members of the EpOME metabolic pathway.We present evidence that the DiHOMEs suppress the neutrophil respiratory burst by a mechanism distinct from that of respiratory burst inhibitors such as cyclosporin H or lipoxin A4,which inhibit multiple aspects of neutrophil activation.
Collapse
Affiliation(s)
- David Alan Thompson
- Department of Entomology and Cancer Research Center, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
27
|
Selemidis S, Sobey CG, Wingler K, Schmidt HH, Drummond GR. NADPH oxidases in the vasculature: Molecular features, roles in disease and pharmacological inhibition. Pharmacol Ther 2008; 120:254-91. [DOI: 10.1016/j.pharmthera.2008.08.005] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 08/06/2008] [Indexed: 02/07/2023]
|
28
|
Ueyama T, Kusakabe T, Karasawa S, Kawasaki T, Shimizu A, Son J, Leto TL, Miyawaki A, Saito N. Sequential binding of cytosolic Phox complex to phagosomes through regulated adaptor proteins: evaluation using the novel monomeric Kusabira-Green System and live imaging of phagocytosis. THE JOURNAL OF IMMUNOLOGY 2008; 181:629-40. [PMID: 18566430 DOI: 10.4049/jimmunol.181.1.629] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We engineered a method for detecting intramolecular and intermolecular phox protein interactions in cells by fluorescence microscopy using fusion proteins of complementary fragments of a coral fluorescent reporter protein (monomeric Kusabira-Green). We confirmed the efficacy of the monomeric Kusabira-Green system by showing that the PX and PB1 domains of p40phox interact in intact cells, which we suggested maintains this protein in an inactive closed conformation. Using this system, we also explored intramolecular interactions within p47phox and showed that the PX domain interacts with the autoinhibited tandem Src homology 3 domains maintained in contact with the autoinhibitory region, along with residues 341-360. Furthermore, we demonstrated sequential interactions of p67phox with phagosomes involving adaptor proteins, p47phox and p40phox, during FcgammaR-mediated phagocytosis. Although p67phox is not targeted to phagosomes by itself, p47phox functions as an adaptor for the ternary complex (p47phox-p67phox-p40phox) in early stages of phagocytosis before phagosome closure, while p40phox functions in later stages after phagosomal closure. Interestingly, a mutated "open" form of p40phox linked p47phox to closed phagosomes and prolonged p47phox and p67phox retention on phagosomes. These results indicate that binding of the ternary complex to phagosomes can be temporally regulated by switching between adaptor proteins that have PX domains with distinct lipid-binding specificities.
Collapse
Affiliation(s)
- Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
El-Benna J, Dang PMC, Gougerot-Pocidalo MA. Priming of the neutrophil NADPH oxidase activation: role of p47phox phosphorylation and NOX2 mobilization to the plasma membrane. Semin Immunopathol 2008; 30:279-89. [PMID: 18536919 DOI: 10.1007/s00281-008-0118-3] [Citation(s) in RCA: 258] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 04/15/2008] [Indexed: 10/22/2022]
Abstract
Neutrophils play an essential role in host defense against microbial pathogens and in the inflammatory reaction. Upon activation, neutrophils produce superoxide anion (O*2), which generates other reactive oxygen species (ROS) such as hydrogen peroxide (H2O2), hydroxyl radical (OH*) and hypochlorous acid (HOCl), together with microbicidal peptides and proteases. The enzyme responsible for O2* production is called the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase or respiratory burst oxidase. This multicomponent enzyme system is composed of two trans-membrane proteins (p22phox and gp91phox/NOX2, which form the cytochrome b558), three cytosolic proteins (p47phox, p67phox, p40phox) and a GTPase (Rac1 or Rac2), which assemble at membrane sites upon cell activation. NADPH oxidase activation in phagocytes can be induced by a large number of soluble and particulate factors. Three major events accompany NAPDH oxidase activation: (1) protein phosphorylation, (2) GTPase activation, and (3) translocation of cytosolic components to the plasma membrane to form the active enzyme. Actually, the neutrophil NADPH oxidase exists in different states: resting, primed, activated, or inactivated. The resting state is found in circulating blood neutrophils. The primed state can be induced by neutrophil adhesion, pro-inflammatory cytokines, lipopolysaccharide, and other agents and has been characterized as a "ready to go" state, which results in a faster and higher response upon exposure to a second stimulus. The active state is found at the inflammatory or infection site. Activation is induced by the pathogen itself or by pathogen-derived formylated peptides and other agents. Finally, inactivation of NADPH oxidase is induced by anti-inflammatory agents to limit inflammation. Priming is a "double-edged sword" process as it contributes to a rapid and efficient elimination of the pathogens but can also induce the generation of large quantities of toxic ROS by hyperactivation of the NADPH oxidase, which can damage surrounding tissues and participate to inflammation. In order to avoid extensive damage to host tissues, NADPH oxidase priming and activation must be tightly regulated. In this review, we will discuss some of the mechanisms of NADPH oxidase priming in neutrophils and the relevance of this process to physiology and pathology.
Collapse
|
30
|
Abstract
Important roles for reactive oxygen species (ROS) in physiology and pathophysiology have been increasingly recognized. Under normal conditions, ROS serve as signaling molecules in the regulation of cellular functions. However, enhanced ROS production as a result of the activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase contributes significantly to the pathogeneses of vascular diseases. Although it has become evident that increased ROS is associated with erectile dysfunction (ED), the sources of ROS in the penis remain largely unknown. In recent years, emergent evidence suggests the possible role of NADPH oxidase in inducing ED. In this review, we examine the relationship between ROS and ED in different disease models and discuss the current evidence basis for NADPH oxidase-derived ROS in ED.
