1
|
Osuka RF, Yamasaki T, Kizuka Y. Structure and function of N-acetylglucosaminyltransferase V (GnT-V). Biochim Biophys Acta Gen Subj 2024; 1868:130709. [PMID: 39233219 DOI: 10.1016/j.bbagen.2024.130709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/13/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND The β1,6-GlcNAc branch in N-glycans, produced by a glycosyltransferase N-acetylglucosaminyltransferase V (GnT-V or MGAT5), is associated with cancer and autoimmune diseases. SCOPE Here, we summarize the structure and activity regulation of GnT-V. We also describe the roles of the β1,6-GlcNAc branch on glycoproteins in cells and the phenotypes of Mgat5-deficient mice, focusing on cancer and the immune system. MAJOR CONCLUSIONS GnT-V has a unique structure for substrate recognition, and its activity and function are regulated by shedding. The glycans produced by GnT-V play pivotal roles in the differentiation of neural cells, cancer malignancy and immunotherapy, and the development of autoimmune diseases by regulating the functions and cell surface residency of glycoproteins. GENERAL SIGNIFICANCE Controlling the expression or activity of GnT-V could be a therapeutic option against cancer and autoimmune diseases. Future work should clarify how GnT-V selectively modifies the specific glycoproteins or N-glycosylation sites in vivo.
Collapse
Affiliation(s)
- Reina F Osuka
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu city, Gifu 501-1193, Japan
| | - Takahiro Yamasaki
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu city, Gifu 501-1193, Japan
| | - Yasuhiko Kizuka
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu city, Gifu 501-1193, Japan; Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu city, Gifu 501-1193, Japan.
| |
Collapse
|
2
|
Viegas J. Profile of Daniel E. Goldberg. Proc Natl Acad Sci U S A 2023; 120:e2314435120. [PMID: 37722042 PMCID: PMC10523458 DOI: 10.1073/pnas.2314435120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023] Open
|
3
|
Pantazopoulou A, Glick BS. A Kinetic View of Membrane Traffic Pathways Can Transcend the Classical View of Golgi Compartments. Front Cell Dev Biol 2019; 7:153. [PMID: 31448274 PMCID: PMC6691344 DOI: 10.3389/fcell.2019.00153] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/22/2019] [Indexed: 01/07/2023] Open
Abstract
A long-standing assumption is that the cisternae of the Golgi apparatus can be grouped into functionally distinct compartments, yet the molecular identities of those compartments have not been clearly described. The concept of a compartmentalized Golgi is challenged by the cisternal maturation model, which postulates that cisternae form de novo and then undergo progressive biochemical changes. Cisternal maturation can potentially be reconciled with Golgi compartmentation by defining compartments as discrete kinetic stages in the maturation process. These kinetic stages are distinguished by the traffic pathways that are operating. For example, a major transition occurs when a cisterna stops producing COPI vesicles and begins producing clathrin-coated vesicles. This transition separates one kinetic stage, the "early Golgi," from a subsequent kinetic stage, the "late Golgi" or "trans-Golgi network (TGN)." But multiple traffic pathways drive Golgi maturation, and the periods of operation for different traffic pathways can partially overlap, so there is no simple way to define a full set of Golgi compartments in terms of kinetic stages. Instead, we propose that the focus should be on the series of transitions experienced by a Golgi cisterna as various traffic pathways are switched on and off. These traffic pathways drive changes in resident transmembrane protein composition. Transitions in traffic pathways seem to be the fundamental, conserved determinants of Golgi organization. According to this view, the initial goal is to identify the relevant traffic pathways and place them on the kinetic map of Golgi maturation, and the ultimate goal is to elucidate the logic circuit that switches individual traffic pathways on and off as a cisterna matures.
Collapse
Affiliation(s)
- Areti Pantazopoulou
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States
| | - Benjamin S Glick
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
4
|
Katholnig K, Poglitsch M, Hengstschläger M, Weichhart T. Lysis gradient centrifugation: a flexible method for the isolation of nuclei from primary cells. Methods Mol Biol 2015; 1228:15-23. [PMID: 25311118 DOI: 10.1007/978-1-4939-1680-1_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The isolation of nuclei from eukaryotic cells is essential for studying the composition and the dynamic changes of the nuclear proteome to gain insight into the mechanisms of gene expression and cell signalling. Primary cells are particularly challenging for standard nuclear isolation protocols due to low protein content, sample degradation, or nuclear clumping. Here, we describe a rapid and flexible protocol for the isolation of clean and intact nuclei, which results in the recovery of 90-95 % highly pure nuclei. The method, called lysis gradient centrifugation (LGC), is based on an iso-osmolar discontinuous iodixanol-based density gradient including a detergent-containing lysis layer. A single low g-force centrifugation step enables mild cell lysis and prevents extensive contact of the nuclei with the cytoplasmic environment. This fast method shows high reproducibility due to the relatively little cell manipulation required by the investigator. Further advantages are the low amount of starting material required, easy parallel processing of multiple samples, and isolation of nuclei and cytoplasm at the same time from the same sample.
Collapse
Affiliation(s)
- Karl Katholnig
- Institute for Medical Genetics, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, 1090, Austria
| | | | | | | |
Collapse
|
5
|
Dong Z, Zuber C, Pierce M, Stanley P, Roth J. Reduction in Golgi apparatus dimension in the absence of a residential protein, N-acetylglucosaminyltransferase V. Histochem Cell Biol 2014; 141:153-64. [PMID: 24078077 PMCID: PMC4085668 DOI: 10.1007/s00418-013-1146-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2013] [Indexed: 11/28/2022]
Abstract
Various proteins are involved in the generation and maintenance of the membrane complex known as the Golgi apparatus. We have used mutant Chinese hamster ovary (CHO) cell lines Lec4 and Lec4A lacking N-acetylglucosaminyltransferase V (GlcNAcT-V, MGAT5) activity and protein in the Golgi apparatus to study the effects of the absence of a single glycosyltransferase on the Golgi apparatus dimension. Quantification of immunofluorescence in serial confocal sections for Golgi α-mannosidase II and electron microscopic morphometry revealed a reduction in Golgi volume density up to 49 % in CHO Lec4 and CHO Lec4A cells compared to parental CHO cells. This reduction in Golgi volume density could be reversed by stable transfection of Lec4 cells with a cDNA encoding Mgat5. Inhibition of the synthesis of β1,6-branched N-glycans by swainsonine had no effect on Golgi volume density. In addition, no effect on Golgi volume density was observed in CHO Lec1 cells that contain enzymatically active GlcNAcT-V, but cannot synthesize β1,6-branched glycans due to an inactive GlcNAcT-I in their Golgi apparatus. These results indicate that it may be the absence of the GlcNAcT-V protein that is the determining factor in reducing Golgi volume density. No dimensional differences existed in cross-sectioned cisternal stacks between Lec4 and control CHO cells, but significantly reduced Golgi stack hits were observed in cross-sectioned Lec4 cells. Therefore, the Golgi apparatus dimensional change in Lec4 and Lec4A cells may be due to a compaction of the organelle.
Collapse
Affiliation(s)
- Zhizhong Dong
- Division of Cell and Molecular Pathology, Department of Pathology, University of Zürich, 8091 Zürich, Switzerland
| | - Christian Zuber
- Division of Cell and Molecular Pathology, Department of Pathology, University of Zürich, 8091 Zürich, Switzerland
| | - Michael Pierce
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Jürgen Roth
- Division of Cell and Molecular Pathology, Department of Pathology, University of Zürich, 8091 Zürich, Switzerland
| |
Collapse
|
6
|
Day KJ, Staehelin LA, Glick BS. A three-stage model of Golgi structure and function. Histochem Cell Biol 2013; 140:239-49. [PMID: 23881164 DOI: 10.1007/s00418-013-1128-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2013] [Indexed: 12/12/2022]
Abstract
The Golgi apparatus contains multiple classes of cisternae that differ in structure, composition, and function, but there is no consensus about the number and definition of these classes. A useful way to classify Golgi cisternae is according to the trafficking pathways by which the cisternae import and export components. By this criterion, we propose that Golgi cisternae can be divided into three classes that correspond to functional stages of maturation. First, cisternae at the cisternal assembly stage receive COPII vesicles from the ER and recycle components to the ER in COPI vesicles. At this stage, new cisternae are generated. Second, cisternae at the carbohydrate synthesis stage exchange material with one another via COPI vesicles. At this stage, most of the glycosylation and polysaccharide synthesis reactions occur. Third, cisternae at the carrier formation stage produce clathrin-coated vesicles and exchange material with endosomes. At this stage, biosynthetic cargo proteins are packaged into various transport carriers, and the cisternae ultimately disassemble. Discrete transitions occur as a cisterna matures from one stage to the next. Within each stage, the structure and composition of a cisterna can evolve, but the trafficking pathways remain unchanged. This model offers a unified framework for understanding the properties of the Golgi in diverse organisms.
