1
|
Kaur M, Arya P, Chosyang S, Singh B. Comprehending conformational changes in EmrE, multidrug transporter at different pH: insights from molecular dynamics simulations. J Biomol Struct Dyn 2024:1-14. [PMID: 38180013 DOI: 10.1080/07391102.2023.2298386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
EmrE is a small multidrug resistance (SMR) pump of antiparallel topology that confers resistance to a broad range of polyaromatic cations in Escherichia coli. Atomic-level understanding of conformational changes for the selectivity of substrate and transport of a diverse array of drugs through the smallest known efflux pumps is crucial to multi-drug resistance. Therefore, the present study aims to provide insights into conformational changes during the transport through EmrE transporter at different pH. Molecular dynamics simulations have been carried out on the complete structure of EmrE in the absence of substrate. Computational analyses such as secondary structure, principal component, dynamic cross-correlation matrix, and hydrogen bond calculations have been performed. Analysis of MD trajectories in this study revealed pH-dependent interactions that influenced the structural dynamics of EmrE. Notably, at high pH, Glu14 and Tyr60 in both monomers formed electrostatic interactions, while these interactions decreased significantly at a low pH. Interestingly, a kink at helix 3 (H3) and dual open conformation of EmrE at low pH were also observed in contrast to a closed state discerned towards the periplasmic side at high pH. Significant interactions between C-terminal residues and residues at the edge of H1 & Loop1 and H3 & Loop3 were identified, suggesting their role in stabilizing the closed conformation of EmrE at the periplasmic end under high pH conditions. The present study enhances our understanding of EmrE's conformational changes, shedding light on the pH-dependent mechanisms that are likely to impact its function in multi-drug resistance.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manpreet Kaur
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Preeti Arya
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
- Faculty of Allied Health Sciences, Shree Guru Gobind Singh Tricentenary University, Gurugram, Haryana, India
| | - Stanzin Chosyang
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Balvinder Singh
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Cheema HS, Maurya A, Kumar S, Pandey VK, Singh RM. Antibiotic Potentiation Through Phytochemical-Based Efflux Pump Inhibitors to Combat Multidrug Resistance Bacteria. Med Chem 2024; 20:557-575. [PMID: 37907487 DOI: 10.2174/0115734064263586231022135644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND Antimicrobial resistance development poses a significant danger to the efficacy of antibiotics, which were once believed to be the most efficient method for treating infections caused by bacteria. Antimicrobial resistance typically involves various mechanisms, such as drug inactivation or modification, drug target modification, drug uptake restriction, and drug efflux, resulting in decreased antibiotic concentrations within the cell. Antimicrobial resistance has been associated with efflux Pumps, known for their capacity to expel different antibiotics from the cell non-specifically. This makes EPs fascinating targets for creating drugs to combat antimicrobial resistance (AMR). The varied structures of secondary metabolites (phytomolecules) found in plants have positioned them as a promising reservoir of efflux pump inhibitors. These inhibitors act as modifiers of bacterial resistance and facilitate the reintroduction of antibiotics that have lost clinical effectiveness. Additionally, they may play a role in preventing the emergence of multidrug resistant strains. OBJECTIVE The objective of this review article is to discuss the latest studies on plant-based efflux pump inhibitors such as terpenoids, alkaloids, flavonoids, glycosides, and tetralones. It highlighted their potential in enhancing the effectiveness of antibiotics and combating the development of multidrug resistance. RESULTS Efflux pump inhibitors (EPIs) derived from botanical sources, including compounds like lysergol, chanaoclavine, niazrin, 4-hydroxy-α-tetralone, ursolic acid, phytol, etc., as well as their partially synthesized forms, have shown significant potential as practical therapeutic approaches in addressing antimicrobial resistance caused by efflux pumps. Further, several phyto-molecules and their analogs demonstrated superior potential for reversing drug resistance, surpassing established agents like reserpine, niaziridin, etc. Conclusion: This review found that while the phyto-molecules and their derivatives did not possess notable antimicrobial activity, their combination with established antibiotics significantly reduced their minimum inhibitory concentration (MIC). Specific molecules, such as chanaoclavine and niaziridin, exhibited noteworthy potential in reversing the effectiveness of drugs, resulting in a reduction of the MIC of tetracycline by up to 16 times against the tested strain of bacteria. These molecules inhibited the efflux pumps responsible for drug resistance and displayed a stronger affinity for membrane proteins. By employing powerful EPIs, these molecules can selectively target and obstruct drug efflux pumps. This targeted approach can significantly augment the strength and efficacy of older antibiotics against various drug resistant bacteria, given that active drug efflux poses a susceptibility for nearly all antibiotics.
Collapse
Affiliation(s)
| | - Anupam Maurya
- Chemistry Section, Pharmacopoeia Commission for Indian Medicine, and Homoeopathy (PCIM&H), Ministry of Ayush, Ghaziabad, 201002, (U.P.), India
| | - Sandeep Kumar
- Department of Botany, Meerut College, Meerut, 250003 (U.P.), India
| | - Vineet Kumar Pandey
- Chemistry Section, Pharmacopoeia Commission for Indian Medicine, and Homoeopathy (PCIM&H), Ministry of Ayush, Ghaziabad, 201002, (U.P.), India
| | - Raman Mohan Singh
- Chemistry Section, Pharmacopoeia Commission for Indian Medicine, and Homoeopathy (PCIM&H), Ministry of Ayush, Ghaziabad, 201002, (U.P.), India
| |
Collapse
|
3
|
Quan H, Gong X, Chen Q, Zheng F, Yu Y, Liu D, Wang W, Chu Y. Functional Characterization of a Novel SMR-Type Efflux Pump RanQ, Mediating Quaternary Ammonium Compound Resistance in Riemerella anatipestifer. Microorganisms 2023; 11:microorganisms11040907. [PMID: 37110330 PMCID: PMC10142375 DOI: 10.3390/microorganisms11040907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Riemerella anatipestifer (R. anatipestifer) is a multidrug-resistant bacterium and an important pathogen responsible for major economic losses in the duck industry. Our previous study revealed that the efflux pump is an important resistance mechanism of R. anatipestifer. Bioinformatics analysis indicated that the GE296_RS02355 gene (denoted here as RanQ), a putative small multidrug resistance (SMR)-type efflux pump, is highly conserved in R. anatipestifer strains and important for the multidrug resistance. In the present study, we characterized the GE296_RS02355 gene in R. anatipestifer strain LZ-01. First, the deletion strain RA-LZ01ΔGE296_RS02355 and complemented strain RA-LZ01cΔGE296_RS02355 were constructed. When compared with that of the wild-type (WT) strain RA-LZ01, the mutant strain ΔRanQ showed no significant influence on bacterial growth, virulence, invasion and adhesion, morphology biofilm formation ability, and glucose metabolism. In addition, the ΔRanQ mutant strain did not alter the drug resistance phenotype of the WT strain RA-LZ01 and displayed enhanced sensitivity toward structurally related quaternary ammonium compounds, such as benzalkonium chloride and methyl viologen, which show high efflux specificity and selectivity. This study may help elucidate the unprecedented biological functions of the SMR-type efflux pump in R. anatipestifer. Thus, if this determinant is horizontally transferred, it could cause the spread of quaternary ammonium compound resistance among bacterial species.