Collapse
Affiliation(s)
- Liming Jin
- Department of Internal Medicine, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
31
|
Friis MB, Vorum KG, Lambert IH. Volume-sensitive NADPH oxidase activity and taurine efflux in NIH3T3 mouse fibroblasts. Am J Physiol Cell Physiol 2008; 294:C1552-65. [PMID: 18417717 DOI: 10.1152/ajpcell.00571.2007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reactive oxygen species (ROS) are produced in NIH3T3 fibroblasts during hypotonic stress, and H(2)O(2) potentiates the concomitant release of the organic osmolyte taurine (Lambert IH. J Membr Biol 192: 19-32, 2003). The increase in ROS production [5-(and-6)-carboxy-2', 7'-dichlorodihydrofluorescein diacetate fluorescence] is detectable after a reduction in the extracellular osmolarity from 335 mosM (isotonic) to 300 mosM and reaches a maximal value after a reduction to 260 mosM. The swelling-induced ROS production is reduced by the flavoprotein inhibitor diphenylene iodonium chloride (25 microM) but is unaffected by the nitric oxide synthase inhibitor N omega-nitro-l-arginine methyl ester, indicating that the volume-sensitive ROS production is NADPH oxidase dependent. NIH3T3 cells express the NADPH oxidase components: p22 phox, a NOX4 isotype; p47 phox; and p67 phox (real-time PCR). Exposure to the Ca2+-mobilizing agonist ATP (10 microM) potentiates the release of taurine but has no effect on ROS production under hypotonic conditions. On the other hand, addition of the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA, 100 nM) or the lipid messenger lysophosphatidic acid (LPA, 10 nM) potentiates the swelling-induced taurine release as well as the ROS production. Overexpression of Rac1 or p47 phox or p47 phox knockdown [small interfering (si)RNA] had no effect on the swelling-induced ROS production or taurine release. NOX4 knockdown (siRNA) impairs the increase in the ROS production and the concomitant taurine release following osmotic exposure. It is suggested that a NOX4 isotype plus p22 phox account for the swelling-induced increase in the ROS production in NIH3T3 cells and that the oxidase activity is potentiated by PKC and LPA but not by Ca2+.
Collapse
|
32
|
Bissonnette SA, Glazier CM, Stewart MQ, Brown GE, Ellson CD, Yaffe MB. Phosphatidylinositol 3-phosphate-dependent and -independent functions of p40phox in activation of the neutrophil NADPH oxidase. J Biol Chem 2008; 283:2108-19. [PMID: 18029359 PMCID: PMC2755574 DOI: 10.1074/jbc.m706639200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In response to bacterial infection, the neutrophil NADPH oxidase assembles on phagolysosomes to catalyze the transfer of electrons from NADPH to oxygen, forming superoxide and downstream reactive oxygen species (ROS). The active oxidase is composed of a membrane-bound cytochrome together with three cytosolic phox proteins, p40(phox), p47(phox), and p67(phox), and the small GTPase Rac2, and is regulated through a process involving protein kinase C, MAPK, and phosphatidylinositol 3-kinase. The role of p40(phox) remains less well defined than those of p47(phox) and p67(phox). We investigated the biological role of p40(phox) in differentiated PLB-985 neutrophils, and we show that depletion of endogenous p40(phox) using lentiviral short hairpin RNA reduces ROS production and impairs bacterial killing under conditions where p67(phox) levels remain constant. Biochemical studies using a cytosol-reconstituted permeabilized human neutrophil cores system that recapitulates intracellular oxidase activation revealed that depletion of p40(phox) reduces both the maximal rate and total amount of ROS produced without altering the K(M) value of the oxidase for NADPH. Using a series of mutants, p47PX-p40(phox) chimeras, and deletion constructs, we found that the p40(phox) PX domain has phosphatidylinositol 3-phosphate (PtdIns(3)P)-dependent and -independent functions. Translocation of p67(phox) requires the PX domain but not 3-phosphoinositide binding. Activation of the oxidase by p40(phox), however, requires both PtdIns(3)P binding and an Src homology 3 (SH3) domain competent to bind to poly-Pro ligands. Mutations that disrupt the closed auto-inhibited form of full-length p40(phox) can increase oxidase activity approximately 2.5-fold above that of wild-type p40(phox) but maintain the requirement for PX and SH3 domain function. We present a model where p40(phox) translocates p67(phox) to the region of the cytochrome and subsequently switches the oxidase to an activated state dependent upon PtdIns(3)P and SH3 domain engagement.