Collapse
Affiliation(s)
- Kasey J Day
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL, 60615, USA
| | | | | |
Collapse
|
7
|
Poglitsch M, Katholnig K, Säemann MD, Weichhart T. Rapid isolation of nuclei from living immune cells by a single centrifugation through a multifunctional lysis gradient. J Immunol Methods 2011; 373:167-73. [PMID: 21889513 DOI: 10.1016/j.jim.2011.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 08/17/2011] [Accepted: 08/17/2011] [Indexed: 11/30/2022]
Abstract
Due to their low protein content and limited nuclear detergent stability, primary human immune cells such as monocytes or T lymphocytes represent a great challenge for standard nuclear isolation protocols. Nuclei clumping during the multiple centrifugation steps or contamination of isolated nuclei with cytoplasmic proteins due to membrane lysis is a frequently observed problem. Here we describe a versatile and novel method for the isolation of clean and intact nuclei from primary human monocytes, which can be applied for virtually any cell type. Living cells were applied on an iso-osmolar discontinuous iodixanol-based density gradient including a detergent-containing lysis layer. Mild cell lysis as well as efficient washing of the nuclei was performed during the course of one single low g-force centrifugation step. The isolation procedure, which we call lysis gradient centrifugation (LGC), results in the recovery of 90-95% of highly pure nuclei. This easy and highly reproducible procedure allows an effective preparation of nuclei and the cytoplasm in only 15 min with the ability to handle as little as one million cells per sample and easy parallel processing of multiple samples.
Collapse
Affiliation(s)
- Marko Poglitsch
- Department of Internal Medicine III, Division of Nephrology and Dialysis, Medical University Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | | | | | | |
Collapse
|
8
|
Kollmann K, Pohl S, Marschner K, Encarnação M, Sakwa I, Tiede S, Poorthuis BJ, Lübke T, Müller-Loennies S, Storch S, Braulke T. Mannose phosphorylation in health and disease. Eur J Cell Biol 2009; 89:117-23. [PMID: 19945768 DOI: 10.1016/j.ejcb.2009.10.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Lysosomal hydrolases catalyze the degradation of a variety of macromolecules including proteins, carbohydrates, nucleic acids and lipids. The biogenesis of lysosomes or lysosome-related organelles requires a continuous substitution of soluble acid hydrolases and lysosomal membrane proteins. The targeting of lysosomal hydrolases depends on mannose 6-phosphate residues (M6P) that are recognized by specific receptors mediating their transport to an endosomal/prelysosomal compartment. The key role in the formation of M6P residues plays the GlcNAc-1-phosphotransferase localized in the Golgi apparatus. Two genes have been identified recently encoding the type III alpha/beta-subunit precursor membrane protein and the soluble gamma-subunit of GlcNAc-1-phosphotransferase. Mutations in these genes result in two severe diseases, mucolipidosis type II (MLII) and III (MLIII), biochemically characterized by the missorting of multiple lysosomal hydrolases due to impaired formation of the M6P recognition marker, and general lysosomal dysfunction. This review gives an update on structural properties, localization and functions of the GlcNAc-1-phosphotransferase subunits and improvements of pre- and postnatal diagnosis of ML patients. Further, the generation of recombinant single-chain antibody fragments against M6P residues and of new mouse models of MLII and MLIII will have considerable impact to provide deeper insight into the cell biology of lysosomal dysfunctions and the pathomechanisms underlying these lysosomal disorders.
Collapse
Affiliation(s)
- Katrin Kollmann
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Research Campus, Martinistrasse 52, 20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Nilsson T, Au CE, Bergeron JJM. Sorting out glycosylation enzymes in the Golgi apparatus. FEBS Lett 2009; 583:3764-9. [PMID: 19878678 DOI: 10.1016/j.febslet.2009.10.064] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 10/20/2009] [Indexed: 11/26/2022]
Abstract
The study of glycosylation and glycosylation enzymes has been instrumental for the advancement of Cell Biology. After Neutra and Leblond showed that the Golgi apparatus is the main site of glycosylation, elucidation of oligosaccharide structures by Baenziger and Kornfeld and subsequent mapping of glycosylation enzymes followed. This enabled development of anin vitrotransport assay by Rothman and co-workers using glycosylation to monitor intra Golgi transport which, complemented by yeast genetics by Schekman and co-workers, provided much of the fundamental insights and key components of the secretory pathway that we today take for granted. Glycobiology continues to play a key role in Cell Biology and here, we look at the use of glycosylation enzymes to elucidate intra Golgi transport.
Collapse
Affiliation(s)
- Tommy Nilsson
- The Research Institute of the McGill University Health Centre, Department of Medicine, McGill University, 687 Pine Avenue West, Montreal, Quebec, Canada H3A 1A1.
| | | | | |
Collapse
|
10
|
Kim K, Wang L, Hwang I. LFA-1-dependent Ca2+ entry following suboptimal T cell receptor triggering proceeds without mobilization of intracellular Ca2+. J Biol Chem 2009; 284:22149-22154. [PMID: 19542227 DOI: 10.1074/jbc.m109.000752] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A surge in cytosolic calcium ion concentration by entry of extracellular Ca2+ is a hallmark of T cell activation. According to store-operated Ca2+ entry mechanism, the Ca2+ entry is preceded by activation of phospholipase C-gamma1 (PLC-gamma1) and the consequent mobilization of intracellular Ca2+. Using membrane vesicles expressing the mouse class I major histocompatibility complex, i.e. Ld plus costimulatory ligands, i.e. B7-1 and intercellular adhesion molecule-1 along with 2C T cell receptor transgenic T cells, we investigated the roles of CD28 and LFA-1 (lymphocyte function-associated antigen-1) in the activation of PLC-gamma1 and Ca2+ signaling. Both CD28 and LFA-1 made significant and comparable contributions to the activation of PLC-gamma1 as gauged by the level of its phosphorylation at tyrosine 783. In contrast, their roles in Ca2+ signaling were quite distinct so that LFA-1/intercellular adhesion molecule-1 interaction exerted a determining role, whereas CD28/B7-1 interaction played only a minimal role. In particular, when the T cells were activated by suboptimal T cell receptor stimulation, LFA-1 played an indispensable role in the Ca2+ signaling. Further experiments using Ca2+-free medium demonstrated that the entry of extracellular Ca2+ was not always accompanied by mobilization of intracellular Ca2+. Thus, intracellular Ca2+ mobilization was hardly detected under the condition that LFA-1 played the indispensable role in the entry of extracellular Ca2+, while a distinct level of intracellular Ca2+ mobilization was readily detected under the condition that LFA-1 played only the supporting role. These results ensure the unique role of LFA-1 in T cell Ca2+ signaling and reveal that LFA-1-dependent Ca2+ entry proceeds via a mechanism separate from store-operated Ca2+ entry.
