1
|
den Uijl MJ, Driessen AJM. Phospholipid dependency of membrane protein insertion by the Sec translocon. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184232. [PMID: 37734458 DOI: 10.1016/j.bbamem.2023.184232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
Membrane protein insertion into and translocation across the bacterial cytoplasmic membrane are essential processes facilitated by the Sec translocon. Membrane insertion occurs co-translationally whereby the ribosome nascent chain is targeted to the translocon via signal recognition particle and its receptor FtsY. The phospholipid dependence of membrane protein insertion has remained mostly unknown. Here we assessed in vitro the dependence of the SecA independent insertion of the mannitol permease MtlA into the membrane on the main phospholipid species present in Escherichia coli. We observed that insertion depends on the presence of phosphatidylglycerol and is due to the anionic nature of the polar headgroup, while insertion is stimulated by the zwitterionic phosphatidylethanolamine. We found an optimal insertion efficiency at about 30 mol% DOPG and 50 mol% DOPE which approaches the bulk membrane phospholipid composition of E. coli.
Collapse
Affiliation(s)
- Max J den Uijl
- University of Groningen, Groningen Biomolecular Sciences and Biotechnology, 9747 AG Groningen, the Netherlands
| | - Arnold J M Driessen
- University of Groningen, Groningen Biomolecular Sciences and Biotechnology, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
2
|
Jeckelmann JM, Erni B. Carbohydrate Transport by Group Translocation: The Bacterial Phosphoenolpyruvate: Sugar Phosphotransferase System. Subcell Biochem 2019; 92:223-274. [PMID: 31214989 DOI: 10.1007/978-3-030-18768-2_8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The Bacterial Phosphoenolpyruvate (PEP) : Sugar Phosphotransferase System (PTS) mediates the uptake and phosphorylation of carbohydrates, and controls the carbon- and nitrogen metabolism in response to the availability of sugars. PTS occur in eubacteria and in a few archaebacteria but not in animals and plants. All PTS comprise two cytoplasmic phosphotransferase proteins (EI and HPr) and a species-dependent, variable number of sugar-specific enzyme II complexes (IIA, IIB, IIC, IID). EI and HPr transfer phosphorylgroups from PEP to the IIA units. Cytoplasmic IIA and IIB units sequentially transfer phosphates to the sugar, which is transported by the IIC and IICIID integral membrane protein complexes. Phosphorylation by IIB and translocation by IIC(IID) are tightly coupled. The IIC(IID) sugar transporters of the PTS are in the focus of this review. There are four structurally different PTS transporter superfamilies (glucose, glucitol, ascorbate, mannose) . Crystal structures are available for transporters of two superfamilies: bcIICmal (MalT, 5IWS, 6BVG) and bcIICchb (ChbC, 3QNQ) of B. subtilis from the glucose family, and IICasc (UlaA, 4RP9, 5ZOV) of E. coli from the ascorbate superfamily . They are homodimers and each protomer has an independent transport pathway which functions by an elevator-type alternating-access mechanism. bcIICmal and bcIICchb have the same fold, IICasc has a completely different fold. Biochemical and biophysical data accumulated in the past with the transporters for mannitol (IICBAmtl) and glucose (IICBglc) are reviewed and discussed in the context of the bcIICmal crystal structures. The transporters of the mannose superfamily are dimers of protomers consisting of a IIC and a IID protein chain. The crystal structure is not known and the topology difficult to predict. Biochemical data indicate that the IICIID complex employs a different transport mechanism . Species specific IICIID serve as a gateway for the penetration of bacteriophage lambda DNA across, and insertion of class IIa bacteriocins into the inner membrane. PTS transporters are inserted into the membrane by SecYEG translocon and have specific lipid requirements. Immunoelectron- and fluorescence microscopy indicate a non-random distribution and supramolecular complexes of PTS proteins.
Collapse
Affiliation(s)
- Jean-Marc Jeckelmann
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012, Bern, Switzerland.
| | - Bernhard Erni
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012, Bern, Switzerland
| |
Collapse
|
3
|
The bacterial Sec system is required for the organization and function of the MreB cytoskeleton. PLoS Genet 2017; 13:e1007017. [PMID: 28945742 PMCID: PMC5629013 DOI: 10.1371/journal.pgen.1007017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/05/2017] [Accepted: 09/13/2017] [Indexed: 12/11/2022] Open
Abstract
The Sec system is responsible for protein insertion, translocation and secretion across membranes in all cells. The bacterial actin homolog MreB controls various processes, including cell wall synthesis, membrane organization and polarity establishment. Here we show that the two systems genetically interact and that components of the Sec system, especially the SecA motor protein, are essential for spatiotemporal organization of MreB in E. coli, as evidenced by the accumulation of MreB at irregular sites in Sec-impaired cells. MreB mislocalization in SecA-defective cells significantly affects MreB-coordinated processes, such as cell wall synthesis, and induce formation of membrane invaginations enriched in high fluidity domains. Additionally, MreB is not recruited to the FtsZ ring in secA mutant cells, contributing to division arrest and cell filamentation. Our results show that all these faults are due to improper targeting of MreB to the membrane in the absence of SecA. Thus, when we reroute RodZ, MreB membrane-anchor, by fusing it to a SecA-independent integral membrane protein and overproducing it, MreB localization is restored and the defect in cell division is corrected. Notably, the RodZ moiety is not properly inserted into the membrane, strongly suggesting that it only serves as a bait for placing MreB around the cell circumference. Finally, we show that MreB localization depends on SecA also in C. crescentus, suggesting that regulation of MreB by the Sec system is conserved in bacteria. Taken together, our data reveal that the secretion system plays an important role in determining the organization and functioning of the cytoskeletal system in bacteria. The notion that bacterial cells have intricate spatial organization, which affects many vital processes, is relatively new and, hence, the underlying mechanisms are largely unknown. The general secretion system and the cytoskeleton are central systems, each known to organize functions associated with certain cellular domains, in both eukaryotes and prokaryotes. While the role of the Sec system in membrane protein translocation and secretion has been largely explored, not much in known about its role in inner cell organization. We show that the Sec system is important for the localization pattern and functionality of the bacterial cytoskeletal system, which controls cell shape, cell division and polarity. Our findings highlight the Sec system as a central coordinator that controls cellular functions on both sides of the membrane.
