1
|
Yücel D, Garay BI, Perlingeiro RCR, van Berlo JH. Stimulation of Cardiomyocyte Proliferation Is Dependent on Species and Level of Maturation. Front Cell Dev Biol 2022; 10:806564. [PMID: 35663393 PMCID: PMC9160302 DOI: 10.3389/fcell.2022.806564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/28/2022] [Indexed: 11/24/2022] Open
Abstract
The heart is one of the least regenerative organs. This is in large part due to the inability of adult mammalian cardiomyocytes to proliferate and divide. In recent years, a number of small molecules and molecular targets have been identified to stimulate cardiomyocyte proliferation, including p38 inhibition, YAP-Tead activation, fibroblast growth factor 1 and Neuregulin 1. Despite these exciting initial findings, a therapeutic approach to enhance cardiomyocyte proliferation in vivo is still lacking. We hypothesized that a more comprehensive in vitro validation using live-cell imaging and assessment of the proliferative effects on various cardiomyocyte sources might identify the most potent proliferative stimuli. Here, we used previously published stimuli to determine their proliferative effect on cardiomyocytes from different species and isolated from different developmental timepoints. Although all stimuli enhanced DNA synthesis and Histone H3 phosphorylation in neonatal rat ventricular cardiomyocytes to similar degrees, these effects varied substantially in mouse cardiomyocytes and human iPSC-derived cardiomyocytes. Our results highlight p21 inhibition and Yap-Tead activation as potent proliferative strategies to induce cultured cardiomyocyte cell cycle activity across mouse, rat and human cardiomyocytes.
Collapse
Affiliation(s)
- Dogacan Yücel
- Department of Medicine, Lillehei Heart Institute, Cardiovascular Division, University of Minnesota, Minneapolis, MN, United States
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, United States
| | - Bayardo I. Garay
- Department of Medicine, Lillehei Heart Institute, Cardiovascular Division, University of Minnesota, Minneapolis, MN, United States
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Medical Scientist Training Program, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Rita C. R. Perlingeiro
- Department of Medicine, Lillehei Heart Institute, Cardiovascular Division, University of Minnesota, Minneapolis, MN, United States
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, United States
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Jop H. van Berlo
- Department of Medicine, Lillehei Heart Institute, Cardiovascular Division, University of Minnesota, Minneapolis, MN, United States
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
- *Correspondence: Jop H. van Berlo,
| |
Collapse
|
2
|
Stefanovic S, Laforest B, Desvignes JP, Lescroart F, Argiro L, Maurel-Zaffran C, Salgado D, Plaindoux E, De Bono C, Pazur K, Théveniau-Ruissy M, Béroud C, Puceat M, Gavalas A, Kelly RG, Zaffran S. Hox-dependent coordination of mouse cardiac progenitor cell patterning and differentiation. eLife 2020; 9:55124. [PMID: 32804075 PMCID: PMC7462617 DOI: 10.7554/elife.55124] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 08/16/2020] [Indexed: 12/15/2022] Open
Abstract
Perturbation of addition of second heart field (SHF) cardiac progenitor cells to the poles of the heart tube results in congenital heart defects (CHD). The transcriptional programs and upstream regulatory events operating in different subpopulations of the SHF remain unclear. Here, we profile the transcriptome and chromatin accessibility of anterior and posterior SHF sub-populations at genome-wide levels and demonstrate that Hoxb1 negatively regulates differentiation in the posterior SHF. Spatial mis-expression of Hoxb1 in the anterior SHF results in hypoplastic right ventricle. Activation of Hoxb1 in embryonic stem cells arrests cardiac differentiation, whereas Hoxb1-deficient mouse embryos display premature cardiac differentiation. Moreover, ectopic differentiation in the posterior SHF of embryos lacking both Hoxb1 and its paralog Hoxa1 results in atrioventricular septal defects. Our results show that Hoxb1 plays a key role in patterning cardiac progenitor cells that contribute to both cardiac poles and provide new insights into the pathogenesis of CHD.
Collapse
Affiliation(s)
- Sonia Stefanovic
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | - Brigitte Laforest
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | | | - Fabienne Lescroart
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | - Laurent Argiro
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | | | - David Salgado
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | - Elise Plaindoux
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | | | - Kristijan Pazur
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustave Carus of TU Dresden, Helmoholtz Zentrum München, German Center for Diabetes Research (DZD), Dresden, Germany
| | - Magali Théveniau-Ruissy
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France.,Aix Marseille Univ, CNRS UMR7288, IBDM, Marseille, France
| | - Christophe Béroud
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | - Michel Puceat
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | - Anthony Gavalas
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustave Carus of TU Dresden, Helmoholtz Zentrum München, German Center for Diabetes Research (DZD), Dresden, Germany
| | - Robert G Kelly
- Aix Marseille Univ, CNRS UMR7288, IBDM, Marseille, France
| | - Stephane Zaffran
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| |
Collapse
|
3
|
Kraszewska I, Tomczyk M, Andrysiak K, Biniecka M, Geisler A, Fechner H, Zembala M, Stępniewski J, Dulak J, Jaźwa-Kusior A. Variability in Cardiac miRNA-122 Level Determines Therapeutic Potential of miRNA-Regulated AAV Vectors. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:1190-1201. [PMID: 32518806 PMCID: PMC7270145 DOI: 10.1016/j.omtm.2020.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022]
Abstract
Systemically delivered adeno-associated viral vector serotype 9 (AAV9) effectively transduces murine heart, but provides transgene expression also in liver and skeletal muscles. Improvement of the selectivity of transgene expression can be achieved through incorporation of target sites (TSs) for miRNA-122 and miRNA-206 into the 3′ untranslated region (3′ UTR) of the expression cassette. Here, we aimed to generate such miRNA-122- and miRNA-206-regulated AAV9 vector for a therapeutic, heart-specific overexpression of heme oxygenase-1 (HO-1). We successfully validated the vector functionality in murine cell lines corresponding to tissues targeted by AAV9. Next, we evaluated biodistribution of transgene expression following systemic vector delivery to HO-1-deficient mice of mixed C57BL/6J × FVB genetic background. Although AAV genomes were present in the hearts of these animals, HO-1 protein expression was either absent or significantly impaired. We found that miRNA-122, earlier described as liver specific, was present also in the hearts of C57BL/6J × FVB mice. Various levels of miRNA-122 expression were observed in the hearts of other mouse strains, in heart tissues of patients with cardiomyopathy, and in human induced pluripotent stem cell-derived cardiomyocytes in which we also confirmed such posttranscriptional regulation of transgene expression. Our data clearly indicate that therapeutic utilization of miRNA-based regulation strategy needs to consider inter-individual variability.