Collapse
Affiliation(s)
- Kwangmi Kim
- Department of Chemistry and Chemical Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Lin Wang
- Department of Chemistry and Chemical Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Inkyu Hwang
- Department of Chemistry and Chemical Biology, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
11
|
Graham JM. Isolation of mitochondria from tissues and cells by differential centrifugation. ACTA ACUST UNITED AC 2008; Chapter 3:Unit 3.3. [PMID: 18228355 DOI: 10.1002/0471143030.cb0303s04] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Differential centrifugation is used to prepare a "heavy" mitochondrial fraction from liver. These mitochondria are relatively pure, highly coupled, and suitable for respiratory studies. This unit presents protocols for isolation of beef heart mitochondria (also suitable for respiratory studies), skeletal muscle mitochondria, and mitochondria from cultured cells can also be isolated from homogenates by differential centrifugation. Differential centrifugation, which separates cellular organelles based on sedimentation velocity, is a rapid method for preparing mitochondria for metabolic studies.
Collapse
Affiliation(s)
- J M Graham
- Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
12
|
Graham JM. Isolation of nuclei and nuclear membranes from animal tissues. ACTA ACUST UNITED AC 2008; Chapter 3:3.10.1-3.10.19. [PMID: 18228353 DOI: 10.1002/0471143030.cb0310s12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The vast majority of methods for the isolation of nuclei and nuclear membranes use soft mammalian tissues (particularly rat liver) as the biological source; however, the protocols described in this unit should be applicable generally to any tissue type, cultured cells, or cells of lower eukaryotes or plants, so long as a suitable homogenization method is available. Generally, a buffered isoosmotic medium containing KCl and MgCl2 is used to stabilize the nuclei of mammalian tissues. Some of the media used for cultured animal cells and nonmammalian sources are also described. After homogenization the nuclei are purified using a sucrose barrier of 2.3 M. The use of OptiPrep overcomes the viscosity and osmolarity problems associated with the use of high molarity sucrose, and it permits the use of a high-speed centrifuge and much shorter centrifugation times. OptiPrep is also used isolate plant cell (i.e., wheat germ) nuclei, because it is able to resolve nuclei from the denser starch granules.
Collapse
Affiliation(s)
- John M Graham
- Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
13
|
Valencia JC, Rouzaud F, Julien S, Chen KG, Passeron T, Yamaguchi Y, Abu-Asab M, Tsokos M, Costin GE, Yamaguchi H, Jenkins LMM, Nagashima K, Appella E, Hearing VJ. Sialylated core 1 O-glycans influence the sorting of Pmel17/gp100 and determine its capacity to form fibrils. J Biol Chem 2007; 282:11266-80. [PMID: 17303571 DOI: 10.1074/jbc.m608449200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pmel17 is a melanocyte/melanoma-specific protein that is essential for the maturation of melanosomes to form mature, fibrillar, and pigmented organelles. Recently, we reported that the less glycosylated form of Pmel17 (termed iPmel17) is sorted via the plasma membrane in a manner distinct from mature Pmel17 (termed mPmel17), which is sorted directly to melanosomes. To clarify the mechanism(s) underlying the distinct processing and sorting of Pmel17, we generated a highly specific antibody (termed alphaPEP25h) against an epitope within the repeat domain of Pmel17 that is sensitive to changes in O-glycosylation. alphaPEP25h recognizes only iPmel17 and allows analysis of the processing and sorting of iPmel17 when compared with alphaPEP13h, an antibody that recognizes both iPmel17 and mPmel17. Our novel findings using alphaPEP25h demonstrate that iPmel17 differs from mPmel17 not only in its sensitivity to endoglycosidase H, but also in the content of core 1 O-glycans modified with sialic acid. This evidence reveals that iPmel17 is glycosylated differently in the Golgi and that it is sorted through the secretory pathway. Analysis of Pmel17 processing in glycosylation-deficient mutant cells reveals that Pmel17 lacking the correct addition of sialic acid and galactose loses the ability to form fibrils. Furthermore, we show that addition of sialic acid affects the stability and sorting of Pmel17 and reduces pigmentation. Alterations in sialyltransferase activity and substrates differ between normal and transformed melanocytes and may represent a critical change during malignant transformation.
Collapse
Affiliation(s)
- Julio C Valencia
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Jongen SP, Gerwig GJ, Leeflang BR, Koles K, Mannesse MLM, van Berkel PHC, Pieper FR, Kroos MA, Reuser AJJ, Zhou Q, Jin X, Zhang K, Edmunds T, Kamerling JP. N-glycans of recombinant human acid alpha-glucosidase expressed in the milk of transgenic rabbits. Glycobiology 2007; 17:600-19. [PMID: 17293352 DOI: 10.1093/glycob/cwm015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pompe disease is a lysosomal glycogen storage disorder characterized by acid alpha-glucosidase (GAA) deficiency. More than 110 different pathogenic mutations in the gene encoding GAA have been observed. Patients with this disease are being treated by intravenous injection of recombinant forms of the enzyme. Focusing on recombinant approaches to produce the enzyme means that specific attention has to be paid to the generated glycosylation patterns. Here, human GAA was expressed in the mammary gland of transgenic rabbits. The N-linked glycans of recombinant human GAA (rhAGLU), isolated from the rabbit milk, were released by peptide-N(4)-(N-acetyl-beta-glucosaminyl)asparagine amidase F. The N-glycan pool was fractionated and purified into individual components by a combination of anion-exchange, normal-phase, and Sambucus nigra agglutinin-affinity chromatography. The structures of the components were analyzed by 500 MHz one-dimensional and 600 MHz cryo two-dimensional (total correlation spectroscopy [TOCSY] nuclear Overhauser enhancement spectroscopy) (1)H nuclear magnetic resonance spectroscopy, combined with two-dimensional (31)P-filtered (1)H-(1)H TOCSY spectroscopy, matrix-assisted laser desorption ionization time-of-flight mass spectrometry, and high-performance liquid chromatography (HPLC)-profiling of 2-aminobenzamide-labeled glycans combined with exoglycosidase digestions. The recombinant rabbit glycoprotein contained a broad array of different N-glycans, comprising oligomannose-, hybrid-, and complex-type structures. Part of the oligomannose-type glycans showed the presence of phospho-diester-bridged N-acetylglucosamine. For the complex-type glycans (partially) (alpha2-6)-sialylated (nearly only N-acetylneuraminic acid) diantennary structures were found; part of the structures were (alpha1-6)-core-fucosylated or (alpha1-3)-fucosylated in the upper antenna (Lewis x). Using HPLC-mass spectrometry of glycopeptides, information was generated with respect to the site-specific location of the various glycans.
Collapse
Affiliation(s)
- Susanne P Jongen
- Bijvoet Center for Biomolecular Research, Department of Bio-Organic Chemistry, Utrecht University, Padualaan 8, NL-3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kotani N, Asano M, Inoue N, Iwakura Y, Takasaki S. Polylactosamine synthesis and branch formation of N-glycans in β1,4-galactosyltransferase-1-deficient mice. Arch Biochem Biophys 2004; 426:258-65. [PMID: 15158676 DOI: 10.1016/j.abb.2004.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Revised: 02/13/2004] [Indexed: 01/29/2023]
Abstract
Analysis of glycans from erythrocyte membrane glycoproteins from beta1,4-galactosyltransferase-1 (beta4GalT-1)-deficient mice revealed moderately decreased galactosylation but comparable polylactosamine content compared to control beta4GalT-1(+/-) mice. The increased expression of more branched N-glycans was observed in beta4GalT-1(-/-) mice, and its extent was more remarkable in elder beta4GalT-1(-/-) mice (28 weeks old) than in younger beta4GalT-1(-/-) mice (6-9 weeks old). In relation to this issue, the less galactosylation of biantennary glycans was observed in the elder group, suggesting that beta4GalTs actually compete with N-acetylglucosaminyltransferases IV and V in erythroid cells. In contrast, approximately 80% of core 2 O-glycans were not beta1,4-galactosylated regardless of age of the knockout mice. These results suggest that beta4GalT-1 expressed in erythroid cells may regulate a constant branch formation of N-glycans and plays a predominant role in beta1,4-galactosylation of core 2 O-glycan.
