1
|
Endogenous pannexin1 channels form functional intercellular cell-cell channels with characteristic voltage-dependent properties. Proc Natl Acad Sci U S A 2022; 119:e2202104119. [PMID: 35486697 PMCID: PMC9171361 DOI: 10.1073/pnas.2202104119] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pannexin1 is a glycoprotein that has been shown to form functional plasma membrane channels and mediate many cellular signaling pathways. However, the formation and function of pannexin1-based intercellular cell–cell channels in mammalian cells and vertebrate tissue is a question of substantial debate. This work provides robust electrophysiological evidence to demonstrate that endogenously expressed human pannexin1 forms cell–cell channels and lays the groundwork for studying a potential new type of electrical synapses between many mammalian cell types that endogenously express pannexin1. The occurrence of intercellular channels formed by pannexin1 has been challenged for more than a decade. Here, we provide an electrophysiological characterization of exogenous human pannexin1 (hPanx1) cell–cell channels expressed in HeLa cells knocked out for connexin45. The observed hPanx1 cell–cell channels show two phenotypes: O-state and S-state. The former displayed low transjunctional voltage (Vj) sensitivity and single-channel conductance of ∼175 pS, with a substate of ∼35 pS; the latter showed a peculiar dynamic asymmetry in Vj dependence and single-channel conductance identical to the substate conductance of the O-state. S-state hPanx1 cell–cell channels were also identified between TC620 cells, a human oligodendroglioma cell line that endogenously expresses hPanx1. In these cells, dye and electrical coupling increased with temperature and were strongly reduced after hPanx1 expression was knocked down by small interfering RNA or inhibited with Panx1 mimetic inhibitory peptide. Moreover, cell–cell coupling was augmented when hPanx1 levels were increased with a doxycycline-inducible expression system. Application of octanol, a connexin gap junction (GJ) channel inhibitor, was not sufficient to block electrical coupling between HeLa KO Cx45-hPanx1 or TC620 cell pairs. In silico studies suggest that several arginine residues inside the channel pore may be neutralized by hydrophobic interactions, allowing the passage of DAPI, consistent with dye coupling observed between TC620 cells. These findings demonstrate that endogenously expressed hPanx1 forms intercellular cell–cell channels and their unique properties resemble those described in innexin-based GJ channels. Since Panx1 is ubiquitously expressed, finding conditions to recognize Panx1 cell–cell channels in different cell types might require special attention.
Collapse
|
2
|
Costa AR, Rodrigues ME, Henriques M, Oliveira R, Azeredo J. Glycosylation: impact, control and improvement during therapeutic protein production. Crit Rev Biotechnol 2013; 34:281-99. [PMID: 23919242 DOI: 10.3109/07388551.2013.793649] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The emergence of the biopharmaceutical industry represented a major revolution for modern medicine, through the development of recombinant therapeutic proteins that brought new hope for many patients with previously untreatable diseases. There is a ever-growing demand for these therapeutics that forces a constant technological evolution to increase product yields while simultaneously reducing costs. However, the process changes made for this purpose may also affect the quality of the product, a factor that was initially overlooked but which is now a major focus of concern. Of the many properties determining product quality, glycosylation is regarded as one of the most important, influencing, for example, the biological activity, serum half-life and immunogenicity of the protein. Consequently, monitoring and control of glycosylation is now critical in biopharmaceutical manufacturing and a requirement of regulatory agencies. A rapid evolution is being observed in this context, concerning the influence of glycosylation in the efficacy of different therapeutic proteins, the impact on glycosylation of a diversity of parameters/processes involved in therapeutic protein production, the analytical methodologies employed for glycosylation monitoring and control, as well as strategies that are being explored to use this property to improve therapeutic protein efficacy (glycoengineering). This work reviews the main findings on these subjects, providing an up-to-date source of information to support further studies.
Collapse
Affiliation(s)
- Ana Rita Costa
- IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar , Braga , Portugal
| | | | | | | | | |
Collapse
|
3
|
Fanayan S, Hincapie M, Hancock WS. Using lectins to harvest the plasma/serum glycoproteome. Electrophoresis 2012; 33:1746-54. [PMID: 22740463 DOI: 10.1002/elps.201100567] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Aberrant protein glycosylation has been shown to be associated with disease processes and identification of disease-specific glycoproteins and glycosylation changes may serve as potential diagnostic and therapeutic biomarkers. However despite recent advances in proteomic-based biomarker discovery, this knowledge has not yet translated into an extensive mining of the glycoproteome for potential biomarkers. The major challenge for a comprehensive glycoproteomics analysis arises primarily from the enormous complexity and the large dynamic range in protein constituent in biological samples. Methods that specifically target glycoproteins are therefore necessary to facilitate their selective enrichment prior to their identification by MS-based analysis. The use of lectins, with selective affinities for specific carbohydrate epitopes, to enrich glycoprotein fractions coupled with modern MS, have greatly enhanced the identification of the glycoproteome. On account of their ability to specifically bind cell surface carbohydrates lectins have, during the recent past, found extensive applications in elucidation of the architecture and dynamics of cell surface carbohydrates, glycoconjugate purification, and structural characterization. Combined with complementary depletion and MS technologies, lectin affinity chromatography is becoming the most widely employed method of choice for biomarker discovery in cancer and other diseases.
