1
|
Setiawati A, Jeong S, Brillian AI, Lee SH, Shim JG, Jung KH, Shin K. Fabrication of a Tailored, Hybrid Extracellular Matrix Composite. Macromol Biosci 2022; 22:e2200106. [PMID: 35765216 DOI: 10.1002/mabi.202200106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/24/2022] [Indexed: 11/10/2022]
Abstract
The extracellular matrix (ECM) is a network of connective fibers that supports cells living in their surroundings. Native ECM, generated by the secretory products of each tissue's resident cells, has a unique architecture with different protein composition depending on the tissue. Therefore, it is very difficult to artificially design in vivo architecture in tissue engineering. In this study, we fabricated a hybrid ECM scaffold from the basic structure of fibroblast-derived cellular ECMs by adding major ECM components of fibronectin (FN) and collagen (COL I) externally. It was confirmed that while maintaining the basic structure of the native ECM, major protein components can be regulated. Then, decellularization was performed to prepare hybrid ECM scaffolds with various protein compositions and we demonstrated that a liver-mimicking fibronectin (FN)-rich hybrid ECM promoted successful settling of H4IIE rat hepatoma cells. We believe that our method holds promise for the fabrication of scaffolds that provide a tailored cellular microenvironment for specific organs and serve as novel pathways for the replacement or regeneration of specific organ tissues. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Agustina Setiawati
- Department of Chemistry and Institute of Biological Interfaces, 35-Baekbeom-ro, Sogang University, Mapo-gu, Seoul, 04107, Republic of Korea.,Department of Life Science, 35-Baekbeom-ro, Sogang University, Mapo-gu, Seoul, 04107, Republic of Korea.,Faculty of Pharmacy, Paingan, Maguwoharjo, Depok, Sanata Dharma University, Sleman, Yogyakarta, 55284, Indonesia
| | - Sungwoo Jeong
- Department of Chemistry and Institute of Biological Interfaces, 35-Baekbeom-ro, Sogang University, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Albertus Ivan Brillian
- Department of Chemistry and Institute of Biological Interfaces, 35-Baekbeom-ro, Sogang University, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Sang Ho Lee
- Department of Chemistry and Institute of Biological Interfaces, 35-Baekbeom-ro, Sogang University, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Jin-Gon Shim
- Department of Life Science, 35-Baekbeom-ro, Sogang University, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Kwang-Hwan Jung
- Department of Life Science, 35-Baekbeom-ro, Sogang University, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Kwanwoo Shin
- Department of Chemistry and Institute of Biological Interfaces, 35-Baekbeom-ro, Sogang University, Mapo-gu, Seoul, 04107, Republic of Korea
| |
Collapse
|
2
|
Gudzenko T, Franz CM. Controlling Fibronectin Fibrillogenesis Using Visible Light. Front Mol Biosci 2020; 7:149. [PMID: 32733919 PMCID: PMC7360794 DOI: 10.3389/fmolb.2020.00149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/15/2020] [Indexed: 01/04/2023] Open
Abstract
We previously developed a surface-assisted assay to image early steps of cell-induced plasma fibronectin (FN) fibrillogenesis by timelapse atomic force microscopy (AFM). Unexpectedly, complementary attempts to visualize FN fibrillogenesis using fluorescently labeled FN (Alexa Fluor 488 or 568) and live-cell light microscopy initially failed consistently. Further analysis revealed that fibrillar remodeling was inhibited efficiently in the focal area illuminated during fluorescence imaging, but progressed normally elsewhere on the substrate, suggesting photo sensitivity of the FN fibrillogenesis process. In agreement, active cell-driven fibrillar extension of FN could be stopped by transient illumination with visible light during AFM timelapse scanning. Phototoxic effects on the cells could be ruled out, because pre-illuminating the FN layer before cell seeding also blocked subsequent fibrillar formation. Varying the illumination wavelength range between 400 and 640 nm revealed strong inhibition across the visible spectrum up to 560 nm, and a decreasing inhibitory effect at longer wavelengths. The photo effect also affected unlabeled FN, but was enhanced by fluorophore labeling of FN. The inhibitory effect could be reduced when reactive oxygen species (ROS) were removed for the cell imaging medium. Based on these findings, FN fibrillogenesis could be imaged successfully using a labeling dye with a long excitation wavelength (Alexa Fluor 633, excitation at 632 nm) and ROS scavengers, such as oxyrase, in the imaging medium. Fibrillar remodeling of exposed cell-free FN layers by AFM scanning required higher scan forces compared to non-exposed FN, consisting with mechanical stiffing of the FN layer after illumination. In agreement with changes in FN mechanics, cells spreading on pre-exposed FN showed reduced migration speeds, altered focal adhesion arrangement, and changes in mechanosensitive signaling pathways, including reduced FAK (Y397) and paxillin (Y118) phosphorylation. Pre-exposure of FN to visible light prior to cell seeding thus provides a useful tool to delineate mechanosensitive signaling pathway related to FN fibrillogenesis. When using FN-coated cell adhesion substrates, care should be taken when comparing experimental results obtained on non-exposed FN layers in cell culture incubators, or during live-cell fluorescence imaging, as FN fibrillogenesis and mechanosensitive cellular signaling pathways may be affected differently.
Collapse
Affiliation(s)
- Tetyana Gudzenko
- DFG-Center for Functional Nanostructures, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Clemens M Franz
- DFG-Center for Functional Nanostructures, Karlsruhe Institute of Technology, Karlsruhe, Germany.,WPI Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
3
|
Abstract
Cells need to be anchored to extracellular matrix (ECM) to survive, yet the role of ECM in guiding developmental processes, tissue homeostasis, and aging has long been underestimated. How ECM orchestrates the deterioration of healthy to pathological tissues, including fibrosis and cancer, also remains poorly understood. Inquiring how alterations in ECM fiber tension might drive these processes is timely, as mechanobiology is a rapidly growing field, and many novel mechanisms behind the mechanical forces that can regulate protein, cell, and tissue functions have recently been deciphered. The goal of this article is to review how forces can switch protein functions, and thus cell signaling, and thereby inspire new approaches to exploit the mechanobiology of ECM in regenerative medicine as well as for diagnostic and therapeutic applications. Some of the mechanochemical switching concepts described here for ECM proteins are more general and apply to intracellular proteins as well.
Collapse
Affiliation(s)
- Viola Vogel
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, Department for Health Sciences and Technology, ETH Zürich, CH-8093 Zürich, Switzerland;
| |
Collapse
|
4
|
Wang LW, Nandadasa S, Annis DS, Dubail J, Mosher DF, Willard BB, Apte SS. A disintegrin-like and metalloproteinase domain with thrombospondin type 1 motif 9 (ADAMTS9) regulates fibronectin fibrillogenesis and turnover. J Biol Chem 2019; 294:9924-9936. [PMID: 31085586 PMCID: PMC6597835 DOI: 10.1074/jbc.ra118.006479] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 05/07/2019] [Indexed: 11/06/2022] Open
Abstract
The secreted metalloprotease ADAMTS9 has dual roles in extracellular matrix (ECM) turnover and biogenesis of the primary cilium during mouse embryogenesis. Its gene locus is associated with several human traits and disorders, but ADAMTS9 has few known interacting partners or confirmed substrates. Here, using a yeast two-hybrid screen for proteins interacting with its C-terminal Gon1 domain, we identified three putative ADAMTS9-binding regions in the ECM glycoprotein fibronectin. Using solid-phase binding assays and surface plasmon resonance experiments with purified proteins, we demonstrate that ADAMTS9 and fibronectin interact. ADAMTS9 constructs, including those lacking Gon1, co-localized with fibronectin fibrils formed by cultured fibroblasts lacking fibrillin-1, which co-localizes with fibronectin and binds several ADAMTSs. We observed no fibrillar ADAMTS9 staining after blockade of fibroblast fibronectin fibrillogenesis with a peptide based on the functional upstream domain of a Staphylococcus aureus adhesin. These findings indicate that ADAMTS9 binds fibronectin dimers and fibrils directly through multiple sites in both molecules. Proteolytically active ADAMTS9, but not a catalytically inactive variant, disrupted fibronectin fibril networks formed by fibroblasts in vitro, and ADAMTS9-deficient RPE1 cells assembled a robust fibronectin fibril network, unlike WT cells. Targeted LC-MS analysis of fibronectin digested by ADAMTS9-expressing cells identified a semitryptic peptide arising from cleavage at Gly2196-Leu2197 We noted that this scissile bond is in the linker between fibronectin modules III17 and I10, a region targeted also by other proteases. These findings, along with stronger fibronectin staining previously observed in Adamts9 mutant embryos, suggest that ADAMTS9 contributes to fibronectin turnover during ECM remodeling.
Collapse
Affiliation(s)
| | | | - Douglas S Annis
- the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, Wisconsin 53706
| | | | - Deane F Mosher
- the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, Wisconsin 53706
| | - Belinda B Willard
- the Proteomics and Metabolomics Core, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio 44195 and
| | | |
Collapse
|
5
|
González-García C, Cantini M, Ballester-Beltrán J, Altankov G, Salmerón-Sánchez M. The strength of the protein-material interaction determines cell fate. Acta Biomater 2018; 77:74-84. [PMID: 30006313 DOI: 10.1016/j.actbio.2018.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/06/2018] [Accepted: 07/09/2018] [Indexed: 01/06/2023]
Abstract
Extracellular matrix (ECM) proteins are key mediators of cell/material interactions. The surface density and conformation of these proteins adsorbed on the material surface influence cell adhesion and the cellular response. We have previously shown that subtle variations in surface chemistry lead to drastic changes in the conformation of adsorbed fibronectin (FN). On poly(ethyl acrylate) (PEA), FN unfolds and displays domains for cell adhesion and FN-FN interaction, whereas on poly(methyl acrylate) (PMA) - with only one methyl group less - FN remains globular as it is in solution. The effect of the strength of the protein/material interaction in cell response, and its relation to protein density and conformation, has received limited attention so far. In this work, we used FN-functionalized AFM cantilevers to evaluate, via force spectroscopy, the strength of interaction between fibronectin and the underlying polymer which controls FN conformation (PEA and PMA). We found that the strength of FN/PEA interaction is significantly higher than FN/PMA, which limits the mobility of FN layer on PEA, reduces the ability of cells to mechanically reorganize FN and then leads to enhanced proteolysis and degradation of the surrounding matrix with compromised cell viability. By contrast, both PEA and PMA support cell adhesion when FN density is increased and also in the presence of serum or other serum proteins, including vitronectin (VN) and bovine serum albumin (BSA), which provide a higher degree of mobility to the matrix. STATEMENT OF SIGNIFICANCE The identification of parameters influencing cell response is of paramount importance for the design of biomaterials that will act as synthetic scaffolds for cells to anchor, grow and, eventually, become specialised tissues. Cells interact with materials through an intermediate layer of proteins adsorbed on the material surface. It is known that the density and conformation of these proteins determine cell behaviour. Here we show that the strength of protein/material interactions, which has received very limited attention so far, is key to understand the cellular response to biomaterials. Very strong protein/material interactions reduce the ability of cells to mechanically reorganize proteins at the material interface which results in enhanced matrix degradation, leading ultimately to compromised cell viability.