Collapse
Affiliation(s)
- Izabela Kraszewska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Mateusz Tomczyk
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Kalina Andrysiak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | | | - Anja Geisler
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Henry Fechner
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Michał Zembala
- Department of Cardiac Surgery, Heart and Lung Transplantation and Mechanical Circulatory Support, Silesian Center for Heart Diseases, 41-800 Zabrze, Poland
| | - Jacek Stępniewski
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
- Kardio-Med Silesia, 41-800 Zabrze, Poland
| | - Agnieszka Jaźwa-Kusior
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
- Corresponding author Agnieszka Jaźwa-Kusior, PhD, Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa Str. 7, 30-387 Kraków, Poland.
| |
Collapse
|
4
|
Kolwicz SC, Odom GL, Nowakowski SG, Moussavi-Harami F, Chen X, Reinecke H, Hauschka SD, Murry CE, Mahairas GG, Regnier M. AAV6-mediated Cardiac-specific Overexpression of Ribonucleotide Reductase Enhances Myocardial Contractility. Mol Ther 2015; 24:240-250. [PMID: 26388461 DOI: 10.1038/mt.2015.176] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 09/10/2015] [Indexed: 12/13/2022] Open
Abstract
Impaired systolic function, resulting from acute injury or congenital defects, leads to cardiac complications and heart failure. Current therapies slow disease progression but do not rescue cardiac function. We previously reported that elevating the cellular 2 deoxy-ATP (dATP) pool in transgenic mice via increased expression of ribonucleotide reductase (RNR), the enzyme that catalyzes deoxy-nucleotide production, increases myosin-actin interaction and enhances cardiac muscle contractility. For the current studies, we initially injected wild-type mice retro-orbitally with a mixture of adeno-associated virus serotype-6 (rAAV6) containing a miniaturized cardiac-specific regulatory cassette (cTnT(455)) composed of enhancer and promotor portions of the human cardiac troponin T gene (TNNT2) ligated to rat cDNAs encoding either the Rrm1 or Rrm2 subunit. Subsequent studies optimized the system by creating a tandem human RRM1-RRM2 cDNA with a P2A self-cleaving peptide site between the subunits. Both rat and human Rrm1/Rrm2 cDNAs resulted in RNR enzyme overexpression exclusively in the heart and led to a significant elevation of left ventricular (LV) function in normal mice and infarcted rats, measured by echocardiography or isolated heart perfusions, without adverse cardiac remodeling. Our study suggests that increasing RNR levels via rAAV-mediated cardiac-specific expression provide a novel gene therapy approach to potentially enhance cardiac systolic function in animal models and patients with heart failure.
Collapse
Affiliation(s)
- Stephen C Kolwicz
- Mitochondria and Metabolism Center, University of Washington, Seattle, Washington, USA
| | - Guy L Odom
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | - Sarah G Nowakowski
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Farid Moussavi-Harami
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Xiaolan Chen
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Hans Reinecke
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Stephen D Hauschka
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Charles E Murry
- Department of Bioengineering, University of Washington, Seattle, Washington, USA; Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington, USA; Department of Pathology, University of Washington, Seattle, Washington, USA; Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | | | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, Washington, USA; Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
5
|
GATA-dependent transcriptional and epigenetic control of cardiac lineage specification and differentiation. Cell Mol Life Sci 2015; 72:3871-81. [PMID: 26126786 PMCID: PMC4575685 DOI: 10.1007/s00018-015-1974-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 12/14/2022]
Abstract
Heart progenitor cells differentiate into various cell types including pacemaker and working cardiomyocytes. Cell-type specific gene expression is achieved by combinatorial interactions between tissue-specific transcription factors (TFs), co-factors, and chromatin remodelers and DNA binding elements in regulatory regions. Dysfunction of these transcriptional networks may result in congenital heart defects. Functional analysis of the regulatory DNA sequences has contributed substantially to the identification of the transcriptional network components and combinatorial interactions regulating the tissue-specific gene programs. GATA TFs have been identified as central players in these networks. In particular, GATA binding elements have emerged as a platform to recruit broadly active histone modification enzymes and cell-type-specific co-factors to drive cell-type-specific gene programs. Here, we discuss the role of GATA factors in cell fate decisions and differentiation in the developing heart.
Collapse
|
6
|
Werfel S, Jungmann A, Lehmann L, Ksienzyk J, Bekeredjian R, Kaya Z, Leuchs B, Nordheim A, Backs J, Engelhardt S, Katus HA, Müller OJ. Rapid and highly efficient inducible cardiac gene knockout in adult mice using AAV-mediated expression of Cre recombinase. Cardiovasc Res 2014; 104:15-23. [PMID: 25082846 DOI: 10.1093/cvr/cvu174] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Inducible gene targeting in mice using the Cre/LoxP system has become a valuable tool to analyse the roles of specific genes in the adult heart. However, the commonly used Myh6-MerCreMer system requires time-consuming breeding schedules and is potentially associated with cardiac side effects, which may result in transient cardiac dysfunction. The aim of our study was to establish a rapid and simple system for cardiac gene inactivation in conditional knockout mice by gene transfer of a Cre recombinase gene using adeno-associated viral vectors of serotype 9 (AAV9). METHODS AND RESULTS AAV9 vectors expressing Cre under the control of a human cardiac troponin T promoter (AAV-TnT-Cre) enabled a highly efficient Cre/LoxP switching in cardiomyocytes 2 weeks after injection into 5- to 6-week-old ROSA26-LacZ reporter mice. Recombination efficiency was at least as high as observed with the Myh6-MerCreMer system. No adverse side effects were detected upon application of AAV-TnT-Cre. As proof of principle, we studied AAV-TnT-Cre in a conditional knockout model (Srf-flex1 mice) to deplete the myocardium of the transcription factor serum response factor (SRF). Four weeks after AAV-TnT-Cre injection, a strong decrease in the cardiac expression of SRF mRNA and protein was observed. Furthermore, mice developed a severe cardiac dysfunction with increased interstitial fibrosis in accordance with the central role of SRF for the expression of contractile and calcium trafficking proteins in the heart. CONCLUSIONS AAV9-mediated expression of Cre is a promising approach for rapid and efficient conditional cardiac gene knockout in adult mice.