Collapse
Affiliation(s)
- Heng Quan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Xiaowei Gong
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Qiwei Chen
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Correspondence: (Q.C.); (W.W.)
| | - Fuying Zheng
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Yongfeng Yu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Donghui Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Wenhui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence: (Q.C.); (W.W.)
| | - Yuefeng Chu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| |
Collapse
|
4
|
McNeil JC, Sommer LM, Vallejo JG, Hulten KG, Kaplan SL. Association of qacA/B and smr Carriage with Staphylococcus aureus Survival following Exposure to Antiseptics in an Ex Vivo Venous Catheter Disinfection Model. Microbiol Spectr 2023; 11:e0333322. [PMID: 36862001 PMCID: PMC10100659 DOI: 10.1128/spectrum.03333-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/01/2023] [Indexed: 03/03/2023] Open
Abstract
Many health care centers have reported an association between Staphylococcus aureus isolates bearing efflux pump genes and an elevated MIC/minimal bactericidal concentration (MBC) to chlorhexidine gluconate (CHG) and other antiseptics. The significance of these organisms is uncertain, given that their MIC/MBC is typically far lower than the CHG concentration in most commercial preparations. We sought to evaluate the relationship between carriage of the efflux pump genes qacA/B and smr in S. aureus and the efficacy of CHG-based antisepsis in a venous catheter disinfection model. S. aureus isolates with and without smr and/or qacA/B were utilized. The CHG MICs were determined. Venous catheter hubs were inoculated and exposed to CHG, isopropanol, and CHG-isopropanol combinations. The microbiocidal effect was calculated as the percent reduction in CFU following exposure to the antiseptic relative to the control. The qacA/B- and smr-positive isolates had modest elevations in the CHG MIC90 compared to the qacA/B- and smr-negative isolates (0.125 mcg/ml vs. 0.06 mcg/ml, respectively). However, the CHG microbiocidal effect was significantly lower for qacA/B- and/or smr-positive strains than for susceptible isolates, even when the isolates were exposed to CHG concentrations up to 400 μg/mL (0.04%); this finding was most notable for isolates bearing both qacA/B and smr (89.3% versus 99.9% for the qacA/B- and smr-negative isolates; P = 0.04). Reductions in the median microbiocidal effect were also observed when these qacA/B- and smr-positive isolates were exposed to a solution of 400 μg/mL (0.04%) CHG and 70% isopropanol (89.5% versus 100% for the qacA/B- and smr-negative isolates; P = 0.002). qacA/B- and smr-positive S. aureus isolates have a survival advantage in the presence of CHG concentrations exceeding the MIC. These data suggest that traditional MIC/MBC testing may underestimate the ability of these organisms to resist the effects of CHG. IMPORTANCE Antiseptic agents, including chlorhexidine gluconate (CHG), are commonly utilized in the health care environment to reduce rates of health care-associated infections. A number of efflux pump genes, including smr and qacA/B, have been reported in Staphylococcus aureus isolates that are associated with higher MICs and minimum bactericidal concentrations (MBCs) to CHG. Several health care centers have reported an increase in the prevalence of these S. aureus strains following an escalation of CHG use in the hospital environment. The clinical significance of these organisms, however, is uncertain, given that the CHG MIC/MBC is far below the concentration in commercial preparations. We present the results of a novel surface disinfection assay utilizing venous catheter hubs. We found that qacA/B-positive and smr-positive S. aureus isolates resist killing by CHG at concentrations far exceeding the MIC/MBC in our model. These findings highlight that traditional MIC/MBC testing is insufficient to evaluate susceptibility to antimicrobials acting on medical devices.
Collapse
Affiliation(s)
- J. Chase McNeil
- Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
| | - Lauren M. Sommer
- Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
| | - Jesus G. Vallejo
- Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
| | - Kristina G. Hulten
- Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
| | - Sheldon L. Kaplan
- Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
| |
Collapse
|
5
|
Chetri S. The culmination of multidrug-resistant efflux pumps vs. meager antibiotic arsenal era: Urgent need for an improved new generation of EPIs. Front Microbiol 2023; 14:1149418. [PMID: 37138605 PMCID: PMC10149990 DOI: 10.3389/fmicb.2023.1149418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/13/2023] [Indexed: 05/05/2023] Open
Abstract
Efflux pumps function as an advanced defense system against antimicrobials by reducing the concentration of drugs inside the bacteria and extruding the substances outside. Various extraneous substances, including antimicrobials, toxic heavy metals, dyes, and detergents, have been removed by this protective barrier composed of diverse transporter proteins found in between the cell membrane and the periplasm within the bacterial cell. In this review, multiple efflux pump families have been analytically and widely outlined, and their potential applications have been discussed in detail. Additionally, this review also discusses a variety of biological functions of efflux pumps, including their role in the formation of biofilms, quorum sensing, their survivability, and the virulence in bacteria, and the genes/proteins associated with efflux pumps have also been explored for their potential relevance to antimicrobial resistance and antibiotic residue detection. A final discussion centers around efflux pump inhibitors, particularly those derived from plants.
Collapse
|
6
|
Sommers KJ, Michaud ME, Hogue CE, Scharnow AM, Amoo LE, Petersen AA, Carden RG, Minbiole KPC, Wuest WM. Quaternary Phosphonium Compounds: An Examination of Non-Nitrogenous Cationic Amphiphiles That Evade Disinfectant Resistance. ACS Infect Dis 2022; 8:387-397. [PMID: 35077149 PMCID: PMC8996050 DOI: 10.1021/acsinfecdis.1c00611] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Quaternary ammonium compounds (QACs) serve as mainstays in the formulation of disinfectants and antiseptics. However, an over-reliance and misuse of our limited QAC arsenal has driven the development and spread of resistance to these compounds, as well as co-resistance to common antibiotics. Extensive use of these compounds throughout the COVID-19 pandemic thus raises concern for the accelerated proliferation of antimicrobial resistance and demands for next-generation antimicrobials with divergent architectures that may evade resistance. To this end, we endeavored to expand beyond canonical ammonium scaffolds and examine quaternary phosphonium compounds (QPCs). Accordingly, a synthetic and biological investigation into a library of novel QPCs unveiled biscationic QPCs to be effective antimicrobial scaffolds with improved broad-spectrum activities compared to commercial QACs. Notably, a subset of these compounds was found to be less effective against a known QAC-resistant strain of MRSA. Bioinformatic analysis revealed the unique presence of a family of small multiresistant transporter proteins, hypothesized to enable efflux-mediated resistance to QACs and QPCs. Further investigation of this resistance mechanism through efflux-pump inhibition and membrane depolarization assays illustrated the superior ability of P6P-10,10 to perturb the cell membrane and exert the observed broad-spectrum potency compared to its commercial counterparts. Collectively, this work highlights the promise of biscationic phosphonium compounds as next-generation disinfectant molecules with potent bioactivities, thereby laying the foundation for future studies into the synthesis and biological investigation of this nascent antimicrobial class.
