1
|
Liu L, Seimiya T, Manley JL. WDR33 alternative polyadenylation is dependent on stochastic poly(a) site usage and splicing efficiencies. RNA Biol 2024; 21:25-35. [PMID: 39327832 PMCID: PMC11445923 DOI: 10.1080/15476286.2024.2408708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/03/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Transcripts from the human WDR33 gene, which encodes a central component of the mRNA polyadenylation (PA) machinery, are subject to alternative polyadenylation (APA) within promoter-proximal introns/exons. This APA, which itself involves usage of multiple PA sites, results in the production of two non-canonical protein isoforms, V2 and V3, that are functionally completely unrelated to the full-length protein, with roles in innate immunity. The mechanism and regulation of WDR33 APA are unclear. Here, we report that levels of the PA factor CFIm25 modulate V2 and V3 expression, and that PA site usage of both V2 and V3 varies in distinct immune responses. Using newly developed assays to measure splicing and PA site strength, we show that splicing of V2-associated intron 6 is inefficient, allowing V2 to be produced using weak PA sites. Usage of V3's strong PA sites, on the other hand, is relatively low, reflecting the high efficiency of intron 7 splicing coupled with dependency on usage of an alternative 3' splice site within the intron. Overall, our findings demonstrate that usage of WDR33 alternative PA sites is stochastic, dependent on a complex interplay between splicing and PA, and thus provide new insights into mechanisms underlying APA.
Collapse
Affiliation(s)
- Lizhi Liu
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Takahiro Seimiya
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - James L. Manley
- Department of Biological Sciences, Columbia University, New York, NY, USA
| |
Collapse
|
2
|
Saha B, Parks RJ. Recent Advances in Novel Antiviral Therapies against Human Adenovirus. Microorganisms 2020; 8:E1284. [PMID: 32842697 PMCID: PMC7563841 DOI: 10.3390/microorganisms8091284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 12/27/2022] Open
Abstract
Human adenovirus (HAdV) is a very common pathogen that typically causes minor disease in most patients. However, the virus can cause significant morbidity and mortality in certain populations, including young children, the elderly, and those with compromised immune systems. Currently, there are no approved therapeutics to treat HAdV infections, and the standard treatment relies on drugs approved to combat other viral infections. Such treatments often show inconsistent efficacy, and therefore, more effective antiviral therapies are necessary. In this review, we discuss recent developments in the search for new chemical and biological anti-HAdV therapeutics, including drugs that are currently undergoing preclinical/clinical testing, and small molecule screens for the identification of novel compounds that abrogate HAdV replication and disease.
Collapse
Affiliation(s)
- Bratati Saha
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Robin J. Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Department of Medicine, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
3
|
Histone Deacetylase Inhibitor Suberoylanilide Hydroxamic Acid Suppresses Human Adenovirus Gene Expression and Replication. J Virol 2019; 93:JVI.00088-19. [PMID: 30944181 DOI: 10.1128/jvi.00088-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/29/2019] [Indexed: 12/20/2022] Open
Abstract
Human adenovirus (HAdV) causes minor illnesses in most patients but can lead to severe disease and death in pediatric, geriatric, and immunocompromised individuals. No approved antiviral therapy currently exists for the treatment of these severe HAdV-induced diseases. In this study, we show that the pan-histone deacetylase (HDAC) inhibitor SAHA reduces HAdV-5 gene expression and DNA replication in tissue culture, ultimately decreasing virus yield from infected cells. Importantly, SAHA also reduced gene expression from more virulent and clinically relevant serotypes, including HAdV-4 and HAdV-7. In addition to SAHA, several other HDAC inhibitors (e.g., trichostatin A, apicidin, and panobinostat) also affected HAdV gene expression. We determined that loss of class I HDAC activity, mainly HDAC2, impairs efficient expression of viral genes, and that E1A physically interacts with HDAC2. Our results suggest that HDAC activity is necessary for HAdV replication, which may represent a novel pharmacological target in HAdV-induced disease.IMPORTANCE Although human adenovirus (HAdV) can cause severe diseases that can be fatal in some populations, there are no effective treatments to combat HAdV infection. In this study, we determined that the pan-histone deacetylase (HDAC) inhibitor SAHA has inhibitory activity against several clinically relevant serotypes of HAdV. This U.S. Food and Drug Administration-approved compound affects various stages of the virus lifecycle and reduces virus yield even at low concentrations. We further report that class I HDAC activity, particularly HDAC2, is required for efficient expression of viral genes during lytic infection. Investigation of the mechanism underlying SAHA-mediated suppression of HAdV gene expression and replication will enhance current knowledge of virus-cell interaction and may aid in the development of more effective antivirals with lower toxicity for the treatment of HAdV infections.