Collapse
Affiliation(s)
- Stanislas Werfel
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg 69120, Germany Institute for Pharmacology and Toxicology, Technische Universität München, Biedersteiner Str. 29, Munich 80802, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Andreas Jungmann
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg 69120, Germany
| | - Lorenz Lehmann
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg 69120, Germany DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany
| | - Jan Ksienzyk
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg 69120, Germany
| | - Raffi Bekeredjian
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg 69120, Germany DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany
| | - Ziya Kaya
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg 69120, Germany DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany
| | - Barbara Leuchs
- Applied Tumorvirology, German Cancer Research Center, Heidelberg, Germany
| | - Alfred Nordheim
- Interfaculty Institute for Cell Biology, Department of Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Johannes Backs
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg 69120, Germany DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany
| | - Stefan Engelhardt
- Institute for Pharmacology and Toxicology, Technische Universität München, Biedersteiner Str. 29, Munich 80802, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Hugo A Katus
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg 69120, Germany DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany
| | - Oliver J Müller
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg 69120, Germany DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany
| |
Collapse
|
7
|
GATA-dependent regulatory switches establish atrioventricular canal specificity during heart development. Nat Commun 2014; 5:3680. [PMID: 24770533 PMCID: PMC4015328 DOI: 10.1038/ncomms4680] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 03/17/2014] [Indexed: 12/17/2022] Open
Abstract
The embryonic vertebrate heart tube develops an atrioventricular canal that divides the atrial and ventricular chambers, forms atrioventricular conduction tissue and organizes valve development. Here we assess the transcriptional mechanism underlying this localized differentiation process. We show that atrioventricular canal-specific enhancers are GATA-binding site-dependent and act as switches that repress gene activity in the chambers. We find that atrioventricular canal-specific gene loci are enriched in H3K27ac, a marker of active enhancers, in atrioventricular canal tissue and depleted in H3K27ac in chamber tissue. In the atrioventricular canal, Gata4 activates the enhancers in synergy with Bmp2/Smad signalling, leading to H3K27 acetylation. In contrast, in chambers, Gata4 cooperates with pan-cardiac Hdac1 and Hdac2 and chamber-specific Hey1 and Hey2, leading to H3K27 deacetylation and repression. We conclude that atrioventricular canal-specific enhancers are platforms integrating cardiac transcription factors, broadly active histone modification enzymes and localized co-factors to drive atrioventricular canal-specific gene activity. The atrioventricular canal partitions the developing vertebrate heart. Here, the authors show that the cardiac transcription factor Gata4 together with histone modification enzymes and localized co-factors binds atrioventricular canal-specific enhancers, thereby repressing gene activity in the cardiac chambers.
Collapse
|
8
|
Tonomura Y, Matsushima S, Kashiwagi E, Fujisawa K, Takagi S, Nishimura Y, Fukushima R, Torii M, Matsubara M. Biomarker panel of cardiac and skeletal muscle troponins, fatty acid binding protein 3 and myosin light chain 3 for the accurate diagnosis of cardiotoxicity and musculoskeletal toxicity in rats. Toxicology 2012; 302:179-89. [PMID: 22878004 DOI: 10.1016/j.tox.2012.07.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 07/24/2012] [Accepted: 07/25/2012] [Indexed: 11/17/2022]
Abstract
Cardiotoxicity and musculoskeletal toxicity can be life-threatening, and thus have strong impact on both the development and marketing of drugs. Because the conventional biomarkers such as aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and creatine kinase (CK) have low detection power, there has been increasing interest in developing biomarkers with higher detection power. The current study examined the usefulness of several promising biomarkers, cardiac and skeletal muscle troponins (cTnI, cTnT and sTnI), fatty acid binding protein 3 (FABP3) and myosin light chain 3 (MYL3), and compared the obtained data to AST, LDH and CK in rat models treated with various myotoxic and non-myotoxic compounds (isoproterenol, metaproterenol, doxorubicin, mitoxantrone, allylamine, cyclosporine A, cyclophosphamide, aminoglutethimide, acetaminophen, methapyrilene, allylalcohol and α-naphthylisothiocyanate). These promising biomarkers were found to be superior to the conventional biomarkers, as they had a specific and abundant distribution within the heart and/or skeletal muscles; exhibited a positive correlation between the amplitude of increases and the degree of pathological alterations; had higher diagnostic accuracy for detecting pathological alterations; and had the additive effect of improving the diagnostic accuracy of conventional biomarkers. However, these promising biomarkers have several drawbacks including a rapid clearance, the fact that they are affected by renal dysfunction, and different reactivity to the mode of action of individual myotoxicants. In conclusion, the promising biomarkers cTnI, cTnT, FABP3, MYL3, and sTnI demonstrated sensitivity and specificity for cardiac and skeletal myotoxicity that was superior to those of conventional biomarkers, while we should pay attention to the drawbacks of these biomarkers when used in toxicity studies.
Collapse
Affiliation(s)
- Yutaka Tonomura
- Drug Safety Evaluation, Drug Developmental Research Laboratories, Shionogi & Co., Ltd., Osaka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc Natl Acad Sci U S A 2012; 109:2394-9. [PMID: 22308401 DOI: 10.1073/pnas.1116136109] [Citation(s) in RCA: 429] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Heart growth is tightly controlled so that the heart reaches a predetermined size. Fetal heart growth occurs through cardiomyocyte proliferation, whereas postnatal heart growth involves primarily physiological cardiomyocyte hypertrophy. The Hippo kinase cascade is an important regulator of organ growth. A major target of this kinase cascade is YAP1, a transcriptional coactivator that is inactivated by Hippo kinase activity. Here, we used both genetic gain and loss of Yap1 function to investigate its role in regulating proliferative and physiologic hypertrophic heart growth. Fetal Yap1 inactivation caused marked, lethal myocardial hypoplasia and decreased cardiomyocyte proliferation, whereas fetal activation of YAP1 stimulated cardiomyocyte proliferation. Enhanced proliferation was particularly dramatic in trabecular cardiomyocytes that normally exit from the cell cycle. Remarkably, YAP1 activation was sufficient to stimulate proliferation of postnatal cardiomyocytes, both in culture and in the intact heart. A dominant negative peptide that blocked YAP1 binding to TEAD transcription factors inhibited YAP1 proliferative activity, indicating that this activity requires YAP1-TEAD interaction. Although Yap1 was a critical regulator of cardiomyocyte proliferation, it did not influence physiological hypertrophic growth of cardiomyocytes, because postnatal Yap1 gain or loss of function did not significantly alter cardiomyocyte size. These studies demonstrate that Yap1 is a crucial regulator of cardiomyocyte proliferation, cardiac morphogenesis, and myocardial trabeculation. Activation of Yap1 in postnatal cardiomyocytes may be a useful strategy to stimulate cardiomyocyte expansion in therapeutic myocardial regeneration.
Collapse
|
10
|
Lee CJ, Fan X, Guo X, Medin JA. Promoter-specific lentivectors for long-term, cardiac-directed therapy of Fabry disease. J Cardiol 2010; 57:115-22. [PMID: 20846825 DOI: 10.1016/j.jjcc.2010.08.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 07/28/2010] [Accepted: 08/02/2010] [Indexed: 02/05/2023]
Abstract
In Fabry disease a deficiency of α-galactosidase A (α-gal A) activity leads to accumulation of globotriaosylceramide (Gb3) in various tissues including the heart. A specific cardiac variant of Fabry disease has also been described. Previously we have demonstrated the feasibility of gene therapy for Fabry disease. Here, to provide efficient transfer and increased specificity of transgene expression, we synthesized lentiviral vectors (LVs) with myocardial-specific promoters including: α-myosin heavy chain (α-MHC), myosin light chain (MLC2v), and cardiac troponin T (cTnT). Initially, neonatal Balb/c mice were injected with such LV constructs engineering expression of luciferase. One month post-injection, we found specific expression of luciferase in hearts of recipient animals when compared with transgene expression driven by the standard EF1-α promoter. To examine the feasibility of long-term therapy specifically targeting the heart, recombinant LV/α-gal A therapeutic vectors with analogous cardiac promoters were generated and injected into numerous neonatal Fabry mice. No immune response against the corrective α-gal A hydrolase was observed in the treated mice. Serum α-gal A activity of 10-week-old Fabry mice was increased in LV/α-gal A-injected animals compared to controls. In 28-week-old Fabry mice we observed significantly decreased Gb3 accumulation. Neonatal injections with LVs harboring cardiac-specific promoters may thus be an effective long-term treatment strategy for heart manifestations and cardiac variant Fabry disease. These results can be also extended to other progressive pathologies of the heart.