Collapse
Affiliation(s)
| | - Marco Cantini
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, UK
| | | | - George Altankov
- Institut de Bioenginyeria de Catalunya (IBEC), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | | |
Collapse
|
6
|
Szymanski JM, Sevcik EN, Zhang K, Feinberg AW. Stretch-dependent changes in molecular conformation in fibronectin nanofibers. Biomater Sci 2017; 5:1629-1639. [PMID: 28612067 PMCID: PMC5549851 DOI: 10.1039/c7bm00370f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Fibronectin (FN) is an extracellular matrix (ECM) glycoprotein that plays an important role in a wide range of biological processes including embryonic development, wound healing, and fibrosis. Recent evidence has demonstrated that FN is mechanosensitive, where the application of force induces conformational changes within the FN molecule to expose otherwise cryptic binding domains. However, it has proven technically challenging to dynamically monitor how the nanostructure of FN fibers changes as a result of force-induced extension, due in part to the inherent complexity of FN networks within tissue and cell-generated extracellular matrix (ECM). This has limited our understanding of FN matrix mechanobiology and the complex bi-directional signaling between cells and the ECM, and de novo FN fiber fabrication strategies have only partially addressed this. Towards addressing this need, we have developed a modified surface-initiated assembly (SIA) technique to engineer FN nanofibers that we can uniaxially stretch to >7-fold extensions and subsequently immobilize them in the stretched state for high resolution atomic force microscopy (AFM) imaging. Using this approach, we analyzed how the nanostructure of FN molecules within the nanofibers changed with stretch. In fully contracted FN nanofibers, we observed large, densely packed, isotropically-oriented nodules. With intermediate extension, uniaxially-aligned fibrillar regions developed and nodules became progressively smaller. At high extension, the nanostructure consisted of highly aligned fibrils with small nodules in a beads-on-a-string arrangement. In summary, we have established a methodology to uniaxially stretch FN fibers and monitor changes in nanostructure using AFM. Our results provide new insight into how FN fiber extension can affect the morphology of the constituent FN molecules.
Collapse
Affiliation(s)
- John M Szymanski
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Emily N Sevcik
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Kairui Zhang
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Adam W Feinberg
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA. and Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
7
|
Bascetin R, Admane K, Agniel R, Boudou T, Doussineau T, Antoine R, Gallet O, Leroy-Dudal J, Vendrely C. Amyloid-like aggregates formation by blood plasma fibronectin. Int J Biol Macromol 2017; 97:733-743. [PMID: 28109813 DOI: 10.1016/j.ijbiomac.2017.01.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/06/2017] [Accepted: 01/12/2017] [Indexed: 10/20/2022]
Abstract
Fibronectin (FN) is a multifunctional glycoprotein of the extracellular matrix (ECM) playing critical roles in physiological and pathological cell processes like adhesion, migration, growth, and differentiation. These various functions of FN are modulated by its supramolecular state. Indeed, FN can polymerize into different types of assemblies like fibrils and aggregates. However, the mechanism of polymerization and the effects of such assemblies on cell behaviors still remain to be elucidated. Here we show that upon irreversible thermal denaturation, human blood plasma fibronectin forms high molecular weight aggregates. These compact and globular aggregates show amyloid features: they are stabilized by intermolecular b-sheets, they bind Thioflavin T and they are resistant to reducing and denaturing agents. Their characterization by electrospray ionization charge detection mass spectrometry shows that two populations can be distinguished according to the mass and charge density. Despite their amyloid features and the presence of hydrophobic patches on their surface, these aggregates are not toxic for cells. However, their binding abilities to gelatin and RGD are drastically decreased compare to native FN, suggesting possible effects on ECM-cell interactions.
Collapse
Affiliation(s)
- Rümeyza Bascetin
- ERRMECe, I-MAT FD4122, Université de Cergy-Pontoise, MIR, rue Descartes, 95031, Neuville sur Oise Cedex, France
| | - Khadija Admane
- ERRMECe, I-MAT FD4122, Université de Cergy-Pontoise, MIR, rue Descartes, 95031, Neuville sur Oise Cedex, France
| | - Rémy Agniel
- ERRMECe, I-MAT FD4122, Université de Cergy-Pontoise, MIR, rue Descartes, 95031, Neuville sur Oise Cedex, France
| | - Thomas Boudou
- Université Grenoble Alpes, Institut Technologique de Grenoble, CNRS, UMR 5628, LMGP, 3 Parvis Louis Néel, 38016, Grenoble, France
| | - Tristan Doussineau
- Université Lyon 1-CNRS, Université de Lyon, UMR5306, Institut Lumière Matière, 69622, Villeurbanne, France
| | - Rodolphe Antoine
- Université Lyon 1-CNRS, Université de Lyon, UMR5306, Institut Lumière Matière, 69622, Villeurbanne, France
| | - Olivier Gallet
- ERRMECe, I-MAT FD4122, Université de Cergy-Pontoise, MIR, rue Descartes, 95031, Neuville sur Oise Cedex, France
| | - Johanne Leroy-Dudal
- ERRMECe, I-MAT FD4122, Université de Cergy-Pontoise, MIR, rue Descartes, 95031, Neuville sur Oise Cedex, France
| | - Charlotte Vendrely
- ERRMECe, I-MAT FD4122, Université de Cergy-Pontoise, MIR, rue Descartes, 95031, Neuville sur Oise Cedex, France.
| |
Collapse
|
8
|
Abstract
Fibronectin is a large vertebrate glycoprotein that is found in soluble and insoluble forms and involved in diverse processes. Protomeric fibronectin is a dimer of subunits, each of which comprises 29-31 modules - 12 type I, two type II and 15-17 type III. Plasma fibronectin is secreted by hepatocytes and circulates in a compact conformation before it binds to cell surfaces, converts to an extended conformation and is assembled into fibronectin fibrils. Here we review biophysical and structural studies that have shed light on how plasma fibronectin transitions from the compact to the extended conformation. The three types of modules each have a well-organized secondary and tertiary structure as defined by NMR and crystallography and have been likened to "beads on a string". There are flexible sequences in the N-terminal tail, between the fifth and sixth type I modules, between the first two and last two of the type III modules, and at the C-terminus. Several specific module-module interactions have been identified that likely maintain the compact quaternary structure of circulating fibronectin. The quaternary structure is perturbed in response to binding events, including binding of fibronectin to the surface of vertebrate cells for fibril assembly and to bacterial adhesins.
Collapse
Affiliation(s)
- Lisa M Maurer
- a Departments of Biomolecular Chemistry and Medicine , University of Wisconsin-Madison , Madison , WI , United States
| | - Wenjiang Ma
- a Departments of Biomolecular Chemistry and Medicine , University of Wisconsin-Madison , Madison , WI , United States
| | - Deane F Mosher
- a Departments of Biomolecular Chemistry and Medicine , University of Wisconsin-Madison , Madison , WI , United States
| |
Collapse
|
9
|
Targeting Fibronectin To Disrupt In Vivo Candida albicans Biofilms. Antimicrob Agents Chemother 2016; 60:3152-5. [PMID: 26902759 DOI: 10.1128/aac.03094-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 02/14/2016] [Indexed: 11/20/2022] Open
Abstract
New drug targets are of great interest for the treatment of fungal biofilms, which are routinely resistant to antifungal therapies. We theorized that the interaction of Candida albicans with matricellular host proteins would provide a novel target. Here, we show that an inhibitory protein (FUD) targeting Candida-fibronectin interactions disrupts biofilm formation in vitro and in vivo in a rat venous catheter model. The peptide appears to act by blocking the surface adhesion of Candida, halting biofilm formation.
Collapse
|
10
|
Ma W, Ma H, Mosher DF. On-Off Kinetics of Engagement of FNI Modules of Soluble Fibronectin by β-Strand Addition. PLoS One 2015; 10:e0124941. [PMID: 25919138 PMCID: PMC4412574 DOI: 10.1371/journal.pone.0124941] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/20/2015] [Indexed: 02/07/2023] Open
Abstract
Intrinsically disordered sequences within bacterial adhesins bind to E-strands in the β-sheets of multiple FNI modules of fibronectin (FN) by anti-parallel β-strand addition, also called tandem β-zipper formation. The FUD segment of SfbI of Streptococcus pyogenes and Bbk32 segment of BBK32 of Borrelia burgdorferi, despite being imbedded in different adhesins from different bacteria, target the same 2-5,8-9 FNI modules, 2-5,8-9 FNI, in the N-terminal 70-kDa region (FN70K) of FN. To facilitate further comparisons, FUD, Bbk32, two other polypeptides based on SfbI that target 1-5 FNI (HADD) and 2-5 FNI (FRD), and mutant Bbk32 (ΔBbk32) were produced with fluorochromes placed just outside of the binding sequences. Unlabeled FUD competed ~ 1000-fold better for binding of labeled Bbk32 to FN than unlabeled Bbk32 competed for binding of labeled FUD to FN. Binding kinetics were determined by fluorescence polarization in a stopped-flow apparatus. On-rates for FUD, Bbk32, HADD, and FRD were similar, and all bound more rapidly to FN70K fragment than to full length FN. In stopped-flow displacement and size exclusion chromatographic assays, however, k off for FUD or HADD to FN70K or FN was considerably lower compared to k off of FRD or Bbk32. FUD and Bbk32 differ in the spacing between sequences that interact with 3FNI and 4FNI or with 5FNI and 8FNI. ΔBbk32, in which 2 residues were removed from Bbk32 to make the spacing more like FUD, had a k off intermediate between that of Bbk32 and FUD. These results indicate a "folding-after-binding" process after initial association of certain polypeptide sequences to FN that results in formation of a stable complex and is a function of number of FNI modules engaged by the polypeptide, spacing of engagement sites, and perhaps flexibility within the polypeptide-FN complex. We suggest that contributions of SfbI and BBK32 adhesins to bacterial pathogenicity may be determined in part by stability of adhesin-FN complexes.
Collapse
Affiliation(s)
- Wenjiang Ma
- Departments of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Hanqing Ma
- Departments of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Deane F. Mosher
- Departments of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
11
|
Ma W, Ma H, Fogerty FJ, Mosher DF. Bivalent ligation of the collagen-binding modules of fibronectin by SFS, a non-anchored bacterial protein of Streptococcus equi. J Biol Chem 2014; 290:4866-4876. [PMID: 25525266 DOI: 10.1074/jbc.m114.612259] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SFS is a non-anchored protein of Streptococcus equi subspecies equi that causes upper respiratory infection in horses. SFS has been shown to bind to fibronectin (FN) and block interaction of FN with type I collagen. We have characterized interactions of a recombinant 60-mer polypeptide, R1R2, with FN. R1R2 contains two copies of collagen-like 19-residue repeats. Experiments utilizing various FN fragments and epitope-mapped anti-FN monoclonal antibodies located the binding site to (8-9)FNI modules of the gelatin-binding domain. Fluorescence polarization and competitive enzyme-linked assays demonstrated that R1R2 binds preferentially to compact dimeric FN rather than monomeric constructs containing (8-9)FNI or a large dimeric FN construct that is constitutively in an extended conformation. In contrast to bacterial peptides that bind (2-5)FNI in addition to (8-9)FNI, R1R2 did not cause conformational extension of FN as assessed by a conformationally sensitive antibody. Equilibrium and stopped-flow binding assays and size exclusion chromatography were compatible with a two-step binding reaction in which each of the repeats of R1R2 interacts with one of the subunits of dimeric FN, resulting in a stable complex with a slow koff. In addition to not binding to type I collagen, the R1R2·FN complex incorporated less efficiently into extracellular matrix than free FN. Thus, R1R2 binds to FN utilizing features of compact soluble FN and in doing so interferes with the organization of the extracellular matrix. A similar bivalent binding strategy may underlie the collagen-FN interaction.