Collapse
|
4
|
Kazerouninia A, Ngo B, Martinson HG. Poly(A) signal-dependent degradation of unprocessed nascent transcripts accompanies poly(A) signal-dependent transcriptional pausing in vitro. RNA (NEW YORK, N.Y.) 2010; 16:197-210. [PMID: 19926725 PMCID: PMC2802029 DOI: 10.1261/rna.1622010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Accepted: 09/22/2009] [Indexed: 05/28/2023]
Abstract
The poly(A) signal has long been known for its role in directing the cleavage and polyadenylation of eukaryotic mRNA. In recent years its additional coordinating role in multiple related aspects of gene expression has also become increasingly clear. Here we use HeLa nuclear extracts to study two of these activities, poly(A) signal-dependent transcriptional pausing, which was originally proposed as a surveillance checkpoint, and poly(A) signal-dependent degradation (PDD) of unprocessed transcripts from weak poly(A) signals. We confirm directly, by measuring the length of RNA within isolated transcription elongation complexes, that a newly transcribed poly(A) signal reduces the rate of elongation by RNA polymerase II and causes the accumulation of elongation complexes downstream from the poly(A) signal. We then show that if the RNA in these elongation complexes contains a functional but unprocessed poly(A) signal, degradation of the transcripts ensues. The degradation depends on the unprocessed poly(A) signal being functional, and does not occur if a mutant poly(A) signal is used. We suggest that during normal 3'-end processing the uncleaved poly(A) signal continuously samples competing reaction pathways for processing and for degradation, and that in the case of weak poly(A) signals, where poly(A) site cleavage is slow, the default pathway to degradation predominates.
Collapse
Affiliation(s)
- Amir Kazerouninia
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California 90095-1569, USA
| | | | | |
Collapse
|
5
|
Unwalla HJ, Li HT, Bahner I, Li MJ, Kohn D, Rossi JJ. Novel Pol II fusion promoter directs human immunodeficiency virus type 1-inducible coexpression of a short hairpin RNA and protein. J Virol 2006; 80:1863-73. [PMID: 16439542 PMCID: PMC1367144 DOI: 10.1128/jvi.80.4.1863-1873.2006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We demonstrate a novel approach for coexpression of a short hairpin RNA (shRNA) with an open reading frame which exploits transcriptional read-through of a minimal polyadenylation signal from a Pol II promoter. We first observed efficient inducible expression of enhanced green fluorescent protein along with an anti-rev shRNA. We took advantage of this observation to test coexpression of the transdominant negative mutant (humanized) of human immunodeficiency type 1 (HIV-1) Rev (huRevM10) along with an anti-rev shRNA via an HIV-1-inducible fusion promoter. The coexpression of the shRNA and transdominant protein resulted in potent, long-term inhibition of HIV-1 gene expression and suppression of shRNA-resistant mutants. This dual expression system has broad-based potential for other shRNA applications, such as cases where simultaneous knockdown of mutant and wild-type transcripts must be accompanied by replacement of the wild-type protein.
Collapse
MESH Headings
- Cell Line
- Cloning, Molecular
- DNA Polymerase II/genetics
- Gene Expression
- Gene Expression Regulation, Viral
- Gene Products, rev/biosynthesis
- Gene Products, tat/physiology
- Genes, Dominant
- Genes, Reporter
- Green Fluorescent Proteins/biosynthesis
- Green Fluorescent Proteins/genetics
- HIV Core Protein p24/analysis
- HIV Long Terminal Repeat
- HIV-1/genetics
- HIV-1/physiology
- Humans
- Mutation
- Promoter Regions, Genetic
- RNA Interference
- RNA, Small Interfering/biosynthesis
- Transcription, Genetic
- Transfection
- rev Gene Products, Human Immunodeficiency Virus
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Hoshang J Unwalla
- Department of Molecular Biology, Beckman Research Institute of the City of Hope, 1450 E. Duarte Rd., Duarte, CA 91010, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Liu L. Characterization of an upstream regulatory element of adenovirus L1 poly (A) site. Virology 2005; 337:124-35. [PMID: 15914226 DOI: 10.1016/j.virol.2005.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 02/07/2005] [Accepted: 04/07/2005] [Indexed: 10/25/2022]
Abstract
The transition from early to late stage infection by adenovirus involves a change in mRNA expression from the adenovirus major late transcription unit (AdMLTU). This early to late switch centers around alternative selection of one of five poly (A) sites (L1-L5) that code for the major structural proteins of Adenovirus. During the early stage of infection, steady state mRNA is primarily derived from the L1 poly (A) site. During the late stage of infection, each of the MLTU poly (A) sites is represented in the steady state mRNA pool (Falck-Pedersen, E., Logan, J., 1989. Regulation of poly(A) site selection in adenovirus. J. Virol. 63 (2), 532-541.). Using transient transfection of a plasmid expressing Chloramphenicol Acetyl Transferase with a tandem poly (A) minigene system (L13) (DeZazzo, J.D., Falck-Pedersen, E., Imperiale, M.J., 1991. Sequences regulating temporal poly(A) site switching in the adenovirus major late transcription unit. Mol. Cell. Biol. 11 (12), 5977-5984; Prescott, J., Falck-Pedersen, E., 1994. Sequence elements upstream of the 3' cleavage site confer substrate strength to the adenovirus L1 and L3 polyadenylation sites. Mol. Cell. Biol. 14 (7), 4682-4693.), it has been demonstrated that the promoter-proximal L1 poly (A) site which is poorly recognized by the 3' end processing machinery, contains an upstream repressor element (URE) that influences steady state levels of mRNA (Prescott, J.C., Liu, L., Falck-Pedersen, E., 1997. Sequence-mediated regulation of adenovirus gene expression by repression of mRNA accumulation. Mol. Cell. Biol. 17 (4), 2207-2216.). In this study, we have further characterized the elements that mediate L1URE function. These studies indicate that the L1 upstream regulatory element (L1 URE) contains a complex RNA architecture that serves to repress gene expression through multiple sub-effectors. The L1URE functions when located upstream of a heterologous poly (A) site, and is able to strongly suppress steady state mRNA expression from the MLTU L3 poly (A) site or the murine beta-globin poly (A) site. In the tandem L13 mini-gene system, the L1URE is revealed to influence steady state mRNA stability, and subdomains within L1URE influence both gene expression and the steady state ratio of transcripts processed at proximal versus distal poly (A) sites. Transcript and gene repression mediated by the L1URE may provide a general strategy employed by adenovirus to block premature expression of late stage MLTU transcripts.