Collapse
|
11
|
Witte DP, Aronow BJ, Harmony JAK. Understanding Cardiac Development Through the Perspective of Gene Regulation and Gene Manipulation. ACTA ACUST UNITED AC 2010. [DOI: 10.1080/15513819609169282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Chen IY, Gheysens O, Ray S, Wang Q, Padmanabhan P, Paulmurugan R, Loening AM, Rodriguez-Porcel M, Willmann JK, Sheikh AY, Nielsen CH, Hoyt G, Contag CH, Robbins RC, Biswal S, Wu JC, Gambhir SS. Indirect imaging of cardiac-specific transgene expression using a bidirectional two-step transcriptional amplification strategy. Gene Ther 2010; 17:827-38. [PMID: 20237511 DOI: 10.1038/gt.2010.30] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Transcriptional targeting for cardiac gene therapy is limited by the relatively weak activity of most cardiac-specific promoters. We have developed a bidirectional plasmid vector, which uses a two-step transcriptional amplification (TSTA) strategy to enhance the expression of two optical reporter genes, firefly luciferase (fluc) and Renilla luciferase (hrluc), driven by the cardiac troponin T (cTnT) promoter. The vector was characterized in vitro and in living mice using luminometry and bioluminescence imaging to assess its ability to mediate strong, correlated reporter gene expression in a cardiac cell line and the myocardium, while minimizing expression in non-cardiac cell lines and the liver. In vitro, the TSTA system significantly enhanced cTnT-mediated reporter gene expression with moderate preservation of cardiac specificity. After intramyocardial and hydrodynamic tail vein delivery of an hrluc-enhanced variant of the vector, long-term fluc expression was observed in the heart, but not in the liver. In both the cardiac cell line and the myocardium, fluc expression correlated well with hrluc expression. These results show the vector's ability to effectively amplify and couple transgene expression in a cardiac-specific manner. Further replacement of either reporter gene with a therapeutic gene should allow non-invasive imaging of targeted gene therapy in living subjects.
Collapse
Affiliation(s)
- I Y Chen
- Departments of Radiology and Bioengineering, Bio-X Program, Stanford University, Stanford, CA 94305-5427, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Espinoza-Lewis RA, Yu L, He F, Liu H, Tang R, Shi J, Sun X, Martin JF, Wang D, Yang J, Chen Y. Shox2 is essential for the differentiation of cardiac pacemaker cells by repressing Nkx2-5. Dev Biol 2009; 327:376-85. [PMID: 19166829 DOI: 10.1016/j.ydbio.2008.12.028] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 12/12/2008] [Accepted: 12/16/2008] [Indexed: 10/21/2022]
Abstract
The pacemaker is composed of specialized cardiomyocytes located within the sinoatrial node (SAN), and is responsible for originating and regulating the heart beat. Recent advances towards understanding the SAN development have been made on the genetic control and gene interaction within this structure. Here we report that the Shox2 homeodomain transcription factor is restrictedly expressed in the sinus venosus region including the SAN and the sinus valves during embryonic heart development. Shox2 null mutation results in embryonic lethality due to cardiovascular defects, including an abnormal low heart beat rate (bradycardia) and severely hypoplastic SAN and sinus valves attributed to a significantly decreased level of cell proliferation. Genetically, the lack of Tbx3 and Hcn4 expression, along with ectopic activation of Nppa, Cx40, and Nkx2-5 in the Shox2(-/-) SAN region, indicates a failure in SAN differentiation. Furthermore, Shox2 overexpression in Xenopus embryos results in extensive repression of Nkx2-5 in the developing heart, leading to a reduced cardiac field and aberrant heart formation. Reporter gene expression assays provide additional evidence for the repression of Nkx2-5 promoter activity by Shox2. Taken together our results demonstrate that Shox2 plays an essential role in the SAN and pacemaker development by controlling a genetic cascade through the repression of Nkx2-5.
Collapse
|
14
|
Harlan SM, Reiter RS, Sigmund CD, Lin JLC, Lin JJC. Requirement of TCTG(G/C) Direct Repeats and Overlapping GATA Site for Maintaining the Cardiac-Specific Expression of Cardiac troponin T in Developing and Adult Mice. Anat Rec (Hoboken) 2008; 291:1574-86. [PMID: 18951515 PMCID: PMC2592506 DOI: 10.1002/ar.20772] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The cardiac-specific -497 bp promoter of rat cardiac troponin T (cTnT) contains two similar modules, D and F, each of which possesses TCTG(G/C) direct repeats and A/T-rich sites. To identify cis-elements critical for cardiac specificity, a -249 bp promoter containing only module F and its site-directed mutations were used to generate transgenic mice. Transgene expression of the -249 bp promoter remained cardiac-specific, despite low and nonuniform expression. The nonuniform expression pattern of the transgene coincided with differential expression of HMGB1, which appeared to be the predominant form of HMGB family proteins in the heart. The HMGB1 binds to the A/T-rich/MEF2-like sites of the cTnT promoter, as determined by chromatin immunoprecipitation assays. Mice carrying the -249 bp promoter with point mutations disrupting the direct repeats expressed transgene at lower levels in the heart and ectopically in the brain. Ectopic expression of transgene was also observed in developing limbs and head. These results suggest an important role for the direct repeat in determining the cardiac specificity. Furthermore, mice carrying a mutant promoter simultaneously disrupting the direct repeats and overlapping GATA site failed to express the transgene in any tissues tested. Therefore, the direct repeat and overlapping GATA site are critical for the expression level and cardiac specificity. The F module controls one level of cardiac specificity. For a uniform and high level of cardiac-specific expression, the upstream element (-497 to -250 bp) is further required, possibly through the D enhancer module and the combination of Nkx2.5 and GATA sites.