Collapse
|
4
|
Aboulwafa M, Saier MH. Lipid dependencies, biogenesis and cytoplasmic micellar forms of integral membrane sugar transport proteins of the bacterial phosphotransferase system. MICROBIOLOGY-SGM 2013; 159:2213-2224. [PMID: 23985145 DOI: 10.1099/mic.0.070953-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Permeases of the prokaryotic phosphoenolpyruvate-sugar phosphotransferase system (PTS) catalyse sugar transport coupled to sugar phosphorylation. The lipid composition of a membrane determines the activities of these enzyme/transporters as well as the degree of coupling of phosphorylation to transport. We have investigated mechanisms of PTS permease biogenesis and identified cytoplasmic (soluble) forms of these integral membrane proteins. We found that the catalytic activities of the soluble forms differ from those of the membrane-embedded forms. Transport via the latter is much more sensitive to lipid composition than to phosphorylation, and some of these enzymes are much more sensitive to the lipid environment than others. While the membrane-embedded PTS permeases are always dimeric, the cytoplasmic forms are micellar, either monomeric or dimeric. Scattered published evidence suggests that other integral membrane proteins also exist in cytoplasmic micellar forms. The possible functions of cytoplasmic PTS permeases in biogenesis, intracellular sugar phosphorylation and permease storage are discussed.
Collapse
Affiliation(s)
- Mohammad Aboulwafa
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, Egypt.,Department of Molecular Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Milton H Saier
- Department of Molecular Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| |
Collapse
|
5
|
Welte T, Kudva R, Kuhn P, Sturm L, Braig D, Müller M, Warscheid B, Drepper F, Koch HG. Promiscuous targeting of polytopic membrane proteins to SecYEG or YidC by the Escherichia coli signal recognition particle. Mol Biol Cell 2011; 23:464-79. [PMID: 22160593 PMCID: PMC3268725 DOI: 10.1091/mbc.e11-07-0590] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The YidC insertase also integrates multispanning membrane proteins that had been considered to be exclusively SecYEG dependent. Only membrane proteins that require SecA can be inserted only via SecYEG. Targeting to YidC is SRP dependent, and the C-terminus of YidC cross-links to SRP, FtsY, and ribosomal subunits. Protein insertion into the bacterial inner membrane is facilitated by SecYEG or YidC. Although SecYEG most likely constitutes the major integration site, small membrane proteins have been shown to integrate via YidC. We show that YidC can also integrate multispanning membrane proteins such as mannitol permease or TatC, which had been considered to be exclusively integrated by SecYEG. Only SecA-dependent multispanning membrane proteins strictly require SecYEG for integration, which suggests that SecA can only interact with the SecYEG translocon, but not with the YidC insertase. Targeting of multispanning membrane proteins to YidC is mediated by signal recognition particle (SRP), and we show by site-directed cross-linking that the C-terminus of YidC is in contact with SRP, the SRP receptor, and ribosomal proteins. These findings indicate that SRP recognizes membrane proteins independent of the downstream integration site and that many membrane proteins can probably use either SecYEG or YidC for integration. Because protein synthesis is much slower than protein transport, the use of YidC as an additional integration site for multispanning membrane proteins may prevent a situation in which the majority of SecYEG complexes are occupied by translating ribosomes during cotranslational insertion, impeding the translocation of secretory proteins.
Collapse
Affiliation(s)
- Thomas Welte
- Institut für Biochemie und Molekularbiologie, Zentrum für Biochemie und Molekulare Zellforschung, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Affiliation(s)
- Arnold J.M. Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and the Zernike Institute for Advanced Materials, University of Groningen, 9751 NN, Haren, The Netherlands; ,
| | - Nico Nouwen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and the Zernike Institute for Advanced Materials, University of Groningen, 9751 NN, Haren, The Netherlands; ,
| |
Collapse
|
7
|
High yield cell-free production of integral membrane proteins without refolding or detergents. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1237-50. [PMID: 18295592 DOI: 10.1016/j.bbamem.2008.01.023] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 01/02/2008] [Accepted: 01/28/2008] [Indexed: 11/21/2022]
Abstract
Integral membrane proteins act as critical cellular components and are important drug targets. However, difficulties in producing membrane proteins have hampered investigations of structure and function. In vivo production systems are often limited by cell toxicity, and previous in vitro approaches have required unnatural folding pathways using detergents or lipid solutions. To overcome these limitations, we present an improved cell-free expression system which produces high yields of integral membrane proteins without the use of detergents or refolding steps. Our cell-free reaction activates an Escherichia coli-derived cell extract for transcription and translation. Purified E. coli inner membrane vesicles supply membrane-bound components and the lipid environment required for insertion and folding. Using this system, we demonstrated successful synthesis of two complex integral membrane transporters, the tetracycline pump (TetA) and mannitol permease (MtlA), in yields of 570+/-50 microg/mL and 130+/-30 microg/mL of vesicle-associated protein, respectively. These yields are up to 400 times typical in vivo concentrations. Insertion and folding of these proteins are verified by sucrose flotation, protease digestion, and activity assays. Whereas TetA incorporates efficiently into vesicle membranes with over two-thirds of the synthesized protein being inserted, MtlA yields appear to be limited by insufficient concentrations of a membrane-associated chaperone.
Collapse
|
8
|
de Keyzer J, Regeling A, Driessen AJM. Arginine 357 of SecY is needed for SecA-dependent initiation of preprotein translocation. FEBS Lett 2007; 581:1859-64. [PMID: 17433305 DOI: 10.1016/j.febslet.2007.03.081] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 03/22/2007] [Accepted: 03/27/2007] [Indexed: 11/23/2022]
Abstract
The Escherichia coli SecYEG complex forms a transmembrane channel for both protein export and membrane protein insertion. Secretory proteins and large periplasmic domains of membrane proteins require for translocation in addition the SecA ATPase. The conserved arginine 357 of SecY is essential for a yet unidentified step in the SecA catalytic cycle. To further dissect its role, we have analysed the requirement for R357 in membrane protein insertion. Although R357 substitutions abolish post-translational translocation, they allow the translocation of periplasmic domains targeted co-translationally by an N-terminal transmembrane segment. We propose that R357 is essential for the initiation of SecA-dependent translocation only.