Collapse
Affiliation(s)
- Susan Fanayan
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia.
| | | | | |
Collapse
|
4
|
Andersen DC, Goochee CF. The effect of ammonia on the O-linked glycosylation of granulocyte colony-stimulating factor produced by chinese hamster ovary cells. Biotechnol Bioeng 2012; 47:96-105. [PMID: 18623371 DOI: 10.1002/bit.260470112] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Ammonium ion concentrations ranging from 0 to 10 mM are shown to significantly reduce the sialylation of granuiocyte colony-stimulating factor (G-CSF) produced by recombinant Chinese hamster ovary cells. Specifically, the degree of completion of the final reaction in the O-linked glycosylation pathway, the addition of sialic acid in an alpha(2,6) linkage to N-acetylgalactosamine, is reduced by NH(4) (+) concentrations of as low as 2 mM. The effect of ammonia on sialylation is rapid, sustained, and does not affect the secretion rate of G-CSF. Additionally, the effect can be mimicked using the weak base chloroquine, suggesting that the effect is related to the weak base characteristics of ammonia. In support of this hypothesis, experiments using brefeldin A suggest that the addition of sialic acid in an alpha(2,6) linkage to N-acetylgalactosamine occurs in the trans-Golgi compartment prior to the trans-Golgi network, which would be expected under normal conditions to have a slightly acidic pH in the range from 6.5 to 6.75. Ammonium ion concentrations of 10 mM would be expected to reduce significantly the differences in pH between acidic intracellular compartments and the cytoplasm. The pH-activity profile for the CHO O-linked alpha(2,6) sialytransferase using monosialylated G-CSF as a substrate reveals a twofold decrease in enzymatic activity across the pH range from 6.75 to 7.0.Mathematical modeling of this sialylation reaction supports the hypothesis that this twofold decrease in sialyltransferase activity resulting from an ammoniainduced increase in trans-Golgi pH could produce the observed decrease in G-CSF sialylation. (c) 1995 John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- D C Andersen
- Department of Chemical Engineering, Stanford University, Stanford, California 94305-5025
| | | |
Collapse
|
5
|
Zhu J. Mammalian cell protein expression for biopharmaceutical production. Biotechnol Adv 2012; 30:1158-70. [PMID: 21968146 DOI: 10.1016/j.biotechadv.2011.08.022] [Citation(s) in RCA: 319] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 08/26/2011] [Accepted: 08/29/2011] [Indexed: 12/13/2022]
|
6
|
Dorai H, Santiago A, Campbell M, Tang QM, Lewis MJ, Wang Y, Lu QZ, Wu SL, Hancock W. Characterization of the proteases involved in the N-terminal clipping of glucagon-like-peptide-1-antibody fusion proteins. Biotechnol Prog 2011; 27:220-31. [DOI: 10.1002/btpr.537] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Indexed: 11/06/2022]
|
7
|
Tadokoro T, Ikekita M, Toda T, Ito H, Sato T, Nakatani R, Hamaguchi Y, Furukawa K. Involvement of Galectin-3 with vascular cell adhesion molecule-1 in growth regulation of mouse BALB/3T3 cells. J Biol Chem 2010; 284:35556-63. [PMID: 19858221 DOI: 10.1074/jbc.m109.063339] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
beta-Galactose residues on N-glycans have been implicated to be involved in growth regulation of cells. In the present study we compared the galactosylation of cell surface N-glycans of mouse Balb/3T3 cells between 30 and 100% densities and found the beta-1,4-galactosylation of N-glycans increases predominantly in a 100-kDa protein band on lectin blot analysis in combination with digestions by diplococcal beta-galactosidase and N-glycanase. When cells at 100% density were treated with jack bean beta-galactosidase, the incorporation of 5-bromodeoxyuridine into the cells was stimulated in a dose-dependent manner, suggesting the involvement of the galactose residues in growth regulation of cells. A galactose-binding protein was isolated from the plasma membranes of cells at 100% density by affinity chromatography using an asialo-transferrin-Sepharose column and found to be galectin-3 as revealed by mass spectrometric analysis. The addition of recombinant galectin-3 into cells at 50% density inhibited the incorporation of 5-bromodeoxyuridine in a dose-dependent manner, but the inhibition was prevented with haptenic sugar. An immunocytochemical study showed that galectin-3 is present at the surface of cells at 100% density but not at 30% density where it locates inside the cells. Several glycoproteins bind to a galectin-3-immobilized column, a major of which was identified as vascular cell adhesion molecule (VCAM)-1. Immunocytochemical studies showed that some galectin-3 and VCAM-1 co-localize at the surface of cells at 100% density, indicating that the binding of galectin-3 secreted from cells to VCAM-1 is one of the pathways involved in the growth regulation of Balb/3T3 cells.