Collapse
Affiliation(s)
- Wenjiang Ma
- Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, Wisconsin 53706
| | - Hanqing Ma
- Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, Wisconsin 53706
| | - Frances J Fogerty
- Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, Wisconsin 53706
| | - Deane F Mosher
- Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, Wisconsin 53706.
| |
Collapse
|
12
|
Filla MS, Clark R, Peters DM. A syndecan-4 binding peptide derived from laminin 5 uses a novel PKCε pathway to induce cross-linked actin network (CLAN) formation in human trabecular meshwork (HTM) cells. Exp Cell Res 2014; 327:171-82. [PMID: 25128150 PMCID: PMC4164596 DOI: 10.1016/j.yexcr.2014.07.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 07/17/2014] [Accepted: 07/22/2014] [Indexed: 12/31/2022]
Abstract
In this study, we examined the role(s) of syndecan-4 in regulating the formation of an actin geodesic dome structure called a cross-linked actin network (CLAN) in which syndecan-4 has previously been localized. CLANs have been described in several different cell types, but they have been most widely studied in human trabecular meshwork (HTM) cells where they may play a key role in controlling intraocular pressure by regulating aqueous humor outflow from the eye. In this study we show that a loss of cell surface synedcan-4 significantly reduces CLAN formation in HTM cells. Analysis of HTM cultures treated with or without dexamethasone shows that laminin 5 deposition within the extracellular matrix is increased by glucocorticoid treatment and that a laminin 5-derived, syndecan-4-binding peptide (PEP75), induces CLAN formation in TM cells. This PEP75-induced CLAN formation was inhibited by heparin and the broad spectrum PKC inhibitor Ro-31-7549. In contrast, the more specific PKCα inhibitor Gö 6976 had no effect, thus excluding PKCα as a downstream effector of syndecan-4 signaling. Analysis of PKC isozyme expression showed that HTM cells also expressed both PKCγ and PKCε. Cells treated with a PKCε agonist formed CLANs while a PKCα/γ agonist had no effect. These data suggest that syndecan-4 is essential for CLAN formation in HTM cells and that a novel PKCε-mediated signaling pathway can regulate formation of this unique actin structure.
Collapse
Affiliation(s)
- Mark S Filla
- Department of Ophthalmology & Visual Sciences, Medical Science Center, 1300 University Avenue, Madison, WI 53706, United States.
| | - Ross Clark
- Department of Pathology & Laboratory Medicine, Medical Science Center, 1300 University Avenue, Madison, WI 53706, United States.
| | - Donna M Peters
- Department of Ophthalmology & Visual Sciences, Medical Science Center, 1300 University Avenue, Madison, WI 53706, United States; Department of Pathology & Laboratory Medicine, Medical Science Center, 1300 University Avenue, Madison, WI 53706, United States.
| |
Collapse
|
13
|
Harris G, Ma W, Maurer LM, Potts JR, Mosher DF. Borrelia burgdorferi protein BBK32 binds to soluble fibronectin via the N-terminal 70-kDa region, causing fibronectin to undergo conformational extension. J Biol Chem 2014; 289:22490-9. [PMID: 24962582 DOI: 10.1074/jbc.m114.578419] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BBK32 is a fibronectin (FN)-binding protein expressed on the cell surface of Borrelia burgdorferi, the causative agent of Lyme disease. There is conflicting information about where and how BBK32 interacts with FN. We have characterized interactions of a recombinant 86-mer polypeptide, "Bbk32," comprising the unstructured FN-binding region of BBK32. Competitive enzyme-linked assays utilizing various FN fragments and epitope-mapped anti-FN monoclonal antibodies showed that Bbk32 binding involves both the fibrin-binding and the gelatin-binding domains of the 70-kDa N-terminal region (FN70K). Crystallographic and NMR analyses of smaller Bbk32 peptides complexed, respectively, with (2-3)FNI and (8-9)FNI, demonstrated that binding occurs by β-strand addition. Isothermal titration calorimetry indicated that Bbk32 binds to isolated FN70K more tightly than to intact FN. In a competitive enzyme-linked binding assay, complex formation with Bbk32 enhanced binding of FN with mAbIII-10 to the (10)FNIII module. Thus, Bbk32 binds to multiple FN type 1 modules of the FN70K region by a tandem β-zipper mechanism, and in doing so increases accessibility of FNIII modules that interact with other ligands. The similarity in the FN-binding mechanism of BBK32 and previously studied streptococcal proteins suggests that the binding and associated conformational change of FN play a role in infection.
Collapse
Affiliation(s)
- Gemma Harris
- From the Department of Biology, University of York, York YO10 5DD, United Kingdom and
| | - Wenjiang Ma
- the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, Wisconsin 53706
| | - Lisa M Maurer
- the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, Wisconsin 53706
| | - Jennifer R Potts
- From the Department of Biology, University of York, York YO10 5DD, United Kingdom and
| | - Deane F Mosher
- the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
14
|
Shinji H, Kamada M, Seki K, Tajima A, Iwase T, Masuda S. Expression and Distribution of Very Late Antigen-5 in Mouse Peritoneal Macrophages upon Ingestion of Fibronectin-BoundStaphylococcus aureus. Microbiol Immunol 2013; 51:63-71. [PMID: 17237600 DOI: 10.1111/j.1348-0421.2007.tb03891.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Many pathogens colonize host tissues by binding to the extracellular matrix via their cell surface adhesion molecules, which are called MSCRAMMs (microbial surface components recognizing adhesive matrix molecules). Staphylococcus aureus expresses several of these adhesion molecules, some of which bind to fibronectin. Of these adhesion molecules, fibronectin-binding proteins play a role in the pathogenicity of S. aureus, although it is not yet clear whether they enhance its virulence. We have previously shown that fibronectin-bound S. aureus is efficiently phagocytosed by thioglycolate-induced mouse peritoneal macrophages. Bacterial ingestion is mediated by Very Late Antigen-5 (VLA-5; alpha5beta1 integrin) and is accompanied by the formation of adhesion complexes. Here we show that the expression of VLA-5 is restricted to thioglycolate-induced inflammatory macrophages and is not found in the resident macrophages. When cells were in suspension, alpha5 integrin was not expressed on the surface of either resident or inflammatory macrophages, whereas in adherent cells, this integrin was distributed on the surface of inflammatory but not resident macrophages. A high level of this integrin was present in the cytoplasmic region only in inflammatory macrophages. In agreement with this, fibronectin-mediated phagocytosis of S. aureus was observed only in the inflammatory macrophages. In inflammatory macrophages ingesting fibronectin-bound S. aureus, alpha5 integrin was concentrated close to the phagocytosed bacteria. This change in distribution was not found in macrophages ingesting untreated bacteria. Together with our previous work, these results indicate that, upon ingestion of fibronectin-bound S. aureus, VLA-5 accumulates in the area of phagocytosis in inflammatory macrophages, where it forms adhesion complexes.
Collapse
Affiliation(s)
- Hitomi Shinji
- Department of Microbiology (II), The Jikei University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
15
|
Llopis-Hernández V, Rico P, Moratal D, Altankov G, Salmerón-Sánchez M. Role of material-driven fibronectin fibrillogenesis in protein remodeling. Biores Open Access 2013; 2:364-73. [PMID: 24083092 PMCID: PMC3776618 DOI: 10.1089/biores.2013.0017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Protein remodeling at the cell–material interface is an important phenomenon that should be incorporated into the design of advanced biomaterials for tissue engineering. In this work, we address the relationship between fibronectin (FN) activity at the material interface and remodeling, including proteolytic cascades. To do so, we studied FN adsorption on two chemically similar substrates, poly(ethyl acrylate) (PEA) and poly(methyl acrylate) (PMA), which resulted in different distribution and conformation of the protein at the material interface: FN organized spontaneously upon adsorption on PEA into physiological-like fibrils, through a process called material-driven FN fibrillogenesis. The amount of adsorbed FN and its conformation were investigated in two different coating concentrations (2 and 20 μg/mL). Since FN activity at the material interface determines the initial cellular response, we followed the formation of focal adhesions (vinculin) and subsequent cell signaling by focal adhesion kinase (FAK) expression and its phosphorylation (pFAK). More detailed studies were performed to get further insights into integrin binding by crosslinking and extraction followed by immunofluorescence, as well as protein and gene expression for α5 and αv. To correlate cell adhesion with matrix degradation, gene expression and activity (zymography) of matrix metalloproteinases (MMPs) were measured. Overall, we demonstrated that the material-driven FN fibrillogenesis triggers proteolytic activity: MMP activity was higher on the material-driven FN fibrils, as a compensatory mechanism to the inability of cells to reorganize this FN network.
Collapse
Affiliation(s)
- Virginia Llopis-Hernández
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València , Valencia, Spain
| | | | | | | | | |
Collapse
|
16
|
González-García C, Cantini M, Moratal D, Altankov G, Salmerón-Sánchez M. Vitronectin alters fibronectin organization at the cell-material interface. Colloids Surf B Biointerfaces 2013; 111:618-25. [PMID: 23899674 DOI: 10.1016/j.colsurfb.2013.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 05/27/2013] [Accepted: 07/03/2013] [Indexed: 11/19/2022]
Abstract
Cells assemble fibronectin (FN) into fibrils in a process mediated by integrins. For this process to occur, it is known that the presence of other serum proteins is necessary. However, the individual effect of these proteins on FN fibrillogenesis has not been addressed so far. In this study, the effect of vitronectin (VN), an ECM adhesion protein, on material-driven FN fibrillogenesis and cell-mediated FN reorganization is investigated. Poly(ethyl acrylate), PEA, which has previously shown the ability to induce the organization of FN into well-developed physiological-like networks upon adsorption, was employed as a material substrate. FN adsorption, cell adhesion and cellular FN reorganization in the presence or absence of VN were studied. Both FN surface density, quantified via western blot, and its distribution on PEA surfaces, determined via atomic force microscopy, were altered when FN was adsorbed competitively with VN at certain compositions. Moreover, the presence of VN on the material surfaces enhanced cell-mediated FN reorganization and secretion, in comparison with the process which took place in the presence of serum proteins.
Collapse
Affiliation(s)
| | - Marco Cantini
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, United Kingdom
| | - David Moratal
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Spain
| | - George Altankov
- Institut de Bioenginyeria de Catalunya (IBEC), 08028 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Manuel Salmerón-Sánchez
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, United Kingdom.
| |
Collapse
|
17
|
Maurer LM, Ma W, Eickstaedt NL, Johnson IA, Tomasini-Johansson BR, Annis DS, Mosher DF. Ligation of the fibrin-binding domain by β-strand addition is sufficient for expansion of soluble fibronectin. J Biol Chem 2012; 287:13303-12. [PMID: 22351755 PMCID: PMC3339936 DOI: 10.1074/jbc.m111.294041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 02/02/2012] [Indexed: 11/06/2022] Open
Abstract
How fibronectin (FN) converts from a compact plasma protein to a fibrillar component of extracellular matrix is not understood. "Functional upstream domain" (FUD), a polypeptide based on F1 adhesin of Streptococcus pyogenes, binds by anti-parallel β-strand addition to discontinuous sets of N-terminal FN type I modules, (2-5)FNI of the fibrin-binding domain and (8-9)FNI of the gelatin-binding domain. Such binding blocks assembly of FN. To learn whether ligation of (2-5)FNI, (8-9)FNI, or the two sets in combination is important for inhibition, we tested "high affinity downstream domain" (HADD), which binds by β-strand addition to the continuous set of FNI modules, (1-5)FNI, comprising the fibrin-binding domain. HADD and FUD were similarly active in blocking fibronectin assembly. Binding of HADD or FUD to soluble plasma FN exposed the epitope to monoclonal antibody mAbIII-10 in the tenth FN type III module ((10)FNIII) and caused expansion of FN as assessed by dynamic light scattering. Soluble N-terminal constructs truncated after (9)FNI or (3)FNIII competed better than soluble FN for binding of FUD or HADD to adsorbed FN, indicating that interactions involving type III modules more C-terminal than (3)FNIII limit β-strand addition to (1-5)FNI within intact soluble FN. Preincubation of FN with mAbIII-10 or heparin modestly increased binding to HADD or FUD. Thus, ligation of FNIII modules involved in binding of integrins and glycosaminoglycans, (10)FNIII and (12-14)FNIII, increases accessibility of (1-5)FNI. Allosteric loss of constraining interactions among (1-5)FNI, (10)FNIII, and (12-14)FNIII likely enables assembly of FN into extracellular fibrils.
