1
|
Kim K, Plapp BV. Substitutions of Amino Acid Residues in the Substrate Binding Site of Horse Liver Alcohol Dehydrogenase Have Small Effects on the Structures but Significantly Affect Catalysis of Hydrogen Transfer. Biochemistry 2020; 59:862-879. [PMID: 31994873 DOI: 10.1021/acs.biochem.9b01074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previous studies showed that the L57F and F93W alcohol dehydrogenases catalyze the oxidation of benzyl alcohol with some quantum mechanical hydrogen tunneling, whereas the V203A enzyme has diminished tunneling. Here, steady-state kinetics for the L57F and F93W enzymes were studied, and microscopic rate constants for the ordered bi-bi mechanism were estimated from simulations of transient kinetics for the S48T, F93A, S48T/F93A, F93W, and L57F enzymes. Catalytic efficiencies for benzyl alcohol oxidation (V1/EtKb) vary over a range of ∼100-fold for the less active enzymes up to the L57F enzyme and are mostly associated with the binding of alcohol rather than the rate constants for hydride transfer. In contrast, catalytic efficiencies for benzaldehyde reduction (V2/EtKp) are ∼500-fold higher for the L57F enzyme than for the less active enzymes and are mostly associated with the rate constants for hydride transfer. Atomic-resolution structures (1.1 Å) for the F93W and L57F enzymes complexed with NAD+ and 2,3,4,5,6-pentafluorobenzyl alcohol or 2,2,2-trifluoroethanol are almost identical to previous structures for the wild-type, S48T, and V203A enzymes. Least-squares refinement with SHELXL shows that the nicotinamide ring is slightly strained in all complexes and that the apparent donor-acceptor distances from C4N of NAD to C7 of pentafluorobenzyl alcohol range from 3.28 to 3.49 Å (±0.02 Å) and are not correlated with the rate constants for hydride transfer or hydrogen tunneling. How the substitutions affect the dynamics of reorganization during hydrogen transfer and the extent of tunneling remain to be determined.
Collapse
Affiliation(s)
- Keehyuk Kim
- Department of Biochemistry , The University of Iowa , Iowa City , Iowa 52242 , United States
| | - Bryce V Plapp
- Department of Biochemistry , The University of Iowa , Iowa City , Iowa 52242 , United States
| |
Collapse
|
2
|
Shanmuganatham KK, Wallace RS, Ting-I Lee A, Plapp BV. Contribution of buried distal amino acid residues in horse liver alcohol dehydrogenase to structure and catalysis. Protein Sci 2018; 27:750-768. [PMID: 29271062 DOI: 10.1002/pro.3370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 01/06/2023]
Abstract
The dynamics of enzyme catalysis range from the slow time scale (∼ms) for substrate binding and conformational changes to the fast time (∼ps) scale for reorganization of substrates in the chemical step. The contribution of global dynamics to catalysis by alcohol dehydrogenase was tested by substituting five different, conserved amino acid residues that are distal from the active site and located in the hinge region for the conformational change or in hydrophobic clusters. X-ray crystallography shows that the structures for the G173A, V197I, I220 (V, L, or F), V222I, and F322L enzymes complexed with NAD+ and an analogue of benzyl alcohol are almost identical, except for small perturbations at the sites of substitution. The enzymes have very similar kinetic constants for the oxidation of benzyl alcohol and reduction of benzaldehyde as compared to the wild-type enzyme, and the rates of conformational changes are not altered. Less conservative substitutions of these amino acid residues, such as G173(V, E, K, or R), V197(G, S, or T), I220(G, S, T, or N), and V222(G, S, or T) produced unstable or poorly expressed proteins, indicating that the residues are critical for global stability. The enzyme scaffold accommodates conservative substitutions of distal residues, and there is no evidence that fast, global dynamics significantly affect the rate constants for hydride transfers. In contrast, other studies show that proximal residues significantly participate in catalysis.
