1
|
Giessen TW. The Structural Diversity of Encapsulin Protein Shells. Chembiochem 2024; 25:e202400535. [PMID: 39330624 DOI: 10.1002/cbic.202400535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 09/28/2024]
Abstract
Subcellular compartmentalization is a universal feature of all cells. Spatially distinct compartments, be they lipid- or protein-based, enable cells to optimize local reaction environments, store nutrients, and sequester toxic processes. Prokaryotes generally lack intracellular membrane systems and usually rely on protein-based compartments and organelles to regulate and optimize their metabolism. Encapsulins are one of the most diverse and widespread classes of prokaryotic protein compartments. They self-assemble into icosahedral protein shells and are able to specifically internalize dedicated cargo enzymes. This review discusses the structural diversity of encapsulin protein shells, focusing on shell assembly, symmetry, and dynamics. The properties and functions of pores found within encapsulin shells will also be discussed. In addition, fusion and insertion domains embedded within encapsulin shell protomers will be highlighted. Finally, future research directions for basic encapsulin biology, with a focus on the structural understand of encapsulins, are briefly outlined.
Collapse
Affiliation(s)
- Tobias W Giessen
- Department of Biological Chemistry, University of Michigan, Ann Arbor, 1150 W Medical Center Dr, Ann Arbor, MI, 48109-5622, USA
| |
Collapse
|
2
|
Wojciechowski M, Jokiel J, Kuss H, Bermúdez M, Jose J. Combination of Autodisplay and Dynamic Pharmacophore Modeling Reveals New Insights into Cyclic Nucleotide Binding in Hyperpolarization-Activated and Cyclic Nucleotide-Gated Ion Channel 4 (HCN4). ACS Pharmacol Transl Sci 2024; 7:4010-4020. [PMID: 39698292 PMCID: PMC11651207 DOI: 10.1021/acsptsci.4c00497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 12/20/2024]
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels play a critical role in regulating neuronal and cardiac rhythmicity, with their function being modulated by cyclic nucleotide binding. Dysfunction of HCN ion channels leads to the genesis of several diseases such as arrhythmia, bradycardia, or epilepsy. This study employs a multidisciplinary approach integrating mutagenesis, ligand binding assays, and molecular dynamics (MD) simulations combined with dynamic pharmacophore studies to investigate the impact of single residue mutations within the cyclic nucleotide-binding domain (CNBD) of HCN4 channels. Utilizing an autodisplay-based ligand binding assay, surface-displayed HCN4 CNBD mutants were evaluated for their interaction with 8-Fluo-cAMP, providing insights into the ligand binding properties. While some known mutational effects could be confirmed (R669, T670), we identified L652 to be crucial for successful ligand binding. Surprisingly, C662, located in the center of the binding pocket, was discovered to play a negligible role in cAMP-binding. Both E660 and R710 were shown to substantially affect 8-Fluo-cAMP-binding, uncovering the direct ligand binding capability of the R710A mutant for the first time. Furthermore, MD simulations coupled with dynamic pharmacophore analysis offered detailed insights into dynamic ligand-protein interactions, elucidating the structural basis of ligand binding and modulation induced by single residue mutations. Here, a novel bypass mechanism of R713 that interacts with cAMP in the absence of R710 was demonstrated. These findings unveil new perspectives on cyclic nucleotide binding in HCN4 channels, providing a foundation for future studies of pathogenic HCN4 ion channel mutations.
Collapse
Affiliation(s)
- Magdalena
N. Wojciechowski
- University of Münster, Institute
of Pharmaceutical and Medicinal Chemistry, Pharma Campus, Corrensstr. 48, 48149 Münster, Germany
| | - Johannes Jokiel
- University of Münster, Institute
of Pharmaceutical and Medicinal Chemistry, Pharma Campus, Corrensstr. 48, 48149 Münster, Germany
| | - Hanna Kuss
- University of Münster, Institute
of Pharmaceutical and Medicinal Chemistry, Pharma Campus, Corrensstr. 48, 48149 Münster, Germany
| | - Marcel Bermúdez
- University of Münster, Institute
of Pharmaceutical and Medicinal Chemistry, Pharma Campus, Corrensstr. 48, 48149 Münster, Germany
| | - Joachim Jose
- University of Münster, Institute
of Pharmaceutical and Medicinal Chemistry, Pharma Campus, Corrensstr. 48, 48149 Münster, Germany
| |
Collapse
|
3
|
Kawata S, Mukai Y, Nishimura Y, Takahashi T, Saitoh N. Green fluorescent cAMP indicator of high speed and specificity suitable for neuronal live-cell imaging. Proc Natl Acad Sci U S A 2022; 119:e2122618119. [PMID: 35867738 PMCID: PMC9282276 DOI: 10.1073/pnas.2122618119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/29/2022] [Indexed: 11/18/2022] Open
Abstract
Cyclic adenosine monophosphate (cAMP) is a canonical intracellular messenger playing diverse roles in cell functions. In neurons, cAMP promotes axonal growth during early development, and mediates sensory transduction and synaptic plasticity after maturation. The molecular cascades of cAMP are well documented, but its spatiotemporal profiles associated with neuronal functions remain hidden. Hence, we developed a genetically encoded cAMP indicator based on a bacterial cAMP-binding protein. This indicator "gCarvi" monitors [cAMP]i at 0.2 to 20 µM with a subsecond time resolution and a high specificity over cyclic guanosine monophosphate (cGMP). gCarvi can be converted to a ratiometric probe for [cAMP]i quantification and its expression can be specifically targeted to various subcellular compartments. Monomeric gCarvi also enables simultaneous multisignal monitoring in combination with other indicators. As a proof of concept, simultaneous cAMP/Ca2+ imaging in hippocampal neurons revealed a tight linkage of cAMP to Ca2+ signals. In cerebellar presynaptic boutons, forskolin induced nonuniform cAMP elevations among boutons, which positively correlated with subsequent increases in the size of the recycling pool of synaptic vesicles assayed using FM dye. Thus, the cAMP domain in presynaptic boutons is an important determinant of the synaptic strength.
Collapse
Affiliation(s)
- Seiko Kawata
- Department of Neurophysiology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Yuki Mukai
- Department of Neurophysiology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Yumi Nishimura
- Department of Neurophysiology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Tomoyuki Takahashi
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| | - Naoto Saitoh
- Department of Neurophysiology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| |
Collapse
|
4
|
Li X, Bao S, Wang W, Shi X, Hu Y, Li F, Zhao Q, Zheng F, Lin Z. Case Report: CNNM2 Mutations Cause Damaged Brain Development and Intractable Epilepsy in a Patient Without Hypomagnesemia. Front Genet 2021; 12:705734. [PMID: 34490037 PMCID: PMC8417836 DOI: 10.3389/fgene.2021.705734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/29/2021] [Indexed: 11/24/2022] Open
Abstract
A series of neurological manifestations such as intellectual disability and epilepsy are closely related to hypomagnesemia. Cyclin M2 (CNNM2) proteins, as a member of magnesium (Mg2+) transporters, were found along the basolateral membrane of distal renal tubules and involved in the reabsorption of Mg2+. Homozygous and heterozygous variants in CNNM2 reported so far were responsible for a variable degree of hypomagnesemia, several of which also showed varying degrees of neurological phenotypes such as intellectual disability and epilepsy. Here, we report a de novo heterozygous CNNM2 variant (c.2228C > T, p.Ser743Phe) in a Chinese patient, which is the variant located in the cyclic nucleotide monophosphate-binding homology (CNBH) domain of CNNM2 proteins. The patient presented with mild intellectual disability and refractory epilepsy but without hypomagnesemia. Thus, we reviewed the literature and analyzed the phenotypes related to CNNM2 variants, and then concluded that the number of variant alleles and the changed protein domains correlates with the severity of the disease, and speculated that the CNBH domain of CNNM2 possibly plays a limited role in Mg2+ transport but a significant role in brain development. Furthermore, it can be speculated that neurological phenotypes such as intellectual disability and seizures can be purely caused by CNNM2 variants.
Collapse
Affiliation(s)
- Xiucui Li
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shijia Bao
- Department of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Wei Wang
- Department of Pediatric Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xulai Shi
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ying Hu
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Feng Li
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qianlei Zhao
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Feixia Zheng
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhongdong Lin
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Kim C, Sharma R. Cyclic nucleotide selectivity of protein kinase G isozymes. Protein Sci 2020; 30:316-327. [PMID: 33271627 DOI: 10.1002/pro.4008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 11/07/2022]
Abstract
The intrinsic activity of the C-terminal catalytic (C) domain of cyclic guanosine monophosphate (cGMP)-dependent protein kinases (PKG) is inhibited by interactions with the N-terminal regulatory (R) domain. Selective binding of cGMP to cyclic nucleotide binding (CNB) domains within the R-domain disrupts the inhibitory R-C interaction, leading to the release and activation of the C-domain. Affinity measurements of mammalian and plasmodium PKG CNB domains reveal different degrees of cyclic nucleotide affinity and selectivity; the CNB domains adjacent to the C-domain are more cGMP selective and therefore critical for cGMP-dependent activation. Crystal structures of isolated CNB domains in the presence and absence of cyclic nucleotides reveal isozyme-specific contacts that explain cyclic nucleotide selectivity and conformational changes that accompany CNB. Crystal structures of tandem CNB domains identify two types of CNB-mediated dimeric contacts that indicate cGMP-driven reorganization of domain-domain interfaces that include large conformational changes. Here, we review the available structural and functional information of PKG CNB domains that further advance our understanding of cGMP mediated regulation and activation of PKG isozymes.
Collapse
Affiliation(s)
- Choel Kim
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Rajesh Sharma
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
6
|
Isayenkov SV, Dabravolski SA, Pan T, Shabala S. Phylogenetic Diversity and Physiological Roles of Plant Monovalent Cation/H + Antiporters. FRONTIERS IN PLANT SCIENCE 2020; 11:573564. [PMID: 33123183 PMCID: PMC7573149 DOI: 10.3389/fpls.2020.573564] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/02/2020] [Indexed: 05/23/2023]
Abstract
The processes of plant nutrition, stress tolerance, plant growth, and development are strongly dependent on transport of mineral nutrients across cellular membranes. Plant membrane transporters are key components of these processes. Among various membrane transport proteins, the monovalent cation proton antiporter (CPA) superfamily mediates a broad range of physiological and developmental processes such as ion and pH homeostasis, development of reproductive organs, chloroplast operation, and plant adaptation to drought and salt stresses. CPA family includes plasma membrane-bound Na+/H+ exchanger (NhaP) and intracellular Na+/H+ exchanger NHE (NHX), K+ efflux antiporter (KEA), and cation/H+ exchanger (CHX) family proteins. In this review, we have completed the phylogenetic inventory of CPA transporters and undertaken a comprehensive evolutionary analysis of their development. Compared with previous studies, we have significantly extended the range of plant species, including green and red algae and Acrogymnospermae into phylogenetic analysis. Our data suggest that the multiplication and complexation of CPA isoforms during evolution is related to land colonisation by higher plants and associated with an increase of different tissue types and development of reproductive organs. The new data extended the number of clades for all groups of CPAs, including those for NhaP/SOS, NHE/NHX, KEA, and CHX. We also critically evaluate the latest findings on the biological role, physiological functions and regulation of CPA transporters in relation to their structure and phylogenetic position. In addition, the role of CPA members in plant tolerance to various abiotic stresses is summarized, and the future priority directions for CPA studies in plants are discussed.