Collapse
Affiliation(s)
- Lisa M. Maurer
- From the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Wenjiang Ma
- From the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Nathan L. Eickstaedt
- From the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Ian A. Johnson
- From the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Bianca R. Tomasini-Johansson
- From the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Douglas S. Annis
- From the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Deane F. Mosher
- From the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
18
|
Maurer LM, Annis DS, Mosher DF. IGD motifs, which are required for migration stimulatory activity of fibronectin type I modules, do not mediate binding in matrix assembly. PLoS One 2012; 7:e30615. [PMID: 22355321 PMCID: PMC3280255 DOI: 10.1371/journal.pone.0030615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 12/24/2011] [Indexed: 11/18/2022] Open
Abstract
Picomolar concentrations of proteins comprising only the N-terminal 70-kDa region (70K) of fibronectin (FN) stimulate cell migration into collagen gels. The Ile-Gly-Asp (IGD) motifs in four of the nine FN type 1 (FNI) modules in 70K are important for such migratory stimulating activity. The 70K region mediates binding of nanomolar concentrations of intact FN to cell-surface sites where FN is assembled. Using baculovirus, we expressed wildtype 70K and 70K with Ile-to-Ala mutations in (3)FNI and (5)FNI; (7)FNI and (9)FNI; or (3)FNI, (5)FNI, (7)FNI, and (9)FNI. Wildtype 70K and 70K with Ile-to-Ala mutations were equally active in binding to assembly sites of FN-null fibroblasts. This finding indicates that IGD motifs do not mediate the interaction between 70K and the cell-surface that is important for FN assembly. Further, FN fragment N-(3)FNIII, which does not stimulate migration, binds to assembly sites on FN-null fibroblast. The Ile-to-Ala mutations had effects on the structure of FNI modules as evidenced by decreases in abilities of 70K with Ile-to-Ala mutations to bind to monoclonal antibody 5C3, which recognizes an epitope in (9)FNI, or to bind to FUD, a polypeptide based on the F1 adhesin of Streptococcus pyogenes that interacts with 70K by the β-zipper mechanism. These results suggest that the picomolar interactions of 70K with cells that stimulate cell migration require different conformations of FNI modules than the nanomolar interactions required for assembly.
Collapse
Affiliation(s)
- Lisa M. Maurer
- Departments of Biomolecular Chemistry and Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Douglas S. Annis
- Departments of Biomolecular Chemistry and Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Deane F. Mosher
- Departments of Biomolecular Chemistry and Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
19
|
Cantini M, González-García C, Llopis-Hernández V, Salmerón-Sánchez M. Material-Driven Fibronectin Fibrillogenesis. ACS SYMPOSIUM SERIES 2012. [DOI: 10.1021/bk-2012-1120.ch022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
20
|
Ballester-Beltrán J, Cantini M, Lebourg M, Rico P, Moratal D, García AJ, Salmerón-Sánchez M. Effect of topological cues on material-driven fibronectin fibrillogenesis and cell differentiation. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:195-204. [PMID: 22201030 DOI: 10.1007/s10856-011-4532-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 12/10/2011] [Indexed: 05/31/2023]
Abstract
Fibronectin (FN) assembles into fibrillar networks by cells through an integrin-dependent mechanism. We have recently shown that simple FN adsorption onto poly(ethyl acrylate) surfaces (PEA), but not control polymer (poly(methyl acrylate), PMA), also triggered FN organization into a physiological fibrillar network. FN fibrils exhibited enhanced biological activities in terms of myogenic differentiation compared to individual FN molecules. In the present study, we investigate the influence of topological cues on the material-driven FN assembly and the myogenic differentiation process. Aligned and random electrospun fibers were prepared. While FN fibrils assembled on the PEA fibers as they do on the smooth surface, the characteristic distribution of globular FN molecules observed on flat PMA transformed into non-connected FN fibrils on electrospun PMA, which significantly enhanced cell differentiation. The direct relationship between the fibrillar organization of FN at the material interface and the myogenic process was further assessed by preparing FN gradients on smooth PEA and PMA films. Isolated FN molecules observed at one edge of the substrate gradually interconnected with each other, eventually forming a fully developed network of FN fibrils on PEA. In contrast, FN adopted a globular-like conformation along the entire length of the PMA surface, and the FN gradient consisted only of increased density of adsorbed FN. Correspondingly, the percentage of differentiated cells increased monotonically along the FN gradient on PEA but not on PMA. This work demonstrates an interplay between material chemistry and topology in modulating material-driven FN fibrillogenesis and cell differentiation.
Collapse
Affiliation(s)
- José Ballester-Beltrán
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
21
|
Tsujimoto I, Moriya K, Sakai K, Dickneite G, Sakai T. Critical role of factor XIII in the initial stages of carbon tetrachloride-induced adult liver remodeling. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:3011-9. [PMID: 22019897 PMCID: PMC3260829 DOI: 10.1016/j.ajpath.2011.08.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 08/05/2011] [Accepted: 08/24/2011] [Indexed: 12/29/2022]
Abstract
The transglutaminase-mediated, covalent cross-linking of proteins is an essential step in tissue remodeling after injury. This process provides tissues with extra rigidity and resistance against proteolytic degradation. Plasma coagulation factor XIII (FXIII) is a transglutaminase that promotes cross-linking of the extracellular matrix (ECM) components fibrin and fibronectin to form a provisional matrix in response to tissue damage. However, the functional requirement for this FXIII-mediated cross-linked provisional matrix in adult tissue remodeling remains to be defined. Although it has been proposed that the formation FXIII-mediated fibrin-fibronectin provisional matrix is a critical step for ECM remodeling, we show in an FXIII subunit A-deficient murine model of acute liver injury that the lack of FXIII subunit A did not interfere with collagen reconstruction and resolution after liver injury. Furthermore, FXIIIA deficiency caused significantly increased hepatocyte apoptosis and a delay in hepatocyte regeneration after injury, which were accompanied by a significantly high induction of p53 expression. These findings suggest novel functions of FXIII that the FXIII-mediated covalently cross-linked matrix could promote survival signals for hepatocytes in adult tissue remodeling.
Collapse
Affiliation(s)
- Ikuko Tsujimoto
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | | | |
Collapse
|
22
|
Hoffmann BR, Annis DS, Mosher DF. Reactivity of the N-terminal region of fibronectin protein to transglutaminase 2 and factor XIIIA. J Biol Chem 2011; 286:32220-30. [PMID: 21757696 DOI: 10.1074/jbc.m111.255562] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transglutaminase 2 (TG2) is secreted by a non-classical pathway into the extracellular space, where it has several activities pertinent to fibronectin (FN), including binding to the gelatin-binding domain of FN and acting as an integrin co-receptor. Glutamines in the N-terminal tail of FN are known to be susceptible to transamidation by both TG2 and activated blood coagulation factor XIII (FXIIIa). We used immunoblotting, limited proteolysis, and mass spectrometry to localize glutamines within FN that are subject to TG2-catalyzed incorporation of dansylcadaverine in comparison to residues modified by FXIIIa. Such analysis of plasma FN indicated that Gln-3, Gln-7, and Gln-9 in the N-terminal tail and Gln-246 of the linker between fifth and sixth type I modules ((5)F1 and (6)F1) are transamidated by both enzymes. Only minor incorporation of dansylcadaverine was detected elsewhere. Labeling of C-terminally truncated FN constructs revealed efficient TG2- or FXIIIa-catalyzed dansylcadaverine incorporation into the N-terminal residues of constructs as small as the 29-kDa fragment that includes (1-5)F1 and lacks modules from the adjacent gelatin-binding domain. However, when only (1-3)F1 were present, dansylcadaverine incorporation into the N-terminal residues of FN was lost and instead was in the enzymes, near the active site of TG2 and terminal domains of FXIIIa. Thus, these results demonstrate that FXIIIa and TG2 act similarly on glutamines at either end of (1-5)F1 and transamidation specificity of both enzymes is achieved through interactions with the intact 29K fragment.
Collapse
Affiliation(s)
- Brian R Hoffmann
- Department of Biomolecular Chemistry and Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
23
|
Salmerón-Sánchez M, Rico P, Moratal D, Lee TT, Schwarzbauer JE, García AJ. Role of material-driven fibronectin fibrillogenesis in cell differentiation. Biomaterials 2010; 32:2099-105. [PMID: 21185593 DOI: 10.1016/j.biomaterials.2010.11.057] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 11/25/2010] [Indexed: 12/29/2022]
Abstract
Fibronectin (FN) is a ubiquitous extracellular matrix protein (ECM) protein that is organized into fibrillar networks by cells through an integrin-mediated process that involves contractile forces. This assembly allows for the unfolding of the FN molecule, exposing cryptic domains that are not available in the native globular FN structure and activating intracellular signalling complexes. However, organization of FN into a physiological fibrillar network upon adsorption on a material surface has not been observed. Here we demonstrate cell-free, material-induced FN fibrillogenesis into a biological matrix with enhanced cellular activities. We found that simple FN adsorption onto poly(ethyl acrylate) surfaces, but not control polymers, triggered FN organization into a fibrillar network via interactions in the amino-terminal 70 kDa fragment, which is involved in the formation of cell-mediated FN fibrils. Moreover, the material-driven FN fibrils exhibited enhanced biological activities in terms of myogenic differentiation compared to individual FN molecules and even type I collagen. Our results demonstrate that molecular assembly of FN can take place at the material interface, giving rise to a physiological protein network similar to fibrillar matrices assembled by cells. This research identifies material surfaces that trigger the organization of extracellular matrix proteins into biological active fibrils and establishes a new paradigm to engineer ECM-mimetic biomaterials.