Collapse
Affiliation(s)
- Tomomi Tadokoro
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka 940-2188
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Dorai H, Nemeth JF, Cammaart E, Wang Y, Tang QM, Magill A, Lewis MJ, Raju TS, Picha K, O'Neil K, Ganguly S, Moore G. Development of mammalian production cell lines expressing CNTO736, a glucagon like peptide-1-MIMETIBODYTM: Factors that influence productivity and product quality. Biotechnol Bioeng 2009; 103:162-76. [DOI: 10.1002/bit.22217] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Comunale MA, Wang M, Hafner J, Krakover J, Rodemich L, Kopenhaver B, Long RE, Junaidi O, Bisceglie AMD, Block TM, Mehta AS. Identification and development of fucosylated glycoproteins as biomarkers of primary hepatocellular carcinoma. J Proteome Res 2009; 8:595-602. [PMID: 19099421 DOI: 10.1021/pr800752c] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Changes in N-linked glycosylation are known to occur during the development of cancer. For example, we have previously reported changes in N-linked glycosylation that occur with the development of hepatocellular carcinoma (HCC) and, through the use of glycoproteomics, identified many of those proteins containing altered glycan structures. To advance these studies and further explore the glycoproteome, we performed N-linked glycan analysis from serum samples depleted of the major acute phase proteins, followed by targeted lectin extraction of those proteins containing changes in glycosylation. Using this method, changes in glycosylation, specifically increased amounts of core and outer arm fucosylation, were observed in the depleted samples. The identities of those proteins containing core and outer arm fucose were identified in the serum of patients with HCC. The usefulness of some of these proteins in the diagnosis of HCC was determined through the analysis of over 300 patient samples using a high-throughput plate based approach. Greatest performance was achieved with fucosylated hemopexin, which had an AUROC of 0.9515 with an optimal sensitivity of 92% and a specificity of 92%.
Collapse
|
10
|
Moon PG, Hwang HH, Boo YC, Kwon J, Cho JY, Baek MC. Identification of rat urinary glycoproteome captured by three lectins using gel and LC-based proteomics. Electrophoresis 2008; 29:4324-31. [DOI: 10.1002/elps.200800070] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Yang Z, Hancock WS, Chew TR, Bonilla L. A study of glycoproteins in human serum and plasma reference standards (HUPO) using multilectin affinity chromatography coupled with RPLC-MS/MS. Proteomics 2005; 5:3353-66. [PMID: 16052617 DOI: 10.1002/pmic.200401190] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The glycoproteome is a major subproteome present in human plasma. In this study, we isolated and characterized approximately 150 glycoproteins from the human plasma and serum samples provided by HUPO using a multilectin affinity column. The corresponding tryptic digest was separated by RP-HPLC coupled to an IT mass spectrometer (3-D LCQ). Also in this study, a new system, namely an Ettan MDLC system coupled to a linear ITLTQ, was compared with the previous LCQ platform and gave a greater number of protein identifications, as well as better quality. When we compared the composition of the glycoproteomes for the plasma and serum samples there was a close correlation between the samples, except for the absence of fibrinogen from the identified-protein list in the latter sample, which was presumably as a result of the clotting process. In addition, the analysis of the samples from three ethnic specimens, Caucasian American, Asian American, and African American, were very similar but showed a higher angiotensinogen plasma level and a lower histidine-rich glycoprotein level in Caucasian American samples, and a lower vitronectin level in African American blood samples.
Collapse
Affiliation(s)
- Ziping Yang
- Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
12
|
Fogolín MB, Wagner R, Etcheverrigaray M, Kratje R. Impact of temperature reduction and expression of yeast pyruvate carboxylase on hGM-CSF-producing CHO cells. J Biotechnol 2004; 109:179-91. [PMID: 15063626 DOI: 10.1016/j.jbiotec.2003.10.035] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2002] [Revised: 08/29/2003] [Accepted: 10/14/2003] [Indexed: 11/29/2022]
Abstract
Recently, we demonstrated that a recombinant yeast pyruvate carboxylase expressed in the cytoplasm of BHK-21 cells was shown to partially reconstitute the missing link between glycolysis and TCA, increasing the flux of glucose into the TCA and achieving higher yields of recombinant erythropoietin. In the present study, a CHO cell line producing recombinant human granulocyte macrophage colony stimulating factor was used to evaluate the impact of PYC2 expression and reduced culture temperature. Temperature reduction from 37 to 33 degrees C revealed a reduced growth rate, a prolonged stationary phase and a 2.1-fold increase of the cell specific rhGM-CSF production rate for CHO-K1-hGM-CSF cells. The PYC2-expressing cell clones showed a decreased cell growth and a lower maximum cell concentration compared to the control expressing rhGM-CSF but no PYC2. However, only 65% lactate were produced in PYC2-expressing cells and the product yield was 200% higher compared to the control. The results obtained for CHO cells compared to BHK cells reported previously, indicated that the PYC2 expression dominantly reduced the lactate formation and increased the yield of the recombinant protein to be produced. Finally, the growth and productivity of PYC2-expressing CHO-K1-hGM-CSF cells under both temperature conditions were investigated. The average cell specific rhGM-CSF production increased by 3.2-fold under reduced temperature conditions. The results revealed that the expression of PYC2 and a reduced culture temperature have an additive effect on the cell specific productivity of CHO-K1-hGM-CSF cells.