Collapse
Affiliation(s)
- Stanislav V. Isayenkov
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
- Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics NAS of Ukraine, Kyiv, Ukraine
| | - Siarhei A. Dabravolski
- Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine [UO VGAVM], Vitebsk, Belarus
| | - Ting Pan
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
7
|
Blanco E, Fortunato S, Viggiano L, de Pinto MC. Cyclic AMP: A Polyhedral Signalling Molecule in Plants. Int J Mol Sci 2020; 21:E4862. [PMID: 32660128 PMCID: PMC7402341 DOI: 10.3390/ijms21144862] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023] Open
Abstract
The cyclic nucleotide cAMP (3',5'-cyclic adenosine monophosphate) is nowadays recognised as an important signalling molecule in plants, involved in many molecular processes, including sensing and response to biotic and abiotic environmental stresses. The validation of a functional cAMP-dependent signalling system in higher plants has spurred a great scientific interest on the polyhedral role of cAMP, as it actively participates in plant adaptation to external stimuli, in addition to the regulation of physiological processes. The complex architecture of cAMP-dependent pathways is far from being fully understood, because the actors of these pathways and their downstream target proteins remain largely unidentified. Recently, a genetic strategy was effectively used to lower cAMP cytosolic levels and hence shed light on the consequences of cAMP deficiency in plant cells. This review aims to provide an integrated overview of the current state of knowledge on cAMP's role in plant growth and response to environmental stress. Current knowledge of the molecular components and the mechanisms of cAMP signalling events is summarised.
Collapse
Affiliation(s)
- Emanuela Blanco
- Institute of Biosciences and Bioresources, National Research Council, Via G. Amendola 165/A, 70126 Bari, Italy
| | - Stefania Fortunato
- Department of Biology, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (S.F.); (L.V.)
| | - Luigi Viggiano
- Department of Biology, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (S.F.); (L.V.)
| | - Maria Concetta de Pinto
- Department of Biology, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (S.F.); (L.V.)
| |
Collapse
|
8
|
Giménez-Mascarell P, Oyenarte I, González-Recio I, Fernández-Rodríguez C, Corral-Rodríguez MÁ, Campos-Zarraga I, Simón J, Kostantin E, Hardy S, Díaz Quintana A, Zubillaga Lizeaga M, Merino N, Diercks T, Blanco FJ, Díaz Moreno I, Martínez-Chantar ML, Tremblay ML, Müller D, Siliqi D, Martínez-Cruz LA. Structural Insights into the Intracellular Region of the Human Magnesium Transport Mediator CNNM4. Int J Mol Sci 2019; 20:E6279. [PMID: 31842432 PMCID: PMC6940986 DOI: 10.3390/ijms20246279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
The four member family of "Cyclin and Cystathionine β-synthase (CBS) domain divalent metal cation transport mediators", CNNMs, are the least-studied mammalian magnesium transport mediators. CNNM4 is abundant in the brain and the intestinal tract, and its abnormal activity causes Jalili Syndrome. Recent findings show that suppression of CNNM4 in mice promotes malignant progression of intestinal polyps and is linked to infertility. The association of CNNM4 with phosphatases of the regenerating liver, PRLs, abrogates its Mg2+-efflux capacity, thus resulting in an increased intracellular Mg2+ concentration that favors tumor growth. Here we present the crystal structures of the two independent intracellular domains of human CNNM4, i.e., the Bateman module and the cyclic nucleotide binding-like domain (cNMP). We also derive a model structure for the full intracellular region in the absence and presence of MgATP and the oncogenic interacting partner, PRL-1. We find that only the Bateman module interacts with ATP and Mg2+, at non-overlapping sites facilitating their positive cooperativity. Furthermore, both domains dimerize autonomously, where the cNMP domain dimer forms a rigid cleft to restrict the Mg2+ induced sliding of the inserting CBS1 motives of the Bateman module, from a twisted to a flat disk shaped dimer.
Collapse
Grants
- ETORTEK IE05-147 Departamento de Industria, Innovación, Comercio y Turismo del Gobierno Vasco
- IE07-202 Departamento de Industria, Innovación, Comercio y Turismo del Gobierno Vasco
- 7/13/08/2006/11 Diputación Foral de Bizkaia
- 7/13/08/2005/14 Diputación Foral de Bizkaia
- BFU2010-17857 Ministerio de Ciencia e Innovación
- BFU2013-47531-R Ministerio de Economía, Industria y Competitividad, Gobierno de España
- BES-2014-068464 Ministerio de Economía, Industria y Competitividad, Gobierno de España
- BFU2016-77408-R Ministerio de Economía, Industria y Competitividad, Gobierno de España
- BES-2017-080435 Ministerio de Economía, Industria y Competitividad, Gobierno de España
- CSD2008-00005 MICINN CONSOLIDER-INGENIO 2010 Program
- BAG MX20113 Diamond Light source
- 2013111114 Gobierno Vasco-Departamento de Salud
- SAF2017-87301-R Ministerio de Economía, Industria y Competitividad, Gobierno de España
- BIO15/CA/014 EITB Maratoia
- SEV-2016-0644 Ministerio de Economía, Industria y Competitividad, Gobierno de España
- 12.01.134/2bT4 Berlin Institute of Health
- #343439 Canadian Institute for Health Research
- MX15832-9 Diamond Light Source
- MX15832-10 Diamond Light Source
- PGC2018-096049-B100 Ministerio de Economía, Industria y Competitividad, Gobierno de España
- CTQ2017-83810-R Ministerio de Economía, Industria y Competitividad, Gobierno de España
- PI2010-17 Departamento de Educación, Universidades e Investigación del Gobierno Vasco
- BAG 2019073624 ALBA Synchrotron
Collapse
Affiliation(s)
- Paula Giménez-Mascarell
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 801A, 48160 Derio, Spain; (P.G.-M.); (I.O.); (I.G.-R.); (C.F.-R.); (M.Á.C.-R.); (I.C.-Z.); (J.S.); (M.L.M.-C.)
| | - Iker Oyenarte
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 801A, 48160 Derio, Spain; (P.G.-M.); (I.O.); (I.G.-R.); (C.F.-R.); (M.Á.C.-R.); (I.C.-Z.); (J.S.); (M.L.M.-C.)
| | - Irene González-Recio
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 801A, 48160 Derio, Spain; (P.G.-M.); (I.O.); (I.G.-R.); (C.F.-R.); (M.Á.C.-R.); (I.C.-Z.); (J.S.); (M.L.M.-C.)
| | - Carmen Fernández-Rodríguez
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 801A, 48160 Derio, Spain; (P.G.-M.); (I.O.); (I.G.-R.); (C.F.-R.); (M.Á.C.-R.); (I.C.-Z.); (J.S.); (M.L.M.-C.)
| | - María Ángeles Corral-Rodríguez
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 801A, 48160 Derio, Spain; (P.G.-M.); (I.O.); (I.G.-R.); (C.F.-R.); (M.Á.C.-R.); (I.C.-Z.); (J.S.); (M.L.M.-C.)
| | - Igone Campos-Zarraga
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 801A, 48160 Derio, Spain; (P.G.-M.); (I.O.); (I.G.-R.); (C.F.-R.); (M.Á.C.-R.); (I.C.-Z.); (J.S.); (M.L.M.-C.)
| | - Jorge Simón
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 801A, 48160 Derio, Spain; (P.G.-M.); (I.O.); (I.G.-R.); (C.F.-R.); (M.Á.C.-R.); (I.C.-Z.); (J.S.); (M.L.M.-C.)
| | - Elie Kostantin
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; (E.K.); (S.H.); (M.L.T.)
| | - Serge Hardy
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; (E.K.); (S.H.); (M.L.T.)
| | - Antonio Díaz Quintana
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla—CSIC. Avda. Americo Vespucio 49, 41092 Sevilla, Spain; (A.D.Q.); (I.D.M.)
| | - Mara Zubillaga Lizeaga
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 800, 48160 Derio, Spain; (M.Z.L.); (N.M.); (T.D.); (F.J.B.)
| | - Nekane Merino
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 800, 48160 Derio, Spain; (M.Z.L.); (N.M.); (T.D.); (F.J.B.)
| | - Tammo Diercks
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 800, 48160 Derio, Spain; (M.Z.L.); (N.M.); (T.D.); (F.J.B.)
| | - Francisco J. Blanco
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 800, 48160 Derio, Spain; (M.Z.L.); (N.M.); (T.D.); (F.J.B.)
- IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao, Spain
| | - Irene Díaz Moreno
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla—CSIC. Avda. Americo Vespucio 49, 41092 Sevilla, Spain; (A.D.Q.); (I.D.M.)
| | - María Luz Martínez-Chantar
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 801A, 48160 Derio, Spain; (P.G.-M.); (I.O.); (I.G.-R.); (C.F.-R.); (M.Á.C.-R.); (I.C.-Z.); (J.S.); (M.L.M.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Spain
| | - Michel L. Tremblay
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; (E.K.); (S.H.); (M.L.T.)
| | - Dominik Müller
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Disorders, Charité Universitäts medizin, 13353 Berlin, Germany;
| | - Dritan Siliqi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche (CNR), Via G. Amendola 122/O, 70126 Bari, Italy;
| | - Luis Alfonso Martínez-Cruz
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 801A, 48160 Derio, Spain; (P.G.-M.); (I.O.); (I.G.-R.); (C.F.-R.); (M.Á.C.-R.); (I.C.-Z.); (J.S.); (M.L.M.-C.)
| |
Collapse
|
9
|
Leypold T, Bonus M, Spiegelhalter F, Schwede F, Schwabe T, Gohlke H, Kusch J. N 6-modified cAMP derivatives that activate protein kinase A also act as full agonists of murine HCN2 channels. J Biol Chem 2019; 294:17978-17987. [PMID: 31615893 DOI: 10.1074/jbc.ra119.010246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/15/2019] [Indexed: 11/06/2022] Open
Abstract
cAMP acts as a second messenger in many cellular processes. Three protein types mainly mediate cAMP-induced effects: PKA, exchange protein directly activated by cAMP (Epac), and cyclic nucleotide-modulated channels (cyclic nucleotide-gated or hyperpolarization-activated and cyclic nucleotide-modulated (HCN) channels). Discrimination among these cAMP signaling pathways requires specific targeting of only one protein. Previously, cAMP modifications at position N 6 of the adenine ring (PKA) and position 2'-OH of the ribose (Epac) have been used to produce target-selective compounds. However, cyclic nucleotide-modulated ion channels were usually outside of the scope of these previous studies. These channels are widely distributed, so possible channel cross-activation by PKA- or Epac-selective agonists warrants serious consideration. Here we demonstrate the agonistic effects of three PKA-selective cAMP derivatives, N 6-phenyladenosine-3',5'-cyclic monophosphate (N 6-Phe-cAMP), N 6-benzyladenosine-3',5'-cyclic monophosphate (N 6-Bn-cAMP), and N 6-benzoyl-adenosine-3',5'-cyclic monophosphate (N 6-Bnz-cAMP), on murine HCN2 pacemaker channels. Electrophysiological characterization in Xenopus oocytes revealed that these derivatives differ in apparent affinities depending on the modification type but that their efficacy and effects on HCN2 activation kinetics are similar to those of cAMP. Docking experiments suggested a pivotal role of Arg-635 at the entrance of the binding pocket in HCN2, either causing stabilizing cation-π interactions with the aromatic ring in N 6-Phe-cAMP or N 6-Bn-cAMP or a steric clash with the aromatic ring in N 6-Bnz-cAMP. A reduced apparent affinity of N 6-Phe-cAMP toward the variants R635A and R635E strengthened that notion. We conclude that some PKA activators also effectively activate HCN2 channels. Hence, when studying PKA-mediated cAMP signaling with cAMP derivatives in a native environment, activation of HCN channels should be considered.