Collapse
|
24
|
Maurer LM, Tomasini-Johansson BR, Ma W, Annis DS, Eickstaedt NL, Ensenberger MG, Satyshur KA, Mosher DF. Extended binding site on fibronectin for the functional upstream domain of protein F1 of Streptococcus pyogenes. J Biol Chem 2010; 285:41087-99. [PMID: 20947497 PMCID: PMC3003407 DOI: 10.1074/jbc.m110.153692] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 09/23/2010] [Indexed: 01/14/2023] Open
Abstract
The 49-residue functional upstream domain (FUD) of Streptococcus pyogenes F1 adhesin interacts with fibronectin (FN) in a heretofore unknown manner that prevents assembly of a FN matrix. Biotinylated FUD (b-FUD) bound to adsorbed FN or its recombinant N-terminal 70-kDa fibrin- and gelatin-binding fragment (70K). Binding was blocked by FN or 70K, but not by fibrin- or gelatin-binding subfragments of 70K. Isothermal titration calorimetry showed that FUD binds with K(d) values of 5.2 and 59 nM to soluble 70K and FN, respectively. We tested sets of FUD mutants and epitope-mapped monoclonal antibodies (mAbs) for ability to compete with b-FUD for binding to FN or to block FN assembly by cultured fibroblasts. Deletions or alanine substitutions throughout FUD caused loss of both activities. mAb 4D1 to the (2)FNI module had little effect, whereas mAb 7D5 to the (4)FNI module in the fibrin-binding region, 5C3 to the (9)FNI module in the gelatin-binding region, or L8 to the G-strand of (1)FNIII module adjacent to (9)FNI caused loss of binding of b-FUD to FN and decreased FN assembly. Conversely, FUD blocked binding of 7D5, 5C3, or L8, but not of 4D1, to FN. Circular dichroism indicated that FUD binds to 70K by β-strand addition, a possibility supported by modeling based on crystal structures of peptides bound to (2)FNI-(5)FNI of the fibrin-binding domain and (8)FNI-(9)FNI of the gelatin-binding domain. Thus, the interaction likely involves an extensive anti-parallel β-zipper in which FUD interacts with the E-strands of (2)FNI-(5)FNI and (8)FNI-(9)FNI.
Collapse
Affiliation(s)
- Lisa M. Maurer
- From the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, Wisconsin 53706
| | | | - Wenjiang Ma
- From the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, Wisconsin 53706
| | - Douglas S. Annis
- From the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, Wisconsin 53706
| | - Nathan L. Eickstaedt
- From the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, Wisconsin 53706
| | - Martin G. Ensenberger
- From the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, Wisconsin 53706
| | - Kenneth A. Satyshur
- From the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, Wisconsin 53706
| | - Deane F. Mosher
- From the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
25
|
Feinberg AW, Parker KK. Surface-initiated assembly of protein nanofabrics. NANO LETTERS 2010; 10:2184-2191. [PMID: 20486679 DOI: 10.1021/nl100998p] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Cells and tissues are self-organized within an extracellular matrix (ECM) composed of multifunctional, nano- to micrometer scale protein fibrils. We have developed a cell-free, surface-initiated assembly technique to rebuild this ECM structure in vitro. The matrix proteins fibronectin, laminin, fibrinogen, collagen type I, and collagen type IV are micropatterned onto thermosensitive surfaces as 1 to 10 nm thick, micrometer to centimeter wide networks, and released as flexible, free-standing nanofabrics. Independent control of microstructure and protein composition enables us to engineer the mechanical and chemical anisotropy. Fibronectin nanofabrics are highly extensible (>4-fold) and serve as scaffolds for engineering synchronously contracting, cardiac muscle; demonstrating biofunctionality comparable to cell-generated ECM.
Collapse
Affiliation(s)
- Adam W Feinberg
- Disease Biophysics Group, Wyss Institute for Biologically-Inspired Engineering, School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
26
|
Xu J, Maurer LM, Hoffmann BR, Annis DS, Mosher DF. iso-DGR sequences do not mediate binding of fibronectin N-terminal modules to adherent fibronectin-null fibroblasts. J Biol Chem 2010; 285:8563-71. [PMID: 20097751 DOI: 10.1074/jbc.m109.062646] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Fibronectin (FN) without an RGD sequence (FN-RGE), and thus lacking the principal binding site for alpha5beta1 integrin, is deposited into the extracellular matrix of mouse embryos. Spontaneous conversion of (263)NGR and/or (501)NGR to iso-DGR possibly explains this enigma, i.e. ligation of iso-DGR by alphavbeta3 integrin may allow cells to assemble FN. Partial modification of (263)NGR to DGR or iso-DGR was detected in purified plasma FN by mass spectrometry. To test functions of the conversion, one or both NGR sequences were mutated to QGR in recombinant N-terminal 70-kDa construct of FN (70K), full-length FN, or FN-RGE. The mutations did not affect the binding of soluble 70K to already adherent fibroblasts or the ability of soluble 70K to compete with non-mutant FN or FN-RGE for binding to FN assembly sites. Non-mutant FN and FN-N263Q/N501Q with both NGRs mutated to QGRs were assembled equally well by adherent fibroblasts. FN-RGE and FN-RGE-N263Q/N501Q were also assembled equally well. Although substrate-bound 70K mediated cell adhesion in the presence of 1 mm Mn(2+) by a mechanism that was inhibited by cyclic RGD peptide, the peptide did not inhibit 70K binding to cell surface. Mutations of the NGR sequences had no effect on Mn(2+)-enhanced cell adhesion to adsorbed 70K but caused a decrease in cell adhesion to reduced and alkylated 70K. These results demonstrate that iso-DGR sequences spontaneously converted from NGR are cryptic and do not mediate the interaction of the 70K region of FN with the cell surface during FN assembly.
Collapse
Affiliation(s)
- Jielin Xu
- Department of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
27
|
Gugutkov D, González-García C, Rodríguez Hernández JC, Altankov G, Salmerón-Sánchez M. Biological activity of the substrate-induced fibronectin network: insight into the third dimension through electrospun fibers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:10893-10900. [PMID: 19735141 DOI: 10.1021/la9012203] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Fibronectin (FN) fibrillogenesis is a cell-mediated process involving integrin activation that results in conformational changes of FN molecules and the organization of actin cytoskeleton. A similar process can be induced by some chemistries in the absence of cells, e.g., poly(ethyl acrylate) (PEA), which enhance FN-FN interactions leading to the formation of a biologically active network. Atomic force microscopy images of single FN molecules, at the early stages of adsorption on plane PEA, allow one to rationalize the process. Further, the role of the spatial organization of the FN network on the cellular response is investigated through its adsorption on electrospun fibers. Randomly oriented and aligned PEA fibers were prepared to mimic the three-dimensional organization of the extracellular matrix. The formation of the FN network on the PEA fibers but not on the supporting coverglass was confirmed. Fibroblasts aligned with oriented fibers, displayed extended morphology, developed linearly organized focal adhesion complexes, and matured actin filaments. Conversely, on random PEA fibers, cells acquired polygonal morphology with altered actin cytoskeleton but well-developed focal adhesions. Late FN matrix formation was also influenced: spatially organized FN matrix fibrils along the oriented PEA fibers and an altered arrangement on random ones.
Collapse
Affiliation(s)
- Dencho Gugutkov
- Institut de Bioenginyeria de Catalunya (IBEC), 08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
28
|
Xu J, Bae E, Zhang Q, Annis DS, Erickson HP, Mosher DF. Display of cell surface sites for fibronectin assembly is modulated by cell adherence to (1)F3 and C-terminal modules of fibronectin. PLoS One 2009; 4:e4113. [PMID: 19119318 PMCID: PMC2606026 DOI: 10.1371/journal.pone.0004113] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 12/04/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Fibronectin-null cells assemble soluble fibronectin shortly after adherence to a substrate coated with intact fibronectin but not when adherent to the cell-binding domain of fibronectin (modules (7)F3-(10)F3). Interactions of adherent cells with regions of adsorbed fibronectin other than modules (7)F3-(10)F3, therefore, are required for early display of the cell surface sites that initiate and direct fibronectin assembly. METHODOLOGY/PRINCIPAL FINDINGS To identify these regions, coatings of proteolytically derived or recombinant pieces of fibronectin containing modules in addition to (7)F3-(10)F3 were tested for effects on fibronectin assembly by adherent fibronectin-null fibroblasts. Pieces as large as one comprising modules (2)F3-(14)F3, which include the heparin-binding and cell adhesion domains, were not effective in supporting fibronectin assembly. Addition of module (1)F3 or the C-terminal modules to modules (2)F3-(14)F3 resulted in some activity, and addition of both (1)F3 and the C-terminal modules resulted in a construct, (1)F3-C, that best mimicked the activity of a coating of intact fibronectin. Constructs (1)F3-C V0, (1)F3-C V64, and (1)F3-C Delta(V(15)F3(10)F1) were all able to support fibronectin assembly, suggesting that (1)F3 through (11)F1 and/or (12)F1 were important for activity. Coatings in which the active parts of (1)F3-C were present in different proteins were much less active than intact (1)F3-C. CONCLUSIONS These results suggest that (1)F3 acts together with C-terminal modules to induce display of fibronectin assembly sites on adherent cells.
Collapse
Affiliation(s)
- Jielin Xu
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Eunnyung Bae
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Qinghong Zhang
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Douglas S. Annis
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Harold P. Erickson
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Deane F. Mosher
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
29
|
Little WC, Smith ML, Ebneter U, Vogel V. Assay to mechanically tune and optically probe fibrillar fibronectin conformations from fully relaxed to breakage. Matrix Biol 2008; 27:451-61. [PMID: 18417335 DOI: 10.1016/j.matbio.2008.02.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 02/04/2008] [Accepted: 02/05/2008] [Indexed: 11/19/2022]
Abstract
In response to growing needs for quantitative biochemical and cellular assays that address whether the extracellular matrix (ECM) acts as a mechanochemical signal converter to co-regulate cellular mechanotransduction processes, a new assay is presented where plasma fibronectin fibers are manually deposited onto elastic sheets, while force-induced changes in protein conformation are monitored by fluorescence resonance energy transfer (FRET). Fully relaxed assay fibers can be stretched at least 5-6 fold, which involves Fn domain unfolding, before the fibers break. In native fibroblast ECM, this full range of stretch-regulated conformations coexists in every field of view confirming that the assay fibers are physiologically relevant model systems. Since alterations of protein function will directly correlate with their extension in response to force, the FRET vs. strain curves presented herein enable the mapping of fibronectin strain distributions in 2D and 3D cell cultures with high spatial resolution. Finally, cryptic sites for fibronectin's N-terminal 70-kD fragment were found to be exposed at relatively low strain, demonstrating the assay's potential to analyze stretch-regulated protein-protein interactions.
Collapse
Affiliation(s)
- William C Little
- Department of Materials, ETH Zurich, CH-8093, Zürich, Switzerland
| | | | | | | |
Collapse
|
30
|
Makogonenko E, Ingham KC, Medved L. Interaction of the fibronectin COOH-terminal Fib-2 regions with fibrin: further characterization and localization of the Fib-2-binding sites. Biochemistry 2007; 46:5418-26. [PMID: 17425334 PMCID: PMC2531210 DOI: 10.1021/bi7001373] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Incorporation of fibronectin into fibrin clots is important for the formation of a provisional matrix that promotes cell adhesion and migration during wound healing. Previous studies revealed that this incorporation occurs through noncovalent interaction between two NH2-terminal Fib-1 regions of fibronectin (one on each chain) and the alphaC-regions of fibrin, and is further reinforced by factor XIIIa-mediated covalent cross-linking of fibronectin to the fibrin matrix. To clarify the role of another pair of fibrin-binding regions, Fib-2, located at the disulfide-linked COOH-terminal ends of fibronectin, we prepared by limited proteolysis a dimeric 140 kDa (Fib-2)2 fragment containing both Fib-2 regions and tested its interaction with recombinant fragments corresponding to the alphaC regions of fibrin(ogen). In both ELISA and surface plasmon resonance (SPR) experiments 140 kDa (Fib-2)2 bound to the immobilized Aalpha221-610 alphaC-fragment. However, the affinity of binding was substantially lower than that for Fib-1. Ligand blotting and ELISA established that the Fib-2 binding site is located in the connector part of the alphaC region including residues Aalpha221-391. Analysis of the SPR-detected binding of fibronectin to the immobilized Aalpha221-610 alphaC-fragment revealed two types of fibronectin-binding sites, one with high affinity and another one with much lower affinity. Competition experiments revealed about 30% inhibition of the Fib-2 mediated binding by increasing concentrations of Fib-1 fragment suggesting partial overlap of the two sets of binding sites. Based on these results and our previous studies we propose a mechanism of interaction of fibronectin with fibrin in which both Fib-1 and Fib-2 play a role.