Collapse
MESH Headings
- Animals
- Base Sequence/genetics
- Body Patterning/genetics
- Calcium Signaling/genetics
- Cell Differentiation/genetics
- Enhancer Elements, Genetic/genetics
- GATA Transcription Factors/genetics
- Gene Expression Regulation, Developmental/genetics
- Heart/embryology
- Mice
- Mice, Transgenic
- Muscle Contraction/genetics
- Mutagenesis, Site-Directed
- Myocardium/metabolism
- Myocardium/ultrastructure
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/ultrastructure
- Point Mutation/genetics
- Promoter Regions, Genetic/genetics
- Regulatory Elements, Transcriptional/genetics
- Repetitive Sequences, Nucleic Acid/genetics
- Transcription, Genetic/genetics
- Transgenes/genetics
- Troponin T/biosynthesis
- Troponin T/genetics
Collapse
Affiliation(s)
- Shannon M. Harlan
- Department of Biology, University of Iowa, Iowa City, IA, 52242-1324
| | - Rebecca S. Reiter
- Department of Biology, University of Iowa, Iowa City, IA, 52242-1324
| | - Curt D. Sigmund
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242-1324
| | - Jenny Li-Chun Lin
- Department of Biology, University of Iowa, Iowa City, IA, 52242-1324
| | | |
Collapse
|
15
|
Reyes-Juárez JL, Juárez-Rubí R, Rodríguez G, Zarain-Herzberg A. Transcriptional analysis of the human cardiac calsequestrin gene in cardiac and skeletal myocytes. J Biol Chem 2007; 282:35554-63. [PMID: 17938175 DOI: 10.1074/jbc.m707788200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calsequestrin is the main calcium-binding protein inside the sarcoplasmic reticulum of striated muscle. In mammals, the cardiac calsequestrin gene (casq2) mainly expresses in cardiac muscle and to a minor extent in slow-twitch skeletal muscle and it is not expressed in non-muscle tissues. This work is the first study on the transcriptional regulation of the casq2 gene in cardiac and skeletal muscle cells. The sequence of the casq2 genes proximal promoter (180 bp) of mammals and avians is highly conserved and contains one TATA box, one CArG box, one E-box, and one myocyte enhancer factor 2 (MEF-2) site. We cloned the human casq2 gene 5'-regulatory region into a luciferase reporter expression vector. By functional assays we showed that a construct containing the first 288 bp of promoter was up-regulated during myogenic differentiation of Sol8 cells and had higher transcriptional activity compared with longer constructs. In neonatal rat cardiac myocytes, the larger construct containing 3.2 kb showed the highest transcriptional activity, demonstrating that the first 288 bp are sufficient to confer muscle specificity, whereas distal sequences may act as a cardiac-specific enhancer. Electrophoretic mobility shift assay studies demonstrated that the proximal MEF-2 and CArG box sequences were capable of binding MEF-2 and serum response factor, respectively, whereas the E-box did not show binding properties. Functional studies demonstrated that site-directed mutagenesis of the proximal MEF-2 and CArG box sites significantly decreased the transcription of the gene in cardiac and skeletal muscle cells, indicating that they are important to drive cardiac and skeletal muscle-specific transcription of the casq2 gene.
Collapse
Affiliation(s)
- José Luis Reyes-Juárez
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Nacional Autónoma de México, México Distrito Federal 04510
| | | | | | | |
Collapse
|
16
|
Deldicque L, Theisen D, Bertrand L, Hespel P, Hue L, Francaux M. Creatine enhances differentiation of myogenic C2C12cells by activating both p38 and Akt/PKB pathways. Am J Physiol Cell Physiol 2007; 293:C1263-71. [PMID: 17652429 DOI: 10.1152/ajpcell.00162.2007] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In myogenic C2C12cells, 5 mM creatine increased the incorporation of labeled [35S]methionine into sarcoplasmic (+20%, P < 0.05) and myofibrillar proteins (+50%, P < 0.01). Creatine also promoted the fusion of myoblasts assessed by an increased number of nuclei incorporated within myotubes (+40%, P < 0.001). Expression of myosin heavy chain type II (+1,300%, P < 0.001), troponin T (+65%, P < 0.01), and titin (+40%, P < 0.05) was enhanced by creatine. Mannitol, taurine, and β-alanine did not mimic the effect of creatine, ruling out an osmolarity-dependent mechanism. The addition of rapamycin, the inhibitor of mammalian target of rapamycin/70-kDa ribosomal S6 protein kinase (mTOR/p70s6k) pathway, and SB 202190, the inhibitor of p38, completely blocked differentiation in control cells, and creatine did not reverse this inhibition, suggesting that the mTOR/p70s6kand p38 pathways could be potentially involved in the effect induced by creatine on differentiation. Creatine upregulated phosphorylation of protein kinase B (Akt/PKB; +60%, P < 0.001), glycogen synthase kinase-3 (+70%, P < 0.001), and p70s6k(+50%, P < 0.001). Creatine also affected the phosphorylation state of p38 (−50% at 24 h and +70% at 96 h, P < 0.05) as well as the nuclear content of its downstream targets myocyte enhancer factor-2 (−55% at 48 h and +170% at 96 h, P < 0.05) and MyoD (+60%, P < 0.01). In conclusion, this study points out the involvement of the p38 and the Akt/PKB-p70s6kpathways in the enhanced differentiation induced by creatine in C2C12cells.
Collapse
Affiliation(s)
- Louise Deldicque
- Department of Physical Education and Rehabilitation, Université Catholique de Louvain, Place Pierre de Coubertin 1, 1348, Louvain-la-Neuve, Belgium
| | | | | | | | | | | |
Collapse
|
17
|
Wang H, Hertlein E, Bakkar N, Sun H, Acharyya S, Wang J, Carathers M, Davuluri R, Guttridge DC. NF-kappaB regulation of YY1 inhibits skeletal myogenesis through transcriptional silencing of myofibrillar genes. Mol Cell Biol 2007; 27:4374-87. [PMID: 17438126 PMCID: PMC1900043 DOI: 10.1128/mcb.02020-06] [Citation(s) in RCA: 193] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 12/11/2006] [Accepted: 03/20/2007] [Indexed: 11/20/2022] Open
Abstract
NF-kappaB signaling is implicated as an important regulator of skeletal muscle homeostasis, but the mechanisms by which this transcription factor contributes to muscle maturation and turnover remain unclear. To gain insight into these mechanisms, gene expression profiling was examined in C2C12 myoblasts devoid of NF-kappaB activity. Interestingly, even in proliferating myoblasts, the absence of NF-kappaB caused the pronounced induction of several myofibrillar genes, suggesting that NF-kappaB functions as a negative regulator of late-stage muscle differentiation. Although several myofibrillar promoters contain predicted NF-kappaB binding sites, functional analysis using the troponin-I2 gene as a model revealed that NF-kappaB-mediated repression does not occur through direct DNA binding. In the search for an indirect mediator, the transcriptional repressor YinYang1 (YY1) was identified. While inducers of NF-kappaB stimulated YY1 expression in multiple cell types, genetic ablation of the RelA/p65 subunit of NF-kappaB in both cultured cells and adult skeletal muscle correlated with reduced YY1 transcripts and protein. NF-kappaB regulation of YY1 occurred at the transcriptional level, mediated by direct binding of the p50/p65 heterodimer complex to the YY1 promoter. Furthermore, YY1 was found associated with multiple myofibrillar promoters in C2C12 myoblasts containing NF-kappaB activity. Based on these results, we propose that NF-kappaB regulation of YY1 and transcriptional silencing of myofibrillar genes represent a new mechanism by which NF-kappaB functions in myoblasts to modulate skeletal muscle differentiation.