Collapse
Affiliation(s)
- Li Liu
- Department of Microbiology and Etiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing.
| |
Collapse
|
7
|
Adamson TE, Shutt DC, Price DH. Functional coupling of cleavage and polyadenylation with transcription of mRNA. J Biol Chem 2005; 280:32262-71. [PMID: 16041059 DOI: 10.1074/jbc.m505532200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cleavage and polyadenylation define the 3' ends of almost all eukaryotic mRNAs and are thought to occur during transcription. We describe a human in vitro system utilizing an immobilized template, in which transcripts in RNA polymerase II elongation complexes are efficiently cleaved and polyadenylated. Because the cleavage rate of free RNA is much slower, we conclude that cleavage is functionally coupled to transcription. Inhibition of positive transcription elongation factor b (P-TEFb) had only a modest negative effect on cleavage, as long as transcripts were long enough to contain the polyadenylation signal. In contrast, removal of the carboxyl-terminal domain of the large subunit of RNA polymerase II had a dramatic negative effect on cleavage. Unexpectedly, the 5' portion of transcript after cleavage remained associated with the template in a functional, polyadenylation-competent complex. Efficient cleavage required 5' capping by the human capping enzyme, but the reduction of cleavage seen of transcripts in COOH-terminal domain-less polymerase elongation complexes, was not because of lack of capping.
Collapse
Affiliation(s)
- Todd E Adamson
- Department of Biochemistry, University of Iowa, Iowa City, 52242, USA
| | | | | |
Collapse
|
8
|
Scorilas A. Polyadenylate polymerase (PAP) and 3' end pre-mRNA processing: function, assays, and association with disease. Crit Rev Clin Lab Sci 2002; 39:193-224. [PMID: 12120781 DOI: 10.1080/10408360290795510] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Polyadenylate polymerase (PAP) is one of the enzymes involved in the formation of the polyadenylate tail of the 3' end of mRNA. Poly (A) tail formation is a significant component of 3' processing, a link in the chain of events, including transcription, splicing, and cleavage/polyadenylation of pre-mRNA. Transcription, capping, splicing, polyadenylation, and transport take place as coupled processes that can regulate one another. The poly(A) tail is found in almost all eukaryotic mRNA and is important in enhancing translation initiation and determining mRNA stability. Control of poly(A) tail synthesis could possibly be a key regulatory step in gene expression. PAP-specific activity values are measured by a highly sensitive assays and immunocytochemical methods. High levels of PAP activity are associated with rapidly proliferating cells, it also prevents apoptosis. Changes of PAP activity may cause a decrease in the rate of polyadenylation in the brain during epileptic seizures. Testis-specific PAP may play an important role in spermiogenesis. PAP was found to be an unfavorable prognostic factor in leukemia and breast cancer. Furthermore, measurements of PAP activity may contribute to the definition of the biological profile of tumor cells. It is crucial to know the specific target causing the elevation of serum PAP, for it to be used as a marker for disease. This review summarizes the recently accumulated knowledge on PAP including its function, assays, and association with various human diseases, and proposes future avenues for research.