Collapse
Affiliation(s)
- Jeanine de Keyzer
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | |
Collapse
|
9
|
Nishiyama KI, Ikegami A, Moser M, Schiltz E, Tokuda H, Müller M. A Derivative of Lipid A Is Involved in Signal Recognition Particle/SecYEG-dependent and -independent Membrane Integrations. J Biol Chem 2006; 281:35667-76. [PMID: 17008318 DOI: 10.1074/jbc.m608228200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A cell-free system was developed that allows the correct integration of single and multispanning membrane proteins of Escherichia coli into proteoliposomes. We found that physiological levels of diacylglycerol were required to prevent spontaneous integration into liposomes even of the polytopic mannitol permease. Using diacylglycerol-containing proteoliposomes, we identified a novel integration-stimulating factor. Integration of mannitol permease was dependent on both the SecYEG translocon and this factor and was mediated by signal recognition particle and signal recognition particle receptor. Integration of M13 procoat, which is independent of both signal recognition particle/signal recognition particle receptor and SecYEG, was also promoted by this factor. Furthermore, the factor stimulated the post-translational translocation of presecretory proteins, suggesting that it also mediates integration of a signal sequence. This factor was found to be a lipid A-derived membrane component possessing a peptide moiety.
Collapse
Affiliation(s)
- Ken-ichi Nishiyama
- Institute of Biochemistry and Molecular Biology, Centre of Biochemistry and Molecular Cell Research, University of Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg, Germany.
| | | | | | | | | | | |
Collapse
|
10
|
Eisner G, Moser M, Schäfer U, Beck K, Müller M. Alternate recruitment of signal recognition particle and trigger factor to the signal sequence of a growing nascent polypeptide. J Biol Chem 2006; 281:7172-9. [PMID: 16421097 DOI: 10.1074/jbc.m511388200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Different from cytoplasmic membrane proteins, presecretory proteins of bacteria usually do not require the signal recognition particle for targeting to the Sec translocon. Nevertheless signal sequences of presecretory proteins have been found in close proximity to signal recognition particle immediately after they have emerged from the ribosome. We show here that at the ribosome, the molecular environment of a signal sequence depends on the nature of downstream sequence elements that can cause an alternate recruitment of signal recognition particle and the ribosome-associated chaperone Trigger factor to a growing nascent chain. While signal recognition particle and Trigger factor might remain bound to the same ribosome, both ligands are clearly able to displace each other from a nascent chain. The data also imply that a signal sequence owes its molecular environment to the fact that it remains closely apposed to the ribosomal exit site during growth of a nascent secretory protein.
Collapse
Affiliation(s)
- Gottfried Eisner
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
11
|
Facey SJ, Kuhn A. Membrane integration of E. coli model membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1694:55-66. [PMID: 15546657 DOI: 10.1016/j.bbamcr.2004.03.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Revised: 02/18/2004] [Accepted: 03/01/2004] [Indexed: 11/30/2022]
Abstract
The molecular events of membrane translocation and insertion have been investigated using a number of different model proteins. Each of these proteins has specific features that allow interaction with the membrane components which ensure that the proteins reach their specific local destination and final conformation. This review will give an overview on the best-characterized proteins studied in the bacterial system and emphasize the distinct aspects of the pathways.
Collapse
Affiliation(s)
- Sandra J Facey
- Institute of Microbiology and Molecular Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | | |
Collapse
|
12
|
Schierle CF, Berkmen M, Huber D, Kumamoto C, Boyd D, Beckwith J. The DsbA signal sequence directs efficient, cotranslational export of passenger proteins to the Escherichia coli periplasm via the signal recognition particle pathway. J Bacteriol 2003; 185:5706-13. [PMID: 13129941 PMCID: PMC193964 DOI: 10.1128/jb.185.19.5706-5713.2003] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli cytoplasmic protein thioredoxin 1 can be efficiently exported to the periplasmic space by the signal sequence of the DsbA protein (DsbAss) but not by the signal sequence of alkaline phosphatase (PhoA) or maltose binding protein (MBP). Using mutations of the signal recognition particle (SRP) pathway, we found that DsbAss directs thioredoxin 1 to the SRP export pathway. When DsbAss is fused to MBP, MBP also is directed to the SRP pathway. We show directly that the DsbAss-promoted export of MBP is largely cotranslational, in contrast to the mode of MBP export when the native signal sequence is utilized. However, both the export of thioredoxin 1 by DsbAss and the export of DsbA itself are quite sensitive to even the slight inhibition of SecA. These results suggest that SecA may be essential for both the slow posttranslational pathway and the SRP-dependent cotranslational pathway. Finally, probably because of its rapid folding in the cytoplasm, thioredoxin provides, along with gene fusion approaches, a sensitive assay system for signal sequences that utilize the SRP pathway.
Collapse
Affiliation(s)
- Clark F Schierle
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
13
|
Drew D, Fröderberg L, Baars L, de Gier JWL. Assembly and overexpression of membrane proteins in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1610:3-10. [PMID: 12586374 DOI: 10.1016/s0005-2736(02)00707-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The bacterium Escherichia coli is one of the most popular model systems to study the assembly of membrane proteins of the so-called helix-bundle class. Here, based on this system, we review and discuss what is currently known about the assembly of these membrane proteins. In addition, we will briefly review and discuss how E. coli has been used as a vehicle for the overexpression of membrane proteins.
Collapse
Affiliation(s)
- David Drew
- Department of Biochemistry and Biophysics, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
14
|
Tian H, Beckwith J. Genetic screen yields mutations in genes encoding all known components of the Escherichia coli signal recognition particle pathway. J Bacteriol 2002; 184:111-8. [PMID: 11741850 PMCID: PMC134764 DOI: 10.1128/jb.184.1.111-118.2002] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe the further utilization of a genetic screen that identifies mutations defective in the assembly of proteins into the Escherichia coli cytoplasmic membrane. The screen yielded mutations in each of the known genes encoding components of the E. coli signal recognition particle pathway: ffh, ffs, and ftsY, which encode Ffh, 4.5S RNA, and FtsY, respectively. In addition, the screen yielded mutations in secM, which is involved in regulating levels of the SecA component of the bacterium's protein export pathway. We used a sensitive assay involving biotinylation to show that all of the mutations caused defects in the membrane insertions of three topologically distinct membrane proteins, AcrB, MalF, and FtsQ. Among the mutations that resulted in membrane protein insertion defects, only the secM mutations also showed defects in the translocation of proteins into the E. coli periplasm. Genetic evidence suggests that the S382T alteration of Ffh affects the interaction between Ffh and 4.5S RNA.