Collapse
Affiliation(s)
- Karthik K Shanmuganatham
- Department of Biochemistry, The University of Iowa, Iowa City, IA, 52242-1109.,Diagnostic Virology Laboratory, USDA, Ames, IA, 50010
| | - Rachel S Wallace
- Department of Biochemistry, The University of Iowa, Iowa City, IA, 52242-1109.,Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, 9054, New Zealand
| | - Ann Ting-I Lee
- Department of Biochemistry, The University of Iowa, Iowa City, IA, 52242-1109.,No 92, Jing Mao 1st Rd., Taichung, Taiwan, 406, Republic of China
| | - Bryce V Plapp
- Department of Biochemistry, The University of Iowa, Iowa City, IA, 52242-1109
| |
Collapse
|
3
|
Swint-Kruse L. Using Evolution to Guide Protein Engineering: The Devil IS in the Details. Biophys J 2017; 111:10-8. [PMID: 27410729 DOI: 10.1016/j.bpj.2016.05.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 04/18/2016] [Accepted: 05/20/2016] [Indexed: 10/21/2022] Open
Abstract
For decades, protein engineers have endeavored to reengineer existing proteins for novel applications. Overall, protein folds and gross functions can be readily transferred from one protein to another by transplanting large blocks of sequence (i.e., domain recombination). However, predictably fine-tuning function (e.g., by adjusting ligand affinity, specificity, catalysis, and/or allosteric regulation) remains a challenge. One approach has been to use the sequences of protein families to identify amino acid positions that change during the evolution of functional variation. The rationale is that these nonconserved positions could be mutated to predictably fine-tune function. Evolutionary approaches to protein design have had some success, but the engineered proteins seldom replicate the functional performances of natural proteins. This Biophysical Perspective reviews several complexities that have been revealed by evolutionary and experimental studies of protein function. These include 1) challenges in defining computational and biological thresholds that define important amino acids; 2) the co-occurrence of many different patterns of amino acid changes in evolutionary data; 3) difficulties in mapping the patterns of amino acid changes to discrete functional parameters; 4) the nonconventional mutational outcomes that occur for a particular group of functionally important, nonconserved positions; 5) epistasis (nonadditivity) among multiple mutations; and 6) the fact that a large fraction of a protein's amino acids contribute to its overall function. To overcome these challenges, new goals are identified for future studies.
Collapse
Affiliation(s)
- Liskin Swint-Kruse
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
4
|
Dixit VA, Lal LA, Agrawal SR. Recent advances in the prediction of non‐
CYP450
‐mediated drug metabolism. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1323] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Vaibhav A. Dixit
- Department of Pharmaceutical Chemistry, School of Pharmacy & Technology Management (SPTM)Shri Vile Parle Kelavani Mandal's (SVKM's), Narsee Monjee Institute of Management Studies (NMIMS)ShirpurIndia
| | - L. Arun Lal
- Department of Pharmaceutical Chemistry, School of Pharmacy & Technology Management (SPTM)Shri Vile Parle Kelavani Mandal's (SVKM's), Narsee Monjee Institute of Management Studies (NMIMS)ShirpurIndia
| | - Simran R. Agrawal
- Department of Pharmaceutical Chemistry, School of Pharmacy & Technology Management (SPTM)Shri Vile Parle Kelavani Mandal's (SVKM's), Narsee Monjee Institute of Management Studies (NMIMS)ShirpurIndia
| |
Collapse
|
5
|
Kim K, Plapp BV. Inversion of substrate stereoselectivity of horse liver alcohol dehydrogenase by substitutions of Ser-48 and Phe-93. Chem Biol Interact 2016; 276:77-87. [PMID: 28025168 DOI: 10.1016/j.cbi.2016.12.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/29/2016] [Accepted: 12/22/2016] [Indexed: 11/26/2022]
Abstract