Collapse
Affiliation(s)
- Sarah A. Bissonnette
- Department of Biology, Center for Cancer Research, Massachusetts Institute of Technology, E18−580, Cambridge, Massachusetts 02139
| | - Christina M. Glazier
- Department of Biology, Center for Cancer Research, Massachusetts Institute of Technology, E18−580, Cambridge, Massachusetts 02139
| | - Mary Q. Stewart
- Department of Biology, Center for Cancer Research, Massachusetts Institute of Technology, E18−580, Cambridge, Massachusetts 02139
| | - Glenn E. Brown
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02130
| | - Chris D. Ellson
- Department of Biology, Center for Cancer Research, Massachusetts Institute of Technology, E18−580, Cambridge, Massachusetts 02139
| | - Michael B. Yaffe
- Department of Biology, Center for Cancer Research, Massachusetts Institute of Technology, E18−580, Cambridge, Massachusetts 02139
- Division of Biological Engineering, Center for Cancer Research, Massachusetts Institute of Technology, E18−580, Cambridge, Massachusetts 02139
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02130
| |
Collapse
|
33
|
Ueyama T, Tatsuno T, Kawasaki T, Tsujibe S, Shirai Y, Sumimoto H, Leto TL, Saito N. A regulated adaptor function of p40phox: distinct p67phox membrane targeting by p40phox and by p47phox. Mol Biol Cell 2007; 18:441-54. [PMID: 17122360 PMCID: PMC1783789 DOI: 10.1091/mbc.e06-08-0731] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 11/13/2006] [Accepted: 11/14/2006] [Indexed: 11/11/2022] Open
Abstract
In the phagocytic cell, NADPH oxidase (Nox2) system, cytoplasmic regulators (p47(phox), p67(phox), p40(phox), and Rac) translocate and associate with the membrane-spanning flavocytochrome b(558), leading to activation of superoxide production. We examined membrane targeting of phox proteins and explored conformational changes in p40(phox) that regulate its translocation to membranes upon stimulation. GFP-p40(phox) translocates to early endosomes, whereas GFP-p47(phox) translocates to the plasma membrane in response to arachidonic acid. In contrast, GFP-p67(phox) does not translocate to membranes when expressed alone, but it is dependent on p40(phox) and p47(phox) for its translocation to early endosomes or the plasma membrane, respectively. Translocation of GFP-p40(phox) or GFP-p47(phox) to their respective membrane-targeting sites is abolished by mutations in their phox (PX) domains that disrupt their interactions with their cognate phospholipid ligands. Furthermore, GFP-p67(phox) translocation to either membrane is abolished by mutations that disrupt its interaction with p40(phox) or p47(phox). Finally, we detected a head-to-tail (PX-Phox and Bem1 [PB1] domain) intramolecular interaction within p40(phox) in its resting state by deletion mutagenesis, cell localization, and binding experiments, suggesting that its PX domain is inaccessible to interact with phosphatidylinositol 3-phosphate without cell stimulation. Thus, both p40(phox) and p47(phox) function as diverse p67(phox) "carrier proteins" regulated by the unmasking of membrane-targeting domains in distinct mechanisms.
Collapse
Affiliation(s)
- Takehiko Ueyama
- *Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Toshihiko Tatsuno
- *Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Takumi Kawasaki
- *Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Satoshi Tsujibe
- *Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Yasuhito Shirai
- *Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Hideki Sumimoto
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Thomas L. Leto
- Molecular Defenses Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Naoaki Saito
- *Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
34
|
Babior BM. The respiratory burst oxidase. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 65:49-95. [PMID: 1570769 DOI: 10.1002/9780470123119.ch2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Sbarra and Karnovsky were the first to present evidence suggesting the presence in phagocytes of a special enzyme designed to generate reactive oxidants for purposes of host defense. In the years since their report appeared, a great deal has been learned about this enzyme, now known as the respiratory burst oxidase. It has been found to be a plasma membrane-bound heme- and flavin-containing enzyme, dormant in resting cells, that catalyzes the one-electron reduction of oxygen to O2- at the expense of NADPH: O2 + NADPH----O2- + NADP+ + H+ Its behavior in whole cells and its response to various activating stimuli have been described in detail, although important insights continue to emerge, as for example a very interesting new series of observations on differences in oxidase activation patterns between suspended and adherent cells. The enzyme has been shown by biochemical and genetic studies to consist of at least six components. In the resting cell, three of these components are in the cytosol and three in the plasma membrane, but when the cell passes from its resting to its activated state the cytosolic components are all transferred to the plasma membrane, presumably assembling the oxidase. Of the components initially bound to the membrane, two constitute cytochrome b558, a heme protein characteristic of the respiratory burst oxidase, and the third may represent an oxidase flavoprotein. With regard to the cytosolic components, one is a phosphoprotein and another is the NADPH-binding component, possibly a second oxidase flavoprotein. The nature of the third (p67phox) is a puzzle. Four of the six oxidase components have now been cloned and sequenced. These findings only scratch the surface, however, and many questions remain. How many oxidase components, for example, remain to be discovered, and how do they fit together to form the active enzyme? How is the route of activation of the oxidase integrated into the general signal transduction systems of the cell? How did the oxidase come to be? Could there be a widespread system that generates small amounts of O2- as an intercellular signaling molecule, as recent work is beginning to suggest, and did the ever-destructive respiratory burst oxidase arise from that innocuous system as the creation of some evolutionary Frankenstein--an oxidase from hell? Finally, will it be possible to develop drugs that specifically block the respiratory burst oxidase, and will such drugs prove to be clinically useful as anti-inflammatory agents?(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- B M Babior
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, California
| |
Collapse
|
35
|
Li L, Renier G. Activation of nicotinamide adenine dinucleotide phosphate (reduced form) oxidase by advanced glycation end products links oxidative stress to altered retinal vascular endothelial growth factor expression. Metabolism 2006; 55:1516-23. [PMID: 17046555 DOI: 10.1016/j.metabol.2006.06.022] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Accepted: 06/15/2006] [Indexed: 11/28/2022]
Abstract
Increasing evidence indicates that advanced glycation end products (AGEs) promote retinal alterations through oxidative stress. However, the pathways involved in AGE-induced generation of reactive oxygen species (ROS) in retinal cells are poorly defined. In the present study, we investigated the role of nicotinamide adenine dinucleotide phosphate (reduced form) (NADPH) oxidase in AGE-induced ROS intracellular generation and vascular endothelial growth factor (VEGF) expression in bovine retinal endothelial cells (BRECs). Incubation of BRECs with 100 microg/mL AGEs increased ROS generation and VEGF expression in these cells. Treatment of the cells with the NADPH oxidase inhibitors, apocynin and diphenylene iodonium, inhibited these effects. In retinal endothelial cells exposed to AGEs, translocation of protein kinase C (PKC)-beta2 and p47phox was observed. Inhibition of PKC by treatment of the cells with calphostin C, GF10923X, and LY379196 totally suppressed AGE-mediated p47phox translocation and ROS generation. Incubation of BRECs with gliclazide inhibited AGE-induced PKC-beta2 and p47phox translocation and totally abrogated AGE-mediated ROS generation and VEGF expression. Overall, these results demonstrate that AGEs induce intracellular ROS generation and VEGF expression in retinal endothelial cells through a PKC-dependent activation of NADPH oxidase. Inhibition of retinal NADPH oxidase expression and ROS generated by this system provides a new potential mechanism by which gliclazide may affect retinal VEGF expression and exert a beneficial effect on diabetic retinopathy.