Collapse
Affiliation(s)
- Hongping Tian
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
15
|
Abstract
For a long time, it was generally assumed that the biogenesis of inner membrane proteins in Escherichia coli occurs spontaneously, and that only the translocation of large periplasmic domains requires the aid of a protein machinery, the Sec translocon. However, evidence obtained in recent years indicates that most, if not all, inner membrane proteins require the assistance of protein factors to reach their native conformation in the membrane. Here, we review and discuss recent advances in our understanding of the biogenesis of inner membrane proteins in E. coli.
Collapse
Affiliation(s)
- J W de Gier
- Department of Biochemistry, Stockholm University, 106 91 Stockholm, Sweden.
| | | |
Collapse
|
16
|
Dalbey RE, Kuhn A. Evolutionarily related insertion pathways of bacterial, mitochondrial, and thylakoid membrane proteins. Annu Rev Cell Dev Biol 2001; 16:51-87. [PMID: 11031230 DOI: 10.1146/annurev.cellbio.16.1.51] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The inner membranes of eubacteria and mitochondria, as well as the chloroplast thylakoid membrane, contain essential proteins that function in oxidative phosphorylation and electron transport processes or in photosynthesis. Because most of the organellar proteins are nuclear encoded, they are synthesized in the cytoplasm and subsequently imported into the organelle before they are inserted into the membrane. This review focuses on the pathways of protein insertion into the inner membrane of eubacteria and mitochondria and into the chloroplast thylakoid membrane. In many respects, insertion of proteins into the inner membrane of bacteria is a process similar to that used by proteins of the thylakoid membrane. In both of these systems a signal recognition particle (SRP) and a SecYE-translocase are involved, as in translocation into the endoplasmic reticulum. The pathway of proteins into the mitochondrial membranes appears to be different in that it involves no SecYE-like components. A conservative pathway, recently identified in mitochondria, involves the Oxa1 protein for the insertion of proteins from the matrix. The presence of Oxa1 homologues in eubacteria and chloroplasts suggests that this pathway is evolutionarily conserved.
Collapse
Affiliation(s)
- R E Dalbey
- Department of Chemistry, Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA.
| | | |
Collapse
|
17
|
Müller M, Koch HG, Beck K, Schäfer U. Protein traffic in bacteria: multiple routes from the ribosome to and across the membrane. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 66:107-57. [PMID: 11051763 DOI: 10.1016/s0079-6603(00)66028-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Bacteria use several routes to target their exported proteins to the plasma membrane. The majority are exported through pores formed by SecY and SecE. Two different molecular machineries are used to target proteins to the SecYE translocon. Translocated proteins, synthesized as precursors with cleavable signal sequences, require cytoplasmic chaperones, such as SecB, to remain competent for posttranslational transport. In concert with SecB, SecA targets the precursors to SecY and energizes their translocation by its ATPase activity. The latter function involves a partial insertion of SecA itself into the SecYE translocon, a process that is strongly assisted by a couple of membrane proteins, SecG, SecD, SecF, YajC, and the proton gradient across the membrane. Integral membrane proteins, however, are specifically recognized by a direct interaction between their noncleaved signal anchor sequences and the bacterial signal recognition particle (SRP) consisting of Ffh and 4.5S RNA. Recognition occurs during synthesis at the ribosome and leads to a cotranslational targeting to SecYE that is mediated by FtsY and the hydrolysis of GTP. No other Sec protein is required for integration unless the membrane protein also contains long translocated domains that engage the SecA machinery. Discrimination between SecA/SecB- and SRP-dependent targeting involves the specificity of SRP for hydrophobic signal anchor sequences and the exclusion of SRP from nascent chains of translocated proteins by trigger factor, a ribosome-associated chaperone. The SecYE pore accepts only unfolded proteins. In contrast, a class of redox factor-containing proteins leaves the cell only as completely folded proteins. They are distinguished by a twin arginine motif of their signal sequences that by an unknown mechanism targets them to specific pores. A few membrane proteins insert spontaneously into the bacterial plasma membrane without the need for targeting factors and SecYE. Insertion depends only on hydrophobic interactions between their transmembrane segments and the lipid bilayer and on the transmembrane potential. Finally, outer membrane proteins of Gram-negative bacteria after having crossed the plasma membrane are released into the periplasm, where they undergo distinct folding events until they insert as trimers into the outer membrane. These folding processes require distinct molecular chaperones of the periplasm, such as Skp, SurA, and PpiD.
Collapse
Affiliation(s)
- M Müller
- Institute of Biochemistry and Molecular Biology, University of Freiburg, Germany
| | | | | | | |
Collapse
|
18
|
Koch HG, Müller M. Dissecting the translocase and integrase functions of the Escherichia coli SecYEG translocon. J Cell Biol 2000; 150:689-94. [PMID: 10931878 PMCID: PMC2175189 DOI: 10.1083/jcb.150.3.689] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent evidence suggests that in Escherichia coli, SecA/SecB and signal recognition particle (SRP) are constituents of two different pathways targeting secretory and inner membrane proteins to the SecYEG translocon of the plasma membrane. We now show that a secY mutation, which compromises a functional SecY-SecA interaction, does not impair the SRP-mediated integration of polytopic inner membrane proteins. Furthermore, under conditions in which the translocation of secretory proteins is strictly dependent on SecG for assisting SecA, the absence of SecG still allows polytopic membrane proteins to integrate at the wild-type level. These results indicate that SRP-dependent integration and SecA/SecB-mediated translocation do not only represent two independent protein delivery systems, but also remain mechanistically distinct processes even at the level of the membrane where they engage different domains of SecY and different components of the translocon. In addition, the experimental setup used here enabled us to demonstrate that SRP-dependent integration of a multispanning protein into membrane vesicles leads to a biologically active enzyme.