Collapse
Affiliation(s)
- Tim Leypold
- Friedrich Schiller University, University Hospital Jena, Institute of Physiology II, Kollegiengasse 9, 07743 Jena, Germany
| | - Michele Bonus
- Institute for Pharmaceutical and Medical Chemistry, Heinrich Heine University, Universitätsstraβe 1, 40225 Düsseldorf, Germany
| | - Felix Spiegelhalter
- Friedrich Schiller University, University Hospital Jena, Institute of Physiology II, Kollegiengasse 9, 07743 Jena, Germany
| | | | - Tina Schwabe
- Friedrich Schiller University, University Hospital Jena, Institute of Physiology II, Kollegiengasse 9, 07743 Jena, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medical Chemistry, Heinrich Heine University, Universitätsstraβe 1, 40225 Düsseldorf, Germany.,John von Neumann Institute for Computing, Jülich Supercomputing Centre and Institute for Complex Systems - Structural Biochemistry (ICS 6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Jana Kusch
- Friedrich Schiller University, University Hospital Jena, Institute of Physiology II, Kollegiengasse 9, 07743 Jena, Germany
| |
Collapse
|
10
|
Ng LCT, Zhuang M, Van Petegem F, Li YX, Accili EA. Binding and structural asymmetry governs ligand sensitivity in a cyclic nucleotide-gated ion channel. J Gen Physiol 2019; 151:1190-1212. [PMID: 31481514 PMCID: PMC6785730 DOI: 10.1085/jgp.201812162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 04/26/2019] [Accepted: 07/31/2019] [Indexed: 12/17/2022] Open
Abstract
HCN channel opening is facilitated by cyclic nucleotides, but what determines the sensitivity of these channels to cAMP or cGMP is unclear. Ng et al. propose that ligand sensitivity depends on negative cooperativity and the asymmetric effects of ligand binding on channel structure and pore opening. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels open more easily when cAMP or cGMP bind to a domain in the intracellular C-terminus in each of four identical subunits. How sensitivity of the channels to these ligands is determined is not well understood. Here, we apply a mathematical model, which incorporates negative cooperativity, to gating and mutagenesis data available in the literature and combine the results with binding data collected using isothermal titration calorimetry. This model recapitulates the concentration–response data for the effects of cAMP and cGMP on wild-type HCN2 channel opening and, remarkably, predicts the concentration–response data for a subset of mutants with single-point amino acid substitutions in the binding site. Our results suggest that ligand sensitivity is determined by negative cooperativity and asymmetric effects on structure and channel opening, which are tuned by ligand-specific interactions and residues within the binding site.
Collapse
Affiliation(s)
- Leo C T Ng
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Meiying Zhuang
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Yue Xian Li
- Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
| | - Eric A Accili
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
11
|
Current Structural Knowledge on the CNNM Family of Magnesium Transport Mediators. Int J Mol Sci 2019; 20:ijms20051135. [PMID: 30845649 PMCID: PMC6429129 DOI: 10.3390/ijms20051135] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 02/06/2023] Open
Abstract
The cyclin and cystathionine β-synthase (CBS) domain magnesium transport mediators, CNNMs, are key players in maintaining the homeostasis of magnesium in different organs. The human family includes four members, whose impaired activity causes diseases such as Jalili Syndrome or Familial Hypomagnesemia, but is also linked to neuropathologic disorders, altered blood pressure, and infertility. Recent findings demonstrated that CNNMs are associated with the highly oncogenic phosphatases of the regenerating liver to promote tumor growth and metastasis, which has attracted renewed focus on their potential exploitation as targets for cancer treatment. However, the exact function of CNNMs remains unclear and is subject to debate, proposed as either direct transporters, sensors, or homeostatic factors. This review gathers the current structural knowledge on the CNNM family, highlighting similarities and differences with the closely related structural partners such as the bacterial Mg2+/Co2+ efflux protein CorC and the Mg2+ channel MgtE.
Collapse
|
12
|
Haushalter KJ, Casteel DE, Raffeiner A, Stefan E, Patel HH, Taylor SS. Phosphorylation of protein kinase A (PKA) regulatory subunit RIα by protein kinase G (PKG) primes PKA for catalytic activity in cells. J Biol Chem 2018; 293:4411-4421. [PMID: 29378851 PMCID: PMC5868259 DOI: 10.1074/jbc.m117.809988] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 01/23/2018] [Indexed: 01/26/2023] Open
Abstract
cAMP-dependent protein kinase (PKAc) is a pivotal signaling protein in eukaryotic cells. PKAc has two well-characterized regulatory subunit proteins, RI and RII (each having α and β isoforms), which keep the PKAc catalytic subunit in a catalytically inactive state until activation by cAMP. Previous reports showed that the RIα regulatory subunit is phosphorylated by cGMP-dependent protein kinase (PKG) in vitro, whereupon phosphorylated RIα no longer inhibits PKAc at normal (1:1) stoichiometric ratios. However, the significance of this phosphorylation as a mechanism for activating type I PKA holoenzymes has not been fully explored, especially in cellular systems. In this study, we further examined the potential of RIα phosphorylation to regulate physiologically relevant "desensitization" of PKAc activity. First, the serine 101 site of RIα was validated as a target of PKGIα phosphorylation both in vitro and in cells. Analysis of a phosphomimetic substitution in RIα (S101E) showed that modification of this site increases PKAc activity in vitro and in cells, even without cAMP stimulation. Numerous techniques were used to show that although Ser101 variants of RIα can bind PKAc, the modified linker region of the S101E mutant has a significantly reduced affinity for the PKAc active site. These findings suggest that RIα phosphorylation may be a novel mechanism to circumvent the requirement of cAMP stimulus to activate type I PKA in cells. We have thus proposed a model to explain how PKG phosphorylation of RIα creates a "sensitized intermediate" state that is in effect primed to trigger PKAc activity.
Collapse
Affiliation(s)
| | | | - Andrea Raffeiner
- the Institute of Biochemistry, University of Innsbruck, A-6020 Innsbruck, Austria, and
| | - Eduard Stefan
- the Institute of Biochemistry, University of Innsbruck, A-6020 Innsbruck, Austria, and
| | - Hemal H Patel
- Anesthesiology, and
- the Veterans Affairs San Diego Healthcare System, San Diego, California 92161
| | - Susan S Taylor
- From the Departments of Chemistry & Biochemistry,
- Pharmacology, University of California, San Diego, La Jolla, California 92093-0654
| |
Collapse
|
13
|
Liu G, Liang P, Zhang S, Guo A, Wang L, Zheng Y, Luo X. TsPKA-r: a potential immunodiagnostic antigen for the detection of porcine cysticercosis. Acta Trop 2017; 171:80-85. [PMID: 28359828 DOI: 10.1016/j.actatropica.2017.03.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 03/24/2017] [Accepted: 03/25/2017] [Indexed: 02/05/2023]
Abstract
Cysticercosis, caused by metacestodes of Taenia solium, has a significant soci-economic impact and is of considerable importance in public health. However, there are no specific diagnostic antigens to distinguish between T. solim and Taenia hydatigena. In the present study, cAMP-dependent protein kinase regulatory subunit (TsPKA-r), an excretory/secretary (ES) antigen of T. solium, was used to establish a specific and sensitive diagnostic tool for detection of porcine cysticercosis. The full-length sequence encoding TsPKA-r was amplified by PCR, sequenced and then identified by bioinformatics. The fusion protein with 6×His-tags was expressed in E. coli, purified by Ni Sepharose™ 6 Fast Flow and used to test reactionogenicity by immunoblotting. TsPKA-r based indirect enzyme-linked immunosorbent assays (iELISA) showed good performance in recognition of sera of pigs experimentally infected with T. solium metacestodes, with 93.88% sensitivity and 96.40% specificity. There were no cross-reactions against the sera from pigs experimentally infected with T. hydatigena, Toxoplasma gondii or Trichinella spiralis. These results indicate that the TsPKA-r is a promising immunodiagnostic antigen for detection of porcine cysticercosis.
Collapse
|
14
|
Sharma S, Visweswariah SS. Illuminating Cyclic Nucleotides: Sensors for cAMP and cGMP and Their Application in Live Cell Imaging. J Indian Inst Sci 2017. [DOI: 10.1007/s41745-016-0014-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Giménez-Mascarell P, Oyenarte I, Hardy S, Breiderhoff T, Stuiver M, Kostantin E, Diercks T, Pey AL, Ereño-Orbea J, Martínez-Chantar ML, Khalaf-Nazzal R, Claverie-Martin F, Müller D, Tremblay ML, Martínez-Cruz LA. Structural Basis of the Oncogenic Interaction of Phosphatase PRL-1 with the Magnesium Transporter CNNM2. J Biol Chem 2016; 292:786-801. [PMID: 27899452 DOI: 10.1074/jbc.m116.759944] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/28/2016] [Indexed: 12/21/2022] Open
Abstract
Phosphatases of regenerating liver (PRLs), the most oncogenic of all protein-tyrosine phosphatases (PTPs), play a critical role in metastatic progression of cancers. Recent findings established a new paradigm by uncovering that their association with magnesium transporters of the cyclin M (CNNM) family causes a rise in intracellular magnesium levels that promote oncogenic transformation. Recently, however, essential roles for regulation of the circadian rhythm and reproduction of the CNNM family have been highlighted. Here, we describe the crystal structure of PRL-1 in complex with the Bateman module of CNNM2 (CNNM2BAT), which consists of two cystathionine β-synthase (CBS) domains (IPR000664) and represents an intracellular regulatory module of the transporter. The structure reveals a heterotetrameric association, consisting of a disc-like homodimer of CNNM2BAT bound to two independent PRL-1 molecules, each one located at opposite tips of the disc. The structure highlights the key role played by Asp-558 at the extended loop of the CBS2 motif of CNNM2 in maintaining the association between the two proteins and proves that the interaction between CNNM2 and PRL-1 occurs via the catalytic domain of the phosphatase. Our data shed new light on the structural basis underlying the interaction between PRL phosphatases and CNNM transporters and provides a hypothesis about the molecular mechanism by which PRL-1, upon binding to CNNM2, might increase the intracellular concentration of Mg2+ thereby contributing to tumor progression and metastasis. The availability of this structure sets the basis for the rational design of compounds modulating PRL-1 and CNNM2 activities.