Collapse
Affiliation(s)
- Ling Li
- CHUM Research Centre, Vascular Immunology Laboratory, Notre-Dame Hospital, Department of Medicine, University of Montreal, Quebec, Canada H2L 4M1
| | | |
Collapse
|
36
|
Remijsen QFM, Fontayne A, Verdonck F, Clynen E, Schoofs L, Willems J. The antimicrobial peptide parabutoporin competes with p47(phox) as a PKC-substrate and inhibits NADPH oxidase in human neutrophils. FEBS Lett 2006; 580:6206-10. [PMID: 17069809 DOI: 10.1016/j.febslet.2006.10.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 10/09/2006] [Accepted: 10/10/2006] [Indexed: 11/18/2022]
Abstract
We investigated parabutoporin (PP), an antimicrobial scorpion peptide, to understand its inhibition on NADPH oxidase in human PMN. We show that PP is a good substrate for all PKC-isotypes, implicated in the activation of NADPH oxidase, and acts as a potent competitive inhibitor of in vitro p47(phox)-phosphorylation by PKC-alpha, -betaI, -betaII and -delta, but not PKC-zeta. In PMN, PP also inhibits the PMA-stimulated phosphorylation of p47(phox) and its subsequent translocation. In contrast, PP affects the PKC-independent activation to a much lesser degree. This indicates that PP inhibits the activation of NADPH oxidase at submicromolar concentrations in a strongly PKC-dependent manner.
Collapse
|
37
|
Assari T. Chronic Granulomatous Disease; fundamental stages in our understanding of CGD. MEDICAL IMMUNOLOGY 2006; 5:4. [PMID: 16989665 PMCID: PMC1592097 DOI: 10.1186/1476-9433-5-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Accepted: 09/21/2006] [Indexed: 11/23/2022]
Abstract
It has been 50 years since chronic granulomatous disease was first reported as a disease which fatally affected the ability of children to survive infections. Various milestone discoveries from the insufficient ability of patients' leucocytes to destroy microbial particles to the underlying genetic predispositions through which the disease is inherited have had important consequences. Longterm antibiotic prophylaxis has helped to fight infections associated with chronic granulomatous disease while the steady progress in bone marrow transplantation and the prospect of gene therapy are hailed as long awaited permanent treatment options. This review unearths the important findings by scientists that have led to our current understanding of the disease.
Collapse
Affiliation(s)
- Tracy Assari
- Molecular Immunology Unit, The Institute of Child Health, University College London and Great Ormond Street Hospital for Children NHS Trust, 30 Guilford Street, London WC1N 3EH, UK.
| |
Collapse
|
38
|
Choi HS, Cha YN, Kim C. Taurine chloramine inhibits PMA-stimulated superoxide production in human neutrophils perhaps by inhibiting phosphorylation and translocation of p47phox. Int Immunopharmacol 2006; 6:1431-40. [PMID: 16846837 DOI: 10.1016/j.intimp.2006.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Revised: 04/20/2006] [Accepted: 04/20/2006] [Indexed: 11/27/2022]
Abstract
Neutrophils produce microbicidal oxidants to destroy the invading pathogens using nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, a membrane-associated enzyme complex that generates superoxide anion (O(2)(-)). Upon stimulation, the cytosolic components of NADPH oxidase, p47(phox) and p67(phox) and the small GTPase Rac move to phagosomal and plasma membranes where they become associated with the membrane components of NADPH oxidase, gp91(phox) and p22(phox) and express enzyme activity. We previously showed that taurine chloramine (Tau-Cl) inhibits O(2)(-) production in mouse peritoneal neutrophils (Kim, 1996). In the present study, we investigated the mechanisms underlying Tau-Cl-derived inhibition on O(2)(-) production using a human myeloid leukemia cell line, PLB-985 cell, which has been differentiated into neutrophil-like cell. Tau-Cl inhibited the phorbol myristate acetate (PMA)-elicited O(2)(-) production as previously observed in murine peritoneal neutrophils. Translocation of p47(phox), p67(phox) and Rac was increased in response to PMA, and Tau-Cl inhibited the PMA-stimulated translocation of p47(phox) and p67(phox) to plasma membrane without affecting the translocation of Rac. In addition, Tau-Cl inhibited the PMA-derived phosphorylation of p47(phox), a requirement for the translocation of cytosolic NADPH oxidase component to the plasma membrane. These results suggest that Tau-Cl inhibits PMA-elicited O(2)(-) production in PLB-985 granulocytes by inhibiting phosphorylation of p47(phox) and translocation of p47(phox) and p67(phox), eventually blocking the assembly of NADPH oxidase complex.