Collapse
Affiliation(s)
- Andreas Scorilas
- National Center for Scientific Research Demokritos, IPC, Athens, Greece.
| |
Collapse
|
9
|
Ahuja D, Karow DS, Kilpatrick JE, Imperiale MJ. RNA polymerase II-dependent positional effects on mRNA 3' end processing in the adenovirus major late transcription unit. J Biol Chem 2001; 276:41825-31. [PMID: 11551915 DOI: 10.1074/jbc.m104709200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During the early phase of adenovirus infection, the promoter-proximal L1 poly(A) site in the major late transcription unit is used preferentially despite the fact that the distal L3 poly(A) site is stronger (i.e. it competes better for processing factors and is cleaved at a faster rate, in vitro). Previous work had established that this was due at least in part to the stable binding of the processing factor, cleavage and polyadenylation specificity factor, to the L1 poly(A) site as mediated by specific regulatory sequences. It is now demonstrated that in addition, the L1 poly(A) site has a positional advantage because of its 5' location in the transcription unit. We also show that preferential processing of a particular poly(A) site in a complex transcription unit is dependent on RNA polymerase II. Our results are consistent with recent reports demonstrating that the processing factors cleavage and polyadenylation specificity factor and cleavage stimulatory factor are associated with the RNA polymerase II holoenzyme; thus, processing at a weak poly(A) site like L1 can be enhanced by virtue of its being the first site to be transcribed.
Collapse
Affiliation(s)
- D Ahuja
- Department of Microbiology and Immunology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
10
|
Brackenridge S, Proudfoot NJ. Recruitment of a basal polyadenylation factor by the upstream sequence element of the human lamin B2 polyadenylation signal. Mol Cell Biol 2000; 20:2660-9. [PMID: 10733568 PMCID: PMC85481 DOI: 10.1128/mcb.20.8.2660-2669.2000] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have investigated how the upstream sequence element (USE) of the lamin B2 poly(A) signal mediates efficient 3'-end formation. In vitro analysis demonstrates that this USE increases both the efficiency of 3'-end cleavage and the processivity of poly(A) addition. Cross-linking using selectively labeled synthetic RNAs confirms that cleavage stimulation factor interacts with the sequences downstream of the cleavage site, while electrophoresis mobility shift assays demonstrate that the USE directly stabilizes the binding of the cleavage and polyadenylation specificity factor to the poly(A) signal. Thus in common with other poly(A) signals, the lamin B2 USE directly enhances the binding of basal poly(A) factors. In addition, a novel 55-kDa protein binds to the USE and the core poly(A) signal and appears to inhibit cleavage. The binding activity of this factor appears to change during the cell cycle, being greatest in S phase, when the lamin B2 gene is transcribed.
Collapse
Affiliation(s)
- S Brackenridge
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | |
Collapse
|
11
|
Terhune SS, Milcarek C, Laimins LA. Regulation of human papillomavirus type 31 polyadenylation during the differentiation-dependent life cycle. J Virol 1999; 73:7185-92. [PMID: 10438805 PMCID: PMC104242 DOI: 10.1128/jvi.73.9.7185-7192.1999] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The L1 and L2 capsid genes of human papillomavirus type 31 (HPV-31) are expressed late in the differentiation-dependent life cycle from a promoter located in the E7 open reading frame (ORF) of the early region. These late HPV genes are transcribed by RNA polymerase II which reads through the region containing early polyadenylation signals and proceeds to a poly(A) site downstream of L1. In this study, we have investigated the mechanisms regulating differentiation-dependent polyadenylation and read-through in HPV-31. HPV-31 early transcripts were found to utilize a heterogeneous series of polyadenylation sites in undifferentiated cells. The sites for polyadenylation extended over a range of 100 nucleotides from within the E5 ORF to upstream of L2. Upon differentiation, the transcription of early genes increased, but no change in the heterogeneous distribution of 3' ends was detected. The early polyadenylation region was found to contain a single consensus hexanucleotide sequence, AAUAAA, as well as three weak binding sites for the cleavage stimulatory factor, CstF. In contrast to the heterogeneity at the early site, the 3' ends of late transcripts encoding L1 and L2 were localized to a narrow region downstream of the late AAUAAA element. The late polyadenylation signal was found to contain a single high-affinity site for CstF, as well as one consensus hexanucleotide sequence. By using a reporter assay, it was determined that the HPV-31 early polyadenylation sequences allowed significant levels of read-through into the late region in undifferentiated cells. Upon differentiation, this read-through was increased by approximately 50%, indicating that use of the early site decreased. Differentiation was also found to induce a 40% reduction in the levels of CstF subunits, which may contribute to the increased read-through of the early sequence. The insertion of the late high-affinity binding site for CstF into the early polyadenylation region significantly reduced the level of read-through, suggesting that these factors modulate read-through activity. Our studies demonstrate that HPV-31 late gene expression is regulated in a large part by posttranscriptional mechanisms, including the polyadenylation of early transcripts.