The substrate specificities of alcohol dehydrogenases (ADH) are of continuing interest for understanding the physiological functions of these enzymes. Ser-48 and Phe-93 have been identified as important residues in the substrate binding sites of ADHs, but more comprehensive structural and kinetic studies are required. The S48T substitution in horse ADH1E has small effects on kinetic constants and catalytic efficiency (V/Km) with ethanol, but decreases activity with benzyl alcohol and affinity for 2,2,2-trifluoroethanol (TFE) and 2,3,4,5,6-pentafluorobenzyl alcohol (PFB). Nevertheless, atomic resolution crystal structures of the S48T enzyme complexed with NAD+ and TFE or PFB are very similar to the structures for the wild-type enzyme. (The S48A substitution greatly diminishes catalytic activity.) The F93A substitution significantly decreases catalytic efficiency (V/Km) for ethanol and acetaldehyde while increasing activity for larger secondary alcohols and the enantioselectivity for the R-isomer relative to the S-isomer of 2-alcohols. The doubly substituted S48T/F93A enzyme has kinetic constants for primary and secondary alcohols similar to those for the F93A enzyme, but the effect of the S48T substitution is to decrease V/Km for (S)-2-alcohols without changing V/Km for (R)-2-alcohols. Thus, the S48T/F93A substitutions invert the enantioselectivity for alcohol oxidation, increasing the R/S ratio by 10, 590, and 200-fold for 2-butanol, 2-octanol, and sec-phenethyl alcohol, respectively. Transient kinetic studies and simulations of the ordered bi bi mechanism for the oxidation of the 2-butanols by the S48T/F93A ADH show that the rate of hydride transfer is increased about 7-fold for both isomers (relative to wild-type enzyme) and that the inversion of enantioselectivity is due to more productive binding for (R)-2-butanol than for (S)-2-butanol in the ternary complex. Molecular modeling suggests that both of the sec-phenethyl alcohols could bind to the enzyme and that dynamics must affect the rates of catalysis.
Collapse
Affiliation(s)
- Keehyuk Kim
- Department of Biochemistry, The University of Iowa, Iowa City, IA 52242, USA.
| | - Bryce V Plapp
- Department of Biochemistry, The University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
6
|
Nealon CM, Musa MM, Patel JM, Phillips RS. Controlling Substrate Specificity and Stereospecificity of Alcohol Dehydrogenases. ACS Catal 2015. [DOI: 10.1021/cs501457v] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christopher M. Nealon
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Musa M. Musa
- Department
of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Kingdom of Saudi Arabia
| | - Jay M. Patel
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Robert S. Phillips
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
- Department
of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
7
|
Yahashiri A, Rubach JK, Plapp BV. Effects of cavities at the nicotinamide binding site of liver alcohol dehydrogenase on structure, dynamics and catalysis. Biochemistry 2014; 53:881-94. [PMID: 24437493 PMCID: PMC3969020 DOI: 10.1021/bi401583f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
A role
for protein dynamics in enzymatic catalysis of hydrogen
transfer has received substantial scientific support, but the connections
between protein structure and catalysis remain to be established.
Valine residues 203 and 207 are at the binding site for the nicotinamide
ring of the coenzyme in liver alcohol dehydrogenase and have been
suggested to facilitate catalysis with “protein-promoting vibrations”
(PPV). We find that the V207A substitution has small effects on steady-state
kinetic constants and the rate of hydrogen transfer; the introduced
cavity is empty and is tolerated with minimal effects on structure
(determined at 1.2 Å for the complex with NAD+ and
2,3,4,5,6-pentafluorobenzyl alcohol). Thus, no evidence is found to
support a role for Val-207 in the dynamics of catalysis. The protein
structures and ligand geometries (including donor–acceptor
distances) in the V203A enzyme complexed with NAD+ and
2,3,4,5,6-pentafluorobenzyl alcohol or 2,2,2-trifluoroethanol (determined
at 1.1 Å) are very similar to those for the wild-type enzyme,
except that the introduced cavity accommodates a new water molecule
that contacts the nicotinamide ring. The structures of the V203A enzyme
complexes suggest, in contrast to previous studies, that the diminished
tunneling and decreased rate of hydride transfer (16-fold, relative
to that of the wild-type enzyme) are not due to differences in ground-state
ligand geometries. The V203A substitution may alter the PPV and the
reorganization energy for hydrogen transfer, but the protein scaffold
and equilibrium thermal motions within the Michaelis complex may be
more significant for enzyme catalysis.