Collapse
Affiliation(s)
- Hyung Sim Choi
- Laboratory of Leukocyte Signaling Research and Center for Advanced Medical Education by BK21 Project, Inha University College of Medicine, Incheon 400-712, South Korea
| | | | | |
Collapse
|
39
|
Nobuhisa I, Takeya R, Ogura K, Ueno N, Kohda D, Inagaki F, Sumimoto H. Activation of the superoxide-producing phagocyte NADPH oxidase requires co-operation between the tandem SH3 domains of p47phox in recognition of a polyproline type II helix and an adjacent alpha-helix of p22phox. Biochem J 2006; 396:183-92. [PMID: 16460309 PMCID: PMC1449995 DOI: 10.1042/bj20051899] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Activation of the superoxide-producing phagocyte NADPH oxidase, crucial for host defence, requires an SH3 (Src homology 3)-domain-mediated interaction of the regulatory protein p47phox with p22phox, a subunit of the oxidase catalytic core flavocytochrome b558. Although previous analysis of a crystal structure has demonstrated that the tandem SH3 domains of p47phox sandwich a short PRR (proline-rich region) of p22phox (amino acids 151-160), containing a polyproline II helix, it has remained unknown whether this model is indeed functional in activation of the oxidase. In the present paper we show that the co-operativity between the two SH3 domains of p47phox, as expected from the model, is required for oxidase activation. Deletion of the linker between the p47phox SH3 domains results not only in a defective binding to p22phox but also in a loss of the activity to support superoxide production. The present analysis using alanine-scanning mutagenesis identifies Pro152, Pro156 and Arg158 in the p22phox PRR as residues indispensable for the interaction with p47phox. Pro152 and Pro156 are recognized by the N-terminal SH3 domain, whereas Arg158 contacts with the C-terminal SH3 domain. Amino acid substitution for any of the three residues in the p22phox PRR abrogates the superoxide-producing activity of the oxidase reconstituted in intact cells. The bis-SH3-mediated interaction of p47phox with p22phox thus functions to activate the phagocyte oxidase. Furthermore, we provide evidence that a region C-terminal to the PRR of p22phox (amino acids 161-164), adopting an a-helical conformation, participates in full activation of the phagocyte oxidase by fortifying the association with the p47phox SH3 domains.
Collapse
Affiliation(s)
- Ikuo Nobuhisa
- *Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
- †Department of Molecular and Structural Biology, Kyushu University Graduate School of Medical Science, Fukuoka 812-8582, Japan
| | - Ryu Takeya
- *Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
- †Department of Molecular and Structural Biology, Kyushu University Graduate School of Medical Science, Fukuoka 812-8582, Japan
- ‡CREST (Core Research for Evolutional Science and Technology), Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Kenji Ogura
- §Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Noriko Ueno
- *Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Daisuke Kohda
- *Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Fuyuhiko Inagaki
- §Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Hideki Sumimoto
- *Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
- †Department of Molecular and Structural Biology, Kyushu University Graduate School of Medical Science, Fukuoka 812-8582, Japan
- ‡CREST (Core Research for Evolutional Science and Technology), Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
- To whom correspondence should be addressed (email )
| |
Collapse
|
40
|
Fridlich R, David A, Aviram I. Membrane proteinase 3 and its interactions within microdomains of neutrophil membranes. J Cell Biochem 2006; 99:117-25. [PMID: 16598772 DOI: 10.1002/jcb.20901] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Proteinase 3 (PR3) is a serine protease of neutrophil granules released to the medium or into the phagocytic vesicle upon neutrophil stimulation. A fraction of the enzyme is thought to associate with the cell membrane yielding membrane PR3 (mPR3). In autoimmune disorders characterized by the presence of antineutrophil cytoplasmic antibodies (ANCA), the reaction of the latter with their target antigen mPR3 activates the cell inflicting injuries on the surrounding tissues. In a previous communication we provided evidence for the presence of mPR3 in lipid rafts obtained by lysis of neutrophils in Triton X-100 and for the mediation of PR3 binding to the membrane by a glycosylphosphatidylinositol (GPI)-anchored neutrophil protein, possibly FcgammaRIIIb. In the current study we employed the mild detergent Brij 58 to isolate high molecular weight (HMW) protein complexes in the void volume of a Sepharose 4B gel filtration minicolumn. HMW complexes of unstimulated neutrophils comprised PR3, FcgammaRIIIb, the beta2 integrin CD11b/CD18 as well as the membrane and cytosolic subunits of the NADPH oxidase, p22phox and p47phox/p67phox. Treatment of neutrophils with phosphatidylinositol-specific phospholipase C (PI-PLC) reduced amounts of PR3 and FcgammaRIIIb in HMW complexes isolated from the treated cells, supporting our previous suggestion that FcgammaRIIIb acts as a membrane adaptor for PR3. FcgammaRIIIb of HMW fractions co-immunoprecipitated with PR3, indicating their presence in the same protein complex. Since HMW fractions contained also the majority of biotinylated proteins obtained by the reaction of neutrophils with a membrane impermeable biotinylating agent Sulfo-NHS-biotin, it was concluded that HMW proteins were derived from cell membranes. Lipid rafts isolated from Brij 58-lysed neutrophils were similar in their protein composition to the HMW complexes but not identical.
Collapse
Affiliation(s)
- Ram Fridlich
- The Department of Biochemistry, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | | | |
Collapse
|
41
|
Mizuki K, Takeya R, Kuribayashi F, Nobuhisa I, Kohda D, Nunoi H, Takeshige K, Sumimoto H. A region C-terminal to the proline-rich core of p47phox regulates activation of the phagocyte NADPH oxidase by interacting with the C-terminal SH3 domain of p67phox. Arch Biochem Biophys 2005; 444:185-94. [PMID: 16297854 DOI: 10.1016/j.abb.2005.10.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 10/09/2005] [Accepted: 10/14/2005] [Indexed: 10/25/2022]
Abstract
Activation of the phagocyte NADPH oxidase requires the regulatory proteins p47(phox) and p67(phox), each harboring two SH3 domains. p67(phox) interacts with p47(phox) via simultaneous binding of the p67(phox) C-terminal SH3 domain to both the proline-rich region (PRR) of amino acid residues 360-369 and its C-terminally flanking region of p47(phox); the role of the interaction in oxidase regulation has not been fully understood. Here we show that the p47(phox)-p67(phox) interaction is disrupted not only by deletion of the PRR but also by substitution for basic residues in the extra-PRR (K383E/K385E). The substitution impaired oxidase activation partially in vitro and much more profoundly in vivo, indicating the significance of the p47(phox) extra-PRR. Replacement of Ser-379 in the extra-PRR, a residue known to undergo phosphorylation in stimulated cells, by aspartate attenuates the interaction and thus results in a defective superoxide production, suggesting that phosphorylation of Ser-379 is involved in oxidase regulation.