Collapse
Affiliation(s)
- Norihiro Kotani
- Division of Biochemistry, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | |
Collapse
|
16
|
Képès F, Rambourg A, Satiat-Jeunemaître B. Morphodynamics of the secretory pathway. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 242:55-120. [PMID: 15598467 DOI: 10.1016/s0074-7696(04)42002-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A careful scrutiny of the dynamics of secretory compartments in the entire eukaryotic world reveals many common themes. The most fundamental theme is that the Golgi apparatus and related structures appear as compartments formed by the act of transporting cargo. The second common theme is the pivotal importance for endomembrane dynamics of shifting back and forth the equilibrium between full and perforated cisternae along the pathway. The third theme is the role of a continuous membrane flow in anterograde transfer of molecules from the endoplasmic reticulum through the Golgi apparatus. The last common theme is the self-regulatory balance between anatomical continuities and discontinuities of the endomembrane system. As this balance depends on secretory activity, it provides a source of morphological variability among cell types or, for a given cell type, according to environmental conditions. Beyond this first source of variability, it appears that divergent strategies pave the evolutionary routes in different eukaryotic kingdoms. These divergent strategies primarily affect the levels of stacking, of stabilization, and of clustering of the Golgi apparatus. They presumably underscore a trade-off between versatility and stability to adapt the secretory function to the degree of environmental variability. Nonequilibrium secretory structures would provide yeasts, and plants to a lesser extent, with the required versatility to cope with ever changing environments, by contrast to the stabler milieu intérieur of homeothermic animals.
Collapse
Affiliation(s)
- François Képès
- ATelier de Génomique Cognitive, CNRS UMR 8071/Genopole and Epigenomics Project, Genopole, Evry, France
| | | | | |
Collapse
|
17
|
Abstract
We have exploited the breakdown of the Golgi apparatus that occurs during mitosis to isolate subfractions using immuno-affinity methods. Rat liver Golgi stacks were treated with mitotic cytosol from HeLa cells, and the fragments were then incubated with antibodies immobilized on magnetic beads. Antibodies against the cis-Golgi marker, GM130, bound membranes that were depleted in the trans-Golgi network marker, TGN38, whereas antibodies against the cytoplasmic tail of TGN38 did the reverse. A range of other Golgi enzymes, SNAREs and tethers were also tested and were found to bind to anti-GM130 antibodies to an extent that reflected their proximity to cis-cisternae as determined by other techniques. This method should provide a useful complement to the immuno-EM methods presently used to map the Golgi apparatus.
Collapse
Affiliation(s)
- Tomohiko Taguchi
- Department of Cell Biology, Ludwig Institute for Cancer Research, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520-8002, USA
| | | | | |
Collapse
|
18
|
McCrossan M, Windsor M, Ponnambalam S, Armstrong J, Wileman T. The trans Golgi network is lost from cells infected with African swine fever virus. J Virol 2001; 75:11755-65. [PMID: 11689656 PMCID: PMC114761 DOI: 10.1128/jvi.75.23.11755-11765.2001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cellular secretory pathway is important during the assembly and envelopment of viruses and also controls the transport of host proteins, such as cytokines and major histocompatibility proteins, that function during the elimination of viruses by the immune system. African swine fever virus (ASFV) encodes at least 26 proteins with stretches of hydrophobic amino acids suggesting entry into the secretory pathway (R. J. Yanez, J. M. Rodriguez, M. L. Nogal, L. Yuste, C. Enriquez, J. F. Rodriguez, and E. Vinuela, Virology 208:249-278, 1995). To predict how and where these potential membrane proteins function, we have studied the integrity of the secretory pathway in cells infected with ASFV. Remarkably, ASFV caused complete loss of immunofluorescence signal for the trans Golgi network (TGN) marker protein TGN46 and dispersed the AP1 TGN adapter complex. Loss of TGN46 signal was not due to degradation of TGN46, suggesting redistribution of TGN46 to other membrane compartments. ASFV markedly slowed transport of cathepsin D to lysosomes, demonstrating that loss of TGN structure correlated with loss of TGN function. ASFV shows a tropism for macrophages, and it is possible that ASFV compromises TGN function to augment the activity of viral membrane proteins or to suppress the function of host immunoregulatory proteins.
Collapse
Affiliation(s)
- M McCrossan
- Institute for Animal Health, Pirbright Laboratories, Woking, Surrey, University of Leeds, Leeds, Yorkshire United Kingdom
| | | | | | | | | |
Collapse
|
19
|
Fukuta K, Abe R, Yokomatsu T, Minowa MT, Takeuchi M, Asanagi M, Makino T. The widespread effect of beta 1,4-galactosyltransferase on N-glycan processing. Arch Biochem Biophys 2001; 392:79-86. [PMID: 11469797 DOI: 10.1006/abbi.2001.2421] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated beta 1,4-GalT (UDP-galactose: beta-d-N-acetylglucosaminide beta 1,4-galactosyltransferase) in terms of intracellular competition with GnT-IV (UDP-N-acetylglucosamine: alpha1,3-d-mannoside beta1,4-N-acetylglucosaminyltransferase) and GnT-V (UDP-N-acetylglucosamine: alpha1,6-d-mannoside beta 1,6-N-acetylglucosaminyltransferase). The beta 1,4-GalT-I gene was introduced into Chinese hamster ovary (CHO) cells producing human interferon (hIFN)-gamma (IM4/V/IV cells) and five clones expressing various levels of beta 1,4-GalT were isolated. As we previously reported, parental IM4/V/IV cells express high levels of GnT-IVa and -V and produce hIFN-gamma having primarily tetraantennary sugar chains. The branching of sugar chains on hIFN-gamma was suppressed in the beta 1,4-GalT-enhanced clones to a level corresponding to the intracellular activity of beta 1,4-GalT relative to GnTs. Moreover, the contents of hybrid-type and high-mannose-type sugar chains increased in these clones. The results showed that beta 1,4-GalT widely affects N-glycan processing by competing with GnT-IV, GnT-V, and alpha-mannosidase II in cells and also by some other mechanisms that suppress the conversion of high-mannose-type sugar chains to the hybrid type.
Collapse
Affiliation(s)
- K Fukuta
- Life Science Laboratory, Mitsui Chemicals, Incorporated, 1144 Togo, Mobara, Chiba 297-0017, Japan.
| | | | | | | | | | | | | |
Collapse
|
20
|
Rohrer J, Kornfeld R. Lysosomal hydrolase mannose 6-phosphate uncovering enzyme resides in the trans-Golgi network. Mol Biol Cell 2001; 12:1623-31. [PMID: 11408573 PMCID: PMC37329 DOI: 10.1091/mbc.12.6.1623] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A crucial step in lysosomal biogenesis is catalyzed by "uncovering" enzyme (UCE), which removes a covering N-acetylglucosamine from the mannose 6-phosphate (Man-6-P) recognition marker on lysosomal hydrolases. This study shows that UCE resides in the trans-Golgi network (TGN) and cycles between the TGN and plasma membrane. The cytosolic domain of UCE contains two potential endocytosis motifs: (488)YHPL and C-terminal (511)NPFKD. YHPL is shown to be the more potent of the two in retrieval of UCE from the plasma membrane. A green-fluorescent protein-UCE transmembrane-cytosolic domain fusion protein colocalizes with TGN 46, as does endogenous UCE in HeLa cells, showing that the transmembrane and cytosolic domains determine intracellular location. These data imply that the Man-6-P recognition marker is formed in the TGN, the compartment where Man-6-P receptors bind cargo and are packaged into clathrin-coated vesicles.