Collapse
Affiliation(s)
- Mariela Bollati Fogolín
- Cell Culture Technology, German Research Centre for Biotechnology (GBF), Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | | | | | | |
Collapse
|
13
|
Müthing J, Kemminer SE, Conradt HS, Sagi D, Nimtz M, Kärst U, Peter-Katalinić J. Effects of buffering conditions and culture pH on production rates and glycosylation of clinical phase I anti-melanoma mouse IgG3 monoclonal antibody R24. Biotechnol Bioeng 2003; 83:321-34. [PMID: 12783488 DOI: 10.1002/bit.10673] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
R24, a mouse IgG3 monoclonal antibody (MAb) against ganglioside GD3 (Neu5Acalpha8Neu5Acalpha3Gal beta4Glcbeta1Cer), can block tumor growth as reported in a series of clinical trials in patients with metastatic melanoma. The IgG molecule basically contains an asparagine-linked biantennary complex type oligosaccharide on the C(H)2 domain of each heavy chain, which is necessary for its in vivo effector function. The purpose of this study was to investigate the biotechnological production and particularly the glycosylation of this clinically important MAb in CO(2)/HCO(3) (-) (pH 7.4, 7.2, and 6.9) and HEPES buffered serum-free medium. Growth, metabolism, and IgG production of hybridoma cells (ATCC HB-8445) were analyzed on a 2-L bioreactor scale using fed-batch mode. Specific growth rates (mu) and MAb production rates (q(IgG)) varied significantly with maximum product yields at pH 6.9 (q(IgG) = 42.9 microg 10(-6) cells d(-1), mu = 0.30 d(-1)) and lowest yields in pH 7.4 adjusted batches (q(IgG) = 10.8 microg 10(-6) cells d(-1), mu = 0.40 d(-1)). N-glycans were structurally characterized by high pH anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD), matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF), and electrospray-ionization quadrupole time-of-flight (ESI-QTOF) mass spectrometry (MS). The highest relative amounts of agalacto and monogalacto biantennary complex type oligosaccharides were detected in the pH 7.2 (46% and 38%, respectively) and pH 6.9 (44% and 40%, respectively) cultivations and the uppermost quantities of digalacto (fully galactosylated) structures in the pH 7.4 (32%) and the HEPES (26%) buffered fermentation. In the experiments with HEPES buffering, antibodies with a molar Neu5Ac/Neu5Gc ratio of 3.067 were obtained. The fermentations at pH 7.2 and 6.9 resulted in almost equal molar Neu5Ac/Neu5Gc ratios of 1.008 and 0.985, respectively, while the alkaline shift caused a moderate overexpression of Neu5Ac deduced from the Neu5Ac/Neu5Gc quotient of 1.411. Different culture buffering gave rise to altered glycosylation pattern of the MAb R24. Consequently, a detailed molecular characterization of MAb glycosylation is generally recommended as a part of the development of MAbs for targeted in vivo immunotherapy to assure biochemical consistency of product lots and oligosaccharide-dependent biological activity.
Collapse
Affiliation(s)
- Johannes Müthing
- Institute for Medical Physics and Biophysics, Laboratory for Biomedical Analysis, University of Münster, D-48149 Münster, Germany.
| | | | | | | | | | | | | |
Collapse
|
14
|
Magro G, Perissinotto D, Schiappacassi M, Goletz S, Otto A, Müller EC, Bisceglia M, Brown G, Ellis T, Grasso S, Colombatti A, Perris R. Proteomic and postproteomic characterization of keratan sulfate-glycanated isoforms of thyroglobulin and transferrin uniquely elaborated by papillary thyroid carcinomas. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:183-96. [PMID: 12819023 PMCID: PMC1868177 DOI: 10.1016/s0002-9440(10)63642-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Previous studies have suggested that surface components of papillary thyroid carcinoma (PTC) cells may be aberrantly glycanated, but the precise nature of these molecules has not been unveiled nor documented to be of clinical relevance. A monoclonal antibody was raised against a unique keratan sulfate (KS) determinant and used to differentially screen benign and malignant thyroid tissue for the expression of components carrying these moieties. In a total of 349 cases of benign and malignant thyroid lesions, 100% of the 115 PTC cases examined (including various histological subtypes) were found to contain KS-bearing molecules, whereas these were virtually absent from benign tissues and other thyroid tumors, with the exception of 21% of the follicular carcinoma cases analyzed. A composite immunoaffinity chromatography, immunochemistry, and mass spectrometric approach revealed that the PTC-specific KS-bearing macromolecules were unique glycoforms of thyroglobulin and transferrin. Combined, reciprocal immunoprecipitation and Western blotting further indicated that the former glycoform predominated and that most of the transferrin produced by PTC was glycanated with KS moieties. Fluorescent keratanase II-based fingerprinting of the KS moieties bound to these isoforms further demonstrated several PTC-specific peculiarities: 1) that a considerable portion of the moieties was covalently attached via a novel core protein linkage structure; 2) they had an unusual extended average length; 3) an unusual relative ratio of highly sulfated disaccharides terminating with alpha (2-3)-linked N-acetylneuraminic acid capping residues; and 4) a novel unidentified oligosaccharide moiety at the nonreducing terminus. Comparative analysis of the relative distribution of transferrin in benign versus PTC tissues highlighted a marked malignancy-associated abundance of the molecule, with a >75% frequency in expression in PTC. These findings demonstrate that PTC cells synthesize unique post-translationally modified thyroglobulin and transferrin variants in situ that may be directly exploitable for diagnosis, through histological and noninvasive cytological procedures; for devising novel strategies for antibody-guided imaging of this tumor in vivo; and for postsurgery follow-up of PTC patients.