Collapse
Affiliation(s)
- Atsushi Yahashiri
- Department of Biochemistry, The University of Iowa , Iowa City, Iowa 52242-1109, United States
| | | | | |
Collapse
|
8
|
Plapp BV, Berst KB. Specificity of human alcohol dehydrogenase 1C*2 (gamma2gamma2) for steroids and simulation of the uncompetitive inhibition of ethanol metabolism. Chem Biol Interact 2003; 143-144:183-93. [PMID: 12604203 DOI: 10.1016/s0009-2797(02)00202-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The steady-state kinetics of the recombinant human alcohol dehydrogenase (ADH) 1C*2 with steroids were studied in order to determine substrate and inhibitor specificity. The assays were carried out under conditions of pH and temperature that are similar to those found in vivo. The enzyme has measurable activity on 5beta-androstan-17beta-ol-3-one, 5beta-androstan-3beta-ol-17-one, 5beta-pregnan-3beta-ol-20-one and 5beta-pregnan-3,20-dione, but much less activity with 5beta-cholanic acid-3-one or 5alpha-pregnan-3beta-ol-20-one. The determinants of specificity appear to include a 5beta configuration (cis A/B ring fusion) and a 3beta-hydroxy or 3-keto group. None of the reactive steroids has a known function in vivo. The activities with the human ADH1C*2 are <10% of those found with the recombinant horse ADH1S, but higher than the activities with recombinant horse ADH1E, which has an active site very similar to human ADH1C. 5alpha-Dihydrotestosterone is a ketone and a competitive inhibitor against varied concentrations of the substrate cyclohexanone, whereas it is an uncompetitive inhibitor against ethanol or NAD(+). Such patterns are expected for the binding of the steroid as a dead-end inhibitor to the enzyme-NADH complex. Thus, it does not appear that 5alpha-dihydrotestosterone is an allosteric inhibitor of the enzyme. Another dead-end inhibitor that gives uncompetitive inhibition of alcohol oxidation, 3-butylthiolane 1-oxide, is a potent inhibitor of alcohol metabolism in rats and mice. Simulation of the kinetics of ethanol elimination in rats with varied concentrations of the inhibitor is shown to yield the in vivo inhibition constant and an estimate of the rate of elimination of the inhibitor.
Collapse
Affiliation(s)
- Bryce V Plapp
- Department of Biochemistry, The University of Iowa, Iowa City, IA 52242-1109, USA.
| | | |
Collapse
|
9
|
Allali-Hassani A, Crosas B, Parés X, Farrés J. Kinetic effects of a single-amino acid mutation in a highly variable loop (residues 114-120) of class IV ADH. Chem Biol Interact 2001; 130-132:435-44. [PMID: 11306065 DOI: 10.1016/s0009-2797(00)00288-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Class IV alcohol dehydrogenase shows a deletion at position 117 with respect to class I enzymes, which typically have a Gly residue. In class I structures, Gly117 is part of a loop (residues 114-120) that is highly variable within the alcohol dehydrogenase family. A mutant human class IV enzyme was engineered in which a Gly residue was inserted at position 117 (G117ins). Its kinetic properties, regarding ethanol and primary aliphatic alcohols, secondary alcohols and pH profiles, were determined and compared with the results obtained in previous studies in which the size of the 114-120 loop was modified. For the enzymes considered, a smaller loop was associated with a lower catalytic efficiency towards short-chain alcohols (ethanol and propanol) and secondary alcohols, as well as with a higher K(m) for ethanol at pH 7.5 than at pH 10.0. The effect can be rationalized in terms of a more open, solvent-accessible active site in class IV alcohol dehydrogenase, which disfavors productive binding of ethanol and short-chain alcohols, specially at physiological pH.