Collapse
Affiliation(s)
- J Rohrer
- Friedrich Miescher Institut, 4059 Basel, Switzerland
| | | |
Collapse
|
21
|
Yao E, Gong Y, Chen N, Tavis JE. The majority of duck hepatitis B virus reverse transcriptase in cells is nonencapsidated and is bound to a cytoplasmic structure. J Virol 2000; 74:8648-57. [PMID: 10954566 PMCID: PMC116376 DOI: 10.1128/jvi.74.18.8648-8657.2000] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The hepadnavirus reverse transcriptase binds cotranslationally to the viral pregenomic RNA. This ribonucleoprotein complex is then encapsidated into nascent viral core particles, where the reverse transcriptase copies the viral RNA into DNA. Here we report that 75% of the duck hepatitis B virus reverse transcriptase present in transfected LMH cells does not follow this well-known pathway but rather exists in the cell separate from the core protein or nucleocapsids. The nonencapsidated reverse transcriptase is also abundant in infected duck liver. The nonencapsidated reverse transcriptase exists as a complex set of isoforms that are most likely produced by posttranslational modification. Interestingly, only the smallest of these isoforms is encapsidated into viral core particles. The nonencapsidated reverse transcriptase is bound to a large cellular cytoplasmic structure(s) in a detergent-sensitive complex. The cellular distribution of the reverse transcriptase only partially overlaps that of the core protein, and this distribution is unaffected by blocking encapsidation. These observations raise the possibilities that the metabolic fate of the reverse transcriptase may be posttranscriptionally regulated and that the reverse transcriptase may have roles in the viral replication cycle beyond its well-known function in copying the viral genome.
Collapse
Affiliation(s)
- E Yao
- Department of Molecular Microbiology and Immunology, St. Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | | | | | | |
Collapse
|
22
|
Fukuta K, Abe R, Yokomatsu T, Omae F, Asanagi M, Makino T. Control of bisecting GlcNAc addition to N-linked sugar chains. J Biol Chem 2000; 275:23456-61. [PMID: 10816579 DOI: 10.1074/jbc.m002693200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the present study, experimental control of the formation of bisecting GlcNAc was investigated, and the competition between beta-1,4-GalT (UDP-galactose:N-acetylglucosamine beta-1, 4-galactosyltransferase) and GnT-III (UDP-N-acetylglucosamine:beta-d-mannoside beta-1, 4-N-acetylglucosaminyltransferase) was examined. We isolated a beta-1,4-GalT-I single knockout human B cell clone producing monoclonal IgM and several transfectant clones that overexpressed beta-1,4-GalT-I or GnT-III. In the beta-1,4-GalT-I-single knockout cells, the extent of bisecting GlcNAc addition to the sugar chains of IgM was increased, where beta-1,4-GalT activity was reduced to about half that in the parental cells, and GnT-III activity was unaltered. In the beta-1,4-GalT-I transfectants, the extent of bisecting GlcNAc addition was reduced although GnT-III activity was not altered significantly. In the GnT-III transfectants, the extent of bisecting GlcNAc addition increased along with the increase in levels of GnT-III activity. The extent of bisecting GlcNAc addition to the sugar chains of IgM was significantly correlated with the level of intracellular beta-1,4-GalT activity relative to that of GnT-III. These results were interpreted as indicating that beta-1, 4-GalT competes with GnT-III for substrate in the cells.
Collapse
Affiliation(s)
- K Fukuta
- Life Science Laboratory, Mitsui Chemicals, Inc., 1144 Togo, Mobara, Chiba 297-0017, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Plonne D, Cartwright I, Linss W, Dargel R, Graham JM, Higgins JA. Separation of the intracellular secretory compartment of rat liver and isolated rat hepatocytes in a single step using self-generating gradients of iodixanol. Anal Biochem 1999; 276:88-96. [PMID: 10585748 DOI: 10.1006/abio.1999.4311] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A novel method is described for the separation on a single gradient of the major intracellular organelles of the secretory pathway, the Golgi, the smooth endoplasmic reticulum, and the rough endoplasmic reticulum. Total microsomes were prepared from rat liver by differential centrifugation and resuspended in 20% iodixanol. The microsomal suspension was then layered between a 30% iodixanol cushion and a layer of 15% iodixanol and centrifuged in a vertical rotor for 2 h. The microsomes distributed in four visible bands. The gradients were collected by upward displacement and were characterized (i) by determination of UDP galactose-galactosyltransferase (Golgi marker) NADPH-cytochrome c reductase (endoplasmic reticulum marker) and RNA (rough endoplasmic reticulum marker); (ii) by immunoblotting for TGN38 (trans-Golgi marker) and GS28 (cis-Golgi marker) and for protein disulfide isomerase (endoplasmic reticulum lumenal marker); (iii) by determination of the lipid composition; and (iv) by electron microscopy. The results suggest that the top band (density 1.045-1. 090 g/ml), which contains 68% of the galactosyltransferase activity, consists of vesicles derived from the Golgi. The second broad band in the middle of the tube (density 1.130-1.160 g/ml), which contains 54% of the NADPH-cytochrome c reductase activity, consists mainly of vesicles derived from the smooth endoplasmic reticulum, overlapped at the top by a small band of Golgi-derived lamellae. The two bands at the bottom of the tube (density 1.130-1.160 and density 1.180-1. 220 g/ml) appear to contain two subfractions of vesicles derived from the rough endoplasmic reticulum.
Collapse
Affiliation(s)
- D Plonne
- Institut für Pathobiochemie, Friedrich-Schiller Universität, Jena, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Lefrancois S, Michaud L, Potier M, Igdoura S, Morales CR. Role of sphingolipids in the transport of prosaposin to the lysosomes. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)33405-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
25
|
Tai AW, Chuang JZ, Sung CH. Localization of Tctex-1, a cytoplasmic dynein light chain, to the Golgi apparatus and evidence for dynein complex heterogeneity. J Biol Chem 1998; 273:19639-49. [PMID: 9677391 DOI: 10.1074/jbc.273.31.19639] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To date, much attention has been focused on the heavy and intermediate chains of the multisubunit cytoplasmic dynein complex; however, little is known about the localization or function of dynein light chains. In this study, we find that Tctex-1, a light chain of cytoplasmic dynein, localizes predominantly to the Golgi apparatus in interphase fibroblasts. Immunofluorescent staining reveals striking juxtanuclear staining characteristic of the Golgi apparatus as well as nuclear envelope and punctate cytoplasmic staining that often decorates microtubules. Tctex-1 colocalization with Golgi compartment markers, its distribution upon treatment with various pharmacological agents, and the cofractionation of Tctex-1-associated membranes with Golgi membranes are all consistent with a Golgi localization. The distribution of Tctex-1 in interphase cells only partially overlaps with the dynein intermediate chain and p150(Glued) upon immunofluorescence, but most of Tctex-1 is redistributed onto mitotic spindles along with other dynein/dynactin subunits. Using sequential immunoprecipitations, we demonstrate that there is a subset of Tctex-1 not associated with the intermediate chain at steady state; the converse also appears to be true. Distinct populations of dynein complexes are likely to exist, and such diversity may occur in part at the level of their light chain compositions.
Collapse
Affiliation(s)
- A W Tai
- Department of Cell Biology and Anatomy, Margaret M. Dyson Vision Research Institute, Cornell University Medical College, New York, New York 10021, USA
| | | | | |
Collapse
|
26
|
Holloway MP, Bram RJ. Co-localization of calcium-modulating cyclophilin ligand with intracellular calcium pools. J Biol Chem 1998; 273:16346-50. [PMID: 9632697 DOI: 10.1074/jbc.273.26.16346] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The calcium-modulating cyclophilin ligand (CAML) protein activates Ca2+ influx signaling when overexpressed in Jurkat T cells. Although CAML appears to directly participate in Ca2+-dependent signaling initiated by the transmembrane activator and CAML interactor cell surface receptor, its mechanism of action is unknown. To address this issue, we have determined its membrane topology, subcellular localization, and ability to mobilize intracellular Ca2+ pools. Fractionation of cell extracts on discontinuous sucrose gradients and indirect immunofluorescence indicate that CAML co-localizes with sarcoplasmic/endoplasmic reticulum calcium/ATPase-2 and calreticulin at membrane-bound cytosolic vesicles. Limited trypsin digests indicate that the hydrophilic NH2-terminal domain of CAML is directed toward the cytoplasm. Functionally, CAML overexpression was shown to deplete thapsigargin-sensitive intracellular Ca2+ pools. These data suggest that CAML may initiate Ca2+ signaling through activation of a capacitative Ca2+ influx pathway.