Collapse
Affiliation(s)
- Gaetano Magro
- Department F.G. Ingrassia, Section of Anatomic Pathology, University of Catania, Catania, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ito Y, Miyoshi E, Sakon M, Takeda T, Noda K, Tsujimoto M, Ito S, Honda H, Takemura F, Wakasa KI, Monden M, Matsuura N, Taniguchi N. Elevated expression of UDP-N-acetylglucosamine: αmannoside β1,6N-acetylglucosaminyltransferase is an early event in hepatocarcinogenesis. Int J Cancer 2001. [DOI: 10.1002/1097-0215(200002)9999:9999<::aid-ijc1118>3.0.co;2-f] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Kaufmann H, Mazur X, Marone R, Bailey JE, Fussenegger M. Comparative analysis of two controlled proliferation strategies regarding product quality, influence on tetracycline-regulated gene expression, and productivity. Biotechnol Bioeng 2001. [DOI: 10.1002/1097-0290(20010320)72:6<592::aid-bit1024>3.0.co;2-j] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
17
|
Donaldson M, Wood HA, Kulakosky PC, Shuler ML. Glycosylation of a recombinant protein in the Tn5B1-4 insect cell line: influence of ammonia, time of harvest, temperature, and dissolved oxygen. Biotechnol Bioeng 1999; 63:255-62. [PMID: 10099604 DOI: 10.1002/(sici)1097-0290(19990505)63:3<255::aid-bit1>3.0.co;2-r] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Glycosylation is both cell line and protein dependent. Culture conditions can also influence the profile of glycoforms produced. To examine this possibility in the insect cell/baculovirus system, structures of N-linked oligosaccharides attached to SEAP (human secreted alkaline phosphatase), expressed under various culture conditions in BTI Tn5B1-4 cells, were characterized using FACE (fluorescence-assisted carbohydrate electrophoresis). Parameters varied were time of harvest, ammonia added during infection, dissolved oxygen, and temperature. It was found that glycosylation in the insect cell/baculovirus expression system is a robust, stable system that is less perturbed by variations in culture conditions than the level of protein expression. Addition of ammonia and low oxygen conditions affected SEAP expression, but not the oligosaccharide profile of SEAP. Time of SEAP harvest increased the amount of alpha-mannosidase resistant structures from 4.1% at 34 hours postinfection (h pi), to 5.0% at 100 h pi, and to 7.5% at 120 h pi. These structures were primarily sensitive to N-acetylhexosaminidase digest, although a small amount was insensitive to both mannosidase and N-acetyl-hexosaminidase digests. Lowering the temperature from 28 degrees C to 24 degrees C or even 20 degrees C, resulted in a twofold increase in oligosaccharides containing terminal alpha(1,3)-mannose residues. This condition did not affect the amount of mannosidase-resistant structures. However, this could result in more complete glycosylation of recombinant proteins in the BTI Tn5B1-4 cell line, because more structures with the potential for further processing would be produced.
Collapse
Affiliation(s)
- M Donaldson
- School of Chemical Engineering, Cornell University, 120 Olin Hall, Ithaca, New York, USA
| | | | | | | |
Collapse
|
18
|
Buckhaults P, Chen L, Fregien N, Pierce M. Transcriptional regulation of N-acetylglucosaminyltransferase V by the src oncogene. J Biol Chem 1997; 272:19575-81. [PMID: 9235963 DOI: 10.1074/jbc.272.31.19575] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Transformation of baby hamster kidney fibroblasts by the Rous sarcoma virus causes a significant increase in the GlcNAcbeta(1, 6)Man-branched oligosaccharides by elevating the activity and mRNA transcript levels encoding N-acetylglucosaminyltransferase V (GlcNAc-T V). Elevated activity and mRNA levels could be inhibited by blocking cell proliferation with herbimycin A, demonstrating that Src kinase activity can regulate GlcNAc-T V expression. 5' RACE analysis was used to identify a 3-kilobase 5'-untranslated region from GlcNAc-T V mRNA and locate a transcriptional start site in a 25-kilobase pair GlcNAc-T V human genomic clone. A 6-kilobase pair fragment of the 5' region of the gene contained AP-1 and PEA3/Ets binding elements and, when co-transfected with a src expression plasmid into HepG2 cells, conferred src-stimulated transcriptional enhancement upon a luciferase reporter gene. This stimulation by src could be antagonized by co-transfection with a dominant-negative mutant of the Raf kinase, suggesting the involvement of Ets transcription factors in the regulation of GlcNAc-T V gene expression. The src-responsive element was localized by 5' deletion analysis to a 250-base pair region containing two overlapping Ets sites. src stimulation of transcription from this region was inhibited by co-transfection with a dominant-negative mutant of Ets-2, demonstrating that the effects of the src kinase on GlcNAc-T V expression are dependent on Ets.