Collapse
Affiliation(s)
- A Allali-Hassani
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain
| | | | | | | |
Collapse
|
10
|
Crosas B, Allali-Hassani A, Martínez SE, Martras S, Persson B, Jörnvall H, Parés X, Farrés J. Molecular basis for differential substrate specificity in class IV alcohol dehydrogenases: a conserved function in retinoid metabolism but not in ethanol oxidation. J Biol Chem 2000; 275:25180-7. [PMID: 10829036 DOI: 10.1074/jbc.m910040199] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian class IV alcohol dehydrogenase enzymes are characteristic of epithelial tissues, exhibit moderate to high K(m) values for ethanol, and are very active in retinol oxidation. The human enzyme shows a K(m) value for ethanol which is 2 orders of magnitude lower than that of rat class IV. The uniquely significant difference in the substrate-binding pocket between the two enzymes appears to be at position 294, Val in the human enzyme and Ala in the rat enzyme. Moreover, a deletion at position 117 (Gly in class I) has been pointed out as probably responsible for class IV specificity toward retinoids. With the aim of establishing the role of these residues, we have studied the kinetics of the recombinant human and rat wild-type enzymes, the human G117ins and V294A mutants, and the rat A294V mutant toward aliphatic alcohols and retinoids. 9-cis-Retinol was the best retinoid substrate for both human and rat class IV, strongly supporting a role of class IV in the generation of 9-cis-retinoic acid. In contrast, 13-cis retinoids were not substrates. The G117ins mutant showed a decreased catalytic efficiency toward retinoids and toward three-carbon and longer primary aliphatic alcohols, a behavior that resembles that of the human class I enzyme, which has Gly(117). The K(m) values for ethanol dramatically changed in the 294 mutants, where the human V294A mutant showed a 280-fold increase, and the rat A294V mutant a 50-fold decrease, compared with those of the respective wild-type enzymes. This demonstrates that the Val/Ala exchange at position 294 is mostly responsible for the kinetic differences with ethanol between the human and rat class IV. In contrast, the kinetics toward retinoids was only slightly affected by the mutations at position 294, compatible with a more conserved function of mammalian class IV alcohol dehydrogenase in retinoid metabolism.
Collapse
Affiliation(s)
- B Crosas
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Ryu JW, Lee KM. I269S Mutation in horse liver alcohol dehydrogenase S isoenzyme and its reactivity for steroids and retinoids. Arch Pharm Res 1997; 20:115-21. [PMID: 18975188 DOI: 10.1007/bf02973997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/1996] [Indexed: 11/30/2022]
Abstract
Ile-269 in horse liver alcohol dehydrogenase isoenzyme S(HLADH-S) was mutated to serine by phosphorothioate-based site-directed mutagenesis in order to study the role of the residue in coenzyme binding. The specific activity of the mutant(I269S) enzyme to ethanol was increased 49-fold. All turnover numbers of I269S enzyme toward 9 primary alcohols were increased. The mutant enzyme showed 3.6, 4.6, 11.6-fold higher catalytic efficiency for 5beta-androstane-3,17-dione, 5beta-cholanic acid-3-one and retinal than wild-type, respectively. The reaction mechanism of I269S enzyme was ordered bi bi as wild-type's. These results indicate that the hydrophobic interaction of Ile-269 residue with coenzyme plays an important role in dissociation of coenzyme from enzyme-coenzyme complex, which has been known as the rate limiting step of ADH reaction.