Collapse
Affiliation(s)
- S S Terhune
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
12
|
Zhao J, Hyman L, Moore C. Formation of mRNA 3' ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol Rev 1999; 63:405-45. [PMID: 10357856 PMCID: PMC98971 DOI: 10.1128/mmbr.63.2.405-445.1999] [Citation(s) in RCA: 808] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Formation of mRNA 3' ends in eukaryotes requires the interaction of transacting factors with cis-acting signal elements on the RNA precursor by two distinct mechanisms, one for the cleavage of most replication-dependent histone transcripts and the other for cleavage and polyadenylation of the majority of eukaryotic mRNAs. Most of the basic factors have now been identified, as well as some of the key protein-protein and RNA-protein interactions. This processing can be regulated by changing the levels or activity of basic factors or by using activators and repressors, many of which are components of the splicing machinery. These regulatory mechanisms act during differentiation, progression through the cell cycle, or viral infections. Recent findings suggest that the association of cleavage/polyadenylation factors with the transcriptional complex via the carboxyl-terminal domain of the RNA polymerase II (Pol II) large subunit is the means by which the cell restricts polyadenylation to Pol II transcripts. The processing of 3' ends is also important for transcription termination downstream of cleavage sites and for assembly of an export-competent mRNA. The progress of the last few years points to a remarkable coordination and cooperativity in the steps leading to the appearance of translatable mRNA in the cytoplasm.
Collapse
Affiliation(s)
- J Zhao
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
13
|
Moreira A, Takagaki Y, Brackenridge S, Wollerton M, Manley JL, Proudfoot NJ. The upstream sequence element of the C2 complement poly(A) signal activates mRNA 3' end formation by two distinct mechanisms. Genes Dev 1998; 12:2522-34. [PMID: 9716405 PMCID: PMC317083 DOI: 10.1101/gad.12.16.2522] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/1998] [Accepted: 07/01/1998] [Indexed: 11/24/2022]
Abstract
The poly(A) signal of the C2 complement gene is unusual in that it possesses an upstream sequence element (USE) required for full activity in vivo. We describe here in vitro experiments demonstrating that this USE enhances both the cleavage and poly(A) addition reactions. We also show that the C2 USE can be cross-linked efficiently to a 55-kD protein that we identify as the polypyrimidine tract-binding protein (PTB), implicated previously in modulation of pre-mRNA splicing. Mutation of the PTB-binding site significantly reduces the efficiency of the C2 poly(A) site both in vivo and in vitro. Furthermore, addition of PTB to reconstituted processing reactions enhances cleavage at the C2 poly(A) site, indicating that PTB has a direct role in recognition of this signal. The C2 USE, however, also increases the affinity of general polyadenylation factors independently for the C2 poly(A) signal as detected by enhanced binding of cleavage-stimulaton factor (CstF). Strikingly, this leads to a novel CstF-dependant enhancement of the poly(A) synthesis phase of the reaction. These studies both emphasize the interconnection between splicing and polyadenylation and indicate an unexpected flexibility in the organization of mammalian poly(A) sites.
Collapse
Affiliation(s)
- A Moreira
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
The adenovirus gene regulatory program occurs in two distinct phases, as defined by the onset of DNA replication. During the early phase, the E1A, E1B, E2, E3, and E4 genes are maximally expressed, while the major late promoter (MLP) is minimally expressed and transcription is attenuated. After the onset of DNA replication, the IVa2 and pIX genes are expressed at high levels, transcription from the MLP is unattenuated and fully activated, and early gene expression is repressed. Although the cis elements and trans-acting factors responsible for the late-phase activation of the MLP have been identified and characterized and the role of DNA replication in activation has been established, the mechanism(s) underlying the commensurate decrease in early gene expression has yet to be elucidated. The results of this study demonstrate that this decrease depends on a fully functional MLP. Specifically, virus mutants with severely deficient transcription from the MLP exhibit a marked increase in expression of the E1A, E1B, and E2 early genes. These increases were observed at the level of transcription initiation, mRNA accumulation, and protein production. In addition, expression from the late gene pIX, which is not contained within the major late transcription unit (MLTU), is also markedly increased. To begin the analysis of the mechanisms underlying these late-phase effects, mixed-infection experiments with mutant and wild-type viruses were performed. The results show that the effects on early gene expression, as measured both at the protein and RNA levels, are mediated in trans and not in cis. These observations are consistent either with a model in which one or more late protein products encoded by the MLTU acts as a repressor of early gene expression or with one in which the wild-type MLP competes with early promoters for limiting transcription factors.