Collapse
Affiliation(s)
- H G Koch
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, 79104 Freiburg, Germany.
| | | |
Collapse
|
19
|
Dalbey RE, Chen M, Jiang F, Samuelson JC. Understanding the insertion of transporters and other membrane proteins. Curr Opin Cell Biol 2000; 12:435-42. [PMID: 10873828 DOI: 10.1016/s0955-0674(00)00113-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent studies show that transporters integrate into the lipid bilayer using topogenic sequences present throughout the entire polypeptide chain. These topogenic sequences can act in unpredictable ways with new translocation/stop transfer activities. In addition, a new membrane-insertion pathway has been identified in bacteria with homologs in mitochondria and chloroplasts.
Collapse
Affiliation(s)
- R E Dalbey
- Department of Chemistry, Ohio State University, Columbus, 43210, USA.
| | | | | | | |
Collapse
|
20
|
Tian H, Boyd D, Beckwith J. A mutant hunt for defects in membrane protein assembly yields mutations affecting the bacterial signal recognition particle and Sec machinery. Proc Natl Acad Sci U S A 2000; 97:4730-5. [PMID: 10781078 PMCID: PMC18301 DOI: 10.1073/pnas.090087297] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe an Escherichia coli genetic screen that yields mutations affecting two different cellular processes: disulfide bond formation and membrane protein assembly. The mutants defective in disulfide bond formation include additional classes of dsbA and dsbB mutations. The membrane protein assembly defective mutants contain a mutation in the secA operon and three mutations in the ffs gene, which encodes 4.5S RNA. These latter mutations are the only ones to be isolated in a gene encoding a component of the bacterial signal recognition particle by screening in vivo for defects in membrane protein insertion. A sensitive method for examining membrane protein localization shows that the ffs and secA locus mutations affect membrane assembly of the polytopic membrane protein, MalF. The ffs mutations also affect the membrane insertion of the FtsQ and the AcrB proteins. Although both the ffs and the secA locus mutations interfere with membrane protein assembly, only the latter also reduces export of a protein containing a cleavable signal sequence.
Collapse
Affiliation(s)
- H Tian
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
21
|
Beutler R, Ruggiero F, Erni B. Folding and activity of circularly permuted forms of a polytopic membrane protein. Proc Natl Acad Sci U S A 2000; 97:1477-82. [PMID: 10677487 PMCID: PMC26459 DOI: 10.1073/pnas.0305463397] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transmembrane subunit of the Glc transporter (IICB(Glc)), which mediates uptake and concomitant phosphorylation of glucose, spans the membrane eight times. Variants of IICB(Glc) with the native N and C termini joined and new N and C termini in the periplasmic and cytoplasmic surface loops were expressed in Escherichia coli. In vivo transport/in vitro phosphotransferase activities of the circularly permuted variants with the termini in the periplasmic loops 1 to 4 were 35/58, 32/37, 0/3, and 0/0% of wild type, respectively. The activities of the variants with the termini in the cytoplasmic loops 1 to 3 were 0/25, 0/4 and 24/70, respectively. Fusion of alkaline phosphatase to the periplasmic C termini stabilized membrane integration and increased uptake and/or phosphorylation activities. These results suggest that internal signal anchor and stop transfer sequences can function as N-terminal signal sequences in a circularly permuted alpha-helical bundle protein and that the orientation of transmembrane segments is determined by the amino acid sequence and not by the sequential appearance during translation. Of the four IICB(Glc) variants with new termini in periplasmic loops, only the one with the discontinuity in loop 4 is inactive. The sequences of loop 4 and of the adjacent TM7 and TM8 are conserved in all phosphoenolpyruvate-dependent carbohydrate:phosphotransferase system transporters of the glucose family.
Collapse
Affiliation(s)
- R Beutler
- Departement für Chemie und Biochemie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | | | | |
Collapse
|
22
|
Scotti PA, Valent QA, Manting EH, Urbanus ML, Driessen AJ, Oudega B, Luirink J. SecA is not required for signal recognition particle-mediated targeting and initial membrane insertion of a nascent inner membrane protein. J Biol Chem 1999; 274:29883-8. [PMID: 10514469 DOI: 10.1074/jbc.274.42.29883] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli, signal recognition particle (SRP)-dependent targeting of inner membrane proteins has been described. In vitro cross-linking studies have demonstrated that short nascent chains exposing a highly hydrophobic targeting signal interact with the SRP. This SRP, assisted by its receptor, FtsY, mediates the transfer to a common translocation site in the inner membrane that contains SecA, SecG, and SecY. Here we describe a further in vitro reconstitution of SRP-mediated membrane insertion in which purified ribosome-nascent chain-SRP complexes are targeted to the purified SecYEG complex contained in proteoliposomes in a process that requires the SRP-receptor FtsY and GTP. We found that in this system SecA and ATP are dispensable for both the transfer of the nascent inner membrane protein FtsQ to SecY and its stable membrane insertion. Release of the SRP from nascent FtsQ also occurred in the absence of SecYEG complex indicating a functional interaction of FtsY with lipids. These data suggest that SRP/FtsY and SecB/SecA constitute distinct targeting routes.
Collapse
Affiliation(s)
- P A Scotti
- Department of Microbiology, Institute of Molecular Biological Sciences, Biocentrum Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
23
|
Koch HG, Hengelage T, Neumann-Haefelin C, MacFarlane J, Hoffschulte HK, Schimz KL, Mechler B, Müller M. In vitro studies with purified components reveal signal recognition particle (SRP) and SecA/SecB as constituents of two independent protein-targeting pathways of Escherichia coli. Mol Biol Cell 1999; 10:2163-73. [PMID: 10397756 PMCID: PMC25430 DOI: 10.1091/mbc.10.7.2163] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The molecular requirements for the translocation of secretory proteins across, and the integration of membrane proteins into, the plasma membrane of Escherichia coli were compared. This was achieved in a novel cell-free system from E. coli which, by extensive subfractionation, was simultaneously rendered deficient in SecA/SecB and the signal recognition particle (SRP) components, Ffh (P48), 4. 5S RNA, and FtsY. The integration of two membrane proteins into inside-out plasma membrane vesicles of E. coli required all three SRP components and could not be driven by SecA, SecB, and DeltamicroH+. In contrast, these were the only components required for the translocation of secretory proteins into membrane vesicles, a process in which the SRP components were completely inactive. Our results, while confirming previous in vivo studies, provide the first in vitro evidence for the dependence of the integration of polytopic inner membrane proteins on SRP in E. coli. Furthermore, they suggest that SRP and SecA/SecB have different substrate specificities resulting in two separate targeting mechanisms for membrane and secretory proteins in E. coli. Both targeting pathways intersect at the translocation pore because they are equally affected by a blocked translocation channel.