Collapse
Affiliation(s)
| | | | - Cody E. Hogue
- Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Amber M. Scharnow
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Lauren E. Amoo
- Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Ashley A. Petersen
- Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Robert G. Carden
- Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Kevin P. C. Minbiole
- Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States
| | - William M. Wuest
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
7
|
Dashtbani-Roozbehani A, Brown MH. Efflux Pump Mediated Antimicrobial Resistance by Staphylococci in Health-Related Environments: Challenges and the Quest for Inhibition. Antibiotics (Basel) 2021; 10:antibiotics10121502. [PMID: 34943714 PMCID: PMC8698293 DOI: 10.3390/antibiotics10121502] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 01/04/2023] Open
Abstract
The increasing emergence of antimicrobial resistance in staphylococcal bacteria is a major health threat worldwide due to significant morbidity and mortality resulting from their associated hospital- or community-acquired infections. Dramatic decrease in the discovery of new antibiotics from the pharmaceutical industry coupled with increased use of sanitisers and disinfectants due to the ongoing COVID-19 pandemic can further aggravate the problem of antimicrobial resistance. Staphylococci utilise multiple mechanisms to circumvent the effects of antimicrobials. One of these resistance mechanisms is the export of antimicrobial agents through the activity of membrane-embedded multidrug efflux pump proteins. The use of efflux pump inhibitors in combination with currently approved antimicrobials is a promising strategy to potentiate their clinical efficacy against resistant strains of staphylococci, and simultaneously reduce the selection of resistant mutants. This review presents an overview of the current knowledge of staphylococcal efflux pumps, discusses their clinical impact, and summarises compounds found in the last decade from plant and synthetic origin that have the potential to be used as adjuvants to antibiotic therapy against multidrug resistant staphylococci. Critically, future high-resolution structures of staphylococcal efflux pumps could aid in design and development of safer, more target-specific and highly potent efflux pump inhibitors to progress into clinical use.
Collapse
|
8
|
Jurasz J, Bagiński M, Czub J, Wieczór M. Molecular mechanism of proton-coupled ligand translocation by the bacterial efflux pump EmrE. PLoS Comput Biol 2021; 17:e1009454. [PMID: 34613958 PMCID: PMC8523053 DOI: 10.1371/journal.pcbi.1009454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/18/2021] [Accepted: 09/15/2021] [Indexed: 11/18/2022] Open
Abstract
The current surge in bacterial multi-drug resistance (MDR) is one of the largest challenges to public health, threatening to render ineffective many therapies we rely on for treatment of serious infections. Understanding different factors that contribute to MDR is hence crucial from the global “one health” perspective. In this contribution, we focus on the prototypical broad-selectivity proton-coupled antiporter EmrE, one of the smallest known ligand transporters that confers resistance to aromatic cations in a number of clinically relevant species. As an asymmetric homodimer undergoing an “alternating access” protomer-swap conformational change, it serves as a model for the mechanistic understanding of more complex drug transporters. Here, we present a free energy and solvent accessibility analysis that indicates the presence of two complementary ligand translocation pathways that remain operative in a broad range of conditions. Our simulations show a previously undescribed desolvated apo state and anticorrelated accessibility in the ligand-bound state, explaining on a structural level why EmrE does not disrupt the pH gradient through futile proton transfer. By comparing the behavior of a number of model charged and/or aromatic ligands, we also explain the origin of selectivity of EmrE towards a broad class of aromatic cations. Finally, we explore unbiased pathways of ligand entry and exit to identify correlated structural changes implicated in ligand binding and release, as well as characterize key intermediates of occupancy changes. EmrE is a prototypical bacterial multidrug transporter (MDR) that confers resistance to drugs and antiseptics. Due to its structural simplicity, its mechanism of ligand recognition and translocation are relevant for a wide class of transporters. This proton-coupled antiport expels aromatic cations from the cytoplasm using the alternating access mechanism, achieving impressive levels of efficiency and robustness. Our protonation-specific free energy profiles, Grotthuss wire analyses and equilibrium simulations show how a deceivingly simple system can exchange ions with robustness and precision, hopefully inspiring rational efforts to design new MDR inhibitors.
Collapse
Affiliation(s)
- Jakub Jurasz
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, Gdansk, Poland
| | - Maciej Bagiński
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, Gdansk, Poland
- BioTechMed Center, Gdansk University of Technology, Gdansk, Poland
| | - Jacek Czub
- BioTechMed Center, Gdansk University of Technology, Gdansk, Poland
- Department of Physical Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Miłosz Wieczór
- Department of Physical Chemistry, Gdansk University of Technology, Gdansk, Poland
- Molecular Modeling and Bioinformatics Group, IRB Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
9
|
Tong C, Hu H, Chen G, Li Z, Li A, Zhang J. Disinfectant resistance in bacteria: Mechanisms, spread, and resolution strategies. ENVIRONMENTAL RESEARCH 2021; 195:110897. [PMID: 33617866 DOI: 10.1016/j.envres.2021.110897] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/02/2021] [Accepted: 02/15/2021] [Indexed: 05/19/2023]
Abstract
Disinfectants are widely acknowledged for removing microorganisms from the surface of the objects and transmission media. However, the emergence of disinfectant resistance has become a severe threat to the safety of life and health and the rational allocation of resources due to the reduced disinfectant effectiveness. The horizontal gene transfer (HGT) of disinfectant resistance genes has also expanded the resistant flora, making the situation worse. This review focused on the resistance mechanisms of disinfectant resistant bacteria on biofilms, cell membrane permeability, efflux pumps, degradable enzymes, and disinfectant targets. Efflux can be the fastest and most effective resistance mechanism for bacteria to respond to stress. The qac genes, located on some plasmids which can transmit resistance through conjugative transfer, are the most commonly reported in the study of disinfectant resistance genes. Whether the qac genes can be transferred through transformation or transduction is still unclear. Studying the factors affecting the resistance of bacteria to disinfectants can find breakthrough methods to more adequately deal with the problem of reduced disinfectant effectiveness. It has been confirmed that the interaction of probiotics and bacteria or the addition of 4-oxazolidinone can inhibit the formation of biofilms. Chemicals such as eugenol and indole derivatives can increase bacterial sensitivity by reducing the expression of efflux pumps. The role of these findings in anti-disinfectant resistance has proved invaluable.
