Drăgan CA, Hartmann RW, Bureik M. A fission yeast-based test system for the determination of IC50values of anti-prostate tumor drugs acting on CYP21.
J Enzyme Inhib Med Chem 2008;
21:547-56. [PMID:
17194026 DOI:
10.1080/14756360600774637]
[Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Human steroid 21-hydroxylase (CYP21) and steroid 17alpha-hydroxylase/17,20-lyase (CYP17) are two closely related cytochrome P450 enzymes involved in the steroidogenesis of glucocorticoids, mineralocorticoids, and sex hormones, respectively. Compounds that inhibit CYP17 activity are of pharmacological interest as they could be used for the treatment of prostate cancer. However, in many cases little is known about a possible co-inhibition of CYP21 activity by CYP17 inhibitors, which would greatly reduce their pharmacological value. We have previously shown that fission yeast strains expressing mammalian cytochrome P450 steroid hydroxylases are suitable systems for whole-cell conversion of steroids and may be used for biotechnological applications or for screening of inhibitors. In this study, we developed a very simple and fast method for the determination of enzyme inhibition using Schizosaccharomyces pombe strains that functionally express either human CYP17 or CYP21. Using this system we tested several compounds of different structural classes with known CYP17 inhibitory potency (i.e. Sa 40, YZ5ay, BW33, and ketoconazole) and determined IC50 values that were about one order of magnitude higher in comparison to data previously reported using human testes microsomes. One compound, YZ5ay, was found to be a moderate CYP21 inhibitor with an IC50 value of 15 microM, which is about eight-fold higher than the value determined for CYP17 inhibition (1.8 microM) in fission yeast. We conclude that, in principle, co-inhibition of CYP21 by CYP17 inhibitors cannot be ruled out.
Collapse