Collapse
Affiliation(s)
- Evgeny Makogonenko
- Center for Vascular and Inflammatory Diseases and the Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Kenneth C. Ingham
- Department of Biochemistry and Molecular Biology, the George Washington University School of Medicine and Health Sciences, Washington, DC 20037
| | - Leonid Medved
- Center for Vascular and Inflammatory Diseases and the Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
- To whom correspondence should be addressed at the University of Maryland School of Medicine, Center for Vascular and Inflammatory Diseases, 800 West Baltimore Street, Baltimore, MD, 21201. . Phone: (410) 706-8065. Fax: (410) 706-8121
| |
Collapse
|
31
|
Patel S, Chaffotte AF, Amana B, Goubard F, Pauthe E. In vitro denaturation-renaturation of fibronectin. Formation of multimers disulfide-linked and shuffling of intramolecular disulfide bonds. Int J Biochem Cell Biol 2006; 38:1547-60. [PMID: 16697243 DOI: 10.1016/j.biocel.2006.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 03/08/2006] [Accepted: 03/10/2006] [Indexed: 01/16/2023]
Abstract
It is well established that fibronectin into extracellular matrix undergoes repeated tensions applied by cells, resulting into dramatic structural changes which reflect its elastic properties. However, there is currently no study reporting with precision the consequences of this elasticity on fibronectin structure and conformation. In the present work, we investigated fibronectin structural and conformational reorganization in vitro through a denaturation-renaturation approach. The similarities and differences between "refolded fibronectin" and "native fibronectin" were investigated using various spectroscopic methods, hydrodynamic characterization, molecular imaging and biochemical characterization. In the refolded form, secondary structure elements as well as local tyrosine and tryptophan environment are identical compared to the native form. Interestingly, some differences in global tertiary structure organization and molecular conformation were observed. These differences are due to the reactivity of the two free cysteines, which are buried in the native state but become accessible during the unfolding process. First, oxidation of these residues leading to the formation of intermolecular disulfide bonds results in formation of stabilized multimer. Second, some illegitimate intramolecular disulfide bonds are formed. The presence of iodoacetamide, the sulfhydryl alkylating agent, during the unfolding-refolding process prevents all these events. This study clearly demonstrates that, under near physiological conditions, competitive renaturation pathways occur, involving free cysteines in either multimer formation or intermolecular shuffling of disulfide bonds. These findings might have important implications for future studies and be helpful to develop a deeper understanding of fibronectin morphology.
Collapse
Affiliation(s)
- Salima Patel
- Department of Physiology and Biophysics, ERRMECe, Université de Cergy-Pontoise, 95302 Cergy-Pontoise, Cedex, France.
| | | | | | | | | |
Collapse
|
32
|
Abstract
Superfibronectin (sFN) is a fibronectin (FN) aggregate that is formed by mixing FN with anastellin, a fragment of the first type III domain of FN. However, the mechanism of this aggregation has not been clear. In this study, we found that anastellin co-precipitated with FN in a ratio of approximately 4:1, anastellin:FN monomer. The primary binding site for anastellin was in the segment (III)1-3, which bound three molecules of anastellin and was able to form a precipitate without the rest of the FN molecule. Anastellin binding to (III)3 caused a conformational change in that domain that exposed a cryptic thermolysin-sensitive site. An additional anastellin binds to (III)11, where it enhances thermolysin digestion of (III)11. An engineered disulfide bond in (III)3 inhibited both aggregation and protease digestion, suggesting that the stability of (III)3 is a key factor in sFN formation. We propose a three-step model for sFN formation: 1) FN-III domains spontaneously unfold and refold; 2) anastellin binds to an unfolded domain, preventing its refolding and leaving it with exposed hydrophobic surfaces and beta-sheet edges; and 3) these exposed elements bind to similar exposed elements on other molecules, leading to aggregation. The model is consistent with our observation that the kinetics of aggregation are first order, with a reaction time of 500-700 s. Similar mechanisms may contribute to the assembly of the native FN matrix.
Collapse
Affiliation(s)
- Tomoo Ohashi
- Department of Cell Biology, Duke University, Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
33
|
Ensenberger MG, Annis DS, Mosher DF. Actions of the functional upstream domain of protein F1 of Streptococcus pyogenes on the conformation of fibronectin. Biophys Chem 2005; 112:201-7. [PMID: 15572249 DOI: 10.1016/j.bpc.2004.07.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Accepted: 07/01/2004] [Indexed: 11/28/2022]
Abstract
Fibronectin (Fn), discovered by Harvard's Plasma Protein Program as plasma "cold-insoluble globulin" in the 1940s, has attracted much interest over the past three decades. One of the most interesting features of Fn is its ability to change shape in response to various environmental conditions and interactions with other substances found in the extra-cellular space. Here we examine the potential of the functional upstream domain (FUD) of Streptococcus pyogenes protein F1 to bring about changes in structure of Fn. In particular, we investigate the accessibility of Fn's 10th type III module that contains the integrin binding RGD motif. By use of monoclonal antibodies in a competitive ELISA assay, we found that FUD interacts with the amino-terminal type I modules of Fn to unveil the cell-binding region of Fn. This conformational change was achieved at sub-equimolar ratios of FUD/Fn monomer. We discuss the functional relevance of the interaction for both Fn and S. pyogenes and correlate the results with a conformational model of Fn that arose out of a collaboration between our laboratory and that of John Ferry.
Collapse
|
34
|
Peters DM, Herbert K, Biddick B, Peterson JA. Myocilin binding to Hep II domain of fibronectin inhibits cell spreading and incorporation of paxillin into focal adhesions. Exp Cell Res 2004; 303:218-28. [PMID: 15652337 DOI: 10.1016/j.yexcr.2004.09.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Revised: 09/28/2004] [Accepted: 09/29/2004] [Indexed: 11/19/2022]
Abstract
Myocilin, a novel matricellular protein found in the human eye, can modify signaling events mediated by the Heparin II domain of fibronectin. Using myocilin produced in sf9 insect cells, myocilin inhibited spreading of cycloheximide-treated human skin fibroblasts plated on substrates co-coated with myocilin and either fibronectin or its Heparin II domain. Cell spreading could be rescued by adding back either substrate adsorbed or soluble Heparin II domains. Myocilin did not inhibit cell attachment to fibronectin even in the presence of a 2400 M excess of myocilin. Myocilin impaired focal adhesion formation and specifically blocked the incorporation of paxillin, but not vinculin, into focal adhesions. The Heparin II domain mediated the incorporation of paxillin into focal adhesions, since paxillin was not assembled into focal adhesions unless the Heparin II domain was present. The effect of myocilin on focal adhesions could be overcome by treating cells with either phorbol 12-myristate (PMA) or oleoyl-L-alpha-lysophosphatidic acid (LPA). Myocilin bound to the fibroblast cell surface, but its binding could not be competed with excess fibronectin, suggesting that myocilin does not compete for cell surface binding sites of fibronectin. Myocilin therefore appears to specifically block functions mediated by the Heparin II domain possibly through direct interactions with it.
Collapse
Affiliation(s)
- Donna M Peters
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53706, USA.
| | | | | | | |
Collapse
|
35
|
Bae E, Sakai T, Mosher DF. Assembly of exogenous fibronectin by fibronectin-null cells is dependent on the adhesive substrate. J Biol Chem 2004; 279:35749-59. [PMID: 15199047 DOI: 10.1074/jbc.m406283200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The role of endogenously synthesized fibronectin (FN) in assembly was studied with cells lacking or expressing FN. Cells were cultured as homogeneous or mixed populations on surfaces coated with different matrix proteins. Compared with FN-expressing cells, FN-null cells poorly assembled exogenous plasma FN (pFN) when adhered to vitronectin or the recombinant cell-binding domain (III(7-10)) of FN. Vitronectin had a suppressive effect that was overcome by co-adsorbed pFN or laminin-1 but not by soluble FN. In co-cultures of FN-expressing cells and FN-null cells, endogenous FN was preferentially assembled around FN-expressing cells regardless of the adhesive ligand. If the adhesive ligand was vitronectin, exogenous pFN assembled preferentially around cells expressing cellular FN or recombinant EDa- or EDa+ FN. In co-cultures on vitronectin of FN-null cells and beta(1) integrin subunit-null cells, fibrils of cellular FN and pFN were preferentially deposited by FN-null (beta(1)-expressing) cells immediately adjacent to (FN-secreting) beta(1)-null cells. In co-cultures on vitronectin of FN-null cells and beta(1)-null cells expressing a chimera with the extracellular domain of beta(1) and the cytoplasmic domain of beta(3), preferential assembly was by the chimera-expressing cells. These results indicate that the adhesive ligand is a determinant of FN assembly by cells not secreting endogenous FN (suppressive if vitronectin, non-suppressive but non-supportive if III(7-10), supportive if pFN or laminin-1) and suggest that efficient interaction of freshly secreted cellular FN with a beta(1) integrin, presumably alpha(5)beta(1), substitutes for integrin-mediated adherence to a preformed matrix of laminin-1 or pFN to support assembly of FN.
Collapse
Affiliation(s)
- Eunnyung Bae
- Department of Pathology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
36
|
Abstract
Ficolin is a plasma lectin, consisting of a short N-terminal multimerization domain, a middle collagen domain, and a C-terminal fibrinogen-like domain. The collagen domains assemble the subunits into trimers, and the N-terminal domain assembles four trimers into 12-mers. Two cysteine residues in the N-terminal domain are thought to mediate multimerization by disulfide bonding. We have generated three mutants of ficolin alpha in which the N-terminal cysteines were substituted by serines (Cys4, Cys24, and Cys4/Cys24). The N-terminal cysteine mutants were produced in a mammalian cell expression system, purified by affinity chromatography, and analyzed under nondenaturing conditions to resolve the multimer structure of the native protein and under denaturing conditions to resolve the disulfide-linked structure. Glycerol gradient sedimentation and electron microscopy in nondenaturing conditions showed that plasma and recombinant wild-type protein formed 12-mers. The Cys4 mutant also formed 12-mers, but Cys24 and Cys4/Cys24 mutants formed only trimers. This means that protein interfaces containing Cys4 are stable as noncovalent protein-protein interactions and do not require disulfides, whereas those containing Cys24-Cys24 require the disulfides for stability. Proteins were also analyzed by nonreducing SDS-PAGE to show the covalent structure under denaturing conditions. Wild-type ficolin was covalently linked into 12-mers, whereas elimination of either Cys4 or Cys24 gave dimers and monomers. We present a model in which symmetric Cys24-Cys24 disulfide bonds between trimers are the basis for multimerization. The model may also be relevant to collectin multimers.