Collapse
Affiliation(s)
- S P Fessler
- Department of Microbiology, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
15
|
Leppard KN. Regulated RNA Processing and RNA Transport during Adenovirus Infection. ACTA ACUST UNITED AC 1998. [DOI: 10.1006/smvy.1997.0132] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Hirose Y, Manley JL. Creatine phosphate, not ATP, is required for 3' end cleavage of mammalian pre-mRNA in vitro. J Biol Chem 1997; 272:29636-42. [PMID: 9368030 DOI: 10.1074/jbc.272.47.29636] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The poly(A) tail of a mammalian mRNA is generated by endonucleolytic cleavage and poly(A) addition. Previous studies conducted with nuclear extracts suggested an ATP requirement for the cleavage step. We have reexamined the cofactor requirement, initially with the SV40 late pre-mRNA, which requires for cleavage four protein factors, cleavage and polyadenylation specificity factor, cleavage stimulation factor, cleavage factor I, and cleavage factor II. Using highly purified preparations of these factors, which lacked detectable creatine phosphokinase and ATPase activities, creatine phosphate (CP) was, surprisingly, found to be sufficient to promote efficient cleavage. Although other phosphate compounds substituted poorly or not at all for CP, another phosphoguanidine, arginine phosphate, was fully functional. Notably, ATP was neither necessary nor sufficient, and could in fact inhibit the reaction. Treatment of the purified factors with hexokinase plus glucose (to deplete any contaminating ATP) was without effect, as was addition of EDTA. Using 32P-labeled CP, we found that neither hydrolysis of CP nor phosphate transfer from CP occurred during the cleavage reaction. CP also allowed cleavage of the adenovirus 2 L3 pre-mRNA. However, in this case, ATP both enhanced the reaction and influenced the precise site of cleavage, perhaps reflecting the requirement of poly(A) polymerase for cleavage of this RNA. These results indicate that ATP is not essential for 3' pre-mRNA cleavage and that CP or a related compound can function as a necessary cofactor.
Collapse
Affiliation(s)
- Y Hirose
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
17
|
Flaherty SM, Fortes P, Izaurralde E, Mattaj IW, Gilmartin GM. Participation of the nuclear cap binding complex in pre-mRNA 3' processing. Proc Natl Acad Sci U S A 1997; 94:11893-8. [PMID: 9342333 PMCID: PMC23648 DOI: 10.1073/pnas.94.22.11893] [Citation(s) in RCA: 162] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Communication between the 5' and 3' ends is a common feature of several aspects of eukaryotic mRNA metabolism. In the nucleus, the pre-mRNA 5' end is bound by the nuclear cap binding complex (CBC). This RNA-protein complex plays an active role in both splicing and RNA export. We provide evidence for participation of CBC in the processing of the 3' end of the message. Depletion of CBC from HeLa cell nuclear extract strongly reduced the endonucleolytic cleavage step of the cleavage and polyadenylation process. Cleavage was restored by addition of recombinant CBC. CBC depletion was found to reduce the stability of poly(A) site cleavage complexes formed in nuclear extract. We also provide evidence that the communication between the 5' and 3' ends of the pre-mRNA during processing is mediated by the physical association of the CBC/cap complex with 3' processing factors bound at the poly(A) site. These observations, along with previous data on the function of CBC in splicing, illustrate the key role played by CBC in pre-mRNA recognition and processing. The data provides further support for the hypothesis that pre-mRNAs and mRNAs may exist and be functional in the form of "closed-loops," due to interactions between factors bound at their 5' and 3' ends.
Collapse
Affiliation(s)
- S M Flaherty
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, Vermont Cancer Center, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | |
Collapse
|
18
|
Phillips C, Virtanen A. The murine IgM secretory poly(A) site contains dual upstream and downstream elements which affect polyadenylation. Nucleic Acids Res 1997; 25:2344-51. [PMID: 9171084 PMCID: PMC146757 DOI: 10.1093/nar/25.12.2344] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Regulation of polyadenylation efficiency at the secretory poly(A) site plays an essential role in gene expression at the immunoglobulin (IgM) locus. At this poly(A) site the consensus AAUAAA hexanucleotide sequence is embedded in an extended AU-rich region and there are two downstream GU-rich regions which are suboptimally placed. As these sequences are involved in formation of the polyadenylation pre-initiation complex, we examined their function in vivo and in vitro . We show that the upstream AU-rich region can function in the absence of the consensus hexanucleotide sequence both in vivo and in vitro and that both GU-rich regions are necessary for full polyadenylation activity in vivo and for formation of polyadenylation-specific complexes in vitro . Sequence comparisons reveal that: (i) the dual structure is distinct for the IgM secretory poly(A) site compared with other immunoglobulin isotype secretory poly(A) sites; (ii) the presence of an AU-rich region close to the consensus hexanucleotide is evolutionarily conserved for IgM secretory poly(A) sites. We propose that the dual structure of the IgM secretory poly(A) site provides a flexibility to accommodate changes in polyadenylation complex components during regulation of polyadenylation efficiency.