Collapse
Affiliation(s)
- Huating Wang
- Human Cancer Genetics Program, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Breckenridge R, Kotecha S, Towers N, Bennett M, Mohun T. Pan-myocardial expression of Cre recombinase throughout mouse development. Genesis 2007; 45:135-44. [PMID: 17334998 DOI: 10.1002/dvg.20275] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mouse-lines expressing Cre recombinase in a tissue-specific manner are a powerful tool in developmental biology. Here, we report that a 3 kb fragment of the Xenopus laevis myosin light-chain 2 (XMLC2) promoter drives Cre recombinase expression in a cardiac-restricted fashion in the mouse embryo. We have isolated two XMLC2-Cre lines that express recombinase exclusively within cardiomyocytes, from the onset of their differentiation in the cardiac crescent of the early embryo. Expression is maintained throughout the myocardium of the embryonic heart tube and subsequently the mature myocardium of the chambered heart. Recombinase activity is detected in all myocardial tissue, including the pulmonary veins. One XMLC2-Cre line shows uniform expression while the other only expresses recombinase in a mosaic fashion encompassing less than 50% of the myocardial cells. Both lines cause severe cardiac malformations when crossed to a conditional Tbx5 line, resulting in embryonic death at midgestation. Optical projection tomography reveals that the spectrum of developmental abnormalities includes a shortening of the outflow tract and its abnormal alignment, along with a dramatic reduction in trabeculation of the ventricular segment of the looping heart tube.
Collapse
Affiliation(s)
- Ross Breckenridge
- Division of Developmental Biology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill,London, United Kingdom
| | | | | | | | | |
Collapse
|
19
|
Lin JJC, Grosskurth SE, Harlan SM, Gustafson-Wagner EA, Wang Q. Characterization of cis-regulatory elements and transcription factor binding: gel mobility shift assay. Methods Mol Biol 2007; 366:183-201. [PMID: 17568125 PMCID: PMC1905839 DOI: 10.1007/978-1-59745-030-0_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
To understand how cardiac gene expression is regulated, the identification and characterization of cis-regulatory elements and their trans-acting factors by gel mobility shift assay (GMSA) or gel retardation assay are essential and common steps. In addition to providing a general protocol for GMSA, this chapter describes some applications of this assay to characterize cardiac-specific and ubiquitous trans-acting factors bound to regulatory elements [novel TCTG(G/C) direct repeat and A/T-rich region] of the rat cardiac troponin T promoter. In GMSA, the specificity of the binding of trans-acting factor to labeled DNA probe should be verified by the addition of unlabeled probe in the reaction mixture. The migratory property of DNA-protein complexes formed by protein extracts prepared from different tissues can be compared to determine the tissue specificity of trans-acting factors. GMSA, coupled with specific antibody to trans-acting factor (antibody supershift assay), is used to identify proteins present in the DNA-protein complex. The gel-shift competition assay with an unlabeled probe containing a slightly different sequence is a powerful technique used to assess the sequence specificity and relative binding affinity of a DNA-protein interaction. GMSA with SDS-PAGE fractionated proteins allows for the determination of the apparent molecular mass of bound trans-acting factor.
Collapse
|
20
|
Charvet C, Houbron C, Parlakian A, Giordani J, Lahoute C, Bertrand A, Sotiropoulos A, Renou L, Schmitt A, Melki J, Li Z, Daegelen D, Tuil D. New role for serum response factor in postnatal skeletal muscle growth and regeneration via the interleukin 4 and insulin-like growth factor 1 pathways. Mol Cell Biol 2006; 26:6664-74. [PMID: 16914747 PMCID: PMC1592825 DOI: 10.1128/mcb.00138-06] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Serum response factor (SRF) is a crucial transcriptional factor for muscle-specific gene expression. We investigated SRF function in adult skeletal muscles, using mice with a postmitotic myofiber-targeted disruption of the SRF gene. Mutant mice displayed severe skeletal muscle mass reductions due to a postnatal muscle growth defect resulting in highly hypotrophic adult myofibers. SRF-depleted myofibers also failed to regenerate following injury. Muscles lacking SRF had very low levels of muscle creatine kinase and skeletal alpha-actin (SKA) transcripts and displayed other alterations to the gene expression program, indicating an overall immaturity of mutant muscles. This loss of SKA expression, together with a decrease in beta-tropomyosin expression, contributed to myofiber growth defects, as suggested by the extensive sarcomere disorganization found in mutant muscles. However, we observed a downregulation of interleukin 4 (IL-4) and insulin-like growth factor 1 (IGF-1) expression in mutant myofibers which could also account for their defective growth and regeneration. Indeed, our demonstration of SRF binding to interleukin 4 and IGF-1 promoters in vivo suggests a new crucial role for SRF in pathways involved in muscle growth and regeneration.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Base Sequence
- Cell Nucleus/metabolism
- Cell Size
- Gene Expression Regulation
- Insulin-Like Growth Factor I/genetics
- Insulin-Like Growth Factor I/metabolism
- Integrases/genetics
- Interleukin-4/genetics
- Interleukin-4/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Molecular Sequence Data
- Muscle, Skeletal/cytology
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/physiology
- Muscle, Skeletal/ultrastructure
- Organ Size
- Phenotype
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Regeneration
- Sarcomeres/pathology
- Sarcomeres/ultrastructure
- Serum Response Factor/deficiency
- Serum Response Factor/genetics
- Serum Response Factor/metabolism
Collapse
Affiliation(s)
- Claude Charvet
- Institut Cochin, Faculté de Médecine Cochin Port Royal, 24 rue du Faubourg Saint Jacques, 75014 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Müller FU, Loser K, Kleideiter U, Neumann J, von Wallbrunn C, Dobner T, Scheld HH, Bantel H, Engels IH, Schulze-Osthoff K, Schmitz W. Transcription factor AP-2alpha triggers apoptosis in cardiac myocytes. Cell Death Differ 2005; 11:485-93. [PMID: 14752511 DOI: 10.1038/sj.cdd.4401383] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Idiopathic-dilated cardiomyopathy (IDC) is a common primary myocardial disease of unknown etiology associated with apoptosis, cardiac dilatation, progressive heart failure and increased mortality. An elevation of the transcription factor activator protein 2alpha (AP-2alpha) is involved in vertebrate embryonic development and oncogenesis. Here, we show that AP-2alpha protein is expressed in the human heart and increased in human failing myocardium with IDC. Adenovirus-mediated overexpression of human AP-2alpha triggered apoptosis and increased mRNA levels of Bcl-2 family members Bax and Bcl-x in rat cardiomyocytes. Immunohistological analysis of human myocardium revealed an increased percentage of AP-2alpha-positive nuclei in IDC and, interestingly, a colocalization of AP-2alpha-positive but not -negative cells with a caspase-cleaved fragment of poly(ADP-ribose)polymerase. We suggest AP-2alpha as a novel cardiac regulator implicated in the activation of apoptosis in IDC.