Collapse
Affiliation(s)
- Chaoyu Tong
- Collage of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Hong Hu
- Collage of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Gang Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| | - Zhengyan Li
- Collage of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Aifeng Li
- Collage of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Jianye Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
10
|
Rismondo J, Haddad TFM, Shen Y, Loessner MJ, Gründling A. GtcA is required for LTA glycosylation in Listeria monocytogenes serovar 1/2a and Bacillus subtilis. ACTA ACUST UNITED AC 2020; 6:100038. [PMID: 32743150 PMCID: PMC7389260 DOI: 10.1016/j.tcsw.2020.100038] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/16/2020] [Accepted: 02/11/2020] [Indexed: 11/26/2022]
Abstract
The cell wall polymers wall teichoic acid (WTA) and lipoteichoic acid (LTA) are often modified with glycosyl and D-alanine residues. Recent studies have shown that a three-component glycosylation system is used for the modification of LTA in several Gram-positive bacteria including Bacillus subtilis and Listeria monocytogenes. In the L. monocytogenes 1/2a strain 10403S, the cytoplasmic glycosyltransferase GtlA is thought to use UDP-galactose to produce the C55-P-galactose lipid intermediate, which is transported across the membrane by an unknown flippase. Next, the galactose residue is transferred onto the LTA backbone on the outside of the cell by the glycosyltransferase GtlB. Here we show that GtcA is necessary for the glycosylation of LTA in L. monocytogenes 10403S and B. subtilis 168 and we hypothesize that these proteins act as C55-P-sugar flippases. With this we revealed that GtcA is involved in the glycosylation of both teichoic acid polymers in L. monocytogenes 10403S, namely WTA with N-acetylglucosamine and LTA with galactose residues. These findings indicate that the L. monocytogenes GtcA protein can act on different C55-P-sugar intermediates. Further characterization of GtcA in L. monocytogenes led to the identification of residues essential for its overall function as well as residues, which predominately impact WTA or LTA glycosylation.
Collapse
Affiliation(s)
- Jeanine Rismondo
- Section of Molecular Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Talal F M Haddad
- Section of Molecular Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Yang Shen
- Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Martin J Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Angelika Gründling
- Section of Molecular Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
11
|
In silico epitope identification of unique multidrug resistance proteins from Salmonella Typhi for vaccine development. Comput Biol Chem 2019; 78:74-80. [DOI: 10.1016/j.compbiolchem.2018.11.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 10/14/2018] [Accepted: 11/20/2018] [Indexed: 12/12/2022]
|
12
|
Chi L, Bian X, Gao B, Tu P, Ru H, Lu K. The Effects of an Environmentally Relevant Level of Arsenic on the Gut Microbiome and Its Functional Metagenome. Toxicol Sci 2018; 160:193-204. [PMID: 28973555 DOI: 10.1093/toxsci/kfx174] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Multiple environmental factors induce dysbiosis in the gut microbiome and cause a variety of human diseases. Previously, we have first demonstrated that arsenic alters the composition of the gut microbiome. However, the functional impact of arsenic on the gut microbiome has not been adequately assessed, particularly at environmentally relevant concentrations. In this study, we used 16S rRNA sequencing and metagenomics sequencing to investigate how exposure to 100 ppb arsenic for 13 weeks alters the composition and functional capacity of the gut microbiome in mice. Arsenic exposure altered the alpha and beta diversities as well as the composition profile of the gut microbiota. Metagenomics data revealed that the abundances of genes involved in carbohydrate metabolism, especially pyruvate fermentation, short-chain fatty acid synthesis, and starch utilization, and were significantly changed. Moreover, lipopolysaccharide biosynthesis genes, multiple stress response genes, and DNA repair genes were significantly increased in the gut microbiome of arsenic-exposed mice. The genes involved in the production or processing of multiple vitamins, including folic acid and vitamins B6, B12, and K2, were also enriched in arsenic-treated mice. In, addition, genes involved in multidrug resistance and conjugative transposon proteins were highly increased after treatment with arsenic. In conclusion, we demonstrate that arsenic exposure, at an environmentally relevant dose, not only perturbed the communal composition of the gut microbiome but also profoundly altered a variety of important bacterial functional pathways.
Collapse
Affiliation(s)
- Liang Chi
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27519
| | - Xiaoming Bian
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27519
| | - Bei Gao
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27519.,Department of Molecular and Cellular Biology, NIH West Coast Metabolomics Center, University of California, Davis, Davis, California 95616
| | - Pengcheng Tu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27519
| | - Hongyu Ru
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, North Carolina 27607
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27519
| |
Collapse
|
13
|
Zwama M, Yamasaki S, Nakashima R, Sakurai K, Nishino K, Yamaguchi A. Multiple entry pathways within the efflux transporter AcrB contribute to multidrug recognition. Nat Commun 2018; 9:124. [PMID: 29317622 PMCID: PMC5760665 DOI: 10.1038/s41467-017-02493-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 12/04/2017] [Indexed: 11/13/2022] Open
Abstract
AcrB is the major multidrug exporter in Escherichia coli. Although several substrate-entrances have been identified, the specificity of these various transport paths remains unclear. Here we present evidence for a substrate channel (channel 3) from the central cavity of the AcrB trimer, which is connected directly to the deep pocket without first passing the switch-loop and the proximal pocket . Planar aromatic cations, such as ethidium, prefer channel 3 to channels 1 and 2. The efflux through channel 3 increases by targeted mutations and is not in competition with the export of drugs such as minocycline and erythromycin through channels 1 and 2. A switch-loop mutant, in which the pathway from the proximal to the deep pocket is hindered, can export only channel 3-utilizing drugs. The usage of multiple entrances thus contributes to the recognition and transport of a wide range of drugs with different physicochemical properties. Multidrug transporters possess several drug binding sites. Here the authors describe a transport path specific for planar aromatic cations in the E. coli multi-drug transporter AcrB.
Collapse
Affiliation(s)
- Martijn Zwama
- Laboratory of Cell Membrane Structural Biology, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, 567-0047, Japan.,Department of Biomolecular Science and Regulation, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, 567-0047, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Seiji Yamasaki
- Department of Biomolecular Science and Regulation, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, 567-0047, Japan
| | - Ryosuke Nakashima
- Laboratory of Cell Membrane Structural Biology, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, 567-0047, Japan
| | - Keisuke Sakurai
- Laboratory of Cell Membrane Structural Biology, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, 567-0047, Japan
| | - Kunihiko Nishino
- Department of Biomolecular Science and Regulation, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, 567-0047, Japan
| | - Akihito Yamaguchi
- Laboratory of Cell Membrane Structural Biology, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, 567-0047, Japan.
| |
Collapse
|
14
|
Zhang XC, Liu M, Lu G, Heng J. Thermodynamic secrets of multidrug resistance: A new take on transport mechanisms of secondary active antiporters. Protein Sci 2017; 27:595-613. [PMID: 29193407 DOI: 10.1002/pro.3355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 12/17/2022]
Abstract
Multidrug resistance (MDR) presents a growing challenge to global public health. Drug extrusion transporters play a critical part in MDR; thus, their mechanisms of substrate recognition are being studied in great detail. In this work, we review common structural features of key transporters involved in MDR. Based on our membrane potential-driving hypothesis, we propose a general energy-coupling mechanism for secondary-active antiporters. This putative mechanism provides a common framework for understanding poly-specificity of most-if not all-MDR transporters.