Collapse
Affiliation(s)
- M P Holloway
- Department of Experimental Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | |
Collapse
|
27
|
Lovelock C, Lucocq J. Quantitative immunoelectron microscopy reveals alpha2,6 sialyltransferase is concentrated in the central cisternae of rat hepatocyte Golgi apparatus. Eur J Cell Biol 1998; 76:18-24. [PMID: 9650779 DOI: 10.1016/s0171-9335(98)80013-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The Golgi apparatus is a membrane bound organelle involved in synthesis of N-linked oligosaccharides which are trimmed and then lengthened by a series of sugar transferases adding N-acetylglucosamine, galactose and sialic acid in sequence. We previously published qualitative work which localized Galbeta1,4GlcNAc alpha2,6 sialyltransferase of rat hepatocytes to the trans cisternae and the trans Golgi network. We now report the use of combined stereological and immunoelectron microscopical techniques for mapping the Golgi stack composition and distribution of sialyltransferase protein in rat hepatocytes. The Golgi stack showed substantial variation in composition consisting of 1, 2, 3, 4, or 5 cisternae with an average of 2.5 cisternae. Sialyltransferase labeling was mainly located in the central cisternae of the Golgi stacks irrespective of whether the stacks were oriented in a cis/trans direction using morphological criteria. Only 20% of the total sialyltransferase labeling was present in the transmost cisterna and 2% in the trans Golgi Network. The low labeling in the transmost cisterna was essentially due to the presence of a sialyltransferase negative cisterna. These data emphasize the importance of quantitation in obtaining a representative picture of Golgi enzyme distribution in three dimensions. They indicate that central cisternae, rather than the transmost cisterna and TGN, function in sialylation along the secretory pathway of rat hepatocytes.
Collapse
Affiliation(s)
- C Lovelock
- Department of Anatomy and Physiology, Medical Sciences Institute, University of Dundee, Scotland
| | | |
Collapse
|
28
|
Brusés JL, Rutishauser U. Regulation of neural cell adhesion molecule polysialylation: evidence for nontranscriptional control and sensitivity to an intracellular pool of calcium. J Cell Biol 1998; 140:1177-86. [PMID: 9490730 PMCID: PMC2132687 DOI: 10.1083/jcb.140.5.1177] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/1997] [Revised: 11/24/1997] [Indexed: 02/06/2023] Open
Abstract
The up- and downregulation of polysialic acid-neural cell adhesion molecule (PSA-NCAM) expression on motorneurons during development is associated respectively with target innervation and synaptogenesis, and is regulated at the level of PSA enzymatic biosynthesis involving specific polysialyltransferase activity. The purpose of this study has been to describe the cellular mechanisms by which that regulation might occur. It has been found that developmental regulation of PSA synthesis by ciliary ganglion motorneurons is not reflected in the levels of polysialyltransferase-1 (PST) or sialyltransferase-X (STX) mRNA. On the other hand, PSA synthesis in both the ciliary ganglion and the developing tectum appears to be coupled to the concentration of calcium in intracellular compartments. This study documents a calcium dependence of polysialyltransferase activity in a cell-free assay over the range of 0.1-1 mM, and a rapid sensitivity of new PSA synthesis, as measured in a pulse-chase analysis of tissue explants, to calcium ionophore perturbation of intracellular calcium levels. Moreover, the relevant calcium pool appears to be within a specific intracellular compartment that is sensitive to thapsigargin and does not directly reflect the level of cytosolic calcium. Perturbation of other major second messenger systems, such as cAMP and protein kinase-dependent pathways, did not affect polysialylation in the pulse chase analysis. These results suggest that the shuttling of calcium to different pools within the cell can result in the rapid regulation of PSA synthesis in developing tissues.
Collapse
Affiliation(s)
- J L Brusés
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
29
|
Lannert H, Gorgas K, Meissner I, Wieland FT, Jeckel D. Functional organization of the Golgi apparatus in glycosphingolipid biosynthesis. Lactosylceramide and subsequent glycosphingolipids are formed in the lumen of the late Golgi. J Biol Chem 1998; 273:2939-46. [PMID: 9446606 DOI: 10.1074/jbc.273.5.2939] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Biosynthesis of plasma membrane sphingolipids involves the coordinate action of enzymes localized to individual compartments of the biosynthetic secretory pathway of proteins. These stations include the endoplasmic reticulum and the Golgi apparatus. Although a precise localization of all the enzymes that synthesize glycosphingolipids has not been achieved to date, it is assumed that the sequence of events in glycosphingolipid biosynthesis resembles that in glycoprotein biosynthesis, i.e. that early reactions occur in early stations (endoplasmic reticulum and cis/medial Golgi) of the pathway, and late reactions occur in late stations (trans Golgi/trans Golgi network). Using truncated analogues of ceramide and glucosylceramide that allow measurement of enzyme activities in intact membrane fractions, we have reinvestigated the localization of individual enzymes involved in glycosphingolipid biosynthesis and for the first time studied the localization of lactosylceramide synthase after partial separation of Golgi membranes as previously described (Trinchera, M., and Ghidoni, R. (1989) J. Biol. Chem. 264, 15766-15769). Here, we show that the reactions involved in higher glycosphingolipid biosynthesis, including lactosylceramide synthesis, all reside in the lumen of the late Golgi compartments from rat liver.
Collapse
Affiliation(s)
- H Lannert
- Biochemie Zentrum Heidelberg, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
30
|
Abstract
Research on the Golgi apparatus has resulted in major advances in understanding its structure and functions, but many important questions remain unanswered. The history of the Golgi apparatus has been marked by arguments and controversies, some of which have been resolved, whereas others are still ongoing. This article charts progress in understanding the role of the Golgi apparatus during the 100 years since it was discovered, highlighting major milestones and discoveries that have led to the concepts of the organization and functions of this organelle that we have today.
Collapse
Affiliation(s)
- M G Farquhar
- Dept of Pathology, University of California, San Diego, USA.
| | | |
Collapse
|
31
|
Abstract
Most of the biosynthetic reactions that generate the oligosaccharide structures of eukaryotic cells occur in compartments of the Golgi apparatus. This article provides a brief outline of the major glycosylation pathways of the Golgi, and discusses current understanding of the many factors that can control the glycosylation potential of this organelle. Old and new approaches towards elucidating the organization of glycosylation machinery in the Golgi are also considered.
Collapse
Affiliation(s)
- A Varki
- Glycobiology Program, UCSD, La Jolla, USA.
| |
Collapse
|
32
|
Hauri H, Schweizer A. The
ER
–Golgi Membrane System: Compartmental Organization and Protein Traffic. Compr Physiol 1997. [DOI: 10.1002/cphy.cp140115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
|
34
|
Dittmer F, Pohlmann R, von Figura K. The phosphorylation pattern of oligosaccharides in secreted procathepsin D is glycosylation site-specific and independent of the expression of mannose 6-phosphate receptors. J Biol Chem 1997; 272:852-8. [PMID: 8995373 DOI: 10.1074/jbc.272.2.852] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mammalian cells contain two types of mannose 6-phosphate receptors (MPR), MPRs 46 and 300, that contribute with variable efficiency to the sorting of individual lysosomal proteins. To evaluate the role of phosphorylated oligosaccharides for the sorting efficiency by either of the two receptors, the structure of phosphorylated oligosaccharides on lysosomal proteins escaping sorting in cells lacking MPR 46 and/or MPR 300 was analyzed. Procathepsin D was chosen as a model because it is sorted efficiently via MPR 300 and poorly via MPR 46 and contains a distinct and highly heterogenous mixture of phosphorylated oligosaccharides at either of its two N-glycosylation sites. Both MPRs 46 and 300 were found to have a minor but distinct preference for forms of procathepsin D and other lysosomal proteins containing oligosaccharides with two phosphomonoesters. However, the phosphorylation of oligosaccharides in procathepsin D and other lysosomal proteins that escape sorting in control cells or in cells lacking MPR 46 and/or MPR 300 was strikingly similar, and oligosaccharides with two phosphomonoesters represented the major oligosaccharide species. We conclude from these results that the position of the position of the phosphate groups, the structure of the underlying oligosaccharide, and/or the polypeptide backbone of lysosomal proteins have major roles in determining the affinity to MPRs.