Collapse
Affiliation(s)
- J W Ryu
- College of Pharmacy, Ewha Womans University, 120-750, Seoul, Korea
| | | |
Collapse
|
12
|
Strasser F, Huyng MN, Plapp BV. Activity of liver alcohol dehydrogenases on steroids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1997; 414:313-20. [PMID: 9059635 DOI: 10.1007/978-1-4615-5871-2_36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- F Strasser
- Department of Biochemistry, University of Iowa, Iowa City 52242, USA
| | | | | |
Collapse
|
13
|
Hurley TD, Steinmetz CG, Xie P, Yang ZN. Three-dimensional structures of human alcohol dehydrogenase isoenzymes reveal the molecular basis for their functional diversity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1997; 414:291-302. [PMID: 9059633 DOI: 10.1007/978-1-4615-5871-2_34] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- T D Hurley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202, USA.
| | | | | | | |
Collapse
|
14
|
Semiempirical AM1 and PM3 studies of the enzymatic mechanism of horse liver alcohol dehydrogenase. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/0166-1280(95)04371-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Kedishvili NY, Bosron WF, Stone CL, Hurley TD, Peggs CF, Thomasson HR, Popov KM, Carr LG, Edenberg HJ, Li TK. Expression and kinetic characterization of recombinant human stomach alcohol dehydrogenase. Active-site amino acid sequence explains substrate specificity compared with liver isozymes. J Biol Chem 1995; 270:3625-30. [PMID: 7876099 DOI: 10.1074/jbc.270.8.3625] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A full-length 1966-base pair clone of the human class IV alcohol dehydrogenase (sigma-ADH) was isolated from a human stomach cDNA library. The 373-amino acid sigma-ADH encoded by this cDNA was expressed in Escherichia coli. The specific activity of the recombinant enzyme for ethanol oxidation at pH 7.5 and 25 degrees C, calculated from active-site titration of NADH binding, was 92 +/- 9 units/mg. Kinetic analysis of the catalytic efficiency (kcat/KM) of recombinant sigma-ADH for oxidation of primary alcohols indicated broad substrate specificity. Recombinant human sigma-ADH exhibited high catalytic efficiency for oxidation of all-trans-retinol to all-trans-retinal. This pathway is important in the synthesis of the transcriptional regulator all-trans-retinoic acid. Secondary alcohols and 3 beta-hydroxysteroids were inactive with sigma-ADH or were oxidized with very low efficiency. The KM of sigma-ADH for ethanol was 25 mM, and the KM for primary straight chain alcohols decreased substantially as chain length increased. There are important amino acid differences in the alcohol-binding site between the human class IV (sigma) and human class I (beta) alcohol dehydrogenases that appear to explain the high catalytic efficiency for all-trans-retinol, the high kcat for ethanol, and the low catalytic efficiency for secondary alcohols of sigma-ADH relative to beta 1-ADH. For example, modeling the binding of all-trans-retinol in the human beta 1-ADH structure suggested that coordination of retinol to the active-site zinc is hindered by a loop from residues 114 to 120 that is at the entrance to the alcohol-binding site. The deletion of Gly-117 in human sigma-ADH and a substitution of Leu for the bulky Tyr-110 appear to facilitate retinol access to the active-site zinc.
Collapse
Affiliation(s)
- N Y Kedishvili
- Dept. of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202-5122
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hurley TD, Vessell DL. The role of leucine 116 in determining substrate specificity in human B1 alcohol dehydrogenase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 372:321-5. [PMID: 7484393 DOI: 10.1007/978-1-4615-1965-2_38] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- T D Hurley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202, USA
| | | |
Collapse
|
17
|
Affiliation(s)
- B V Plapp
- Department of Biochemistry, University of Iowa, Iowa City 52242, USA
| |
Collapse
|
18
|
Abstract
The rate of alcohol metabolism is determined by the kinetic characteristics and concentrations of the alcohol and aldehyde dehydrogenases and by the rate of restoration of the redox state of the cell. Several potent competitive and uncompetitive inhibitors of the alcohol dehydrogenases can decrease the rate of alcohol metabolism; they may be useful for preventing the potentially deleterious effects of ethanol metabolism. Alcohol dehydrogenases have very broad specificity and can readily reduce a variety of carbonyl compounds by exchange reactions while ethanol is metabolized. Agents that increase the rate of metabolism need to be developed.