Collapse
Affiliation(s)
- Paula Giménez-Mascarell
- From the Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Iker Oyenarte
- From the Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Serge Hardy
- the Rosalind and Morris Goodman Cancer Research Centre
| | - Tilman Breiderhoff
- the Department of Pediatric Nephrology, Charité Universitäts Medizin, Berlin, 13353 Berlin, Germany.,the Berlin Institute of Health, Berlin, Germany
| | - Marchel Stuiver
- the In-Cell NMR Laboratory, Department of NMR-supported Structural Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Rössle Strasse 10, 13125 Berlin, Germany
| | - Elie Kostantin
- the Rosalind and Morris Goodman Cancer Research Centre.,Department of Biochemistry, and
| | - Tammo Diercks
- From the Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Angel L Pey
- the Department of Physical Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain
| | - June Ereño-Orbea
- From the Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - María Luz Martínez-Chantar
- the Metabolomics Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Reham Khalaf-Nazzal
- the Department of Biomedical Sciences, An-Najah National University, P. O. Box 7, Nablus, Palestinian Territory, and
| | - Felix Claverie-Martin
- the Research Unit, Nuestra Señora de Candelaria University Hospital, 38010 Santa Cruz de Tenerife, Spain
| | - Dominik Müller
- the Department of Pediatric Nephrology, Charité Universitäts Medizin, Berlin, 13353 Berlin, Germany,
| | - Michel L Tremblay
- the Rosalind and Morris Goodman Cancer Research Centre, .,Department of Biochemistry, and.,Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Luis Alfonso Martínez-Cruz
- From the Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain,
| |
Collapse
|
16
|
Olivares-González L, Martínez-Fernández de la Cámara C, Hervás D, Marín MP, Lahoz A, Millán JM, Rodrigo R. cGMP-Phosphodiesterase Inhibition Prevents Hypoxia-Induced Cell Death Activation in Porcine Retinal Explants. PLoS One 2016; 11:e0166717. [PMID: 27861632 PMCID: PMC5115799 DOI: 10.1371/journal.pone.0166717] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/02/2016] [Indexed: 12/11/2022] Open
Abstract
Retinal hypoxia and oxidative stress are involved in several retinal degenerations including diabetic retinopathy, glaucoma, central retinal artery occlusion, or retinopathy of prematurity. The second messenger cyclic guanosine monophosphate (cGMP) has been reported to be protective for neuronal cells under several pathological conditions including ischemia/hypoxia. The purpose of this study was to evaluate whether the accumulation of cGMP through the pharmacological inhibition of phosphodiesterase (PDE) with Zaprinast prevented retinal degeneration induced by mild hypoxia in cultures of porcine retina. Exposure to mild hypoxia (5% O2) for 24h reduced cGMP content and induced retinal degeneration by caspase dependent and independent (PARP activation) mechanisms. Hypoxia also produced a redox imbalance reducing antioxidant response (superoxide dismutase and catalase activities) and increasing superoxide free radical release. Zaprinast reduced mild hypoxia-induced cell death through inhibition of caspase-3 or PARP activation depending on the cell layer. PDE inhibition also ameliorated the effects of mild hypoxia on antioxidant response and the release of superoxide radical in the photoreceptor layer. The use of a PKG inhibitor, KT5823, suggested that cGMP-PKG pathway is involved in cell survival and antioxidant response. The inhibition of PDE, therefore, could be useful for reducing retinal degeneration under hypoxic/ischemic conditions.
Collapse
Affiliation(s)
- Lorena Olivares-González
- Grupo de Biomedicina Molecular, Celular y Genómica, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | | | - David Hervás
- Unidad de Bioestadística, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - María Pilar Marín
- Unidad de Microscopía, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Agustin Lahoz
- Unidad de Hepatología Experimental, Unidad Analítica, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - José María Millán
- Grupo de Biomedicina Molecular, Celular y Genómica, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Regina Rodrigo
- Grupo de Biomedicina Molecular, Celular y Genómica, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
- * E-mail:
| |
Collapse
|
17
|
Topçu V, Alp MY, Alp CK, Bakır A, Geylan D, Yılmazoğlu MÖ. A new familial case of Jalili syndrome caused by a novel mutation in CNNM4. Ophthalmic Genet 2016; 38:161-166. [PMID: 27070327 DOI: 10.3109/13816810.2016.1164192] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Jalili syndrome (JS) is a rare autosomal recessive disorder characterized by the combination of cone-rod dystrophy (CRD) and amelogenesis imperfecta. To date, 18 families with JS have been reported, 16 of which were found to have a mutation in CNNM4. We describe three siblings with clinical features of JS with a homozygous missense mutation in exon 4 of CNNM4, c.1781A>G (p.N594S). They demonstrated phenotypic variability in terms of ocular and dental findings. Although fundus examination and optical coherence tomography results were normal, the electroretinogram was compatible with CRD, supporting the diagnosis of JS. The dental phenotype severity also varied among the siblings.
Collapse
Affiliation(s)
- Vehap Topçu
- a Department of Medical Genetics , Zekai Tahir Burak Maternity Teaching Hospital , Ankara , Turkey
| | - Muhammed Yunus Alp
- b Genetic Diagnostic Center, Dışkapı Yıldırım Beyazıt Training and Research Hospital , Ankara , Turkey
| | - Cemile Kedici Alp
- c Department of Restorative Dentistry, Faculty of Dentistry , Gazi University , Ankara , Turkey
| | - Abdullatif Bakır
- a Department of Medical Genetics , Zekai Tahir Burak Maternity Teaching Hospital , Ankara , Turkey
| | - Dilay Geylan
- a Department of Medical Genetics , Zekai Tahir Burak Maternity Teaching Hospital , Ankara , Turkey
| | | |
Collapse
|
18
|
Crystal structure of cyclic nucleotide-binding-like protein from Brucella abortus. Biochem Biophys Res Commun 2015; 468:647-52. [PMID: 26549229 DOI: 10.1016/j.bbrc.2015.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022]
Abstract
The cyclic nucleotide-binding (CNB)-like protein (CNB-L) from Brucella abortus shares sequence homology with CNB domain-containing proteins. We determined the crystal structure of CNB-L at 2.0 Å resolution in the absence of its C-terminal helix and nucleotide. The 3D structure of CNB-L is in a two-fold symmetric form. Each protomer shows high structure similarity to that of cGMP-binding domain-containing proteins, and likely mimics their nucleotide-free conformation. A key residue, Glu17, mediates the dimerization and prevents binding of cNMP to the canonical ligand-pocket. The structurally observed dimer of CNB-L is stable in solution, and thus is likely to be biologically relevant.
Collapse
|
19
|
Mohanty S, Kennedy EJ, Herberg FW, Hui R, Taylor SS, Langsley G, Kannan N. Structural and evolutionary divergence of cyclic nucleotide binding domains in eukaryotic pathogens: Implications for drug design. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1575-85. [PMID: 25847873 DOI: 10.1016/j.bbapap.2015.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 03/25/2015] [Indexed: 12/24/2022]
Abstract
Many cellular functions in eukaryotic pathogens are mediated by the cyclic nucleotide binding (CNB) domain, which senses second messengers such as cyclic AMP and cyclic GMP. Although CNB domain-containing proteins have been identified in many pathogenic organisms, an incomplete understanding of how CNB domains in pathogens differ from other eukaryotic hosts has hindered the development of selective inhibitors for CNB domains associated with infectious diseases. Here, we identify and classify CNB domain-containing proteins in eukaryotic genomes to understand the evolutionary basis for CNB domain functional divergence in pathogens. We identify 359 CNB domain-containing proteins in 31 pathogenic organisms and classify them into distinct subfamilies based on sequence similarity within the CNB domain as well as functional domains associated with the CNB domain. Our study reveals novel subfamilies with pathogen-specific variations in the phosphate-binding cassette. Analyzing these variations in light of existing structural and functional data provides new insights into ligand specificity and promiscuity and clues for drug design. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases.
Collapse
Affiliation(s)
- Smita Mohanty
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Eileen J Kennedy
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, GA 30602, USA
| | | | - Raymond Hui
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Susan S Taylor
- Department of Chemistry & Biochemistry and Pharmacology, University of CA, San Diego, USA
| | - Gordon Langsley
- INSERM U1016, CNRS UMR8104, Cochin Institute, Paris, 75014 France; Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médicine, Université Paris Descartes - Sorbonne Paris Cité, France
| | - Natarajan Kannan
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA; Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
20
|
Nucleotide binding triggers a conformational change of the CBS module of the magnesium transporter CNNM2 from a twisted towards a flat structure. Biochem J 2015; 464:23-34. [PMID: 25184538 DOI: 10.1042/bj20140409] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Recent studies suggest CNNM2 (cyclin M2) to be part of the long-sought basolateral Mg2+ extruder at the renal distal convoluted tubule, or its regulator. In the present study, we explore structural features and ligand-binding capacities of the Bateman module of CNNM2 (residues 429-584), an intracellular domain structurally equivalent to the region involved in Mg2+ handling by the bacterial Mg2+ transporter MgtE, and AMP binding by the Mg2+ efflux protein CorC. Additionally, we studied the structural impact of the pathogenic mutation T568I located in this region. Our crystal structures reveal that nucleotides such as AMP, ADP or ATP bind at only one of the two cavities present in CNNM2429-584. Mg2+ favours ATP binding by alleviating the otherwise negative charge repulsion existing between acidic residues and the polyphosphate group of ATP. In crystals CNNM2429-584 forms parallel dimers, commonly referred to as CBS (cystathionine β-synthase) modules. Interestingly, nucleotide binding triggers a conformational change in the CBS module from a twisted towards a flat disc-like structure that mostly affects the structural elements connecting the Bateman module with the transmembrane region. We furthermore show that the T568I mutation, which causes dominant hypomagnesaemia, mimics the structural effect induced by nucleotide binding. The results of the present study suggest that the T568I mutation exerts its pathogenic effect in humans by constraining the conformational equilibrium of the CBS module of CNNM2, which becomes 'locked' in its flat form.
Collapse
|
21
|
Family of prokaryote cyclic nucleotide-modulated ion channels. Proc Natl Acad Sci U S A 2014; 111:7855-60. [PMID: 24821777 DOI: 10.1073/pnas.1401917111] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cyclic nucleotide-modulated ion channels are molecular pores that mediate the passage of ions across the cell membrane in response to cAMP or GMP. Structural insight into this class of ion channels currently comes from a related homolog, MloK1, that contains six transmembrane domains and a cytoplasmic cyclic nucleotide binding domain. However, unlike eukaryote hyperpolarization-activated cyclic nucleotide-modulated (HCN) and cyclic nucleotide-gated (CNG) channels, MloK1 lacks a C-linker region, which critically contributes to the molecular coupling between ligand binding and channel opening. In this study, we report the identification and characterization of five previously unidentified prokaryote homologs with high sequence similarity (24-32%) to eukaryote HCN and CNG channels and that contain a C-linker region. Biochemical characterization shows that two homologs, termed AmaK and SthK, can be expressed and purified as detergent-solubilized protein from Escherichia coli membranes. Expression of SthK channels in Xenopus laevis oocytes and functional characterization using the patch-clamp technique revealed that the channels are gated by cAMP, but not cGMP, are highly selective for K(+) ions over Na(+) ions, generate a large unitary conductance, and are only weakly voltage dependent. These properties resemble essential properties of various eukaryote HCN or CNG channels. Our results contribute to an understanding of the evolutionary origin of cyclic nucleotide-modulated ion channels and pave the way for future structural and functional studies.
Collapse
|
22
|
Greganova E, Steinmann M, Mäser P, Fankhauser N. In silico ionomics segregates parasitic from free-living eukaryotes. Genome Biol Evol 2014; 5:1902-9. [PMID: 24048281 PMCID: PMC3814192 DOI: 10.1093/gbe/evt134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Ion transporters are fundamental to life. Due to their ancient origin and conservation in sequence, ion transporters are also particularly well suited for comparative genomics of distantly related species. Here, we perform genome-wide ion transporter profiling as a basis for comparative genomics of eukaryotes. From a given predicted proteome, we identify all bona fide ion channels, ion porters, and ion pumps. Concentrating on unicellular eukaryotes (n = 37), we demonstrate that clustering of species according to their repertoire of ion transporters segregates obligate endoparasites (n = 23) on the one hand, from free-living species and facultative parasites (n = 14) on the other hand. This surprising finding indicates strong convergent evolution of the parasites regarding the acquisition and homeostasis of inorganic ions. Random forest classification identifies transporters of ammonia, plus transporters of iron and other transition metals, as the most informative for distinguishing the obligate parasites. Thus, in silico ionomics further underscores the importance of iron in infection biology and suggests access to host sources of nitrogen and transition metals to be selective forces in the evolution of parasitism. This finding is in agreement with the phenomenon of iron withholding as a primordial antimicrobial strategy of infected mammals.