Collapse
Affiliation(s)
- P Buckhaults
- Department of Biochemistry and Molecular Biology and Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, 30602, USA
| | | | | | | |
Collapse
|
19
|
Ihara Y, Sakamoto Y, Mihara M, Shimizu K, Taniguchi N. Overexpression of N-acetylglucosaminyltransferase III disrupts the tyrosine phosphorylation of Trk with resultant signaling dysfunction in PC12 cells treated with nerve growth factor. J Biol Chem 1997; 272:9629-34. [PMID: 9092490 DOI: 10.1074/jbc.272.15.9629] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
beta-1,4-N-Acetylglucosaminyltransferase III (GnT-III: EC 2.4.1.144) is a pivotal glycosyltransferase which participates in branch formation by catalysis of the synthesis of a bisecting GlcNAc structure in N-glycans. These structures are thought to be one of the unique features of the N-glycans of neural tissues. To examine the intracellullar role of GnT-III expression and its product in neural cells, its gene was overexpressed in rat pheochromocytoma PC12 cells which normally express a low level of GnT-III. In the GnT-III gene-transfected cells, lectin blot analysis showed that some glycoproteins showed increased levels of bisecting GlcNAc structures. Following treatment with nerve growth factor (NGF) the control cells showed neurite outgrowth for differentiation whereas the transfectants showed no morphological response or change in the rate of cell growth. Transient tyrosine phosphorylation of the Trk/NGF receptor was detected at 5-15 min after NGF treatment in control cells, but not detected in the GnT-III gene-transfected cells despite the intact binding of NGF to the cells. Moreover the dimerization of Trk with NGF treatment was not induced in the GnT-III transfectant as compared with the dimerization seen in control cells. These results indicate that overexpression of GnT-III gene in PC12 cells affects some functions of glycoprotein receptors such as Trk by alteration of N-glycan structures, and results in changes in the intracellular signaling pathway of tyrosine phosphorylation modified by NGF.
Collapse
Affiliation(s)
- Y Ihara
- Department of Biochemistry, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565, Japan
| | | | | | | | | |
Collapse
|
20
|
Jenkins N, Parekh RB, James DC. Getting the glycosylation right: implications for the biotechnology industry. Nat Biotechnol 1996; 14:975-81. [PMID: 9631034 DOI: 10.1038/nbt0896-975] [Citation(s) in RCA: 347] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glycosylation is the most extensive of all the posttranslational modifications, and has important functions in the secretion, antigenicity and clearance of glycoproteins. In recent years major advances have been made in the cloning of glycosyltransferase enzymes, in understanding the varied biological functions of carbohydrates, and in the accurate analysis of glycoprotein heterogeneity. In this review we discuss the impact of these advances on the choice of a recombinant host cell line, in optimizing cell culture processes, and in choosing the appropriate level of glycosylation analysis for each stage of product development.
Collapse
Affiliation(s)
- N Jenkins
- Department of Biological Sciences, De Montfort University, Leicester, UK.
| | | | | |
Collapse
|
21
|
Ihara Y, Nishikawa A, Taniguchi N. Effects of dibutyryl cAMP and bromodeoxyuridine on expression of N-acetylglucosaminyltransferases III and V in GOTO neuroblastoma cells. Glycoconj J 1995; 12:787-94. [PMID: 8748156 DOI: 10.1007/bf00731240] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The sugar chain structures of the cell surface change dramatically during cellular differentiation. A human neuroblastoma cell line, GOTO, is known to differentiate into neuronal cells and Schwannian cell-like cells on treatments with dibutyryl cAMP and bromodeoxyuridine, respectively. We have examined the expression of UDP-N-acetylglucosamine: beta-D-mannoside beta-1,4N-acetylglucosaminyltransferase III (GnT-III: EC 2.4.1.144) and UDP-N-acetylglucosamine: alpha-6-D-mannoside beta-1,6N-acetylglucosaminyltransferase V (GnT-V: EC 2.4.1.155), two major branch forming enzymes in N-glycan synthesis, in GOTO cells on two distinct directions of differentiation. In neuronal cell differentiation, GnT-III activity showed a slight increase during initial treatment with Bt2cAMP for 4 days and decreased drastically after the fourth day, but the mRNA level of GnT-III did not show a decrease but in fact a slight increase. GnT-V activity increased to approximately two- to three-fold the initial level with increasing mRNA level after 8 days, and lectin blot analysis showed an increase in reactivity to Datsura stramonium (DSA) of the immunoprecipitated neural cell adhesion molecule (NCAM). In Schwannian cell differentiation, the activity and mRNA level of GnT-III showed no significant change on treatment with BrdU. GnT-V activity also showed no change in spite of the gradual increase in the mRNA level. These results suggest that the activation of GnT-V during neuronal cell differentiation of GOTO cells might be a specific change for branch formation in N-glycans, and this affects the sugar chain structures of some glycoproteins such as NCAM.