Collapse
Affiliation(s)
- H G Koch
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Qi HY, Bernstein HD. SecA is required for the insertion of inner membrane proteins targeted by the Escherichia coli signal recognition particle. J Biol Chem 1999; 274:8993-7. [PMID: 10085146 DOI: 10.1074/jbc.274.13.8993] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent work has demonstrated that the signal recognition particle (SRP) is required for the efficient insertion of many proteins into the Escherichia coli inner membrane (IM). Based on an analogy to eukaryotic SRP, it is likely that bacterial SRP binds to inner membrane proteins (IMPs) co-translationally and then targets them to protein transport channels ("translocons"). Here we present evidence that SecA, which has previously been shown to facilitate the export of proteins targeted in a post-translational fashion, is also required for the membrane insertion of proteins targeted by SRP. The introduction of SecA mutations into strains that have modest SRP deficiencies produced a synthetic lethal effect, suggesting that SecA and SRP might function in the same biochemical pathway. Consistent with this explanation, depletion of SecA by inactivating a temperature-sensitive amber suppressor in a secAam strain completely blocked the membrane insertion of AcrB, a protein that is targeted by SRP. In the absence of substantial SecA, pulse-labeled AcrB was retained in the cytoplasm even after a prolonged chase period and was eventually degraded. Although protein export was also severely impaired by SecA depletion, the observation that more than 20% of the OmpA molecules were translocated properly showed that translocons were still active. Taken together, these results imply that SecA plays a much broader role in the transport of proteins across the E. coli IM than has been previously recognized.
Collapse
Affiliation(s)
- H Y Qi
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-1810, USA
| | | |
Collapse
|
25
|
de Gier JW, Scotti PA, Sääf A, Valent QA, Kuhn A, Luirink J, von Heijne G. Differential use of the signal recognition particle translocase targeting pathway for inner membrane protein assembly in Escherichia coli. Proc Natl Acad Sci U S A 1998; 95:14646-51. [PMID: 9843943 PMCID: PMC24503 DOI: 10.1073/pnas.95.25.14646] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/1998] [Accepted: 09/11/1998] [Indexed: 11/18/2022] Open
Abstract
Assembly of several inner membrane proteins-leader peptidase (Lep), a Lep derivative (Lep-inv) that inserts with an inverted topology compared with the wild-type protein, the phage M13 procoat protein, and a procoat derivative (H1-procoat) with the hydrophobic core of the signal peptide replaced by a stretch from the first transmembrane segment in Lep-has been studied in vitro and in Escherichia coli strains that are conditional for the expression of either the 54 homologue (Ffh) or 4.5S RNA, which are the two components of the E. coli signal recognition particle (SRP), or SecE, an essential core component of the E. coli preprotein translocase. Membrane insertion has also been tested in a SecB null strain. Lep, Lep-inv, and H1-procoat require SRP for correct assembly into the inner membrane; in contrast, we find that wild-type procoat does not. Lep and, surprisingly, Lep-inv and H1-procoat fail to insert properly when SecE is depleted, whereas insertion of wild-type procoat is unaffected under these conditions. None of the proteins depend on SecB for assembly. These observations indicate that inner membrane proteins can assemble either by a mechanism in which SRP delivers the protein at the preprotein translocase or by what appears to be a direct integration into the lipid bilayer. The observed change in assembly mechanism when the hydrophobicity of the procoat signal peptide is increased demonstrates that the assembly of an inner membrane protein can be rerouted between different pathways.
Collapse
Affiliation(s)
- J W de Gier
- Department of Biochemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm University, Sweden
| | | | | | | | | | | | | |
Collapse
|
26
|
Kihara A, Ito K. Translocation, folding, and stability of the HflKC complex with signal anchor topogenic sequences. J Biol Chem 1998; 273:29770-5. [PMID: 9792691 DOI: 10.1074/jbc.273.45.29770] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HflK and HflC are plasma membrane proteins of Escherichia coli, each having a large C-terminal domain exposed to the periplasmic space and an N-terminally located transmembrane segment, which should act as a signal anchor sequence for their biogenesis. They form a complex, HflKC. We studied in vivo processes of biogenesis of this pair of membrane proteins. Translocation of the C-terminal domains across the membrane, as assessed by their accessibility to externally added protease, was completed within 1 min after the synthesis in wild-type cells as well as in the secB mutant cells or in the FtsY-depleted cells. In contrast, translocation of these domains was retarded markedly when sodium azide was added to inhibit SecA ATPase and blocked almost completely in secY- or secD-defective mutant cells. Thus, although targeting of these membrane proteins depends neither on the SecB chaperone nor on the SRP pathway, their translocation occurs exclusively via the Sec translocase complex. Translocated HflK molecules were then folded into a partially protease-resistant conformation, taking a few minutes, and this folding was induced upon association with HflC. Singly expressed HflK and HflC were unstable in vivo and periplasmic proteases DegP and Prc were involved in the degradation of the HflK subunit. We characterized several hflA alleles isolated in early studies; they alter the HflK or the HflC sequence and destabilize the HflKC complex.
Collapse
Affiliation(s)
- A Kihara
- Department of Cell Biology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | | |
Collapse
|
27
|
Newitt JA, Bernstein HD. A mutation in the Escherichia coli secY gene that produces distinct effects on inner membrane protein insertion and protein export. J Biol Chem 1998; 273:12451-6. [PMID: 9575202 DOI: 10.1074/jbc.273.20.12451] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
E. coli strains that contain the secY40 mutation are cold-sensitive, but protein export defects have not been observed even at the nonpermissive temperature. Here we describe experiments designed to explain the conditional phenotype associated with this allele. We found that combining the secY40 mutation with defects in the signal recognition particle targeting pathway led to synthetic lethality. Since the signal recognition particle is required for the insertion of inner membrane proteins (IMPs) into the cytoplasmic membrane but not for protein export, this observation prompted us to examine the effect of the secY40 mutation on IMP biogenesis. The membrane insertion of all IMPs that we tested was impaired at both permissive and nonpermissive temperatures in secY40 cells grown in either rich or minimal medium. The magnitude of the insertion defects was greatest in cells grown at low temperature in rich medium, conditions in which the growth defect was most pronounced. Consistent with previous reports, we could not detect protein export defects in secY40 cells grown in minimal medium. Upon growth in rich medium, only slight protein export defects were observed. Taken together, these results suggest that the impairment of IMP insertion causes the cold sensitivity of secY40 strains. Furthermore, these results provide the first evidence that the protein export and membrane protein insertion functions of the translocon are genetically separable.