Collapse
Affiliation(s)
- Tomoo Ohashi
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
37
|
Klein RM, Zheng M, Ambesi A, Van De Water L, McKeown-Longo PJ. Stimulation of extracellular matrix remodeling by the first type III repeat in fibronectin. J Cell Sci 2003; 116:4663-74. [PMID: 14576359 DOI: 10.1242/jcs.00778] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The fibronectin matrix contains cryptic sites which are thought to modulate cellular biological responses. One of these sites, located in fibronectin's first type III repeat (III1c), influences signaling pathways that are relevant to cytoskeletal organization and cell cycle progression. The purpose of this study was to identify possible mechanisms responsible for the effects of III1c on cell behavior. Recombinant peptides representing various type III repeats of fibronectin were compared for their effects on fibronectin matrix organization and activation of intracellular signaling pathways. III1c and III13 but not III11c or III10 bound to monolayers of human skin fibroblasts in a dose- and time-dependent manner and were localized to the extracellular matrix. Binding of III13, but not III1c, to matrix was sensitive to heparitinase, suggesting that the association of III1c with the matrix was not dependent on heparan sulfate proteoglycans. Quantitative and morphological assessment indicated that, in contrast to previously published reports, the binding of III1c to cell layers did not result in the loss or disruption of matrix fibronectin. Binding of III1c but not III13 to the extracellular matrix did result in the loss of a conformationally sensitive epitope present within the EDA type III module of cellular fibronectin. III1c-induced loss of the EDA epitope did not require the presence of cells, occurred within 1 hour and was associated with the activation of p38 mitogen-activated protein kinase (MAPK) followed by the formation of filopodia. Maximal phosphorylation of p38 MAPK occurred within 1 hour, whereas cytoskeletal changes did not appear until 12 hours later. These findings are consistent with a model in which the binding of III1c to the extracellular matrix results in a conformational remodeling of the fibronectin matrix, which has both short- and long-term effects on cell physiology.
Collapse
Affiliation(s)
- R Matthew Klein
- Center for Cell Biology and Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | | | | | | | | |
Collapse
|
38
|
Santas AJ, Peterson JA, Halbleib JL, Craig SE, Humphries MJ, Peters DMP. Alternative splicing of the IIICS domain in fibronectin governs the role of the heparin II domain in fibrillogenesis and cell spreading. J Biol Chem 2002; 277:13650-8. [PMID: 11832485 DOI: 10.1074/jbc.m111361200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Heparin (Hep) II-binding domain of fibronectin regulates the formation of focal adhesions and actin stress fibers and hence plays an important role in cell spreading, migration, and fibronectin fibrillogenesis. Using human skin fibroblast cultures, we demonstrate that alternative splicing of the neighboring IIICS domain may regulate the activities of the Hep II domain in cell spreading and fibronectin fibrillogenesis. Recombinant Hep II domains, adjacent to either the IIICS domain or the H89 splice variant that contains the amino-terminal sequence of the IIICS domain, blocked fibronectin fibrillogenesis and required sulfated proteoglycans to mediate cell spreading. If the Hep II domain was adjacent to either the H0 or H95 splice variants, which both lack the amino terminus of the IIICS domain, fibrillogenesis was not inhibited and cell spreading was independent of a sulfated proteoglycan-mediated mechanism. The effect of the splice variants on the Hep II domain could be mimicked using a Hep II domain that contained only 6 amino acids from the III(15) repeat or 10 amino acids from the IIICS domain suggesting that sequences proximal to the III(14) repeat determined the role of the Hep II domain in these processes. We propose that alternative splicing of the IIICS domain modulates interactions between heparan sulfate proteoglycans and the Hep II domain and that this serves as a mechanism to control the biological activities of fibronectin.
Collapse
Affiliation(s)
- Amy J Santas
- Department of Pathology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
39
|
Ohashi T, Kiehart DP, Erickson HP. Dual labeling of the fibronectin matrix and actin cytoskeleton with green fluorescent protein variants. J Cell Sci 2002; 115:1221-9. [PMID: 11884521 DOI: 10.1242/jcs.115.6.1221] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have prepared 3T3 cells doubly labeled to visualize simultaneously the extracellular fibronectin (FN) matrix and intracellular actin cytoskeleton in living cell cultures. We used FN-yellow fluorescent protein (FN-yfp) for the FN matrix, and the actin-binding domain of moesin fused to cyan fluorescent protein (cfp-Moe) to stain actin. Actin filament bundles were clearly seen in the protruding lamellae of the cells. FN matrix assembly appeared to be initiated as small spots of FN at the ends of actin filament bundles. The spots then elongated along the actin filament bundle toward the cell center to form FN fibrils. The end of the fibril towards the cell edge appeared immobile, and probably attached to the substrate, whereas the end toward the cell center frequently showed movements, suggesting attachment to the cell. Combining our data with the observations of Pankov et al. we suggest that fibrils grow by stretching this mobile end toward the cell center while adding new FN molecules at the end and along the entire lenght. When the cell culture was treated with cytochalasin to disrupt the actin cytoskeleton, some fibrils contracted substantially, suggesting that the segment attached primarily to the cell surface is stretched.
Collapse
Affiliation(s)
- Tomoo Ohashi
- Department of Cell Biology, Duke University Medical Center, NC27710, USA
| | | | | |
Collapse
|
40
|
Baneyx G, Vogel V. Self-assembly of fibronectin into fibrillar networks underneath dipalmitoyl phosphatidylcholine monolayers: role of lipid matrix and tensile forces. Proc Natl Acad Sci U S A 1999; 96:12518-23. [PMID: 10535954 PMCID: PMC22966 DOI: 10.1073/pnas.96.22.12518] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The cell-mediated assembly of fibronectin (Fn) into fibrillar matrices is a complex multistep process that is incompletely understood because of the chemical complexity of the extracellular matrix and a lack of experimental control over molecular interactions and dynamic events. We have identified conditions under which Fn assembles into extended fibrillar networks after adsorption to a dipalmitoyl phosphatidylcholine (DPPC) monolayer in contact with physiological buffer. We propose a sequential model for the Fn assembly pathway, which involves the orientation of Fn underneath the lipid monolayer by insertion into the liquid expanded (LE) phase of DPPC. Attractive interactions between these surface-anchored proteins and the liquid condensed (LC) domains leads to Fn enrichment at domain edges. Spontaneous self-assembly into fibrillar networks, however, occurs only after expansion of the DPPC monolayer from the LC phase though the LC/LE phase coexistence. Upon monolayer expansion, the domain boundaries move apart while attractive interactions among Fn molecules and between Fn and domain edges produce a tensile force on the proteins that initiates fibril assembly. The resulting fibrils have been characterized in situ by using fluorescence and light-scattering microscopy. We have found striking similarities between fibrils produced under DPPC monolayers and those found on cellular surfaces, including their assembly pathways.
Collapse
Affiliation(s)
- G Baneyx
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
41
|
Meerschaert J, Kelly EA, Mosher DF, Busse WW, Jarjour NN. Segmental antigen challenge increases fibronectin in bronchoalveolar lavage fluid. Am J Respir Crit Care Med 1999; 159:619-25. [PMID: 9927382 DOI: 10.1164/ajrccm.159.2.9806053] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Fibronectin may contribute to asthma pathogenesis by recruitment and activation of inflammatory cells, and by promotion of subepithelial fibrosis. Fibronectin is produced by several types of airway cells, including epithelial cells, fibroblasts, and alveolar macrophages. To test the hypothesis that antigen-induced airway inflammation is associated with increased local generation of fibronectin, segmental bronchoprovocation (SBP) with antigen and saline was performed in 17 atopic patients. Bronchoalveolar lavage (BAL) was performed at 5 min and 48 h after segmental challenge with saline or antigen. Fibronectin concentrations in BAL fluid, measured by enzyme-linked immunosorbent assay (ELISA), increased more than 5-fold 48 h after antigen challenge (65 [47 to 110] versus 407 [240 to 697] ng/ml, median and 25 to 75% interquartiles, p < 0.05). Fibronectin concentrations 48 h after antigen challenge correlated with histamine concentrations 5 min after antigen challenge and numbers of eosinophils, neutrophils, macrophages, and total cells in BAL fluid 48 h after antigen challenge. BAL was more enriched in fibronectin 48 h after challenge than would be predicted solely from increased permeability of plasma proteins. Western blot analysis showed that fibronectin in BAL fluid was largely intact and contained the extra domain-A (ED-A) splice variant of cellular fibronectin, indicative of local production. We conclude that antigen challenge in atopic subjects causes increased production of fibronectin by airway cells and speculate that this response may contribute to airway remodeling in allergic inflammation.
Collapse
Affiliation(s)
- J Meerschaert
- Section of Hematology, Department of Medicine, University of Wisconsin School of Medicine, Madison, USA
| | | | | | | | | |
Collapse
|
42
|
MacDonald DE, Markovic B, Allen M, Somasundaran P, Boskey AL. Surface analysis of human plasma fibronectin adsorbed to commercially pure titanium materials. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 1998; 41:120-30. [PMID: 9641632 DOI: 10.1002/(sici)1097-4636(199807)41:1<120::aid-jbm15>3.0.co;2-r] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Protein binding on metallic implant surfaces, such as titanium, is governed by the physico-chemical nature of the metallic surface. Human plasma fibronectin (HPF) is an important matrix glycoprotein that mediates cell and protein attachment to each other or to the extracellular matrix present during wound healing. The objective of this study was to investigate the adsorption of HPF onto polished commercially pure titanium (cpTi) by using atomic force microscopy (AFM) and electron spectroscopy for chemical analysis (ESCA) and to measure the resultant surface contact angle before and after HPF binding. Two types of cpTi disks, one highly polished in our laboratory (HSS) and one commercially prepared (31), were reacted with HPF solutions of varying concentrations (1 microg/mL-10 ng/mL). ESCA survey spectra of samples coated with 1 microg/mL of fibronectin showed an increase in organic nitrogen and carbon compared with uncoated controls. Contact angle measurements of HSS and 31 cpTi disks showed no significant difference in average contact angle (36.3 degrees +/- 3.5 and 39.1 degrees +/- 3.1) despite differences in local root mean square (RMS) surface roughness (4.45 +/- 0.46 nm and 22.37 +/- 4.17 nm) as measured by AFM. Images obtained by AFM showed that 31 specimens were more irregular, with large parallel polishing grooves. Adsorbed HPF appeared in a globular form with an average length of 16.5 +/- 1.0 nm, a height of 2.5 +/- 0.5 nm, and a width of 9.6 +/- 1.2 nm. Fibronectin coating on both HSS and 31 cpTi specimens resulted in a significant increase in hydrophobicity compared to uncoated specimens. These results indicate the significance of HPF on cpTi and may explain how cpTi implants function in situ.
Collapse
Affiliation(s)
- D E MacDonald
- Langmuir Center for Colloids & Interfaces, Columbia University, New York, New York 10027, USA
| | | | | | | | | |
Collapse
|
43
|
Bultmann H, Santas AJ, Peters DM. Fibronectin fibrillogenesis involves the heparin II binding domain of fibronectin. J Biol Chem 1998; 273:2601-9. [PMID: 9446562 DOI: 10.1074/jbc.273.5.2601] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Fibronectin matrix assembly is thought to involve binding interactions between the amino-terminal I1-5 repeats and the first type III repeat (III1). Here we report that a third site, located within the III12-14 repeats of the carboxyl-terminal heparin II domain of fibronectin, is also involved in fibrillogenesis. Heparin II fragments inhibited fibril formation and binding of 125I-labeled fibronectin and/or 70-kDa fragments to the cell surface, deoxycholate-insoluble matrix, and adsorbed 160-kDa cell adhesion fragments of fibronectin. The inhibitory effects of heparin II fragments were as large or up to 20 times larger than those of a 44-kDa fibronectin fragment containing the III1 repeat. Under physiological conditions, amino-terminal fragments of fibronectin containing the I1-5 repeats interacted preferentially with proteolytically derived heparin II fragments and a recombinant III12-14 peptide both in solution and in solid phase, indicating that matrix assembly may involve direct interactions between I1-5 and III12-14 repeats. Interactions between the I1-5 repeats and 160-kDa fragments containing the III12-14 and III1 repeats could be inhibited by >/= 90% by either an anti-III13-14 monoclonal antibody (mAb) (IST-2) or an anti-III1 mAb (9D2), suggesting that cooperative interactions between III12-14 and III1 repeats may also promote binding of the I1-5 repeats. Neither mAb IST-2 nor mAb 9D2, alone or in combination, inhibited binding of 125I-labeled 70-kDa fragments to cycloheximide-treated cells plated on the 160-kDa substrate, suggesting that additional I1-5 binding sites, independent of the III1 and III12-14 repeats, may be involved in fibrillogenesis.