Collapse
Affiliation(s)
- Xuejun C Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangyuan Lu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Heng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
| |
Collapse
|
15
|
Genomic analysis of Isometamidium Chloride resistance in Trypanosoma congolense. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2017; 7:350-361. [PMID: 29032180 PMCID: PMC5645165 DOI: 10.1016/j.ijpddr.2017.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/02/2017] [Accepted: 10/05/2017] [Indexed: 12/30/2022]
Abstract
Isometamidium Chloride (ISM) is one of the principal drugs used to counteract Trypanosoma congolense infection in livestock, both as a prophylactic as well as a curative treatment. However, numerous cases of ISM resistance have been reported in different African regions, representing a significant constraint in the battle against Animal African Trypanosomiasis. In order to identify genetic signatures associated with ISM resistance in T. congolense, the sensitive strain MSOROM7 was selected for induction of ISM resistance in a murine host. Administered ISM concentrations in immune-suppressed mice were gradually increased from 0.001 mg/kg to 1 mg/kg, the maximal dose used in livestock. As a result, three independent MSOROM7 lines acquired full resistance to this concentration after five months of induction, and retained this full resistant phenotype following a six months period without drug pressure. In contrast, parasites did not acquire ISM resistance in immune-competent animals, even after more than two years under ISM pressure, suggesting that the development of full ISM resistance is strongly enhanced when the host immune response is compromised. Genomic analyses comparing the ISM resistant lines with the parental sensitive line identified shifts in read depth at heterozygous loci in genes coding for different transporters and transmembrane products, and several of these shifts were also found within natural ISM resistant isolates. These findings suggested that the transport and accumulation of ISM inside the resistant parasites may be modified, which was confirmed by flow cytometry and ex vivo ISM uptake assays that showed a decrease in the accumulation of ISM in the resistant parasites.
Collapse
|
16
|
Wassenaar TM, Ussery D, Nielsen LN, Ingmer H. Review and phylogenetic analysis of qac genes that reduce susceptibility to quaternary ammonium compounds in Staphylococcus species. Eur J Microbiol Immunol (Bp) 2015; 5:44-61. [PMID: 25883793 DOI: 10.1556/eujmi-d-14-00038] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 12/23/2014] [Indexed: 01/08/2023] Open
Abstract
The qac genes of Staphylococcus species encode multidrug efflux pumps: membrane proteins that export toxic molecules and thus increase tolerance to a variety of compounds such as disinfecting agents, including quaternary ammonium compounds (for which they are named), intercalating dyes and some antibiotics. In Stapylococcus species, six different plasmid-encoded Qac efflux pumps have been described, and they belong to two major protein families. QacA and QacB are members of the Major Facilitator Superfamily, while QacC, QacG, QacH, and QacJ all belong to the Small Multidrug Resistance (SMR) family. Not all SMR proteins are called Qac and the reverse is also true, which has caused confusion in the literature and in gene annotations. The discovery of qac genes and their presence in various staphylococcal populations is briefly reviewed. A sequence comparison revealed that some of the PCR primers described in the literature for qac detection may miss particular qac genes due to lack of DNA conservation. Despite their resemblance in substrate specificity, the Qac proteins belonging to the two protein families have little in common. QacA and QacB are highly conserved in Staphylococcus species, while qacA was also detected in Enterococcus faecalis, suggesting that these plasmid-born genes have spread across bacterial genera. Nevertheless, these qacA and qacB genes are quite dissimilar to their closest homologues in other organisms. In contrast, SMR-type Qac proteins display considerable sequence variation, despite their short length, even within the Staphylococcus genus. Phylogenetic analysis of these genes identified similarity to a large number of other SMR members, found in staphylococci as well as in other genera. A number of phylogenetic trees of SMR Qac proteins are presented here, starting with genes present in S. aureus and S. epidermidis, and extending this to related genes found in other species of this genus, and finally to genes found in other genera.
Collapse
|
17
|
Schuldiner S. Competition as a way of life for H(+)-coupled antiporters. J Mol Biol 2014; 426:2539-46. [PMID: 24862284 DOI: 10.1016/j.jmb.2014.05.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/15/2014] [Accepted: 05/18/2014] [Indexed: 12/13/2022]
Abstract
Antiporters are ubiquitous membrane proteins that catalyze obligatory exchange between two or more substrates across a membrane in opposite directions. Some utilize proton electrochemical gradients generated by primary pumps by coupling the downhill movement of one or more protons to the movement of a substrate. Since the direction of the proton gradient usually favors proton movement toward the cytoplasm, their function results in removal of substrates other than protons from the cytoplasm, either into acidic intracellular compartments or out to the medium. H(+)-coupled antiporters play central roles in living organisms, for example, storage of neurotransmitter and other small molecules, resistance to antibiotics, homeostasis of ionic content and more. Biochemical and structural data support a general mechanism for H(+)-coupled antiporters whereby the substrate and the protons cannot bind simultaneously to the protein. In several cases, it was shown that the binding sites overlap, and therefore, there is a direct competition between the protons and the substrate. In others, the "competition" seems to be indirect and it is most likely achieved by allosteric mechanisms. The pKa of one or more carboxyls in the protein must be tuned appropriately in order to ensure the feasibility of such a mechanism. In this review, I discuss in detail the case of EmrE, a multidrug transporter from Escherichia coli and evaluate the information available for other H(+)-coupled antiporters.