Collapse
Affiliation(s)
- F Dittmer
- Georg-August-Universität Göttingen, Abteilung Biochemie II, Germany
| | | | | |
Collapse
|
35
|
Roth J. Protein glycosylation in the endoplasmic reticulum and the Golgi apparatus and cell type-specificity of cell surface glycoconjugate expression: analysis by the protein A-gold and lectin-gold techniques. Histochem Cell Biol 1996; 106:79-92. [PMID: 8858368 DOI: 10.1007/bf02473203] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
High resolution immunolabeling applying the protein A-gold technique and carbohydrate cytochemistry using lectin-gold labeling on Lowicryl K4M and thawed-frozen thin sections are most useful approaches for the detection of protein antigens and lectin binding sites in intracellular organelles and the plasma membrane. They provided the basis for modern electron microscopic studies on protein glycosylation reactions and the identification of their subcellular localization as reviewed here. These studies have demonstrated organelle subcompartments and the cell type-specific compartmentation of endoplasmic reticulum and Golgi apparatus-associated glycosylation reactions. The other subject reviewed in this paper is cell surface glycoconjugates, as they are expressed in relation to specific cell types present in various organs and during cellular differentiation processes.
Collapse
Affiliation(s)
- J Roth
- Department of Pathology, University of Zürich, Switzerland
| |
Collapse
|
36
|
Li W, Keller GA, Haldar K. Recognition of a 170 kD protein in mammalian Golgi complexes by an antibody against malarial intraerythrocytic lamellae. Tissue Cell 1995; 27:355-67. [PMID: 7570574 PMCID: PMC7130858 DOI: 10.1016/s0040-8166(95)80057-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Human erythrocytes infected with the malarial parasite Plasmodium falciparum contain flattened membrane lamellae. It has been suggested that the lamellae may be involved in the sorting of malarial proteins to the cytoplasm and the cell membrane of the host erythrocyte. We have previously shown that the lamellae accumulate sphingolipids by virtue of their lipid composition in a manner similar to the trans-Golgi and the trans-Golgi network in mammalian cells. In this paper, we show by immunofluorescence microscopy that a monoclonal antibody to the lamellae labeled a perinuclear organelle that colocalized with WGA and the mannose-6-phosphate receptor in cultured mammalian cells. Immunoelectron microscopy experiments revealed that LWLI labels cisternae of the trans-face and the trans-Golgi network. Western blot analysis of subcellular fractions using LWLI detected a 170 kD protein which is associated with the luminal side of Golgi membranes of rat liver and is conserved in all cell lines studied. Our results indicate that (i) the 170 kD protein is a novel marker of the mammalian trans-Golgi and the trans-Golgi network and (ii) in addition to similarities in their morphological and lipid characteristics, the lamellae induced by P. falciparum in erythrocytes share proteinaceous determinants with the Golgi apparatus of mammalian cells.
Collapse
Affiliation(s)
- W Li
- Department of Microbiology and Immunology, Stanford University School of Medicine, CA 94305, USA
| | | | | |
Collapse
|
37
|
Bourguignon LY, Chu A, Jin H, Brandt NR. Ryanodine receptor-ankyrin interaction regulates internal Ca2+ release in mouse T-lymphoma cells. J Biol Chem 1995; 270:17917-22. [PMID: 7629097 DOI: 10.1074/jbc.270.30.17917] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In this study, we have identified and partially characterized a mouse T-lymphoma ryanodine receptor on a unique type of internal vesicle which bands at the relatively light density of 1.07 g/ml. Analysis of the binding of [3H]ryanodine to these internal vesicles reveals the presence of a single, low affinity binding site with a dissociation constant (Kd) of 200 nM. The second messenger, cyclic ADP-ribose, was found to increase the binding affinity of [3H]ryanodine to its vesicle receptor at least 5-fold (Kd approximately 40 nM). In addition, cADP-ribose appears to be a potent activator of internal Ca2+ release in T-lymphoma cells and is capable of overriding ryanodine-mediated inhibition of internal Ca2+ release. Immunoblot analyses using a monoclonal mouse antiryanodine receptor antibody indicate that mouse T-lymphoma cells contain a 500-kDa polypeptide similar to the ryanodine receptor found in skeletal muscle, cardiac muscle, and brain tissues. Double immunofluorescence staining and laser confocal microscopic analysis show that the ryanodine receptor is preferentially accumulated underneath surface receptor-capped structures. T-lymphoma ryanodine receptor was isolated (with an apparent sedimentation coefficient of 30 S) by extraction of the light density vesicles with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS) in 1 M NaCl followed by sucrose gradient centrifugation. Further analysis indicates that specific, high affinity binding occurs between ankyrin and this 30 S lymphoma ryanodine receptor (Kd = 0.075 nM). Most importantly, the binding of ankyrin to the light density vesicles significantly blocks ryanodine binding and ryanodine-mediated inhibition of internal Ca2+ release. These findings suggest that the cytoskeleton plays a pivotal role in the regulation of ryanodine receptor-mediated internal Ca2+ release during lymphocyte activation.
Collapse
Affiliation(s)
- L Y Bourguignon
- Department of Cell Biology and Anatomy, University of Miami Medical School, Florida 33101, USA
| | | | | | | |
Collapse
|
38
|
Rabouille C, Hui N, Hunte F, Kieckbusch R, Berger EG, Warren G, Nilsson T. Mapping the distribution of Golgi enzymes involved in the construction of complex oligosaccharides. J Cell Sci 1995; 108 ( Pt 4):1617-27. [PMID: 7615680 DOI: 10.1242/jcs.108.4.1617] [Citation(s) in RCA: 257] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The distribution of beta 1,2 N-acetylglucosaminyltransferase I (NAGT I), alpha 1,3-1,6 mannosidase II (Mann II), beta 1,4 galactosyltransferase (GalT), alpha 2,6 sialyltransferase (SialylT) was determined by immuno-labelling of cryo-sections from HeLa cell lines. Antibody labelling in the HeLa cell line was made possible by stable expression of epitope-tagged forms of these proteins or forms from species to which specific antibodies were available. NAGT I and Mann II had the same distribution occupying the medial and trans cisternae of the stack. GalT and SialylT also had the same distribution but they occupied the trans cisterna and the trans-Golgi network (TGN). These results generalise our earlier observations on the overlapping distribution of Golgi enzymes and show that each of the trans compartments of the Golgi apparatus in HeLa cells contains unique mixtures of those Golgi enzymes involved in the construction of complex, N-linked oligosaccharides.