Collapse
Affiliation(s)
- Eva Greganova
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | | | | | | |
Collapse
|
23
|
McCoy JG, Rusinova R, Kim DM, Kowal J, Banerjee S, Jaramillo Cartagena A, Thompson AN, Kolmakova-Partensky L, Stahlberg H, Andersen OS, Nimigean CM. A KcsA/MloK1 chimeric ion channel has lipid-dependent ligand-binding energetics. J Biol Chem 2014; 289:9535-46. [PMID: 24515111 DOI: 10.1074/jbc.m113.543389] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cyclic nucleotide-modulated ion channels play crucial roles in signal transduction in eukaryotes. The molecular mechanism by which ligand binding leads to channel opening remains poorly understood, due in part to the lack of a robust method for preparing sufficient amounts of purified, stable protein required for structural and biochemical characterization. To overcome this limitation, we designed a stable, highly expressed chimeric ion channel consisting of the transmembrane domains of the well characterized potassium channel KcsA and the cyclic nucleotide-binding domains of the prokaryotic cyclic nucleotide-modulated channel MloK1. This chimera demonstrates KcsA-like pH-sensitive activity which is modulated by cAMP, reminiscent of the dual modulation in hyperpolarization-activated and cyclic nucleotide-gated channels that display voltage-dependent activity that is also modulated by cAMP. Using this chimeric construct, we were able to measure for the first time the binding thermodynamics of cAMP to an intact cyclic nucleotide-modulated ion channel using isothermal titration calorimetry. The energetics of ligand binding to channels reconstituted in lipid bilayers are substantially different from those observed in detergent micelles, suggesting that the conformation of the chimera's transmembrane domain is sensitive to its (lipid or lipid-mimetic) environment and that ligand binding induces conformational changes in the transmembrane domain. Nevertheless, because cAMP on its own does not activate these chimeric channels, cAMP binding likely has a smaller energetic contribution to gating than proton binding suggesting that there is only a small difference in cAMP binding energy between the open and closed states of the channel.
Collapse
|
24
|
Podda MV, Grassi C. New perspectives in cyclic nucleotide-mediated functions in the CNS: the emerging role of cyclic nucleotide-gated (CNG) channels. Pflugers Arch 2013; 466:1241-57. [PMID: 24142069 DOI: 10.1007/s00424-013-1373-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 09/27/2013] [Accepted: 09/28/2013] [Indexed: 01/07/2023]
Abstract
Cyclic nucleotides play fundamental roles in the central nervous system (CNS) under both physiological and pathological conditions. The impact of cAMP and cGMP signaling on neuronal and glial cell functions has been thoroughly characterized. Most of their effects have been related to cyclic nucleotide-dependent protein kinase activity. However, cyclic nucleotide-gated (CNG) channels, first described as key mediators of sensory transduction in retinal and olfactory receptors, have been receiving increasing attention as possible targets of cyclic nucleotides in the CNS. In the last 15 years, consistent evidence has emerged for their expression in neurons and astrocytes of the rodent brain. Far less is known, however, about the functional role of CNG channels in these cells, although several of their features, such as Ca(2+) permeability and prolonged activation in the presence of cyclic nucleotides, make them ideal candidates for mediators of physiological functions in the CNS. Here, we review literature suggesting the involvement of CNG channels in a number of CNS cellular functions (e.g., regulation of membrane potential, neuronal excitability, and neurotransmitter release) as well as in more complex phenomena, like brain plasticity, adult neurogenesis, and pain sensitivity. The emerging picture is that functional and dysfunctional cyclic nucleotide signaling in the CNS has to be reconsidered including CNG channels among possible targets. However, concerted efforts and multidisciplinary approaches are still needed to get more in-depth knowledge in this field.
Collapse
Affiliation(s)
- Maria Vittoria Podda
- Institute of Human Physiology, Medical School, Università Cattolica, Largo Francesco Vito 1, 00168, Rome, Italy
| | | |
Collapse
|
25
|
Wang GR, Surks HK, Tang KM, Zhu Y, Mendelsohn ME, Blanton RM. Steroid-sensitive gene 1 is a novel cyclic GMP-dependent protein kinase I substrate in vascular smooth muscle cells. J Biol Chem 2013; 288:24972-83. [PMID: 23831687 DOI: 10.1074/jbc.m113.456244] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NO, via its second messenger cGMP, activates protein kinase GI (PKGI) to induce vascular smooth muscle cell relaxation. The mechanisms by which PKGI kinase activity regulates cardiovascular function remain incompletely understood. Therefore, to identify novel protein kinase G substrates in vascular cells, a λ phage coronary artery smooth muscle cell library was constructed and screened for phosphorylation by PKGI. The screen identified steroid-sensitive gene 1 (SSG1), which harbors several predicted PKGI phosphorylation sites. We observed direct and cGMP-regulated interaction between PKGI and SSG1. In cultured vascular smooth muscle cells, both the NO donor S-nitrosocysteine and atrial natriuretic peptide induced SSG1 phosphorylation, and mutation of SSG1 at each of the two predicted PKGI phosphorylation sites completely abolished its basal phosphorylation by PKGI. We detected high SSG1 expression in cardiovascular tissues. Finally, we found that activation of PKGI with cGMP regulated SSG1 intracellular distribution.
Collapse
Affiliation(s)
- Guang-rong Wang
- Molecular Cardiology Research Institute and Division of Cardiology, Tufts Medical Center, Boston, Massachusetts 02111, USA
| | | | | | | | | | | |
Collapse
|
26
|
Nakagawa T, Touhara K. Extracellular modulation of the silkmoth sex pheromone receptor activity by cyclic nucleotides. PLoS One 2013; 8:e63774. [PMID: 23755109 PMCID: PMC3670925 DOI: 10.1371/journal.pone.0063774] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 04/06/2013] [Indexed: 11/25/2022] Open
Abstract
Odorants and pheromones are essential to insects as chemical cues for finding food or an appropriate mating partner. These volatile compounds bind to olfactory receptors (Ors) expressed by olfactory sensory neurons. Each insect Or functions as a ligand-gated ion channel and is a heteromeric complex that comprises one type of canonical Or and a highly conserved Orco subunit. Because there are many Or types, insect Ors can recognize with high specificity a myriad of chemical cues. Cyclic nucleotides can modulate the activity of insect Or-Orco complexes; however, the mechanism of action of these nucleotides is under debate. Here, we show that cyclic nucleotides, including cAMP and cGMP, interact with the silkmoth sex pheromone receptor complex, BmOr-1-BmOrco, from the outside of the cell and that these nucleotides act as antagonists at low concentrations and weak agonists at high concentrations. These cyclic nucleotides do not compete with the sex pheromone, bombykol, for binding to the BmOr-1 subunit. ATP and GTP also weakly inhibited BmOr-1-BmOrco activity, but D-ribose had no effect; these findings indicated that the purine moiety was crucial for the inhibition. Only the bombykol receptors have been so far shown to be subject to modulation by nucleotide-related compounds, indicating that this responsiveness to these compounds is not common for all insect Or-Orco complexes.
Collapse
Affiliation(s)
- Tatsuro Nakagawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazushige Touhara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- JST ERATO Touhara Chemosensory Signal Project, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
27
|
Donaldson L, Meier S. An affinity pull-down approach to identify the plant cyclic nucleotide interactome. Methods Mol Biol 2013; 1016:155-73. [PMID: 23681578 DOI: 10.1007/978-1-62703-441-8_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cyclic nucleotides (CNs) are intracellular second messengers that play an important role in mediating physiological responses to environmental and developmental signals, in species ranging from bacteria to humans. In response to these signals, CNs are synthesized by nucleotidyl cyclases and then act by binding to and altering the activity of downstream target proteins known as cyclic nucleotide-binding proteins (CNBPs). A number of CNBPs have been identified across kingdoms including transcription factors, protein kinases, phosphodiesterases, and channels, all of which harbor conserved CN-binding domains. In plants however, few CNBPs have been identified as homology searches fail to return plant sequences with significant matches to known CNBPs. Recently, affinity pull-down techniques have been successfully used to identify CNBPs in animals and have provided new insights into CN signaling. The application of these techniques to plants has not yet been extensively explored and offers an alternative approach toward the unbiased discovery of novel CNBP candidates in plants. Here, an affinity pull-down technique for the identification of the plant CN interactome is presented. In summary, the method involves an extraction of plant proteins which is incubated with a CN-bait, followed by a series of increasingly stringent elutions that eliminates proteins in a sequential manner according to their affinity to the bait. The eluted and bait-bound proteins are separated by one-dimensional gel electrophoresis, excised, and digested with trypsin after which the resultant peptides are identified by mass spectrometry-techniques that are commonplace in proteomics experiments. The discovery of plant CNBPs promises to provide valuable insight into the mechanism of CN signal transduction in plants.
Collapse
Affiliation(s)
- Lara Donaldson
- Division of Chemical and Life Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | |
Collapse
|
28
|
Gómez-García I, Stuiver M, Ereño J, Oyenarte I, Corral-Rodríguez MA, Müller D, Martínez-Cruz LA. Purification, crystallization and preliminary crystallographic analysis of the CBS-domain pair of cyclin M2 (CNNM2). Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1198-203. [PMID: 23027747 PMCID: PMC3497979 DOI: 10.1107/s1744309112035348] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/09/2012] [Indexed: 05/13/2024]
Abstract
This work describes the purification and preliminary crystallographic analysis of the CBS-domain pair of the murine CNNM2 magnesium transporter (formerly known as ancient domain protein 2; ACDP2), which consists of a pair of cystathionine β-synthase (CBS) motifs and has 100% sequence identity to its human homologue. CNNM proteins represent the least-studied members of the eight different types of magnesium transporters identified to date in mammals. In humans, the CNNM family is encoded by four genes: CNNM1-4. CNNM1 acts as a cytosolic copper chaperone, whereas CNNM2 and CNNM4 have been associated with magnesium handling. Interestingly, mutations in the CNNM2 gene cause familial dominant hypomagnesaemia (MIM:607803), a rare human disorder characterized by renal and intestinal magnesium (Mg(2+)) wasting, which may lead to symptoms of Mg(2+) depletion such as tetany, seizures and cardiac arrhythmias. This manuscript describes the preliminary crystallographic analysis of two different crystal habits of a truncated form of the protein containing its regulatory CBS-domain pair, which has been reported to host the pathological mutation T568I in humans. The crystals belonged to space groups P2(1)2(1)2 and I222 (or I2(1)2(1)2(1)) and diffracted X-rays to 2.0 and 3.6 Å resolution, respectively, using synchrotron radiation.