Collapse
Affiliation(s)
- Shimon Schuldiner
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, 91904 Jerusalem, Israel.
| |
Collapse
|
18
|
Black PA, Warren RM, Louw GE, van Helden PD, Victor TC, Kana BD. Energy metabolism and drug efflux in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2014; 58:2491-503. [PMID: 24614376 PMCID: PMC3993223 DOI: 10.1128/aac.02293-13] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The inherent drug susceptibility of microorganisms is determined by multiple factors, including growth state, the rate of drug diffusion into and out of the cell, and the intrinsic vulnerability of drug targets with regard to the corresponding antimicrobial agent. Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), remains a significant source of global morbidity and mortality, further exacerbated by its ability to readily evolve drug resistance. It is well accepted that drug resistance in M. tuberculosis is driven by the acquisition of chromosomal mutations in genes encoding drug targets/promoter regions; however, a comprehensive description of the molecular mechanisms that fuel drug resistance in the clinical setting is currently lacking. In this context, there is a growing body of evidence suggesting that active extrusion of drugs from the cell is critical for drug tolerance. M. tuberculosis encodes representatives of a diverse range of multidrug transporters, many of which are dependent on the proton motive force (PMF) or the availability of ATP. This suggests that energy metabolism and ATP production through the PMF, which is established by the electron transport chain (ETC), are critical in determining the drug susceptibility of M. tuberculosis. In this review, we detail advances in the study of the mycobacterial ETC and highlight drugs that target various components of the ETC. We provide an overview of some of the efflux pumps present in M. tuberculosis and their association, if any, with drug transport and concomitant effects on drug resistance. The implications of inhibiting drug extrusion, through the use of efflux pump inhibitors, are also discussed.
Collapse
Affiliation(s)
- Philippa A. Black
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Robin M. Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Gail E. Louw
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Paul D. van Helden
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Thomas C. Victor
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Bavesh D. Kana
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
19
|
Outer membrane protein OmpW participates with small multidrug resistance protein member EmrE in quaternary cationic compound efflux. J Bacteriol 2014; 196:1908-14. [PMID: 24633876 DOI: 10.1128/jb.01483-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, the small multidrug resistance (SMR) transporter protein EmrE confers host resistance to a broad range of toxic quaternary cation compounds (QCC) via proton motive force in the plasma membrane. Biologically produced QCC also act as EmrE osmoprotectant substrates within the cell and participate in host pH regulation and osmotic tolerance. Although E. coli EmrE is one of the most well-characterized SMR members, it is unclear how the substrates it transports into the periplasm escape across the outer membrane (OM) in Gram-negative bacteria. We tested the hypothesis that E. coli EmrE relies on an unidentified OM protein (OMP) to complete the extracellular release of its QCC. Eleven OMP candidates were screened using an alkaline phenotypic growth assay to identify OMP involvement in EmrE-mediated QCC efflux. E. coli single-gene deletion strains were transformed with plasmid-carried copies of emrE to detect reduced-growth and rescued-growth phenotypes under alkaline conditions. Among the 11 candidates, only the ΔompW strain showed rescued alkaline growth tolerance when transformed with pEmrE, supporting the corresponding protein's involvement in EmrE osmoprotectant efflux. Coexpression of plasmids carrying the ompW and emrE genes transformed into the E. coli ΔompW and ΔemrE strains demonstrated a functional complementation restoring the original alkaline loss-of-growth phenotype. Methyl viologen drug resistance assays of pEmrE and pOmpW plasmid-complemented E. coli ΔompW and wild-type strains found higher host drug resistance than with other plasmid combinations. This study confirms our hypothesis that the porin OmpW participates in the efflux of EmrE-specific substrates across the OM.
Collapse
|
20
|
Müller A, Rychli K, Muhterem-Uyar M, Zaiser A, Stessl B, Guinane CM, Cotter PD, Wagner M, Schmitz-Esser S. Tn6188 - a novel transposon in Listeria monocytogenes responsible for tolerance to benzalkonium chloride. PLoS One 2013; 8:e76835. [PMID: 24098567 PMCID: PMC3788773 DOI: 10.1371/journal.pone.0076835] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/28/2013] [Indexed: 11/25/2022] Open
Abstract
Controlling the food-borne pathogen Listeria (L.) monocytogenes is of great importance from a food safety perspective, and thus for human health. The consequences of failures in this regard have been exemplified by recent large listeriosis outbreaks in the USA and Europe. It is thus particularly notable that tolerance to quaternary ammonium compounds such as benzalkonium chloride (BC) has been observed in many L. monocytogenes strains. However, the molecular determinants and mechanisms of BC tolerance of L. monocytogenes are still largely unknown. Here we describe Tn6188, a novel transposon in L. monocytogenes conferring tolerance to BC. Tn6188 is related to Tn554 from Staphylococcus (S.) aureus and other Tn554-like transposons such as Tn558, Tn559 and Tn5406 found in various Firmicutes. Tn6188 comprises 5117 bp, is integrated chromosomally within the radC gene and consists of three transposase genes (tnpABC) as well as genes encoding a putative transcriptional regulator and QacH, a small multidrug resistance protein family (SMR) transporter putatively associated with export of BC that shows high amino acid identity to Smr/QacC from S. aureus and to EmrE from Escherichia coli. We screened 91 L. monocytogenes strains for the presence of Tn6188 by PCR and found Tn6188 in 10 of the analyzed strains. These isolates were from food and food processing environments and predominantly from serovar 1/2a. L. monocytogenes strains harboring Tn6188 had significantly higher BC minimum inhibitory concentrations (MICs) (28.5 ± 4.7 mg/l) than strains without Tn6188 (14 ± 3.2 mg/l). Using quantitative reverse transcriptase PCR we could show a significant increase in qacH expression in the presence of BC. QacH deletion mutants were generated in two L. monocytogenes strains and growth analysis revealed that ΔqacH strains had lower BC MICs than wildtype strains. In conclusion, our results provide evidence that Tn6188 is responsible for BC tolerance in various L. monocytogenes strains.
Collapse
Affiliation(s)
- Anneliese Müller
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Kathrin Rychli
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Meryem Muhterem-Uyar
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Andreas Zaiser
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Beatrix Stessl
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Martin Wagner
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Molecularbiological Food Analytics, University of Veterinary Medicine, Vienna, Austria
| | - Stephan Schmitz-Esser
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
21
|
Costa SS, Viveiros M, Amaral L, Couto I. Multidrug Efflux Pumps in Staphylococcus aureus: an Update. Open Microbiol J 2013; 7:59-71. [PMID: 23569469 PMCID: PMC3617543 DOI: 10.2174/1874285801307010059] [Citation(s) in RCA: 234] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 11/22/2022] Open
Abstract
The emergence of infections caused by multi- or pan-resistant bacteria in the hospital or in the community settings is an increasing health concern. Albeit there is no single resistance mechanism behind multiresistance, multidrug efflux pumps, proteins that cells use to detoxify from noxious compounds, seem to play a key role in the emergence of these multidrug resistant (MDR) bacteria. During the last decades, experimental data has established their contribution to low level resistance to antimicrobials in bacteria and their potential role in the appearance of MDR phenotypes, by the extrusion of multiple, unrelated compounds. Recent studies suggest that efflux pumps may be used by the cell as a first-line defense mechanism, avoiding the drug to reach lethal concentrations, until a stable, more efficient alteration occurs, that allows survival in the presence of that agent. In this paper we review the current knowledge on MDR efflux pumps and their intricate regulatory network in Staphylococcus aureus, a major pathogen, responsible from mild to life-threatening infections. Particular emphasis will be given to the potential role that S. aureus MDR efflux pumps, either chromosomal or plasmid-encoded, have on resistance towards different antimicrobial agents and on the selection of drug - resistant strains. We will also discuss the many questions that still remain on the role of each specific efflux pump and the need to establish appropriate methodological approaches to address all these questions.