Collapse
Affiliation(s)
- C Phillips
- Department of Medical Genetics, Uppsala University, Biomedical Centre, Box 589, SE-751 23 Uppsala, Sweden
| | | |
Collapse
|
19
|
Wahle E, Kühn U. The mechanism of 3' cleavage and polyadenylation of eukaryotic pre-mRNA. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 57:41-71. [PMID: 9175430 DOI: 10.1016/s0079-6603(08)60277-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- E Wahle
- Institut für Biochemic, Justus-Liebig-Universität Giessen, Germany
| | | |
Collapse
|
20
|
Stoeckle MY, Falck-Pederson E, Rubin BY, Anderson SL, Murray HW. Delivery of human interferon-gamma via gene transfer in vitro: prolonged expression and induction of macrophage antimicrobial activity. J Interferon Cytokine Res 1996; 16:1015-9. [PMID: 8974003 DOI: 10.1089/jir.1996.16.1015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Daily parenteral administration of exogenous interferon-gamma (IFN-gamma) induces or accelerates recovery in experimental and human infections. To develop an alternative delivery system, a replication-defective recombinant adenovirus expressing human IFN-gamma was constructed. The complete coding region of IFN-gamma was amplified by RT-PCR and inserted into an adenovirus cloning vector under the control of a human cytomegalovirus promoter. Recombinant adenovirus containing the IFN-gamma minigene (dAv-IFN-gamma) was isolated from 293 cells co-transfected with the linearized plasmid and an E1 region-deleted fragment of adenovirus genome. Following in vitro infection with dAv-IFN-gamma, dose-dependent and time-dependent expression of IFN-gamma, mRNA and production of soluble protein were demonstrated in human diploid fibroblat and HeLa cell cultures by Northern blot and ELISA, respectively. Extracellular protein secretion persisted for > = 4 weeks following initial transfection, and secreted IFN-gamma induced both antiviral activity (8000-25,000 U/ml) and macrophage activation with killing of intracellular Toxoplasma gondii and leishmania donovani. These results establish that dAv-IFN-gamma generates long-term secretion of biologically active IFN-gamma in vitro and suggest that this vector may be a useful delivery system for cytokine therapy.
Collapse
Affiliation(s)
- M Y Stoeckle
- Department of Medicine, Cornell University Medical College, New York, NY, USA
| | | | | | | | | |
Collapse
|
21
|
Caravokyri C, Leppard KN. Human adenovirus type 5 variants with sequence alterations flanking the E2A gene: effects on E2 expression and DNA replication. Virus Genes 1996; 12:65-75. [PMID: 8879122 DOI: 10.1007/bf00370002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The human adenovirus type 5 (Ad5) E2 transcription unit is divided into a promoter-proximal region, E2A, and a distal region, E2B, each with its own polyadenylation site. Together these regions encode the three virus-derived proteins necessary for genome replication. Ad5 variants were produced that carried linker insertion mutations immediately 5' and/or 3' to the coding sequence for the E2A gene DNA binding protein (DBP). Two variants carrying solely a 5' lesion showed decreased usage of the adjacent 3' splice site, via which the DBP mRNA is produced, and an increased usage of the alternative downstream splice sites in the E2B region, wherein viral DNA polymerase and terminal protein precursor are encoded; these viruses showed somewhat reduced growth. A variant carrying a 3' lesion showed a marginal increase in DBP expression and slightly accelerated growth. When lesions 5' and 3' to the DBP coding sequence were combined in cis, the resulting virus was severely defective for growth and expressed E2B products to the virtual exclusion of E2A DBP. These data indicate that interactions must occur between the E2A 3' splice site and polyadenylation site before this region can be treated as an exon by the RNA processing machinery, and that a sequence alteration at the polyadenylation site that alone has only minor effects on the pattern of RNA processing can drastically affect terminal exon usage when placed in cis with a mutation that reduces splicing efficiency at the upstream 3' splice site. The data further indicate that, in vivo, Ad5 DNA replication is limited by prevailing DBP levels rather than by levels of polymerase or terminal protein precursor.
Collapse
Affiliation(s)
- C Caravokyri
- Department of Biological Sciences, University of Warwick, Coventry, UK
| | | |
Collapse
|
22
|
Wahle E. 3'-end cleavage and polyadenylation of mRNA precursors. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1261:183-94. [PMID: 7711061 DOI: 10.1016/0167-4781(94)00248-2] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- E Wahle
- Department of Cell Biology, Biozentrum, University of Basel, Switzerland
| |
Collapse
|
23
|
Imperiale MJ, Akusjnärvi G, Leppard KN. Post-transcriptional control of adenovirus gene expression. Curr Top Microbiol Immunol 1995; 199 ( Pt 2):139-71. [PMID: 7555066 DOI: 10.1007/978-3-642-79499-5_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- M J Imperiale
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109-0620, USA
| | | | | |
Collapse
|
24
|
Gilmartin GM, Fleming ES, Oetjen J, Graveley BR. CPSF recognition of an HIV-1 mRNA 3'-processing enhancer: multiple sequence contacts involved in poly(A) site definition. Genes Dev 1995; 9:72-83. [PMID: 7828853 DOI: 10.1101/gad.9.1.72] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The endonucleolytic cleavage and polyadenylation of a pre-mRNA in mammalian cells requires two cis-acting elements, a highly conserved AAUAAA hexamer and an amorphous U- or GU-rich downstream element, that together constitute the "core" poly(A) site. The terminal redundancy of the HIV-1 pre-mRNA requires that the processing machinery disregard a core poly(A) site at the 5' end of the transcript, and efficiently utilize an identical signal that resides near the 3' end. Efficient processing at the 3' core poly(A) site, both in vivo and in vitro, has been shown to require sequences 76 nucleotides upstream of the AAUAAA hexamer. In this report we demonstrate that this HIV-1 upstream element interacts directly with the 160-kD subunit of CPSF (cleavage polyadenylation specificity factor), the factor responsible for the recognition of the AAUAAA hexamer. The presence of the upstream element in the context of the AAUAAA hexamer directs the stable binding of CPSF to the pre-mRNA and enhances the efficiency of poly(A) addition in reactions reconstituted with purified CPSF and recombinant poly(A) polymerase. Our results indicate that the dependence of HIV-1 3' processing on upstream sequences is a consequence of the suboptimal sequence context of the AAUAAA hexamer. We suggest that poly(A) site definition involves the recognition of multiple heterogeneous sequence elements in the context of the AAUAAA hexamer.