Collapse
Affiliation(s)
- F U Müller
- Institute of Pharmacology and Toxicology, University of Münster, Domagkstr. 12, Münster D-48129, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ma H, Sumbilla CM, Farrance IKG, Klein MG, Inesi G. Cell-specific expression of SERCA, the exogenous Ca2+transport ATPase, in cardiac myocytes. Am J Physiol Cell Physiol 2004; 286:C556-64. [PMID: 14592812 DOI: 10.1152/ajpcell.00328.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We evaluated various constructs to obtain cell-specific expression of the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) gene in cardiac myocytes after cDNA transfer by means of transfections or infections with adenovirus vectors. Expression of exogenous enhanced green fluorescent protein (EGFP) and SERCA genes was studied in cultured chicken embryo and neonatal rat cardiac myocytes, skeletal and smooth muscle cells, fibroblasts, and hepatocytes. Whereas the cytomegalovirus (CMV) promoter yielded high levels of protein expression in all cells studied, cardiac troponin T (cTnT) promoter segments demonstrated high specificity for cardiac myocytes. Their efficiency for protein expression was lower than that of the CMV promoter, but higher than that of cardiac myosin light chain or β-myosin heavy chain promoter segments. A double virus system for Cre-dependent expression under control of the CMV promoter and Cre expression under control of a cardiac-specific promoter yielded high protein levels in cardiac myocytes, but only partial cell specificity due to significant Cre expression in hepatocytes. Specific intracellular targeting of gene products was demonstrated in situ by specific immunostaining of exogenous SERCA1 and endogenous SERCA2 and comparative fluorescence microscopy. The -374 cTnT promoter segment was the most advantageous of the promoters studied, producing cell-specific SERCA expression and a definite increase over endogenous Ca2+-ATPase activity as well as faster removal of cytosolic calcium after membrane excitation. We conclude that analysis of promoter efficiency and cell specificity is of definite advantage when cell-specific expression of exogenous SERCA is wanted in cardiac myocytes after cDNA delivery to mixed cell populations.
Collapse
Affiliation(s)
- Hailun Ma
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201-1503, USA
| | | | | | | | | |
Collapse
|
23
|
Wang Q, Sigmund CD, Lin JJ. Identification of cis elements in the cardiac troponin T gene conferring specific expression in cardiac muscle of transgenic mice. Circ Res 2000; 86:478-84. [PMID: 10700454 DOI: 10.1161/01.res.86.4.478] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To investigate the underlying mechanism regulating cardiac gene expression, transgenic mice carrying the rat cardiac troponin T proximal promoter (-497 bp from the transcriptional start site) fused to a LacZ or chloramphenicol acetyltransferase (CAT) reporter gene were analyzed. The LacZ expression pattern throughout development was very similar to that of the endogenous cardiac troponin T gene. Within this promoter, a high degree of sequence homology was found at 2 sites, modules D (-335 to -289 bp) and F (-249 to -209 bp). Both regions contain at least a TCTG(G/C) direct repeat and an A/T-rich site, whereas only the F module has a muscle enhancer factor 2 (MEF2)-like motif. No significant decrease in CAT transgene expression was observed when only the MEF2 core sequence was mutated. However, when the MEF2 core sequence and its flanking TCTGG site were mutated (Mut5), CAT transgene expression was significantly decreased in the heart, and ectopic expression of the transgene was also observed. When mutations were introduced into this promoter to destroy all upstream TCTG(G/C) direct repeats in the D module (MutD), CAT expression remained cardiac specific, but the expression level was dramatically decreased. Relaxation of cardiac-specific transgene expression became even more severe in transgenic mice carrying double mutations (Mut[D+5]). In addition, CAT activity in the heart was nearly abolished. These results suggest that D and F modules have an additive function in determining the level of expression in the heart and only the F module confers cardiac-specific expression.
Collapse
Affiliation(s)
- Q Wang
- Departments of Biological Sciences, University of Iowa, Iowa City, Iowa 52242-1324, USA
| | | | | |
Collapse
|
24
|
Black BL, Olson EN. Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu Rev Cell Dev Biol 1999; 14:167-96. [PMID: 9891782 DOI: 10.1146/annurev.cellbio.14.1.167] [Citation(s) in RCA: 798] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metazoans contain multiple types of muscle cells that share several common properties, including contractility, excitability, and expression of overlapping sets of muscle structural genes that mediate these functions. Recent biochemical and genetic studies have demonstrated that members of the myocyte enhancer factor-2 (MEF2) family of MADS (MCM1, agamous, deficiens, serum response factor)-box transcription factors play multiple roles in muscle cells to control myogenesis and morphogenesis. Like other MADS-box proteins, MEF2 proteins act combinatorially through protein-protein interactions with other transcription factors to control specific sets of target genes. Genetic studies in Drosophila have also begun to reveal the upstream elements of myogenic regulatory hierarchies that control MEF2 expression during development of skeletal, cardiac, and visceral muscle lineages. Paradoxically, MEF2 factors also regulate cell proliferation by functioning as endpoints for a variety of growth factor-regulated intracellular signaling pathways that are antagonistic to muscle differentiation. We discuss the diverse functions of this family of transcription factors, the ways in which they are regulated, and their mechanisms of action.
Collapse
Affiliation(s)
- B L Black
- Department of Molecular Biology and Oncology, University of Texas Southwestern Medical Center, Dallas 75235-9148, USA.
| | | |
Collapse
|
25
|
Li L, Liu Z, Mercer B, Overbeek P, Olson EN. Evidence for serum response factor-mediated regulatory networks governing SM22alpha transcription in smooth, skeletal, and cardiac muscle cells. Dev Biol 1997; 187:311-21. [PMID: 9242426 DOI: 10.1006/dbio.1997.8621] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
SM22alpha is an adult smooth muscle-specific protein that is expressed in the smooth, cardiac, and skeletal muscle lineages during early embryogenesis before becoming restricted specifically to all vascular and visceral smooth muscle cells (SMC) in late fetal development and adulthood. We have used the SM22alpha gene as a marker to define the regulatory mechanisms that control muscle-specific gene expression in SMCs. Previously, we reported that the 445-base-pair promoter of SM22alpha was sufficient to direct transcription of a lacZ reporter gene in early cardiac and skeletal muscle cell lineages and in a subset of arterial SMCs, but not in venous nor visceral SMCs in transgenic mice. Here we describe two evolutionarily conserved CArG (CC(A/T)6GG) boxes in the SM22alpha promoter, both of which are essential for full promoter activity in cultured SMCs. In contrast, only the promoter-proximal CArG box is essential for specific expression in developing smooth, skeletal, and cardiac muscle lineages in transgenic mice. Both CArG boxes bind serum response factor (SRF), but SRF binding is not sufficient for SM22alpha promoter activity, since overexpression of SRF in the embryonal teratocarcinoma cell line F9, which normally expresses low levels of SRF, fails to activate the promoter. However, a chimeric protein in which SRF was fused to the transcription activation domain of the viral coactivator VP16 is able to activate the SM22alpha promoter in F9 cells. These results demonstrate the SM22alpha promoter-proximal CArG box is a target for the regulatory programs that confer smooth, skeletal, and cardiac muscle specificity to the SM22alpha promoter and they suggest that SRF activates SM22alpha transcription in conjunction with additional regulatory factors that are cell type-restricted.