Collapse
Affiliation(s)
- Y Ihara
- Department of Biochemistry, Osaka University Medical School, Japan
| | | | | |
Collapse
|
22
|
Gramer MJ, Goochee CF, Chock VY, Brousseau DT, Sliwkowski MB. Removal of sialic acid from a glycoprotein in CHO cell culture supernatant by action of an extracellular CHO cell sialidase. BIO/TECHNOLOGY (NATURE PUBLISHING COMPANY) 1995; 13:692-8. [PMID: 9634806 DOI: 10.1038/nbt0795-692] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have directly tested the hypothesis that Chinese hamster ovary (CHO) cell-produced glycoproteins are subject to extracellular degradation by a sialidase endogenous to the CHO cell line. Factors important to understanding the potential for extracellular degradation are addressed including the glycoprotein specificity, subcellular source, mechanism of release, and stability of the sialidase activity. The extracellular CHO cell sialidase apparently originates from the cytosol of the cells, and is released to the cell culture supernatant as a result of damage to the cellular membrane. The extracellular sialidase is active toward a variety of CHO cell-produced glycoproteins, and can hydrolyze sialic acid from the recombinant glycoprotein gp120 in the culture supernatant. While measuring the actual degradation of a glycoprotein by extracellular CHO cell sialidase can be difficult, data presented here suggest that the level of degradation can be estimated indirectly by using a more convenient fluorescent substrate, 4-methylumbelliferyl-alpha-D-N-acetylneuraminic acid, to quantify sialidase activity. Degradation by sialidase is minimized through addition of the sialidase inhibitor 2,3-dehydro-2-deoxy-N-acetylneuraminic acid to the culture supernatant. The results in this study suggest additional potential approaches for minimizing degradation by sialidase, including isolation of a sialidase-deficient CHO cell line.
Collapse
Affiliation(s)
- M J Gramer
- Department of Chemical Engineering, Stanford University, CA 94305-5025, USA
| | | | | | | | | |
Collapse
|
23
|
Miyoshi E, Nishikawa A, Ihara Y, Saito H, Uozumi N, Hayashi N, Fusamoto H, Kamada T, Taniguchi N. Transforming growth factor beta up-regulates expression of the N-acetylglucosaminyltransferase V gene in mouse melanoma cells. J Biol Chem 1995; 270:6216-20. [PMID: 7890758 DOI: 10.1074/jbc.270.11.6216] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
beta-1,6-N-acetylglucosaminyltransferase V (GnT-V) (EC 2.4.1.155) that catalyzes beta-1,6 branching in asparagine-linked oligosaccharides is activated on viral or oncogenic transformation and is associated with tumor metastasis. To study the molecular mechanisms involved in regulation of expression of the GnT-V gene, we cloned cDNA and genomic DNA for the enzyme (Saito, H., Nishikawa, A., Gu, J., Ihara, Y., Soejima, Y., Sekiya, C., Niikawa, N., and Taniguchi, N. (1994) Biochem. Biophys. Res. Commun. 198, 318-327). We found that transforming growth factor beta (TGF beta) specifically induced GnT-V expression in mouse melanoma cells. The activity of GnT-V was increased 24 h after the addition of TGF beta and remained at high levels up to 72 h. Northern blot analysis showed that the mRNA levels of GnT-V were consistent with the increased activity. To further investigate the nature of the induction, mRNA stability and transcriptional activity were assayed. The enhancement of the GnT-V mRNA expression resulted from prolonged mRNA stability, not from increased transcription. Consequently, elevated mRNA levels were observed even 72 h after the addition of TGF beta. Lectin blot analysis involving leukoagglutinin showed newly synthesized beta-1,6 branching structures in the sugar chains of a protein of approximately 130 kDa at 48 h after TGF beta treatment. These results suggested that TGF beta caused changes in the sugar chains of proteins in melanoma cells by up-regulating GnT-V expression.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Carbohydrate Sequence
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Electrophoresis, Polyacrylamide Gel
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Kinetics
- Melanoma, Experimental/enzymology
- Melanoma, Experimental/pathology
- Mice
- Molecular Sequence Data
- N-Acetylglucosaminyltransferases/biosynthesis
- N-Acetylglucosaminyltransferases/isolation & purification
- Oligosaccharides/biosynthesis
- Oligosaccharides/chemistry
- RNA, Messenger/analysis
- RNA, Messenger/biosynthesis
- Transcription, Genetic/drug effects
- Transforming Growth Factor beta/pharmacology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- E Miyoshi
- Department of Biochemistry, Osaka University Medical School, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Daniels BF, Nakamura MC, Rosen SD, Yokoyama WM, Seaman WE. Ly-49A, a receptor for H-2Dd, has a functional carbohydrate recognition domain. Immunity 1994; 1:785-92. [PMID: 7895167 DOI: 10.1016/s1074-7613(94)80020-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Ly-49A+ murine natural killer (NK) cells cannot lyse target cells that express H-2Dd. We demonstrate a functional requirement for carbohydrate recognition by Ly-49A. Treatment of H-2Dd+ target cells with tunicamycin prevents their binding to Ly-49A+ cells and renders them susceptible to lysis by Ly-49A+ NK cells. Fucoidan, a sulfated polysaccharide, binds to Ly-49A in a calcium-dependent manner, and this binding is inhibited by monosaccharides, particularly sulfated hexoses. The inactivation of Ly-49A+ NK cells by H-2Dd+ target cells is reversed in the presence of glucose 6-SO4. These results indicate that Ly-49A has a functional carbohydrate recognition domain and that target expression of carbohydrates alters their susceptibility to natural killing.