Collapse
Affiliation(s)
- J A Newitt
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
28
|
Gwizdek C, Leblanc G, Bassilana M. Proteolytic mapping and substrate protection of the Escherichia coli melibiose permease. Biochemistry 1997; 36:8522-9. [PMID: 9214297 DOI: 10.1021/bi970312n] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The topology and substrate-induced conformational change(s) of the Na+ (Li+ or H+)-melibiose cotransporter (MelB) of Escherichia coli were investigated by limited protease digestion. To facilitate these analyses, MelB was epitope-tagged both at its carboxyl-terminus and at its amino-terminus. Limited digestion with different proteases indicates that the cytoplasmic loops connecting transmembrane domains 4-5, 6-7, and 10-11 together with the carboxyl-terminus of MelB are exposed in the cytoplasm. In contrast, periplasmic loops are highly resistant to all the proteases examined, including nonspecific proteases such as proteinase K and thermolysin. The effect of Na+ or Li+ and/or melibiose on the rate of protease digestion of the cytoplasmic loops was also analyzed. The rate of protease digestion of loop 4-5 is specifically reduced, by approximately 3-fold, by the presence of Na+ or Li+. These results suggest that loop 4-5 is near or part of the cation binding site. Moreover, the presence of both melibiose and either Na+ or Li+ further reduced the rate of protease digestion of this loop 4-5 by up to 9-fold, although no protection from protease digestion was observed when melibiose was added alone. The increase in resistance to proteases observed in the presence of the cation alone or the cation plus melibiose suggests that the interaction of the two cosubstrate with MelB results in change(s) of MelB conformation.
Collapse
Affiliation(s)
- C Gwizdek
- Laboratoire J. Maetz, Département de Biologie cellulaire et moléculaire du Commissariat à l'Energie Atomique, B.P. 68, 06238 Villefranche-sur-mer, France
| | | | | |
Collapse
|
29
|
Lewin TM, Webster RE. Membrane insertion characteristics of the various transmembrane domains of the Escherichia coli TolQ protein. J Biol Chem 1996; 271:14143-9. [PMID: 8662905 DOI: 10.1074/jbc.271.24.14143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Escherichia coli TolQ protein is a 230-amino acid integral cytoplasmic membrane protein required for the import of group A colicins, for infection by the filamentous phage, and for maintenance of the integrity of the bacterial envelope. TolQ is a polytopic protein with three membrane-spanning regions. The first membrane-spanning region has a 19-residue periplasmic NH2-terminal tail, while the second and third membrane-spanning segments are separated by a short 17-amino acid periplasmic loop. To study the membrane assembly of TolQ, fusions of different membrane-spanning regions were examined for their ability to insert in the absence of functional SecA or the membrane potential. Fusions containing the first membrane-spanning region plus the adjacent cytoplasmic domain and a construct containing the "hairpin loop," formed by the second and third membrane-spanning regions, insert in the absence of functional SecA. The fusion containing the second and third membrane-spanning regions required the membrane potential for insertion while the first membrane-spanning region was able to insert even in the absence of a membrane potential. Taken together, these results suggest that insertion of intact TolQ is not dependent on the Sec system, but does require the membrane potential.
Collapse
Affiliation(s)
- T M Lewin
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
30
|
Traxler B, Murphy C. Insertion of the polytopic membrane protein MalF is dependent on the bacterial secretion machinery. J Biol Chem 1996; 271:12394-400. [PMID: 8647843 DOI: 10.1074/jbc.271.21.12394] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We examined the dependence of protein export and membrane protein insertion on SecE and SecA, two components of the secretion (Sec) apparatus of Escherichia coli. The magnitude of the secretion defect observed for signal sequence-containing proteins in cells depleted of SecE is larger and more general than that in many temperature- or cold-sensitive Sec mutants. In addition, we show that the proper insertion of the polytopic MalF protein (synthesized without a signal sequence) into the cytoplasmic membrane is also SecE-dependent. In contrast to an earlier study (McGovern, K., and Beckwith, J. (1991) J. Biol. Chem. 266, 20870-20876), the membrane insertion of MalF also is inhibited by treatment of cells with sodium azide, a potent inhibitor of SecA. Therefore, our data strongly suggest that the cytoplasmic membrane insertion of MalF is dependent on the same cellular machinery as is involved in the export of signal sequence-containing proteins. We propose that the mechanism of export from the cytoplasm is related for both signal sequence-containing and cytoplasmic membrane proteins, but hydrophobic membrane proteins such as MalF may have a higher affinity for the Sec apparatus.
Collapse
Affiliation(s)
- B Traxler
- Department of Microbiology, University of Washington, Seattle 98195, USA.
| | | |
Collapse
|
31
|
Macfarlane J, Müller M. The functional integration of a polytopic membrane protein of Escherichia coli is dependent on the bacterial signal-recognition particle. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 233:766-71. [PMID: 8521840 DOI: 10.1111/j.1432-1033.1995.766_3.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In eukaryotes, the cotranslational targeting of proteins to the endoplasmic reticular membrane is initially mediated by the signal-recognition particle (SRP), a ribonucleoprotein complex consisting of the 7SL RNA and six protein subunits. Since the discovery of sequence homology between (a) the Escherichia coli 4.5S RNA (Ffs) and 7SL RNA, and (b) the E. coli P48 (Ffh) and SRP 54-kDa subunit, more evidence has been obtained that E. coli also possesses an SRP-type pathway that acts in the translocation of secreted proteins. Such a pathway could possibly be involved in the cotranslational integration of hydrophobic membrane proteins that cannot be effectively targeted post-translationally due to folding and aggregation. In this study, we report that disruption of the E. coli SRP complex with a dominant lethal 4.5S RNA mutant in vivo prevents functional membrane integration of the E. coli lactose permease (LacY). Likewise, depletion of the P48 (Ffh) protein also results in a decrease in the amount of functional LacY inserted into the E. coli plasma membrane. In direct contrast, inhibition of SecA function does not affect LacY integration. These results suggest a major function of the bacterial SRP in the targeting and subsequent integration of hydrophobic membrane proteins as opposed to SecA mediating the post-translational targeting of secretory proteins.