Collapse
Affiliation(s)
- Sofia Santos Costa
- 1Grupo de Micobactérias, Unidade de Microbiologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (IHMT, UNL), Portugal
- 2Centro de Recursos Microbiológicos (CREM), UNL, Portugal
| | - Miguel Viveiros
- 1Grupo de Micobactérias, Unidade de Microbiologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (IHMT, UNL), Portugal
- 3COST ACTION BM0701 (ATENS), Brussels, Belgium
| | - Leonard Amaral
- 1Grupo de Micobactérias, Unidade de Microbiologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (IHMT, UNL), Portugal
- 3COST ACTION BM0701 (ATENS), Brussels, Belgium
| | - Isabel Couto
- 1Grupo de Micobactérias, Unidade de Microbiologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (IHMT, UNL), Portugal
- 2Centro de Recursos Microbiológicos (CREM), UNL, Portugal
| |
Collapse
|
22
|
Costa SS, Junqueira E, Palma C, Viveiros M, Melo-Cristino J, Amaral L, Couto I. Resistance to Antimicrobials Mediated by Efflux Pumps in Staphylococcus aureus. Antibiotics (Basel) 2013; 2:83-99. [PMID: 27029294 PMCID: PMC4790300 DOI: 10.3390/antibiotics2010083] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/04/2013] [Accepted: 03/05/2013] [Indexed: 12/20/2022] Open
Abstract
Resistance mediated by efflux has been recognized in Staphylococcus aureus in the last few decades, although its clinical relevance has only been recognized recently. The existence of only a few studies on the individual and overall contribution of efflux to resistance phenotypes associated with the need of well-established methods to assess efflux activity in clinical isolates contributes greatly to the lack of solid knowledge of this mechanism in S. aureus. This study aims to provide information on approaches useful to the assessment and characterization of efflux activity, as well as contributing to our understanding of the role of efflux to phenotypes of antibiotic resistance and biocide tolerance in S. aureus clinical isolates. The results described show that efflux is an important contributor to fluoroquinolone resistance in S. aureus and suggest it as a major mechanism in the early stages of resistance development. We also show that efflux plays an important role on the reduced susceptibility to biocides in S. aureus, strengthening the importance of this long neglected resistance mechanism to the persistence and proliferation of antibiotic/biocide-resistant S. aureus in the hospital environment.
Collapse
Affiliation(s)
- Sofia S Costa
- Grupo de Micobactérias, Unidade de Microbiologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (IHMT, UNL), 1349-008 Lisbon, Portugal.
- Centro de Recursos Microbiológicos (CREM), UNL, 2829-516 Caparica, Portugal.
| | - Elisabete Junqueira
- Grupo de Micobactérias, Unidade de Microbiologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (IHMT, UNL), 1349-008 Lisbon, Portugal.
| | - Cláudia Palma
- Grupo de Micobactérias, Unidade de Microbiologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (IHMT, UNL), 1349-008 Lisbon, Portugal.
| | - Miguel Viveiros
- Grupo de Micobactérias, Unidade de Microbiologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (IHMT, UNL), 1349-008 Lisbon, Portugal.
| | - José Melo-Cristino
- Centro Hospitalar Lisboa Norte E.P.E., Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal.
| | - Leonard Amaral
- Grupo de Medicina Tropical e do Viajante, Centro de Malária e Doenças Tropicais (CMDT), IHMT, UNL, 1349-008 Lisbon, Portugal.
| | - Isabel Couto
- Grupo de Micobactérias, Unidade de Microbiologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (IHMT, UNL), 1349-008 Lisbon, Portugal.
- Centro de Recursos Microbiológicos (CREM), UNL, 2829-516 Caparica, Portugal.
| |
Collapse
|
23
|
Staphylococcus aureus infections in pediatric oncology patients: high rates of antimicrobial resistance, antiseptic tolerance and complications. Pediatr Infect Dis J 2013; 32:124-8. [PMID: 22976051 DOI: 10.1097/inf.0b013e318271c4e0] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND : Patients with malignancies represent a population at high risk for drug-resistant infections. We sought to determine the clinical spectrum and molecular epidemiology of Staphylococcus aureus infections in pediatric oncology patients followed at Texas Children's Hospital (Houston, TX). Furthermore, we determined the prevalence of the chlorhexidine resistance gene qacA/B from isolates in this unique population. METHODS : Patients with a history of malignancy and a culture-proven S. aureus infection were identified from 2001 to 2011. Antibiotic susceptibility, pulsed-field gel electrophoresis and detection of qacA/B by polymerase chain reaction were performed on all isolates. Medical records for all patients were reviewed. RESULTS : During the study period, 213 isolates were identified from 179 patients with malignancies. Thirty-one percent of the isolates were methicillin-resistant S. aureus. The most common infectious diagnosis was bacteremia (85/213 [39.9%], with 72/85 [84.7%] being catheter-associated). Thirteen patients with bacteremia were found to have pulmonary nodules at the time of presentation; only S. aureus was found in tissue in 5 of the 6 patients who underwent lung biopsy. After 2007, 18.2% of isolates were qacA/B positive with a steady increase in prevalence every year (χ for trend P = 0.04). CONCLUSIONS : S. aureus is a significant cause of morbidity and mortality in pediatric oncology patients at Texas Children's Hospital. In addition to the more well-known clinical manifestations, this pathogen can also be associated with pulmonary nodules. Furthermore, the prevalence of S. aureus isolates carrying antiseptic resistance genes increased in this population. Additional clinical and molecular studies and surveillance among pediatric oncology patients are warranted to further explore these findings.
Collapse
|
24
|
Cruz A, Micaelo N, Félix V, Song JY, Kitamura SI, Suzuki S, Mendo S. sugE: A gene involved in tributyltin (TBT) resistance of Aeromonas molluscorum Av27. J GEN APPL MICROBIOL 2013; 59:39-47. [DOI: 10.2323/jgam.59.47] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Small multidrug resistance protein EmrE reduces host pH and osmotic tolerance to metabolic quaternary cation osmoprotectants. J Bacteriol 2012; 194:5941-8. [PMID: 22942246 DOI: 10.1128/jb.00666-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The small multidrug resistance (SMR) transporter protein EmrE in Escherichia coli is known to confer resistance to toxic antiseptics classified as quaternary cation compounds (QCCs). Naturally derived QCCs synthesized during metabolic activities often act as osmoprotectants, such as betaine and choline, and participate in osmotic homoestasis. The goal of this study was to determine if EmrE proteins transport biological QCC-based osmoprotectants. Plasmid-encoded copies of E. coli emrE and the inactive variant emrE-E14C (emrE with the E → C change at position 14) were expressed in various E. coli strains grown in either rich or minimal media at various pHs (5 to 9) and under hypersaline (0.5 to 1.0 M NaCl and KCl) conditions to identify changes in growth phenotypes induced by osmoprotectant transport. The results demonstrated that emrE expression reduced pH tolerance of E. coli strains at or above neutral pH and when grown in hypersaline media at or above NaCl or KCl concentrations of 0.75 M. Hypersaline growth conditions were used to screen QCC osmoprotectants betaine, choline, l-carnitine, l-lysine, l-proline, and l-arginine. The study identified that betaine and choline are natural QCC substrates of EmrE.