Collapse
Affiliation(s)
- H Bultmann
- Department of Pathology and Laboratory Medicine, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
44
|
Chen Y, Zardi L, Peters DM. High-resolution cryo-scanning electron microscopy study of the macromolecular structure of fibronectin fibrils. SCANNING 1997; 19:349-355. [PMID: 9262019 DOI: 10.1002/sca.4950190505] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
High-resolution cryo-scanning electron microscopy was used to examine fibronectin fibrils formed in culture by human skin fibroblasts and in a cell-free system by denaturing soluble plasma fibronectin with guanidine. These studies indicate that the conformation of fibrils formed in culture and in a cell-free system appeared to be similar and that fibronectin fibrils have at least two distinct structural conformations. Fibronectin fibrils can be very straight structures with smooth surfaces or highly nodular structures. The average diameter of the nodules in these fibrils is 12 nm. Both conformations can be seen within an individual fibril indicating that they are not different types of fibronectin fibrils but rather different conformational states. Immunolabeling studies with a monoclonal antibody, IST-2, to the heparin II binding domain of fibronectin revealed that the epitope was buried in highly smooth fibrils, but it was readily exposed in nodular fibrils. We propose, therefore, that fibronectin fibrils are highly flexible structures and, depending on the conformation of the fibril, certain epitopes on the surface may be buried or exposed.
Collapse
Affiliation(s)
- Y Chen
- Integrated Microscopy Resource (IMR), University of Wisconsin, Madison 53706, USA
| | | | | |
Collapse
|
45
|
Zhang Q, Mosher DF. Cross-linking of the NH2-terminal region of fibronectin to molecules of large apparent molecular mass. Characterization of fibronectin assembly sites induced by the treatment of fibroblasts with lysophosphatidic acid. J Biol Chem 1996; 271:33284-92. [PMID: 8969187 DOI: 10.1074/jbc.271.52.33284] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cell surface molecules on adherent cells that bind 125I-labeled fibronectin or its 70-kDa N-terminal fragment were identified by cross-linking with factor XIIIa and by photoaffinity labeling. Such cross-linking caused the 70-kDa fragment to become associated irreversibly to cell layers and was greater in cells treated with lysophosphatidic acid, an enhancer of fibronectin assembly and strong modulator of cell shape. Cross-linking of the 70-kDa fragment with factor XIIIa was to molecules that migrated in discontinuous sodium dodecyl sulfate-polyacrylamide gels at the top of the 3.3% stacking gel and near the top of the separating gel. Estimated sizes of these large apparent molecular mass molecules (LAMMs) were >>3 MDa and approximately 3 MDa. The label in 70-kDa fragment conjugated with 125I-sulfosuccinimidyl 2-(p-azidosalicylamido)-1, 3'-dithiopropionate was associated with >>3-MDa LAMMs without reduction and with approximately 3-MDa LAMMs after reduction and transfer of the cleavable label. The LAMMs were expressed on monolayer cells shortly after adherence, required both 1% Triton X-100 and 2 M urea for efficient extraction, and were susceptible to digestion with trypsin but not to cathepsin D digestion. Complexes of 125I-70-kDa fragment and LAMMs were also susceptible to limited acid digestion and Glu-C protease digestion but were not cleaved by chondroitin lyase or heparitinase. Neither the uncleaved complexes nor the cleavage products were immunoprecipitated with anti-fibronectin antibodies directed toward epitopes outside the 70-kDa region. Thus, cell surface molecules that are either very large or not dissociated in sodium dodecyl sulfate comprise the labile matrix assembly sites for fibronectin.
Collapse
Affiliation(s)
- Q Zhang
- Departments of Medicine and Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
46
|
Muszbek L, Adány R, Mikkola H. Novel aspects of blood coagulation factor XIII. I. Structure, distribution, activation, and function. Crit Rev Clin Lab Sci 1996; 33:357-421. [PMID: 8922891 DOI: 10.3109/10408369609084691] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Blood coagulation factor XIII (FXIII) is a protransglutaminase that becomes activated by the concerted action of thrombin and Ca2+ in the final stage of the clotting cascade. In addition to plasma, FXIII also occurs in platelets, monocytes, and monocyte-derived macrophages. While the plasma factor is a heterotetramer consisting of paired A and B subunits (A2B2), its cellular counterpart lacks the B subunits and is a homodimer of potentially active A subunits (A2). The gene coding for the A and B subunits has been localized to chromosomes 6p24-25 and 1q31-32.1, respectively. The genomic as well as the primary protein structure of both subunits has been established, and most recently the three-dimensional structure of recombinant cellular FXIII has also been revealed. Monocytes/macrophages synthesize their own FXIII, and very likely FXIII in platelets is synthesized by the megakaryocytes. Cells of bone marrow origin seem to be the primary site for the synthesis of subunit A in plasma FXIII, but hepatocytes might also contribute. The B subunit of plasma FXIII is synthesized in the liver. Plasma FXIII circulates in association with its substrate precursor, fibrinogen. Fibrin(ogen) has an important regulatory role in the activation of plasma FXIII. The most important steps of the activation of plasma FXIII are the proteolytic removal of activation peptide by thrombin, the dissociation of subunits A and B, and the exposure of the originally buried active site on the free A subunits. The end result of this process is the formation of an active transglutaminase, which cross-links peptide chains through epsilon(gamma-glutamyl)lysyl isopeptide bonds. Cellular FXIII in platelets becomes activated through a nonproteolytic process. When intracytoplasmic Ca2+ is raised during platelet activation, the zymogen--in the absence of subunit B--assumes an active configuration. The protein substrates of activated FXIII include components of the clotting-fibrinolytic system, adhesive and contractile proteins. The main physiological function of plasma FXIII is to cross-link fibrin and protect it from the fibrinolytic plasmin. The latter effect is achieved mainly by covalently linking alpha 2 antiplasmin, the most potent physiological inhibitor of plasmin, to fibrin. Plasma FXIII seems to be involved in wound healing and tissue repair, and it is essential to maintaining pregnancy. Cellular FXIII, if exposed to the surface of the cells, might support or perhaps take over the hemostatic functions of plasma FXIII; however, its intracellular role has remained mostly unexplored.
Collapse
Affiliation(s)
- L Muszbek
- Department of Clinical Chemistry, University Medical School of Debrecen, Hungary
| | | | | |
Collapse
|
47
|
Tsukada H, Ying X, Fu C, Ishikawa S, McKeown-Longo P, Albelda S, Bhattacharya S, Bray BA, Bhattacharya J. Ligation of endothelial alpha v beta 3 integrin increases capillary hydraulic conductivity of rat lung. Circ Res 1995; 77:651-9. [PMID: 7554109 DOI: 10.1161/01.res.77.4.651] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Complement-mediated pulmonary edema results from increases in lung capillary hydraulic conductivity (Lp), possibly by receptor-mediated mechanisms. We considered the Lp effects of vitronectin and the vitronectin-containing complement complex SC5b-9, which ligate the integrin alpha v beta 3. Vitronectin, SC5b-9, and SC5b-9-enriched zymosan-activated serum all rapidly increased Lp, as determined by the split-drop technique in single lung capillaries of rat lung. The Lp increases were inhibited by a monospecific (LM609) and a polyclonal (R838) antibody against the alpha v beta 3 integrin but not by an irrelevant monoclonal antibody isotype matched with LM609, by a monoclonal antibody against the alpha v beta 5 integrin, or by preimmune rabbit serum. Vitronectin monomers failed to increase Lp. The tyrosine kinase blockers genistein and methyl 2,5-dihydroxycinnamate caused significant concentration-dependent inhibitions of Lp increases due to vitronectin and zymosan-activated serum. By contrast, the protein kinase C blocker calphostin C had no major effect. We conclude that (1) multivalent ligation of the luminally located alpha v beta 3 integrin of lung capillary endothelium increases transcapillary liquid flux, and (2) the dominant signal transduction pathway for this effect occurs through tyrosine kinase activation.
Collapse
Affiliation(s)
- H Tsukada
- Department of Medicine, College of Physicians & Surgeons, Columbia University, St. Luke's-Roosevelt Hospital Center, New York, NY 10019, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Group B streptococci (GBS) are the leading cause of neonatal pneumonia and meningitis. Adherence of GBS to host tissues may play an important role in the pathogenesis of infection. The host molecules which mediate GBS adherence to host tissues are unknown. Many bacterial pathogens adhere to fibronectin, an important component of the extracellular matrix (ECM). Some pathogens adhere to both immobilized and soluble fibronectin, while others adhere to immobilized fibronectin, but not to soluble fibronectin. Previous data indicated that GBS do not adhere to soluble fibronectin. We studied the ability of GBS to adhere to immobilized fibronectin. Forty-five per cent of the input inoculum of COH1, a virulent GBS isolate, adhered to fibronectin immobilized on polystyrene. COH1 did not adhere to the other ECM proteins tested (laminin, type I collagen, vitronectin, and tenascin). Nine out of nine GBS strains from human sources tested adhered specifically to fibronectin at levels varying from 4-60%. We considered the possibility that GBS were adherent to a contaminant in the fibronectin preparation. Properties of fibronectin, including the presence of an immunologic epitope of fibronectin and binding to collagen, were verified to be properties of the molecule to which GBS adhere. COH1 adhered to fibronectin captured by a monoclonal antibody to fibronectin (FN-15), confirming that the molecule to which GBS adhere bears immunologic determinants of fibronectin. Adherence of COH1 to fibronectin was inhibited by collagen, confirming that the molecule to which GBS adhere binds to collagen. These data strongly suggest that GBS adhere to fibronectin, and not to a contaminant.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
49
|
Substrate-specific binding of the amino terminus of fibronectin to an integrin complex in focal adhesions. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32218-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
50
|
Morla A, Zhang Z, Ruoslahti E. Superfibronectin is a functionally distinct form of fibronectin. Nature 1994; 367:193-6. [PMID: 8114919 DOI: 10.1038/367193a0] [Citation(s) in RCA: 249] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Fibronectin is an extracellular matrix protein that is important in development, wound healing and tumorigenesis. In the blood it is dimeric, but in tissues forms disulphide crosslinked fibrils. Here we show that a fragment from the first type-III repeat of fibronectin binds to fibronectin and induces spontaneous disulphide crosslinking of the molecule into multimers of high relative molecular mass which resemble matrix fibrils. Treatment of fibronectin with this inducing fragment also converts fibronectin into a form that has greatly enhanced adhesive properties (hence the term superfibronectin) and which suppresses cell migration. Whereas cells attach to fibronectin through integrins, cell attachment to superfibronectin is mediated both by integrins and by receptors with properties distinct from those of integrins. Superfibronectin may be closely related to the natural matrix form of fibronectin.
Collapse
Affiliation(s)
- A Morla
- Cancer Research Center, La Jolla Cancer Research Foundation, California 92037
| | | | | |
Collapse
|