Collapse
Affiliation(s)
- Kazuhito Mizuki
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Groemping Y, Rittinger K. Activation and assembly of the NADPH oxidase: a structural perspective. Biochem J 2005; 386:401-16. [PMID: 15588255 PMCID: PMC1134858 DOI: 10.1042/bj20041835] [Citation(s) in RCA: 425] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 12/02/2004] [Accepted: 12/10/2004] [Indexed: 11/17/2022]
Abstract
The NADPH oxidase of professional phagocytes is a crucial component of the innate immune response due to its fundamental role in the production of reactive oxygen species that act as powerful microbicidal agents. The activity of this multi-protein enzyme is dependent on the regulated assembly of the six enzyme subunits at the membrane where oxygen is reduced to superoxide anions. In the resting state, four of the enzyme subunits are maintained in the cytosol, either through auto-inhibitory interactions or through complex formation with accessory proteins that are not part of the active enzyme complex. Multiple inputs are required to disrupt these inhibitory interactions and allow translocation to the membrane and association with the integral membrane components. Protein interaction modules are key regulators of NADPH oxidase assembly, and the protein-protein interactions mediated via these domains have been the target of numerous studies. Many models have been put forward to describe the intricate network of reversible protein interactions that regulate the activity of this enzyme, but an all-encompassing model has so far been elusive. An important step towards an understanding of the molecular basis of NADPH oxidase assembly and activity has been the recent solution of the three-dimensional structures of some of the oxidase components. We will discuss these structures in the present review and attempt to reconcile some of the conflicting models on the basis of the structural information available.
Collapse
Key Words
- nadph oxidase
- oxidase assembly
- phosphorylation
- protein–protein interaction
- reactive oxygen species
- ac, acidic cluster
- bc, basic cluster
- cgd, chronic granulomatous disease
- gap, gtpase-activating protein
- gdi, gdp-dissociation inhibitor
- gef, guanine-nucleotide-exchange factor
- gst, glutathione s-transferase
- itc, isothermal titration calorimetry
- mapk, mitogen-activated protein kinase
- pb1, phox and bem1
- pc, phox and cdc24
- phox, phagocytic oxidase
- ppii helix, polyproline type ii helix
- px, phox homology
- prr, proline-rich region
- rms, root mean square
- ros, reactive oxygen species
- sh3, src homology 3
- spr, surface plasmon resonance
- tpr, tetratricopeptide repeat
Collapse
Affiliation(s)
- Yvonne Groemping
- *Abteilung Biomolekulare Mechanismen, Max-Planck-Institut für medizinische Forschung, Heidelberg, Germany
| | - Katrin Rittinger
- †Division of Protein Structure, National Institute for Medical Research, London, U.K
| |
Collapse
|
43
|
Zhan Y, He D, Newburger PE, Zhou GW. p47(phox) PX domain of NADPH oxidase targets cell membrane via moesin-mediated association with the actin cytoskeleton. J Cell Biochem 2005; 92:795-809. [PMID: 15211576 DOI: 10.1002/jcb.20084] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Activation of phagocytic NADPH oxidase requires association of its cytosolic subunits with the membrane-bound flavocytochrome. Extensive phosphorylation of the p47(phox) subunit of NADPH oxidase marks the initiation of this activation process. The p47(phox) subunit then translocates to the plasma membrane, bringing the p67(phox) subunit to cytochrome b558 to form the active NADPH oxidase complex. However, the detailed mechanism for targeting the p47(phox) subunit to the cell membrane during activation still remains unclear. Here, we show that the p47(phox) PX domain is responsible for translocating the p47(phox) subunit to the plasma membrane for subsequent activation of NADPH oxidase. We also demonstrate that translocation of the p47(phox) PX domain to the plasma membrane is not due to interactions with phospholipids but rather to association with the actin cytoskeleton. This association is mediated by direct interaction between the p47(phox) PX domain and moesin.
Collapse
Affiliation(s)
- Yong Zhan
- Department of Biological Science, LSB 206, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | | | |
Collapse
|
44
|
Qian Y, Liu KJ, Chen Y, Flynn DC, Castranova V, Shi X. Cdc42 Regulates Arsenic-induced NADPH Oxidase Activation and Cell Migration through Actin Filament Reorganization. J Biol Chem 2005; 280:3875-84. [PMID: 15492012 DOI: 10.1074/jbc.m403788200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although arsenic is a human carcinogen, the molecular mechanisms of its action remain to be understood. The present study reports that exposure to arsenic induced actin filament reorganization, resulting in lamellipodia and filopodia structures through the activation of Cdc42 in SVEC4-10 endothelial cells. It was also found that arsenic induced the formation of the superoxide anion (O2*) in SVEC4-10 cells. Immunoprecipitation and Western blotting analysis demonstrated that arsenic stimulation induced serine phosphorylation of p47phox, a key component of NADPH oxidase, indicating that arsenic induces O2* formation through NADPH oxidase activation. Inhibition of arsenic-induced actin filament reorganization by either overexpression of a dominant negative Cdc42 or pretreatment of an actin filament stabilizing regent, jasplakinolide, abrogated arsenic-induced NADPH oxidase activation, showing that the activation of NADPH oxidase was regulated by Cdc42-mediated actin filament reorganization. This study also showed that overexpression of a dominant negative Rac1 was sufficient to abolish arsenic-induced O2*- production, implying that Rac1 activities are required for Cdc42-mediated NADPH oxidase activation in response to arsenic stimulation. Furthermore, arsenic stimulation induced cell migration, which can be inhibited by the inactivation of either Cdc42 or NADPH oxidase. Taken together, the results indicate that arsenic is able to activate NADPH oxidase through Cdc42-mediated actin filament reorganization, leading to the induction of an increase in cell migration in SVEC4-10 endothelial cells.