Collapse
Affiliation(s)
- J Macfarlane
- Institut für Physikalische Biochemie, Universität München, Germany
| | | |
Collapse
|
32
|
Finberg KE, Muth TR, Young SP, Maken JB, Heitritter SM, Binns AN, Banta LM. Interactions of VirB9, -10, and -11 with the membrane fraction of Agrobacterium tumefaciens: solubility studies provide evidence for tight associations. J Bacteriol 1995; 177:4881-9. [PMID: 7665464 PMCID: PMC177261 DOI: 10.1128/jb.177.17.4881-4889.1995] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The eleven predicted gene products of the Agrobacterium tumefaciens virB operon are believed to form a transmembrane pore complex through which T-DNA export occurs. The VirB10 protein is required for virulence and is a component of an aggregate associated with the membrane fraction of A. tumefaciens. Removal of the putative membrane-spanning domain (amino acids 22 through 55) disrupts the membrane topology of VirB10 (J. E. Ward, E. M. Dale, E. W. Nester, and A. N. Binns, J. Bacteriol. 172:5200-5210, 1990). Deletion of the sequences encoding amino acids 22 to 55 abolishes the ability of plasmid-borne virB10 to complement a null mutation in the virB10 gene, suggesting that the proper topology of VirB10 in the membrane may indeed play a crucial role in T-DNA transfer to the plant cell. Western blot (immunoblot) analysis indicated that the observed loss of virulence could not be attributed to a decrease in the steady-state levels of the mutant VirB10 protein. Although the deletion of the single transmembrane domain would be expected to perturb membrane association, VirB10 delta 22-55 was found exclusively in the membrane fraction. Urea extraction studies suggested that this membrane localization might be the result of a peripheral membrane association; however, the mutant protein was found in both inner and outer membrane fractions separated by sucrose density gradient centrifugation. Both wild-type VirB10 and wild-type VirB9 were only partially removed from the membranes by extraction with 1% Triton X-100, while VirB5 and VirB8 were Triton X-100 soluble. VirB11 was stripped from the membranes by 6 M urea but not by a more mild salt extraction. The fractionation patterns of VirB9, VirB10, and VirB11 were not dependent on each other or on VirB8 or VirD4. The observed tight association of VirB9, VirB10, and VirB11 with the membrane fraction support the notion that these proteins may exist as components of multiprotein pore complexes, perhaps spanning both the inner and outer membranes of Agrobacterium cells.
Collapse
Affiliation(s)
- K E Finberg
- Department of Biology, Haverford College, Pennsylvania 19041, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
In 1964, Kundig, Ghosh and Roseman reported the discovery of the phosphoenolpyruvate:sugar phosphotransferase system (PTS). Thirty years later, we find that the PTS functions not only as a sugar-phosphorylating system, but also as a complex protein kinase system that regulates a wide variety of metabolic processes and controls the expression of numerous genes. As a result of recent operon- and genome-sequencing projects, novel PTS protein-encoding genes have been discovered, most of which have yet to be functionally defined. Some of them appear to be involved in cellular processes distinct from those recognized previously. Fundamental aspects of past and current PTS research are briefly reviewed, and recent advances are integrated into conceptual pictures that provide guides for future research.
Collapse
Affiliation(s)
- M H Saier
- Department of Biology, University of California at San Diego, La Jolla 92093-0116
| | | |
Collapse
|
34
|
Palmen R, Driessen AJ, Hellingwerf KJ. Bioenergetic aspects of the translocation of macromolecules across bacterial membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1183:417-51. [PMID: 8286395 DOI: 10.1016/0005-2728(94)90072-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Bacteria are extremely versatile in the sense that they have gained the ability to transport all three major classes of biopolymers through their cell envelope: proteins, nucleic acids, and polysaccharides. These macromolecules are translocated across membranes in a large number of cellular processes by specific translocation systems. Members of the ABC (ATP binding cassette) superfamily of transport ATPases are involved in the translocation of all three classes of macromolecules, in addition to unique transport ATPases. An intriguing aspect of these transport processes is that the barrier function of the membrane is preserved despite the fact the dimensions of the translocated molecules by far surpasses the thickness of the membrane. This raises questions like: How are these polar compounds translocated across the hydrophobic interior of the membrane, through a proteinaceous pore or through the lipid phase; what drives these macromolecules across the membrane; which energy sources are used and how is unidirectionality achieved? It is generally believed that macromolecules are translocated in a more or less extended, most likely linear form. A recurring theme in the bioenergetics of these translocation reactions in bacteria is the joint involvement of free energy input in the form of ATP hydrolysis and via proton sym- or antiport, driven by a proton gradient. Important similarities in the bioenergetic mechanisms of the translocation of these biopolymers therefore may exist.
Collapse
Affiliation(s)
- R Palmen
- Department of Microbiology, University of Amsterdam, The Netherlands
| | | | | |
Collapse
|
35
|
Affiliation(s)
- M Müller
- Institut für Physikalische Biochemie, Universität München, Germany
| | | |
Collapse
|
36
|
Affiliation(s)
- B Poolman
- Department of Microbiology, University of Groningen, Haren, The Netherlands
| | | |
Collapse
|
37
|
Hannavy K, Rospert S, Schatz G. Protein import into mitochondria: a paradigm for the translocation of polypeptides across membranes. Curr Opin Cell Biol 1993; 5:694-700. [PMID: 8257609 DOI: 10.1016/0955-0674(93)90142-d] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The translocation of proteins across membranes usually requires specific transport systems composed of membrane-bound and soluble components. A combination of biochemical and genetic approaches has led to the identification and preliminary characterization of some of these components.
Collapse
Affiliation(s)
- K Hannavy
- Department of Biochemistry, Biocenter of the University of Basel, Switzerland
| | | | | |
Collapse
|