Collapse
Affiliation(s)
- L Li
- Department of Internal Medicine, Wayne State University, Detroit, Michigan 48335, USA
| | | | | | | | | |
Collapse
|
26
|
Ornatsky OI, McDermott JC. MEF2 protein expression, DNA binding specificity and complex composition, and transcriptional activity in muscle and non-muscle cells. J Biol Chem 1996; 271:24927-33. [PMID: 8798771 DOI: 10.1074/jbc.271.40.24927] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Tissue-specific gene expression can be mediated by complex transcriptional regulatory mechanisms. Based on the dichotomy of the ubiquitous distribution of the myocyte enhancer factor 2 (MEF2) gene mRNAs compared to their cell type-restricted activity, we investigated the basis for their tissue specificity. Electrophoretic mobility shift assays using the muscle creatine kinase MEF2 DNA binding site as a probe showed that HeLa, Schneider, L6E9 muscle, and C2C12 muscle cells have a functional MEF2 binding activity that is indistinguishable based on competition analysis. Interestingly, chloramphenicol acetyltransferase reporter assays showed MEF2 site-dependent trans-activation in myogenic C2C12 cells but no trans-activation by the endogenous MEF2 proteins in HeLa cells. By immunofluorescence, we detected abundant nuclear localized MEF2A and MEF2D protein expression in HeLa cells and C2C12 muscle cells. Using immuno-gel shift analysis and also co-immunoprecipitation studies, we show that the predominant MEF2 DNA binding complex bound to MEF2 sites from either the muscle creatine kinase or c-jun regulatory regions in C2C12 muscle cells is comprised of a MEF2A homodimer, whereas in HeLa cells, it is a MEF2A:MEF2D heterodimer. Thus, the presence of MEF2 DNA binding complexes is not necessarily coupled with trans-activation of target genes. The ability of the MEF2 proteins to activate transcription in vivo correlates with the specific dimer composition of the DNA binding complex and the cellular context.
Collapse
Affiliation(s)
- O I Ornatsky
- Departments of Kinesiology and Biology, Faculty of Pure and Applied Science, York University, Toronto, Ontario M3J 1P3, Canada
| | | |
Collapse
|
27
|
Wang GF, Nikovits W, Schleinitz M, Stockdale FE. Atrial chamber-specific expression of the slow myosin heavy chain 3 gene in the embryonic heart. J Biol Chem 1996; 271:19836-45. [PMID: 8702693 DOI: 10.1074/jbc.271.33.19836] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The quail slow myosin heavy chain 3 (slow MyHC 3) gene is expressed in the developing heart and in slow muscles of the developing limb. It is first expressed in the pulsatile cardiac tube in the embryo, and as the heart chamberizes its expression becomes restricted to the atria. To identify regulatory elements responsible for atrial-specific expression, the 5' upstream region of slow MyHC 3 gene was investigated. An atrial regulatory domain (ARD1) between -840 and -680 acts as an atrial cell-specific enhancer in primary cardiocyte cultures. ARD1 also specifies atrial-specific expression in vivo when the ARD1/heterologous promoter was introduced into developing chick embryos by a replication-competent retroviral vector. ARD1 is the first atrial cell-specific enhancer to be identified. Fine deletion and mutation analysis within ARD1 defined a 40-base pair vitamin D3 receptor-like element that controls atrial cell-specific expression of the slow MyHC 3 gene by inhibiting its expression in ventricular cardiocytes.
Collapse
Affiliation(s)
- G F Wang
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305-5306, USA
| | | | | | | |
Collapse
|
28
|
Abstract
The delineation of the mechanisms that regulate cardiac gene expression is central to our understanding of cardiac growth and development. Much progress has been made toward the identification of factors involved in tissue-restricted gene expression, especially in skeletal muscle cells. However, the mechanisms regulating the expression of cardiac-specific genes remain less well understood. Certain homeodomain proteins have been implicated in commitment to the cardiac phenotype. Among the best characterized are the murine proteins Csx, Nkx-2.5, and Nkx-2.6, related to the protein tinman, which is essential for heart formation in Drosophila. The expression of these genes precedes that of cardiac-specific genes and is therefore believed to play a critical role in the development of the heart. The GATA proteins are a family of zinc finger proteins that are also expressed early in cardiac development and may act separately from, or in concert with, the homeodomain proteins as crucial regulators of heart development. The myosin heavy and light chain genes, the actin genes, the troponin genes, and the atrial natriuretic factor and muscle creatine kinase genes have served as excellent paradigms for the study of cardiac gene expression. Although differences in cis-acting elements and their behavior in binding assays have been observed between different genes, there exist similarities that are noteworthy. In this review, we will discuss the factors involved in the regulation of cardiac-specific gene expression in an attempt to provide a better understanding of the process of cardiogenesis.
Collapse
Affiliation(s)
- J D Mably
- Laboratory for Molecular Cardiology, Toronto Hospital, Ontario, Canada
| | | |
Collapse
|
29
|
Abstract
During the past decade, major advances have been made in uncovering the mechanisms that switch genes on and off. Gene methylation and histones play an important role in gene (in)activation. Following gene activation, the initiation of transcription by RNA polymerase requires the assembly of multiple protein complexes on the promoter region of a gene. How a cell type-specific gene expression pattern can be induced is a key question in cardiovascular biology today. Members of the helix-loop-helix-family of the transcription factors play a dominant role in skeletal muscle formation. In cardiac muscle the situation is less obvious. Recent studies identified muscle transcription factors like MEF-2, TEF-1 and MNF, which are common to both the skeletal and cardiac muscle lineages. A few transcription factors, among which Nkx 2.5 and GATA-4, are expressed predominantly in the heart. The absence of master regulators in the heart points to the importance of interaction between ubiquitous factors and tissue restricted factors to initiate the cardiac gene programme and to lock these cells in their differentiated state. The recent development of murine transgenic and gene-targeting technology provides tools to study the role of mammalian transcription factors in vivo. Interesting cardiac phenotypes are found in gene targeted mice, indicating a crucial role for retinoic acid and homeobox genes in murine cardiogenesis.
Collapse
Affiliation(s)
- P A Doevendans
- Department of Cardiology, University of Limburg, The Netherlands
| | | |
Collapse
|