Collapse
Affiliation(s)
- Inmaculada Gómez-García
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, Edificio 800, 48160 Derio, Bizkaia, Spain
| | - Marchel Stuiver
- Department of Pediatric Nephrology, Charité Universitätsmedizin, 13353 Berlin, Germany
| | - June Ereño
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, Edificio 800, 48160 Derio, Bizkaia, Spain
| | - Iker Oyenarte
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, Edificio 800, 48160 Derio, Bizkaia, Spain
| | | | - Dominik Müller
- Department of Pediatric Nephrology, Charité Universitätsmedizin, 13353 Berlin, Germany
| | - Luis Alfonso Martínez-Cruz
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, Edificio 800, 48160 Derio, Bizkaia, Spain
| |
Collapse
|
29
|
Arce-Rodríguez A, Durante-Rodríguez G, Platero R, Krell T, Calles B, de Lorenzo V. The Crp regulator of Pseudomonas putida: evidence of an unusually high affinity for its physiological effector, cAMP. Environ Microbiol 2011; 14:702-13. [PMID: 22040086 DOI: 10.1111/j.1462-2920.2011.02622.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although the genome of Pseudomonas putida KT2440 encodes an orthologue of the crp gene of Escherichia coli (encoding the cAMP receptor protein), the regulatory scope of this factor seems to be predominantly co-opted in this bacterium for controlling non-metabolic functions. In order to investigate the reasons for such a functional divergence in otherwise nearly identical proteins, the Crp regulator of P. putida (Crp(P. putida)) was purified to apparent homogeneity and subject to a battery of in vitro assays aimed at determining its principal physicochemical properties. Analytical ultracentrifugation indicated effector-free Crp(P. putida) to be a dimer in solution that undergoes a significant change in its hydrodynamic shape in the presence of cAMP. Such a conformational transition was confirmed by limited proteolysis of the protein in the absence or presence of the inducer. Thermodynamic parameters calculated by isothermal titration calorimetry revealed a tight cAMP-Crp(P. putida) association with an apparent K(D) of 22.5 ± 2.8 nM, i.e. much greater affinity than that reported for the E. coli's counterpart. The regulator also bound cGMP, but with a K(D) = 2.6 ± 0.3 µM. An in vitro transcription system was then set up with purified P. putida's RNA polymerase for examining the preservation of the correct protein-protein architecture that makes Crp to activate target promoters. These results, along with cognate gel retardation assays indicated that all basic features of the reference Crp(E. coli) protein are kept in the P. putida's counterpart, albeit operating under a different set of parameters, the extraordinarily high affinity for cAMP being the most noticeable.
Collapse
Affiliation(s)
- Alejandro Arce-Rodríguez
- Systems Biology Program, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid 28049, Spain
| | | | | | | | | | | |
Collapse
|
30
|
Osborne BW, Wu J, McFarland CJ, Nickl CK, Sankaran B, Casteel DE, Woods VL, Kornev AP, Taylor SS, Dostmann WR. Crystal structure of cGMP-dependent protein kinase reveals novel site of interchain communication. Structure 2011; 19:1317-27. [PMID: 21893290 PMCID: PMC3168983 DOI: 10.1016/j.str.2011.06.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 06/08/2011] [Accepted: 06/13/2011] [Indexed: 11/27/2022]
Abstract
The cGMP-dependent protein kinase (PKG) serves as an integral component of second messenger signaling in a number of biological contexts including cell differentiation, memory, and vasodilation. PKG is homodimeric and large conformational changes accompany cGMP binding. However, the structure of PKG and the molecular mechanisms associated with protomer communication following cGMP-induced activation remain unknown. Here, we report the 2.5 Å crystal structure of a regulatory domain construct (aa 78-355) containing both cGMP binding sites of PKG Iα. A distinct and segregated architecture with an extended central helix separates the two cGMP binding domains. Additionally, a previously uncharacterized helical domain (switch helix) promotes the formation of a hydrophobic interface between protomers. Mutational disruption of this interaction in full-length PKG implicates the switch helix as a critical site of dimer communication in PKG biology. These results offer new structural insight into the mechanism of allosteric PKG activation.
Collapse
Affiliation(s)
- Brent W. Osborne
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, VT 05405
| | - Jian Wu
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093
| | - Caitlin J. McFarland
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, VT 05405
| | - Christian K. Nickl
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, VT 05405
| | - Banumathi Sankaran
- The Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Darren E. Casteel
- Department of Medicine and Cancer Center, University of California, San Diego, La Jolla, California 92093
| | - Virgil L. Woods
- Department of Medicine and Cancer Center, University of California, San Diego, La Jolla, California 92093
| | - Alexandr P. Kornev
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California 92093
| | - Susan S. Taylor
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California 92093
| | - Wolfgang R. Dostmann
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, VT 05405
| |
Collapse
|
31
|
Gómez García I, Oyenarte I, Martínez-Cruz LA. Purification, crystallization and preliminary crystallographic analysis of the CBS pair of the human metal transporter CNNM4. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:349-53. [PMID: 21393841 PMCID: PMC3053161 DOI: 10.1107/s1744309110053856] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 12/22/2010] [Indexed: 04/23/2023]
Abstract
This work describes the purification and preliminary crystallographic analysis of the CBS-pair regulatory domain of the human ancient domain protein 4 (ACDP4), also known as CNNM4. ACDP proteins represent the least-studied members of the eight different types of magnesium transporters that have been identified in mammals to date. In humans the ACDP family includes four members: CNNM1-4. CNNM1 acts as a cytosolic copper chaperone and has been associated with urofacial syndrome, whereas CNNM2 and CNNM4 have been identified as magnesium transporters. Interestingly, mutations in the CNNM4 gene have clinical consequences that are limited to retinal function and biomineralization and are considered to be the cause of Jalili syndrome, which consists of autosomal recessive cone-rod dystrophy and amelogenesis imperfecta. The truncated protein was overexpressed, purified and crystallized in the orthorhombic space group C222. The crystals diffracted X-rays to 3.6 Å resolution using synchrotron radiation. Matthews volume calculations suggested the presence of two molecules in the asymmetric unit, which were likely to correspond to a CBS module of the CBS pair of CNNM4.
Collapse
Affiliation(s)
- Inmaculada Gómez García
- Structural Biology Unit, CIC bioGUNE, Edificio 800, Parque Tecnológico de Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Iker Oyenarte
- Structural Biology Unit, CIC bioGUNE, Edificio 800, Parque Tecnológico de Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Luis Alfonso Martínez-Cruz
- Structural Biology Unit, CIC bioGUNE, Edificio 800, Parque Tecnológico de Bizkaia, 48160 Derio, Bizkaia, Spain
| |
Collapse
|
32
|
Cervetto C, Maura G, Marcoli M. Inhibition of presynaptic release-facilitatory kainate autoreceptors by extracellular cyclic GMP. J Pharmacol Exp Ther 2009; 332:210-9. [PMID: 19794031 DOI: 10.1124/jpet.109.154955] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We found that both alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate autoreceptors were present on the glutamate-releasing terminals of cerebellar parallel/climbing fibers and that they functioned as facilitatory autoreceptors. Extracellular cGMP inhibited the neurotransmitter release evoked by presynaptic kainate receptor activation; the inhibitory effect of extracellular cGMP was selective for the kainate autoreceptor-mediated response and did not affect the AMPA autoreceptor-mediated response. Endogenously synthesized cGMP might be the physiological source for the extracellular cGMP modulating the response to kainate autoreceptor activation.
Collapse
Affiliation(s)
- Chiara Cervetto
- Department of Experimental Medicine, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | | | | |
Collapse
|
33
|
Moon RW, Taylor CJ, Bex C, Schepers R, Goulding D, Janse CJ, Waters AP, Baker DA, Billker O. A cyclic GMP signalling module that regulates gliding motility in a malaria parasite. PLoS Pathog 2009; 5:e1000599. [PMID: 19779564 PMCID: PMC2742896 DOI: 10.1371/journal.ppat.1000599] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 08/31/2009] [Indexed: 11/23/2022] Open
Abstract
The ookinete is a motile stage in the malaria life cycle which forms in the mosquito blood meal from the zygote. Ookinetes use an acto-myosin motor to glide towards and penetrate the midgut wall to establish infection in the vector. The regulation of gliding motility is poorly understood. Through genetic interaction studies we here describe a signalling module that identifies guanosine 3′, 5′-cyclic monophosphate (cGMP) as an important second messenger regulating ookinete differentiation and motility. In ookinetes lacking the cyclic nucleotide degrading phosphodiesterase δ (PDEδ), unregulated signalling through cGMP results in rounding up of the normally banana-shaped cells. This phenotype is suppressed in a double mutant additionally lacking guanylyl cyclase β (GCβ), showing that in ookinetes GCβ is an important source for cGMP, and that PDEδ is the relevant cGMP degrading enzyme. Inhibition of the cGMP-dependent protein kinase, PKG, blocks gliding, whereas enhanced signalling through cGMP restores normal gliding speed in a mutant lacking calcium dependent protein kinase 3, suggesting at least a partial overlap between calcium and cGMP dependent pathways. These data demonstrate an important function for signalling through cGMP, and most likely PKG, in dynamically regulating ookinete gliding during the transmission of malaria to the mosquito. Malaria parasites are single celled organisms, which must alternate between vertebrate and mosquito hosts to survive and spread. In both hosts, certain parasite stages can glide through tissues and invade cells. Many components of the molecular motor that powers gliding and invasion are known and we have a good idea how these may interact to generate force. It is less well understood how the motor is assembled and how its component parts are regulated to switch it on and off. We have begun to address these questions in the ookinete, a parasite stage, which forms in the blood meal of a mosquito and relies on gliding to penetrate the gut wall. Using a malaria parasite of rodents, we have examined the effect of deleting candidate genes involved in controlling levels of the intracellular signalling molecule cyclic guanosine monophosphate (cGMP). We show that the right balance between cGMP production and degradation is important for ookinetes to glide, while also maintaining their typical cell shape. Overall levels of cGMP are not much affected in the mutants, though, and we therefore believe the messenger exerts its effect either locally within the cell or only while the parasite is gliding.
Collapse
Affiliation(s)
- Robert W. Moon
- Wellcome Trust Sanger Institute, Cambridge Hinxton, United Kingdom
- Imperial College London, Department of Cell and Molecular Biology, London, United Kingdom
| | - Cathy J. Taylor
- Department of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Claudia Bex
- Wellcome Trust Sanger Institute, Cambridge Hinxton, United Kingdom
| | - Rebecca Schepers
- Imperial College London, Department of Cell and Molecular Biology, London, United Kingdom
| | - David Goulding
- Wellcome Trust Sanger Institute, Cambridge Hinxton, United Kingdom
| | - Chris J. Janse
- Department of Parasitology, Centre of Infectious Diseases, Leiden University Medical Centre, Leiden, The Netherlands
| | - Andrew P. Waters
- Wellcome Trust Centre of Molecular Parasitology and Division of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | - David A. Baker
- Department of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Oliver Billker
- Wellcome Trust Sanger Institute, Cambridge Hinxton, United Kingdom
- Imperial College London, Department of Cell and Molecular Biology, London, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Brelidze TI, Carlson AE, Zagotta WN. Absence of direct cyclic nucleotide modulation of mEAG1 and hERG1 channels revealed with fluorescence and electrophysiological methods. J Biol Chem 2009; 284:27989-27997. [PMID: 19671703 DOI: 10.1074/jbc.m109.016337] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Similar to CNG and HCN channels, EAG and ERG channels contain a cyclic nucleotide binding domain (CNBD) in their C terminus. While cyclic nucleotides have been shown to facilitate opening of CNG and HCN channels, their effect on EAG and ERG channels is less clear. Here we explored cyclic nucleotide binding and modulation of mEAG1 and hERG1 channels with fluorescence and electrophysiology. Binding of cyclic nucleotides to the isolated CNBD of mEAG1 and hERG1 channels was examined with two independent fluorescence-based methods: changes in tryptophan fluorescence and fluorescence of an analog of cAMP, 8-NBD-cAMP. As a positive control for cyclic nucleotide binding we used changes in the fluorescence of the isolated CNBD of mHCN2 channels. Our results indicated that cyclic nucleotides do not bind to the isolated CNBD domain of mEAG1 channels and bind with low affinity (K(d) > or = 51 microm) to the isolated CNBD of hERG1 channels. Consistent with the results on the isolated CNBD, application of cyclic nucleotides to inside-out patches did not affect currents recorded from mEAG1 channels. Surprisingly, despite its low affinity binding to the isolated CNBD, cAMP also had no effect on currents from hERG1 channels even at high concentrations. Our results indicate that cyclic nucleotides do not directly modulate mEAG1 and hERG1 channels. Further studies are necessary to determine if the CNBD in the EAG family of K(+) channels might harbor a binding site for a ligand yet to be uncovered.