Collapse
Affiliation(s)
- B F Daniels
- Department of Medicine, University of California, San Francisco 94143
| | | | | | | | | |
Collapse
|
25
|
Andersen DC, Goochee CF. The effect of cell-culture conditions on the oligosaccharide structures of secreted glycoproteins. Curr Opin Biotechnol 1994; 5:546-9. [PMID: 7765471 DOI: 10.1016/0958-1669(94)90072-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Glycoprotein oligosaccharide structure influences numerous important protein properties. In recent years, a number of studies have demonstrated that cell-culture methodology can significantly affect the oligosaccharide structures of recombinant proteins and antibodies, and, in the past year in particular, several of the specific environmental variables responsible for these effects have been identified.
Collapse
Affiliation(s)
- D C Andersen
- Department of Chemical Engineering, Stanford University, California 94305-5025
| | | |
Collapse
|
26
|
Characterization of a recombinant antibody produced in the course of a high yield fed-batch process. Biotechnol Bioeng 1994; 44:727-35. [DOI: 10.1002/bit.260440609] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
He Y, Keel BA. Biochemical characterization of bovine alpha-fetoprotein and comparison with human alpha-fetoprotein. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. BIOCHEMISTRY AND MOLECULAR BIOLOGY 1994; 108:327-36. [PMID: 7521727 DOI: 10.1016/0305-0491(94)90084-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This study compares the molecular, charge and lectin microheterogeneity of bovine alpha-fetoprotein (bAFP) with human (h) AFP. Molecular weights of bAFP (81 kDa) and hAFP (69 kDa) were detected by Western immunoblotting. Marked crossreactivity was found between bAFP and hAFP by Western immunoblotting but no crossreactivity was noticed by radioimmunoassays. At least seven charge isoforms of bAFP and three isoforms of hAFP were consistently detected by chromatofocusing in a mixture of fetal bovine serum (FBS) and human cord blood (hCB), while only three isoforms of bAFP and hAFP were detected in a mixture of bovine (bAF) and human amniotic fluid (hAF). Using concanavalin A (Con A) chromatography, 50% of bAFP was Con A reactive and 50% non-reactive, while more than 98% of hAFP was Con A reactive in a mixture of FBS and hCB. However, in AFs, 72% of bAFP was Con A reactive, while 89% of hAFP was Con A reactive. These data indicate that marked differences exist in both the charge and lectin microheterogeneity of bovine and human AFP.
Collapse
Affiliation(s)
- Y He
- Department of Obstetrics and Gynecology, Women's Research Institute, University of Kansas School of Medicine-Wichita 67214
| | | |
Collapse
|
28
|
Affiliation(s)
- N Jenkins
- Research School of Biosciences, University of Kent, Canterbury, UK
| | | |
Collapse
|
29
|
Rohrer JS. Improved fractionation of sialylated glycopeptides by pellicular anion-exchange chromatography. J Chromatogr A 1994; 667:75-83. [PMID: 7517757 DOI: 10.1016/0021-9673(94)89053-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The glycoprotein bovine fetuin was treated with trypsin and the Asn-81 tryptic glycopeptide was purified (90% pure by Edman sequencing) by reversed-phase chromatography (RP-HPLC). The Asn-81 glycopeptide, which eluted as a single peak by RP-HPLC, was separable into five peaks on the NucleoPac PA100 column, a pellicular anion-exchange column. Each of the five Asn-81 glycopeptide peaks was shown to contain N-linked oligosaccharides by treatment of each peak with peptide N4-(N-acetyl-beta-D-glucosaminyl) asparagine amidase F (PNGase F) and subsequent oligosaccharide analysis by high-pH anion-exchange chromatography with pulsed amperometric detection. High-pH anion-exchange chromatography-pulsed amperometric detection oligosaccharide analysis revealed that each peak contained a different population of sialylated N-linked oligosaccharides. Hence each peak contained a different group of glycopeptide glycoforms. It was observed that the longer the retention time of the Asn-81 glycopeptide peak on the anion-exchange column, the greater the oligosaccharide sialylation. Two glycopeptide peaks which differed in their distribution of disialylated oligosaccharides demonstrated that the glycopeptide separation was a result of something more than gross differences in sialic acid content. The two other N-linked tryptic glycopeptides of fetuin were also separated into multiple peaks on the NucleoPac PA100 column and these separations were shown to be due to differences in oligosaccharide sialylation. The separations of the three fetuin N-linked glycopeptides demonstrate that pellicular anion-exchange chromatography offers improved separation speed and resolution for the separation of sialylated glycopeptides.
Collapse
|
30
|
Borys MC, Linzer DIH, Papoutsakis ET. Ammonia affects the glycosylation patterns of recombinant mouse placental lactogen-I by chinese hamster ovary cells in a pH-dependent manner. Biotechnol Bioeng 1994; 43:505-14. [DOI: 10.1002/bit.260430611] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|