Collapse
Affiliation(s)
- B V Plapp
- Department of Biochemistry, University of Iowa, Iowa City 52242
| |
Collapse
|
19
|
Abstract
There is an astonishing array of microbial alcohol oxidoreductases. They display a wide variety of substrate specificities and they fulfill several vital but quite different physiological functions. Some of these enzymes are involved in the production of alcoholic beverages and of industrial solvents, others are important in the production of vinegar, and still others participate in the degradation of naturally occurring and xenobiotic aromatic compounds as well as in the growth of bacteria and yeasts on methanol. They can be divided into three major categories. (1) The NAD- or NADP-dependent dehydrogenases. These can in turn be divided into the group I long-chain (approximately 350 amino acid residues) zinc-dependent enzymes such as alcohol dehydrogenases I, II, and III of Saccharomyces cerevisiae or the plasmid-encoded benzyl alcohol dehydrogenase of Pseudomonas putida; the group II short-chain (approximately 250 residues) zinc-independent enzymes such as ribitol dehydrogenase of Klebsiella aerogenes; the group III "iron-activated" enzymes that generally contain approximately 385 amino acid residues, such as alcohol dehydrogenase II of Zymomonas mobilis and alcohol dehydrogenase IV of Saccharomyces cerevisiae, but may contain almost 900 residues in the case of the multifunctional alcohol dehydrogenases of Escherichia coli and Clostridium acetobutylicum. The aldehyde/alcohol oxidoreductase of Amycolatopsis methanolica and the methanol dehydrogenases of A. methanolica and Mycobacterium gasti are 4-nitroso-N,N-dimethylaniline-dependent nicotinoproteins. (2) NAD(P)-independent enzymes that use pyrroloquinoline quinone, haem or cofactor F420 as cofactor, exemplified by methanol dehydrogenase of Paracoccus denitrificans, ethanol dehydrogenase of Acetobacter and Gluconobacter spp. and the alcohol dehydrogenases of certain archaebacteria. (3) Oxidases that catalyze an essentially irreversible oxidation of alcohols, such as methanol oxidase of Hansenula polymorpha and probably the veratryl alcohol oxidases of certain fungi involved in lignin degradation. This review deals mainly with those enzymes for which complete amino acid sequences are available. The discussion focuses on a comparison of their primary, secondary, tertiary, and quaternary structures and their catalytic mechanisms. The physiological roles of the enzymes and isoenzymes are also considered, as are their probable evolutionary relationships.
Collapse
Affiliation(s)
- M F Reid
- Department of Biochemistry, University of Glasgow, Scotland, U.K
| | | |
Collapse
|
20
|
Green D, Sun H, Plapp B. Inversion of the substrate specificity of yeast alcohol dehydrogenase. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53028-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
21
|
Plapp BV, Green DW, Sun HW, Park DH, Kim K. Substrate specificity of alcohol dehydrogenases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1993; 328:391-400. [PMID: 8493917 DOI: 10.1007/978-1-4615-2904-0_41] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- B V Plapp
- Department of Biochemistry, University of Iowa, Iowa City 52242
| | | | | | | | | |
Collapse
|
22
|
Light D, Dennis M, Forsythe I, Liu C, Green D, Kratzer D, Plapp B. Alpha-isoenzyme of alcohol dehydrogenase from monkey liver. Cloning, expression, mechanism, coenzyme, and substrate specificity. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42318-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|