Collapse
Affiliation(s)
- Tinatin I Brelidze
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington 98195; Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195
| | - Anne E Carlson
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington 98195
| | - William N Zagotta
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington 98195; Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195.
| |
Collapse
|
35
|
Scholten A, Aye TT, Heck AJR. A multi-angular mass spectrometric view at cyclic nucleotide dependent protein kinases: in vivo characterization and structure/function relationships. MASS SPECTROMETRY REVIEWS 2008; 27:331-353. [PMID: 18381623 DOI: 10.1002/mas.20166] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Mass spectrometry has evolved in recent years to a well-accepted and increasingly important complementary technique in molecular and structural biology. Here we review the many contributions mass spectrometry based studies have made in recent years in our understanding of the important cyclic nucleotide activated protein kinase A (PKA) and protein kinase G (PKG). We both describe the characterization of kinase isozymes, substrate phosphorylation, binding partners and post-translational modifications by proteomics based methodologies as well as their structural and functional properties as revealed by native mass spectrometry, H/D exchange MS and ion mobility. Combining all these mass spectrometry based data with other biophysical and biochemical data has been of great help to unravel the intricate regulation of kinase function in the cell in all its magnificent complexity.
Collapse
Affiliation(s)
- Arjen Scholten
- Biomolecular Mass Spectrometry & Proteomics Group, Utrecht Institute of Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Sorbonnelaan 16, 3584CA, Utrecht, The Netherlands
| | | | | |
Collapse
|
36
|
Harper SM, Wienk H, Wechselberger RW, Bos JL, Boelens R, Rehmann H. Structural dynamics in the activation of Epac. J Biol Chem 2007; 283:6501-8. [PMID: 18167352 DOI: 10.1074/jbc.m707849200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epac1 is a cAMP-responsive exchange factor for the small G-protein Rap. It consists of a regulatory region containing a cyclic nucleotide binding (CNB) domain and a catalytic region that activates Rap. In the absence of cAMP, access of Rap to the catalytic site is blocked by the regulatory region. We analyzed the conformational states of the CNB domain in the absence and in the presence of cAMP and cAMP analogues by NMR spectroscopy, resulting in the first direct insights into the activation mechanism of Epac. We prove that the CNB domain exists in equilibrium between the inactive and the active conformation, which is shifted by binding of cAMP. cAMP binding results in conformational changes in both the ligand binding pocket and the outer helical segments. We used two different cAMP antagonists that block these successive changes to elucidate the steps of this process. Highlighting the role of dynamics, the superactivator 8-pCPT-2'-O-Me-cAMP induces similar conformational changes as cAMP but causes different internal mobility. The results reveal the critical elements of the CNB domain of Epac required for activation and highlight the role of dynamics in this process.
Collapse
Affiliation(s)
- Shannon M Harper
- Department of Physiological Chemistry and Centre for Biomedical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
37
|
Chiu PL, Pagel MD, Evans J, Chou HT, Zeng X, Gipson B, Stahlberg H, Nimigean CM. The structure of the prokaryotic cyclic nucleotide-modulated potassium channel MloK1 at 16 A resolution. Structure 2007; 15:1053-64. [PMID: 17850745 PMCID: PMC2000844 DOI: 10.1016/j.str.2007.06.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 06/11/2007] [Accepted: 06/14/2007] [Indexed: 11/24/2022]
Abstract
The gating ring of cyclic nucleotide-modulated channels is proposed to be either a two-fold symmetric dimer of dimers or a four-fold symmetric tetramer based on high-resolution structure data of soluble cyclic nucleotide-binding domains and functional data on intact channels. We addressed this controversy by obtaining structural data on an intact, full-length, cyclic nucleotide-modulated potassium channel, MloK1, from Mesorhizobium loti, which also features a putative voltage-sensor. We present here the 3D single-particle structure by transmission electron microscopy and the projection map of membrane-reconstituted 2D crystals of MloK1 in the presence of cAMP. Our data show a four-fold symmetric arrangement of the CNBDs, separated by discrete gaps. A homology model for full-length MloK1 suggests a vertical orientation for the CNBDs. The 2D crystal packing in the membrane-embedded state is compatible with the S1-S4 domains in the vertical "up" state.
Collapse
Affiliation(s)
- Po-Lin Chiu
- Molecular and Cellular Biology, College of Biological Sciences, University of California-Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Clardy J, Brady SF. Cyclic AMP directly activates NasP, an N-acyl amino acid antibiotic biosynthetic enzyme cloned from an uncultured beta-proteobacterium. J Bacteriol 2007; 189:6487-9. [PMID: 17586635 PMCID: PMC1951892 DOI: 10.1128/jb.00457-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cyclic AMP (cAMP)-dependent biosynthesis of N-acylphenylalanine antibiotics by NasP, an environmental DNA-derived N-acyl amino acid synthase, is controlled by an NasP-associated cyclic nucleotide-binding domain and is independent of the global cAMP signal transducer, cAMP receptor protein. A 16S rRNA gene sequence found on the same environmental DNA cosmid as NasP is most closely related to 16S sequences from beta-proteobacteria.
Collapse
Affiliation(s)
- Jon Clardy
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
39
|
Nimigean CM, Pagel MD. Ligand binding and activation in a prokaryotic cyclic nucleotide-modulated channel. J Mol Biol 2007; 371:1325-37. [PMID: 17619023 DOI: 10.1016/j.jmb.2007.06.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 06/06/2007] [Accepted: 06/11/2007] [Indexed: 01/20/2023]
Abstract
We designed a technique that directly determines binding of cyclic nucleotides to the prokaryotic cyclic nucleotide modulated ion channel MloK1. The ability to purify large quantities of MloK1 facilitated equilibrium binding assays, which avoided the inherent problem of relatively low affinity binding which hindered the use of eukaryotic channels. We found that MloK1 specifically binds cAMP and cGMP with affinity values in the range of those observed for activity assays for eukaryotic channels. Notably, the concentration of ligand that elicited 50% of maximum response in (86)Rb flux assays (K1/2), also referred to as ligand sensitivity, was smaller than the corresponding value obtained from binding assays (Kd) potentially indicating significant channel activity in partially liganded states. To gain further insight into the mechanism of binding and activation of these channels, we mutated several amino acids in the ligand-binding pocket of MloK1, known from electrophysiological studies of homologous eukaryotic channels to affect ligand selectivity and binding efficacy. The S308V MloK1 mutant (a mutation which decreases cGMP selectivity in eukaryotic channels) decreased both the observed cGMP binding affinity and the sensitivity to cGMP relative to the wild-type (WT) channel, leaving those for cAMP unchanged. Conversely, the A352D MloK1 mutant (a mutation which increases cGMP selectivity in eukaryotic channels) increased both the affinity and the sensitivity for cGMP relative to the WT channel, again leaving those for cAMP unchanged. Mutations at R307 in MloK1, the most conserved residue in the binding pocket of cyclic nucleotide-binding proteins, were not tolerated as these mutants do not form functional channels. Furthermore, for each mutation, changes in binding affinities were mirrored by equivalent changes in ligand sensitivity. These data, together with the evidence that partially liganded channels open significantly, suggested strong coupling between cyclic nucleotide binding and MloK1 channel opening.
Collapse
Affiliation(s)
- Crina M Nimigean
- Department of Physiology and Membrane Biology, University of California Davis, One Shields Ave., Davis, CA 95616, USA.
| | | |
Collapse
|
40
|
Yamada T, Matsuda K, Uchiyama M. Frog ANP increases the amiloride-sensitive Na(+) channel activity in urinary bladder cells of Japanese tree frog, Hyla japonica. Gen Comp Endocrinol 2007; 152:286-8. [PMID: 17184780 DOI: 10.1016/j.ygcen.2006.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 11/09/2006] [Accepted: 11/13/2006] [Indexed: 11/25/2022]
Abstract
We examined the mechanism of amiloride-sensitive Na(+) channels (ENaC) activated by fANP in epithelial cells of frog urinary bladder by using a cell-attached patch-clamp technique. ENaC activities in the epithelial cells were significantly increased following administration of both 10(-9)M fANP and 10(-5)M 8-Br-cGMP. Both fANP and 8-Br-cGMP, however, failed to activate the ENaC in the presence of 10(-6)M amiloride. In addition, 8-Br-cGMP failed to activate the ENaC in the presence of a PKA inhibitor, KT-5720. In the next experiment, we measured both cGMP and cAMP production levels after treatment of fANP on the frog urinary bladder cells. Frog ANP significantly increased cGMP production, but not the cAMP production. Taken together, these results suggest that fANP activates ENaC through increases in cGMP production and activation of PKA.
Collapse
Affiliation(s)
- Toshiki Yamada
- Department of Life and Environmental Science, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | | | | |
Collapse
|
41
|
Rehmann H, Wittinghofer A, Bos JL. Capturing cyclic nucleotides in action: snapshots from crystallographic studies. Nat Rev Mol Cell Biol 2007; 8:63-73. [PMID: 17183361 DOI: 10.1038/nrm2082] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fifty years ago, cyclic AMP was discovered as a second messenger of hormone action, heralding the age of signal transduction. Many cellular processes were found to be regulated by cAMP and the related cyclic GMP. Cyclic nucleotides function by binding to and activating their effectors - protein kinase A, protein kinase G, cyclic-nucleotide-regulated ion channels and the guanine nucleotide-exchange factor Epac. Recent structural insights have now made it possible to propose a general structural mechanism for how cyclic nucleotides regulate these proteins.
Collapse
Affiliation(s)
- Holger Rehmann
- Department of Physiological Chemistry and Centre for Biomedical Genetics, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands.
| | | | | |
Collapse
|
42
|
Saito N, Xu J, Hosaka T, Okamoto S, Aoki H, Bibb MJ, Ochi K. EshA accentuates ppGpp accumulation and is conditionally required for antibiotic production in Streptomyces coelicolor A3(2). J Bacteriol 2006; 188:4952-61. [PMID: 16788203 PMCID: PMC1483009 DOI: 10.1128/jb.00343-06] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Disruption of eshA, which encodes a 52-kDa protein that is produced late during the growth of Streptomyces coelicolor A3(2), resulted in elimination of actinorhodin production. In contrast, disruption of eshB, a close homologue of eshA, had no effect on antibiotic production. The eshA disruptant accumulated lower levels of ppGpp than the wild-type strain accumulated. The loss of actinorhodin production in the eshA disruptant was restored by expression of a truncated relA gene, which increased the ppGpp level to the level in the wild-type strain, indicating that the reduced ppGpp accumulation in the eshA mutant was solely responsible for the loss of antibiotic production. Antibiotic production was also restored in the eshA mutant by introducing mutations into rpoB (encoding the RNA polymerase beta subunit) that bypassed the requirement for ppGpp, which is consistent with a role for EshA in modulating ppGpp levels. EshA contains a cyclic nucleotide-binding domain that is essential for its role in triggering actinorhodin production. EshA may provide new insights and opportunities to unravel the molecular signaling events that occur during physiological differentiation in streptomycetes.