Collapse
Affiliation(s)
- C Rabouille
- Cell Biology Laboratory, Imperial Cancer Research Fund, London, UK
| | | | | | | | | | | | | |
Collapse
|
39
|
Etchison JR, Srikrishna G, Freeze HH. A novel method to co-localize glycosaminoglycan-core oligosaccharide glycosyltransferases in rat liver Golgi. Co-localization of galactosyltransferase I with a sialyltransferase. J Biol Chem 1995; 270:756-64. [PMID: 7822307 DOI: 10.1074/jbc.270.2.756] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
4-Methylumbelliferyl-beta-xyloside (Xyl beta MU) primes glycosaminoglycan synthesis by first serving as an acceptor for the addition of 2 galactoses and 1 glucuronic acid residue to make the typical core structure, GlcUA beta 1, 3Gal beta 1,3Gal beta 1,4Xyl beta MU. To investigate the relative localization of these biosynthetic enzymes, intact and properly oriented rat liver Golgi preparations were incubated with Xyl beta MU and 1 microM UDP-[3H]Gal and then chased with 5 microM of unlabeled UDP-Gal, UDP-GlcUA, UDP-GlcNAc, UDP-GalNAc, and CMP-Neu5Ac. Under these conditions, no intervesicular transport occurs and acceptor labeling depends entirely upon transporter-mediated delivery of the labeled sugar nucleotides into the lumen of a vesicle and co-localization of the appropriate glycosyltransferases. The labeled products were isolated from the incubation medium and from within the Golgi and their structures analyzed by C18, anion-exchange, and amine adsorption high performance liquid chromatography in combination with glycosidase digestions. Surprisingly, the major products within the Golgi were two sialylated xylosides (Sia alpha 2,3Gal beta 1,4Xyl-beta MU and Sia alpha 2,8Sia alpha 2,3Gal beta 1,4Xyl beta MU) rather than the expected group of partially completed GAG core structures. Less than 10% of the products within the Golgi are the expected core structures containing a second Gal residue or, in addition, GlcUA. The amount of the sialylated products is only partially decreased if the chase is omitted or if the chase is done in the absence of added CMP-Sia, suggesting a pool of previously transported CMP-Sia drives synthesis of the major products. Conversely, when detergent permeabilized vesicles are provided with high concentration of the same sugar nucleotides, the ratio of sialylated products is reduced and replaced by an increase in GAG-like products. These results argue that GAG core-specific Ga1 transferase I and II are not extensively co-localized within the same Golgi compartment. By contrast, glycosaminoglycan core Gal transferase I is substantially co-localized with an alpha-2,3-sialyltransferase and an alpha-2,8-sialyltransferase. Incubating intact Golgi vesicles with exogenous diffusible acceptors offers a novel method to assess the functional co-localization of glycosyltransferases of multiple pathways within the Golgi compartments.
Collapse
Affiliation(s)
- J R Etchison
- La Jolla Cancer Research Foundation, Glycobiology/Carbohydrate Chemistry Program, California 92037
| | | | | |
Collapse
|
40
|
Whitters EA, McGee TP, Bankaitis VA. Purification and characterization of a late Golgi compartment from Saccharomyces cerevisiae. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)46901-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
41
|
Novak A, Lowden JA. GM2 ganglioside activator occurs in multiple forms. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1199:209-14. [PMID: 8123670 DOI: 10.1016/0304-4165(94)90117-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The protein which activates the hydrolysis of GM2 ganglioside by hexosaminidase A was purified from human kidney. The GM2 activator had a molecular mass of 28 kDa by gel filtration and was resolved into three major bands using polyacrylamide gel electrophoresis in the presence of SDS with molecular masses of 23, 22 and 21 kDa. These three bands corresponded respectively to strongly binding, weakly binding and non-binding fractions of GM2 activator chromatographed through concanavalin A-Sepharose, indicating that GM2 activator exists in multiple glycosylated forms.
Collapse
Affiliation(s)
- A Novak
- Division of Neurosciences, Hospital for Sick Children, Toronto, Canada
| | | |
Collapse
|
42
|
Leitinger B, Brown J, Spiess M. Tagging secretory and membrane proteins with a tyrosine sulfation site. Tyrosine sulfation precedes galactosylation and sialylation in COS-7 cells. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37167-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
43
|
Mullis K, Kornfeld R. Characterization and immunolocalization of bovine N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42088-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
44
|
Erickson P, Herzberg M. Evidence for the covalent linkage of carbohydrate polymers to a glycoprotein from Streptococcus sanguis. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80451-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
45
|
Bourguignon L, Jin H, Iida N, Brandt N, Zhang S. The involvement of ankyrin in the regulation of inositol 1,4,5-trisphosphate receptor-mediated internal Ca2+ release from Ca2+ storage vesicles in mouse T-lymphoma cells. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53175-6] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
46
|
Bonatti S, Torrisi MR. The intermediate compartment between endoplasmic reticulum and Golgi complex in mammalian cells. Subcell Biochem 1993; 21:121-42. [PMID: 8256263 DOI: 10.1007/978-1-4615-2912-5_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- S Bonatti
- Department of Biochemistry and Medical Biotechnology, University of Naples Federico II, Italy
| | | |
Collapse
|
47
|
Thyberg J, Moskalewski S. Disorganization of the Golgi complex and the cytoplasmic microtubule system in CHO cells exposed to okadaic acid. J Cell Sci 1992; 103 ( Pt 4):1167-75. [PMID: 1336778 DOI: 10.1242/jcs.103.4.1167] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A combination of immunocytochemical and electron microscopic methods was used to study the effects of okadaic acid, a specific inhibitor of protein phosphatase types 1 and 2A, on the Golgi complex and the microtubule system of interphase CHO cells. At a concentration of 0.25 microM and within 2–3 h of exposure, okadaic acid caused a reversible disorganization of the Golgi complex, observed as a disintegration of the stacks of cisternae and formation of clusters of tubules and vesicles dispersed in the cytoplasm. At the same time, staining for mannosidase II was shifted from the Golgi stacks to the endoplasmic reticulum, whereas the clusters of tubules and vesicles for the main part were negative. This change in localization of the enzyme was not blocked by cycloheximide and thus not dependent on ongoing protein synthesis. The changes in the morphology of the Golgi complex were coordinated in time with a remodelling of the microtubule system, observed as a reduction in the number of microtubules, a tendency of the remaining microtubules to arrange in an aster-like pattern, and an increased sensitivity to low concentrations of the microtubule-disruptive drug nocodazole. After removal of the drug, the microtubule system was rapidly normalized (1-2 h) and subsequently also the Golgi complex (4-8 h). The results suggest that okadaic acid induces a redistribution of the Golgi stacks into the endoplasmic reticulum, leaving the trans-most elements behind as tubules and vesicles.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J Thyberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
48
|
Sherwood A, Holmes E. Brefeldin A induced inhibition of de novo globo- and neolacto-series glycolipid core chain biosynthesis in human cells. Evidence for an effect on beta 1–>4galactosyltransferase activity. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)74044-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
49
|
Cluett EB, Brown WJ. Adhesion of Golgi cisternae by proteinaceous interactions: intercisternal bridges as putative adhesive structures. J Cell Sci 1992; 103 ( Pt 3):773-84. [PMID: 1336017 DOI: 10.1242/jcs.103.3.773] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have investigated the nature of the component(s) responsible for holding the cisternal membranes of the Golgi complex into a stacked unit. Isolated Golgi complexes were treated with a variety of agents to induce the separation of intact Golgi stacks into single cisternal elements, i.e. “unstacking”, and the effects were analyzed and quantitated by electron microscopy. In control experiments, isolated, intact Golgi stacks were stable at 4 degrees C and 20 degrees C for > or = 1 h; however, some unstacking occurred at 32 degrees C. Treatment of intact Golgi stacks with a variety of proteolytic enzymes resulted in a time- and dose-dependent unstacking of the cisternae, although stacks were resistant to various other proteases. Following liberation from the stack, single cisternae remained flattened with dilated rims. The integrity of intact Golgi stacks was unaffected by treatment with various concentrations and combinations of monovalent and divalent cations, or chelators of divalent cations. Electron microscopic observations of tannic acid- or negatively stained Golgi complexes, revealed the presence of highly structured, intercisternal “bridges”. When seen within intact Golgi complexes, these bridges were only consistently found between closely apposed cisternae and were not observed on dilated rims or secretory vesicles. These bridges, on both intact stacks and physically disrupted cisternae, were rectangular, being approximately 8.5 nm in width, approximately 11 nm in height. Treatment with proteases under conditions that resulted in the with proteases under conditions that resulted in the unstacking of intact complexes also removed these bridge structures. These data show that proteinaceous components are responsible for holding Golgi cisternae together into a cohesive, stacked unit, and identify a candidate bridge structure that could serve this purpose.
Collapse
Affiliation(s)
- E B Cluett
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853
| | | |
Collapse
|
50
|
Locker J, Griffiths G, Horzinek M, Rottier P. O-glycosylation of the coronavirus M protein. Differential localization of sialyltransferases in N- and O-linked glycosylation. J Biol Chem 1992. [PMID: 1629209 PMCID: PMC8545364 DOI: 10.1016/s0021-9258(19)49683-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|