Collapse
Affiliation(s)
- Yong Qian
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Bey EA, Xu B, Bhattacharjee A, Oldfield CM, Zhao X, Li Q, Subbulakshmi V, Feldman GM, Wientjes FB, Cathcart MK. Protein kinase C delta is required for p47phox phosphorylation and translocation in activated human monocytes. THE JOURNAL OF IMMUNOLOGY 2004; 173:5730-8. [PMID: 15494525 DOI: 10.4049/jimmunol.173.9.5730] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Our laboratory is interested in understanding the regulation of NADPH oxidase activity in human monocyte/macrophages. Protein kinase C (PKC) is reported to be involved in regulating the phosphorylation of NADPH oxidase components in human neutrophils; however, the regulatory roles of specific isoforms of PKC in phosphorylating particular oxidase components have not been determined. In this study calphostin C, an inhibitor for both novel PKC (including PKCdelta, -epsilon, -theta;, and -eta) and conventional PKC (including PKCalpha and -beta), inhibited both phosphorylation and translocation of p47phox, an essential component of the monocyte NADPH oxidase. In contrast, GF109203X, a selective inhibitor of classical PKC and PKCepsilon, did not affect the phosphorylation or translocation of p47phox, suggesting that PKCdelta, -theta;, or -eta is required. Furthermore, rottlerin (at doses that inhibit PKCdelta activity) inhibited the phosphorylation and translocation of p47phox. Rottlerin also inhibited O2 production at similar doses. In addition to pharmacological inhibitors, PKCdelta-specific antisense oligodeoxyribonucleotides were used. PKCdelta antisense oligodeoxyribonucleotides inhibited the phosphorylation and translocation of p47phox in activated human monocytes. We also show, using the recombinant p47phox-GST fusion protein, that p47phox can serve as a substrate for PKCdelta in vitro. Furthermore, lysate-derived PKCdelta from activated monocytes phosphorylated p47phox in a rottlerin-sensitive manner. Together, these data suggest that PKCdelta plays a pivotal role in stimulating monocyte NADPH oxidase activity through its regulation of the phosphorylation and translocation of p47phox.
Collapse
Affiliation(s)
- Erik A Bey
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ueyama T, Lennartz MR, Noda Y, Kobayashi T, Shirai Y, Rikitake K, Yamasaki T, Hayashi S, Sakai N, Seguchi H, Sawada M, Sumimoto H, Saito N. Superoxide production at phagosomal cup/phagosome through beta I protein kinase C during Fc gamma R-mediated phagocytosis in microglia. THE JOURNAL OF IMMUNOLOGY 2004; 173:4582-9. [PMID: 15383592 DOI: 10.4049/jimmunol.173.7.4582] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Protein kinase C (PKC) plays a prominent role in immune signaling. To elucidate the signal transduction in a respiratory burst and isoform-specific function of PKC during FcgammaR-mediated phagocytosis, we used live, digital fluorescence imaging of mouse microglial cells expressing GFP-tagged molecules. betaI PKC, epsilonPKC, and diacylglycerol kinase (DGK) beta dynamically and transiently accumulated around IgG-opsonized beads (BIgG). Moreover, the accumulation of p47(phox), an essential cytosolic component of NADPH oxidase and a substrate for betaI PKC, at the phagosomal cup/phagosome was apparent during BIgG ingestion. Superoxide (O(2)(-)) production was profoundly inhibited by Gö6976, a cPKC inhibitor, and dramatically increased by the DGK inhibitor, R59949. Ultrastructural analysis revealed that BIgG induced O(2)(-) production at the phagosome but not at the intracellular granules. We conclude that activation/accumulation of betaI PKC is involved in O(2)(-) production, and that O(2)(-) production is primarily initiated at the phagosomal cup/phagosome. This study also suggests that DGKbeta plays a prominent role in regulation of O(2)(-) production during FcgammaR-mediated phagocytosis.
Collapse
Affiliation(s)
- Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Crowther JE, Kutala VK, Kuppusamy P, Ferguson JS, Beharka AA, Zweier JL, McCormack FX, Schlesinger LS. Pulmonary surfactant protein a inhibits macrophage reactive oxygen intermediate production in response to stimuli by reducing NADPH oxidase activity. THE JOURNAL OF IMMUNOLOGY 2004; 172:6866-74. [PMID: 15153505 DOI: 10.4049/jimmunol.172.11.6866] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Alveolar macrophages are important host defense cells in the human lung that continuously phagocytose environmental and infectious particles that invade the alveolar space. Alveolar macrophages are prototypical alternatively activated macrophages, with up-regulated innate immune receptor expression, down-regulated costimulatory molecule expression, and limited production of reactive oxygen intermediates (ROI) in response to stimuli. Surfactant protein A (SP-A) is an abundant protein in pulmonary surfactant that has been shown to alter several macrophage (Mphi) immune functions. Data regarding SP-A effects on ROI production are contradictory, and lacking with regard to human Mphi. In this study, we examined the effects of SP-A on the oxidative response of human Mphi to particulate and soluble stimuli using fluorescent and biochemical assays, as well as electron paramagnetic resonance spectroscopy. SP-A significantly reduced Mphi superoxide production in response to the phorbol ester PMA and to serum-opsonized zymosan (OpZy), independent of any effect by SP-A on zymosan phagocytosis. SP-A was not found to scavenge superoxide. We measured Mphi oxygen consumption in response to stimuli using a new oxygen-sensitive electron paramagnetic resonance probe to determine the effects of SP-A on NADPH oxidase activity. SP-A significantly decreased Mphi oxygen consumption in response to PMA and OpZy. Additionally, SP-A reduced the association of NADPH oxidase component p47(phox) with OpZy phagosomes as determined by confocal microscopy, suggesting that SP-A inhibits NADPH oxidase activity by altering oxidase assembly on phagosomal membranes. These data support an anti-inflammatory role for SP-A in pulmonary homeostasis by inhibiting Mphi production of ROI through a reduction in NADPH oxidase activity.