Collapse
Affiliation(s)
- Natsumi Saito
- National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Joyce MG, Levy C, Gábor K, Pop SM, Biehl BD, Doukov TI, Ryter JM, Mazon H, Smidt H, van den Heuvel RHH, Ragsdale SW, van der Oost J, Leys D. CprK crystal structures reveal mechanism for transcriptional control of halorespiration. J Biol Chem 2006; 281:28318-25. [PMID: 16803881 DOI: 10.1074/jbc.m602654200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Halorespiration is a bacterial respiratory process in which haloorganic compounds act as terminal electron acceptors. This process is controlled at transcriptional level by CprK, a member of the ubiquitous CRP-FNR family. Here we present the crystal structures of oxidized CprK in presence of the ligand ortho-chlorophenolacetic acid and of reduced CprK in absence of this ligand. These structures reveal that highly specific binding of chlorinated, rather than the corresponding non-chlorinated, phenolic compounds in the NH(2)-terminal beta-barrels causes reorientation of these domains with respect to the central alpha-helix at the dimer interface. Unexpectedly, the COOH-terminal DNA-binding domains dimerize in the non-DNA binding state. We postulate the ligand-induced conformational change allows formation of interdomain contacts that disrupt the DNA domain dimer interface and leads to repositioning of the helix-turn-helix motifs. These structures provide a structural framework for further studies on transcriptional control by CRP-FNR homologs in general and of halorespiration regulation by CprK in particular.
Collapse
Affiliation(s)
- M Gordon Joyce
- Manchester Interdisciplinary Biocentre, P. O. Box 88, Manchester, M60 1QD, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Maathuis FJM. cGMP modulates gene transcription and cation transport in Arabidopsis roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 45:700-11. [PMID: 16460505 DOI: 10.1111/j.1365-313x.2005.02616.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Summary The occurrence of the second messenger 3',5'-cyclic guanyl monophosphate (cGMP) has been shown in a number of plant species, including barley, tobacco and Arabidopsis. Physiological processes where cGMP signalling has been observed, or has been inferred, to play a role include chloroplast development, alpha-amylase production in aleurone tissue, NO-dependent expression of defence-related genes and salt/osmotic stress. In most cases, it is unknown how cGMP exerts its effects and what the downstream targets are. A transcriptomics approach was therefore used to identify putative targets for cGMP signalling. Root exposure to 10 mum membrane permeable cGMP induced changes in abundance for many transcripts involved in metabolism, gene transcription, signalling and defence. In particular, monovalent cation transporters such as non-selective ion channels and cation:proton antiporters were found to be affected in cGMP exposed roots. In addition, exposure to cGMP was found to modulate influx and efflux of the monovalent cations Na+ and K+.
Collapse
|
45
|
Felce J, Saier MH. Carbonic anhydrases fused to anion transporters of the SulP family: evidence for a novel type of bicarbonate transporter. J Mol Microbiol Biotechnol 2006; 8:169-76. [PMID: 16088218 DOI: 10.1159/000085789] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The sulfate permease (SulP) family of secondary carriers (TC #2.A.53) includes functionally characterized members that are inorganic anion:H+ symporters and anion:anion antiporters. We here describe members of this family that are fused to non-transporter domains, a relatively rare occurrence in prokaryotes. One subfamily includes members that are either fused to or are encoded within operons that also encode homologues of carbonic anhydrases, suggesting that these carriers function to take up bicarbonate or carbonate. Within another subfamily, a SulP homologue is fused to rhodanese, a thiosulfate:cyanide sulfotransferase, suggesting that this carrier functions in sulfate uptake. Some homologues are encoded in operons that also encode putative Na+/H+ antiporters of the NhaD family (TC #2.A.62) or putative Na+:HCO3- symporters of the SBT family (TC #2.A.83). SulP homologues present in fungi and some bacteria are fused to cyclic AMP-binding domains and STAS domains that presumably function in regulation or targeting. Phylogenetic analyses reveal the relationships of these proteins and protein domains to each other and show that in some cases, but not in others, the hydrophilic domains/proteins have coevolved with the transporters.
Collapse
Affiliation(s)
- Jeremy Felce
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | |
Collapse
|
46
|
Kissmehl R, Krüger TP, Treptau T, Froissard M, Plattner H. Multigene family encoding 3',5'-cyclic-GMP-dependent protein kinases in Paramecium tetraurelia cells. EUKARYOTIC CELL 2006; 5:77-91. [PMID: 16400170 PMCID: PMC1360248 DOI: 10.1128/ec.5.1.77-91.2006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Accepted: 11/01/2005] [Indexed: 01/28/2023]
Abstract
In the ciliate Paramecium tetraurelia, 3',5'-cyclic GMP (cGMP) is one of the second messengers involved in several signal transduction pathways. The enzymes for its production and degradation are well established for these cells, whereas less is known about the potential effector proteins. On the basis of a current Paramecium genome project, we have identified a multigene family with at least 35 members, all of which encode cGMP-dependent protein kinases (PKGs). They can be classified into 16 subfamilies with several members each. Two of the genes, PKG1-1 and PKG2-1, were analyzed in more detail after molecular cloning. They encode monomeric enzymes of 770 and 819 amino acids, respectively, whose overall domain organization resembles that in higher eukaryotes. The enzymes contain a regulatory domain of two tandem cyclic nucleotide-binding sites flanked by an amino-terminal region for intracellular localization and a catalytic domain with highly conserved regions for ATP binding and catalysis. However, some Paramecium PKGs show a different structure. In Western blots, PKGs are detected both as cytosolic and as structure-bound forms. Immunofluorescence labeling shows enrichment in the cell cortex, notably around the dense-core secretory vesicles (trichocysts), as well as in cilia. Immunogold electron microscopy analysis reveals consistent labeling of ciliary membranes, of the membrane complex composed of cell membrane and cortical Ca2+ stores, and of regions adjacent to ciliary basal bodies, trichocysts, and trafficking vesicles. Since PKGs (re)phosphorylate the exocytosis-sensitive phosphoprotein pp63/pf upon stimulation, the role of PKGs during stimulated exocytosis is discussed, in addition to a role in ciliary beat regulation.
Collapse
Affiliation(s)
- Roland Kissmehl
- Department of Biology, University of Konstanz, P.O. Box 5560, 78457 Konstanz, Germany.
| | | | | | | | | |
Collapse
|
47
|
Hahnefeld C, Moll D, Goette M, Herberg FW. Rearrangements in a hydrophobic core region mediate cAMP action in the regulatory subunit of PKA. Biol Chem 2005; 386:623-31. [PMID: 16207083 DOI: 10.1515/bc.2005.073] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
cAMP-dependent protein kinase (PKA) forms an inactive heterotetramer of two regulatory (R; with two cAMP-binding domains A and B each) and two catalytic (C) subunits. Upon the binding of four cAMP molecules to the R dimer, the monomeric C subunits dissociate. Based on sequence analysis of cyclic nucleotide-binding domains in prokaryotes and eukaryotes and on crystal structures of cAMP-bound R subunit and cyclic nucleotide-free Epac (exchange protein directly activated by cAMP), four amino acids were identified (Leu203, Tyr229, Arg239 and Arg241) and probed for cAMP binding to the R subunits and for R/C interaction. Arg239 and Arg241 (mutated to Ala and Glu) displayed no differences in the parameters investigated. In contrast, Leu203 (mutated to Ala and Trp) and Tyr229 (mutated to Ala and Thr) exhibited up to 30-fold reduced binding affinity for the C subunit and up to 120-fold reduced binding affinity for cAMP. Tyr229Asp showed the most severe effects, with 350-fold reduced affinity for cAMP and no detectable binding to the C subunit. Based on these results and structural data in the cAMP-binding domain, a switch mechanism via a hydrophobic core region is postulated that is comparable to an activation model proposed for Epac.
Collapse
Affiliation(s)
- Claudia Hahnefeld
- Department of Biochemistry, University of Kassel, D-34132 Kassel, Germany
| | | | | | | |
Collapse
|
48
|
Sanghi S, Kumar R, Smith M, Baker KM, Dostal DE. Activation of protein kinase A by atrial natriuretic peptide in neonatal rat cardiac fibroblasts: role in regulation of the local renin-angiotensin system. ACTA ACUST UNITED AC 2005; 132:1-8. [PMID: 16194576 DOI: 10.1016/j.regpep.2005.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Revised: 03/15/2005] [Accepted: 06/15/2005] [Indexed: 11/12/2022]
Abstract
There is an inverse relationship between renin and atrial natriuretic peptide (ANP) levels in the plasma. Since both the ANP and renin-angiotensin system (RAS) are upregulated in development and cardiac hypertrophy, we tested whether ANP differentially regulates RAS in cardiac cells. Cardiac fibroblasts isolated from neonatal rats were treated with ANP(1-28), a biologically active fragment of ANP. Renin and angiotensinogen (Ao) mRNA levels were measured by quantitative multiplex RT-PCR and protein levels determined by Western blot analysis. ANP(1-28) increased renin and Ao mRNA levels (737+/-131% and 178+/-51.3%) with EC50 values of 4.12+/-0.3 and 8.67+/-0.22 nmol/L, respectively. At the protein level, secretion of renin and Ao was significantly enhanced resulting in approximately 4-fold increase in ANG II level in the medium. The effect of ANP(1-28) on renin and Ao mRNA expression were reproduced by 8-bromo-cyclic GMP. Inhibition of protein kinase G (PKG) with KT5823 blunted ANP(1-28)-induced upregulation of renin, but not Ao mRNA, while inhibition of protein kinase A (PKA) with KT5720 attenuated the upregulation of both renin and Ao mRNA. These findings suggest that unlike in plasma, ANP positively regulates the RAS in cardiac fibroblasts, which may have a significant role in development of the fetal heart.
Collapse
Affiliation(s)
- Sandhya Sanghi
- Division of Molecular Cardiology, Cardiovascular Research Institute, The Texas A&M University System Health Science Center, College of Medicine, TX, USA
| | | | | | | | | |
Collapse
|
49
|
Leboulle G, Müller U. Synergistic activation of insect cAMP-dependent protein kinase A (type II) by cyclicAMP and cyclicGMP. FEBS Lett 2004; 576:216-20. [PMID: 15474040 DOI: 10.1016/j.febslet.2004.08.079] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Revised: 08/06/2004] [Accepted: 08/17/2004] [Indexed: 11/19/2022]
Abstract
The high cGMP sensitivity of cAMP-dependent protein kinase A (type II) (PKAII) from invertebrates led to the hypothesis that cGMP directly activates PKAII under physiological conditions. We tested this idea using PKAII holoenzyme purified from the honeybee brain in an assay with short stimulation times. In the presence of very low cAMP concentrations, we found a synergistic increase in PKAII activation by physiological cGMP concentrations. Cloning honeybee regulatory subunit RII and phylogenetic comparison of the two cyclic nucleotide-binding sites of RII reveal a high relation of domain A of insect RII with cGMP-binding domains of cGMP-dependent protein kinases.
Collapse
Affiliation(s)
- Gérard Leboulle
- Institut für Biologie, Freie Universität Berlin, Neurobiologie Königin-Luise-Strasse 28/30, D-14195 Berlin, Germany.
| | | |
Collapse
|
50
|
Abstract
The natural occurrence of cyclic nucleotides in higher plants, formerly a topic of fierce debate, is now established, as is the presence of nucleotidyl cyclases and cyclic nucleotide phosphodiesterases capable of their synthesis and breakdown. Here we describe the significant properties of cyclic nucleotides, also outlining their second messenger functions and the history of plant cyclic nucleotide research over its first three decades. Findings of the last five years are detailed within the context of the functional role of cyclic nucleotides in higher plants, with particular emphasis upon nucleotidyl cyclases and cyclic nucleotide-responsive protein kinases, -binding proteins and -gated ion channels, with future objectives and strategies discussed.
Collapse
Affiliation(s)
- Russell P Newton
- Biochemistry Group, School of Biological Sciences, Wallace Building, University of Wales Swansea, Singleton Park, Swansea SA2 8PP, UK.
| | | |
Collapse
|