Collapse
Affiliation(s)
- G M Gilmartin
- Department of Microbiology and Molecular Genetics, Markey Center for Molecular Genetics, University of Vermont, Burlington 05405
| | | | | | | |
Collapse
|
25
|
|
26
|
Puvion-Dutilleul F, Bachellerie JP, Visa N, Puvion E. Rearrangements of intranuclear structures involved in RNA processing in response to adenovirus infection. J Cell Sci 1994; 107 ( Pt 6):1457-68. [PMID: 7962189 DOI: 10.1242/jcs.107.6.1457] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have studied in HeLa cells at the electron microscope level the response to adenovirus infection of the RNA processing machinery. Components of the spliceosomes were localized by in situ hybridization with biotinylated U1 and U2 DNA probes and by immunolabeling with Y12 anti-Sm monoclonal antibody, whereas poly(A)+ RNAs were localized by specific binding of biotinylated poly(dT) probe. At early stages of nuclear transformation, the distribution of small nuclear RNPs was similar to that previously described in non-infected nuclei (Visa, N., Puvion-Dutilleul, F., Bachellerie, J.P. and Puvion, E., Eur. J. Cell Biol. 60, 308–321, 1993; Visa, N., Puvion-Dutilleul, F., Harper, F., Bachellerie, J. P. and Puvion, E., Exp. Cell Res. 208, 19–34, 1993). As the infection progresses, the large virus-induced inclusion body consists of a central storage site of functionally inactive viral genomes surrounded by a peripheral shell formed by clusters of interchromatin granules, compact rings and a fibrillogranular network in which are embedded the viral single-stranded DNA accumulation sites. Spliceosome components and poly(A)+ RNAs were then exclusively detected over the clusters of interchromatin granules and the fibrillogranular network whereas the viral single-stranded DNA accumulation sites and compact rings remained unlabeled, thus appearing to not be directly involved in splicing. Our data, therefore, suggest that the fibrillogranular network, in addition to being the site of viral transcription, is also a major site of viral RNA splicing. Like the clusters of interchromatin granules, which had been already involved in spliceosome assembly, they could also have a role in the sorting of viral spliced polyadenylated mRNAs before export to the cytoplasm. The compact rings, which contain non-polyadenylated viral RNA, might accumulate the non-used portions of the viral transcripts resulting from differential poly(A)+ site selection.
Collapse
Affiliation(s)
- F Puvion-Dutilleul
- Laboratoire de Biologie et Ultrastructure du Noyau de l'UPR 272 CNRS, Villejuir, France
| | | | | | | |
Collapse
|
27
|
van Oers CC, Bakker L, Baas PD. The exon 4 poly(A) site of the human calcitonin/CGRP-I pre-mRNA is a weak site in vitro. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1218:55-63. [PMID: 8193165 DOI: 10.1016/0167-4781(94)90100-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The human calcitonin/CGRP-I (CALC-I) pre-mRNA is processed in a tissue-specific alternative way into either calcitonin (CT) or calcitonin gene-related peptide-I (CGRP-I) mRNA. The exons 1 to 3 are common exons. They are spliced to exon 4, which becomes polyadenylated to form CT mRNA, or to exon 5 and the polyadenylated exon 6 to form CGRP-I mRNA. Polyadenylation at exon 4 and splicing of exon 3 to exon 5 are mutually exclusive processing reactions. Only splicing of exon 3 to exon 5 was detected in vitro, with a minigene containing the exon 3 to exon 5 region. No polyadenylation at the exon 4 poly(A) site could be observed. Investigation of the properties of the exon 4 poly(A) site in vitro shows that it is inefficiently used in vitro. Cleavage and polyadenylation of short RNAs containing only the exon 4 poly(A) site is strongly dependent on the 3' length of the RNA. Downstream sequences located within 39 nucleotides from the cleavage site are required for optimal cleavage and polyadenylation. When the exon 4 poly(A) site in the minigene is replaced with the strong adenovirus L3 or rabbit beta-globin poly(A) sites, these sites can be efficiently used in vitro.
Collapse
Affiliation(s)
- C C van Oers
- Institute of Molecular Biology and Medical Biotechnology, Utrecht University, The Netherlands
| | | | | |
Collapse
|