Collapse
Affiliation(s)
- Joy E Crowther
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52240, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Quinn MT, Gauss KA. Structure and regulation of the neutrophil respiratory burst oxidase: comparison with nonphagocyte oxidases. J Leukoc Biol 2004; 76:760-81. [PMID: 15240752 DOI: 10.1189/jlb.0404216] [Citation(s) in RCA: 345] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neutrophils play an essential role in the body's innate defense against pathogens and are one of the primary mediators of the inflammatory response. To defend the host, neutrophils use a wide range of microbicidal products, such as oxidants, microbicidal peptides, and lytic enzymes. The generation of microbicidal oxidants by neutrophils results from the activation of a multiprotein enzyme complex known as the reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, which is responsible for transferring electrons from NADPH to O2, resulting in the formation of superoxide anion. During oxidase activation, cytosolic oxidase proteins translocate to the phagosome or plasma membrane, where they assemble around a central membrane-bound component known as flavocytochrome b. This process is highly regulated, involving phosphorylation, translocation, and multiple conformational changes. Originally, it was thought that the NADPH oxidase was restricted to phagocytes and used solely in host defense. However, recent studies indicate that similar NADPH oxidase systems are present in a wide variety of nonphagocytic cells. Although the nature of these nonphagocyte NADPH oxidases is still being defined, it is clear that they are functionally distinct from the phagocyte oxidases. It should be noted, however, that structural features of many nonphagocyte oxidase proteins do seem to be similar to those of their phagocyte counterparts. In this review, key structural and functional features of the neutrophil NADPH oxidase and its protein components are described, including a consideration of transcriptional and post-translational regulatory features. Furthermore, relevant details about structural and functional features of various nonphagocyte oxidase proteins will be included for comparison.
Collapse
Affiliation(s)
- Mark T Quinn
- Department of Veterinary Molecular Biology, Montana State University, Bozeman 59717-3610, USA.
| | | |
Collapse
|
49
|
Tsunawaki S, Yoshida LS, Nishida S, Kobayashi T, Shimoyama T. Fungal metabolite gliotoxin inhibits assembly of the human respiratory burst NADPH oxidase. Infect Immun 2004; 72:3373-82. [PMID: 15155643 PMCID: PMC415710 DOI: 10.1128/iai.72.6.3373-3382.2004] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reactive oxygen species are a critical weapon in the killing of Aspergillus fumigatus by polymorphonuclear leukocytes (PMN), as demonstrated by severe aspergillosis in chronic granulomatous disease. In the present study, A. fumigatus-produced mycotoxins (fumagillin, gliotoxin [GT], and helvolic acid) are examined for their effects on the NADPH oxidase activity in human PMN. Of these mycotoxins, only GT significantly and stoichiometrically inhibits phorbol myristate acetate (PMA)-stimulated O2- generation, while the other two toxins are ineffective. The inhibition is dependent on the disulfide bridge of GT, which interferes with oxidase activation but not catalysis of the activated oxidase. Specifically, GT inhibits PMA-stimulated events: p47phox phosphorylation, its incorporation into the cytoskeleton, and the membrane translocation of p67phox, p47phox, and p40phox, which are crucial steps in the assembly of the active NADPH oxidase. Thus, damage to p47phox phosphorylation is likely a key to inhibiting NADPH oxidase activation. GT does not inhibit the membrane translocation of Rac2. The inhibition of p47phox phosphorylation is due to the defective membrane translocation of protein kinase C (PKC) betaII rather than an effect of GT on PKC betaII activity, suggesting a failure of PKC betaII to associate with the substrate, p47phox, on the membrane. These results suggest that A. fumigatus may confront PMN by inhibiting the assembly of the NADPH oxidase with its hyphal product, GT.
Collapse
Affiliation(s)
- Shohko Tsunawaki
- Department of Infectious Diseases, National Research Institute for Child Health and Development, Setagaya, Tokyo 154-8567, Japan.
| | | | | | | | | |
Collapse
|
50
|
Brown GE, Stewart MQ, Bissonnette SA, Elia AEH, Wilker E, Yaffe MB. Distinct ligand-dependent roles for p38 MAPK in priming and activation of the neutrophil NADPH oxidase. J Biol Chem 2004; 279:27059-68. [PMID: 15102856 DOI: 10.1074/jbc.m314258200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In response to certain cytokines and inflammatory mediators, the activity of the neutrophil NADPH oxidase enzyme is primed for enhanced superoxide production when the cells receive a subsequent oxidase-activating stimulus. The relative role of p38 MAPK in the priming and activation processes is incompletely understood. We have developed a 2-step assay that allows the relative contributions of p38 MAPK activity in priming to be distinguished from those involved in oxidase activation. Using this assay, together with in vitro kinase assays and immunochemical studies, we report that p38 MAPK plays a critical role in TNFalpha priming of the human and porcine NADPH oxidase for superoxide production in response to complement-opsonized zymosan (OpZ), but little, if any, role in neutrophil priming by platelet-activating factor (PAF) for OpZ-dependent responses. The OpZ-mediated activation process per se is independent of p38 MAPK activity, in contrast to oxidase activation by fMLP, where 70% of the response is eliminated by p38 MAPK inhibitors regardless of the priming agent. We further report that incubation of neutrophils with TNFalpha results in the p38 MAPK-dependent phosphorylation of a subpopulation of p47(phox) and p67(phox) molecules, whereas PAF priming results in phosphorylation only of p67(phox). Despite these phosphorylations, TNFalpha priming does not result in significant association of either of these oxidase subunits with neutrophil membranes, demonstrating that the molecular basis for priming does not appear to involve preassembly of the NADPH oxidase holoenzyme/cytochrome complex prior to oxidase activation.
Collapse
Affiliation(s)
- Glenn E Brown
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02130, USA
| | | | | | | | | | | |
Collapse
|