Collapse
|
26
|
Curnow P, Senior L, Knight MJ, Thamatrakoln K, Hildebrand M, Booth PJ. Expression, purification, and reconstitution of a diatom silicon transporter. Biochemistry 2012; 51:3776-85. [PMID: 22530967 DOI: 10.1021/bi3000484] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis and manipulation of silicon materials on the nanoscale are core themes in nanotechnology research. Inspiration is increasingly being taken from the natural world because the biological mineralization of silicon results in precisely controlled, complex silica structures with dimensions from the millimeter to the nanometer. One fascinating example of silicon biomineralization occurs in the diatoms, unicellular algae that sheath themselves in an ornate silica-based cell wall. To harvest silicon from the environment, diatoms have developed a unique family of integral membrane proteins that bind to a soluble form of silica, silicic acid, and transport it across the cell membrane to the cell interior. These are the first proteins shown to directly interact with silicon, but the current understanding of these specific silicon transport proteins is limited by the lack of in vitro studies of structure and function. We report here the recombinant expression, purification, and reconstitution of a silicon transporter from the model diatom Thalassiosira pseudonana. After using GFP fusions to optimize expression and purification protocols, a His(10)-tagged construct was expressed in Saccharomyces cerevisiae, solubilized in the detergent Fos-choline-12, and purified by affinity chromatography. Size-exclusion chromatography and particle sizing by dynamic light scattering showed that the protein was purified as a homotetramer, although nonspecific oligomerization occurred at high protein concentrations. Circular dichroism measurements confirmed sequence-based predictions that silicon transporters are α-helical membrane proteins. Silicic acid transport could be established in reconstituted proteoliposomes, and silicon uptake was found to be dependent upon an applied sodium gradient. Transport data across different substrate concentrations were best fit to the sigmoidal Hill equation, with a K(0.5) of 19.4 ± 1.3 μM and a cooperativity coefficient of 1.6. Sodium binding was noncooperative with a K(m)(app) of 1.7 ± 1.0 mM, suggesting a transport silicic acid:Na(+) stoichiometry of 2:1. These results provide the basis for a full understanding of both silicon transport in the diatom and protein-silicon interactions in general.
Collapse
Affiliation(s)
- Paul Curnow
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| | | | | | | | | | | |
Collapse
|
27
|
Drug efflux by a small multidrug resistance protein is inhibited by a transmembrane peptide. Antimicrob Agents Chemother 2012; 56:3911-6. [PMID: 22526304 DOI: 10.1128/aac.00158-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Drug-resistant bacteria use several families of membrane-embedded transporters to remove antibiotics from the cell. One such family is the small multidrug resistance proteins (SMRs) that, because of their relatively small size (ca. 110 residues with four transmembrane [TM] helices), must form (at least) dimers to efflux drugs. Here, we use a Lys-tagged synthetic peptide with exactly the same sequence as TM4 of the full-length SMR Hsmr from Halobacterium salinarum [TM4 sequence: AcA(Sar)(3)-VAGVVGLALIVAGVVVLNVAS-KKK (Sar = N-methylglycine)] to compete with and disrupt the native TM4-TM4 interactions believed to constitute the locus of Hsmr dimerization. Using a cellular efflux assay of the fluorescent SMR substrate ethidium bromide, we determined that bacterial cells containing Hsmr are able to remove cellular ethidium via first-order exponential decay with a rate constant (k) of 10.1 × 10(-3) ± 0.7 × 10(-3) s(-1). Upon treatment of the cells with the TM4 peptide, we observed a saturable ~60% decrease in the efflux rate constant to 3.7 × 10(-3) ± 0.2 × 10(-3) s(-1). In corresponding experiments with control peptides, including scrambled sequences and a sequence with d-chirality, a decrease in ethidium efflux either was not observed or was marginal, likely from nonspecific effects. The designed peptides did not evoke bacterial lysis, indicating that they act via the α-helicity and membrane insertion propensities of the native TM4 helix. Our overall results suggest that this approach could conceivably be used to design hydrophobic peptides for disruption of key TM-TM interactions of membrane proteins and represent a valuable route to the discovery of new therapeutics.
Collapse
|
28
|
Modulation of substrate efflux in bacterial small multidrug resistance proteins by mutations at the dimer interface. J Bacteriol 2011; 193:5929-35. [PMID: 21890698 DOI: 10.1128/jb.05846-11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria evade the effects of cytotoxic compounds through the efflux activity of membrane-bound transporters such as the small multidrug resistance (SMR) proteins. Consisting typically of ca. 110 residues with four transmembrane (TM) α-helices, crystallographic studies have shown that TM helix 1 (TM1) through TM helix 3 (TM3) of each monomer create a substrate binding "pocket" within the membrane bilayer, while a TM4-TM4 interaction accounts for the primary dimer formation. Previous work from our lab has characterized a highly conserved small-residue heptad motif in the Halobacterium salinarum transporter Hsmr as (90)GLXLIXXGV(98) that lies along the TM4-TM4 dimer interface of SMR proteins as required for function. Focusing on conserved positions 91, 93, 94, and 98, we substituted the naturally occurring Hsmr residue for Ala, Phe, Ile, Leu, Met, and Val at each position in the Hsmr TM4-TM4 interface. Large-residue replacements were studied for their ability to dimerize on SDS-polyacrylamide gels, to bind the cytotoxic compound ethidium bromide, and to confer resistance by efflux. Although the relative activity of mutants did not correlate with dimer strength for all mutants, all functional mutants lay within 10% of dimerization relative to the wild type (WT), suggesting that the optimal dimer strength at TM4 is required for proper efflux. Furthermore, nonfunctional substitutions at the center of the dimerization interface that do not alter dimer strength suggest a dynamic TM4-TM4 "pivot point" that responds to the efflux requirements of different substrates. This functionally critical region represents a potential target for inhibiting the ability of bacteria to evade the effects of cytotoxic compounds.
Collapse
|
29
|
Poget SF, Harris R, Cahill SM, Girvin ME. 1H, 13C, 15N backbone NMR assignments of the Staphylococcus aureus small multidrug-resistance pump (Smr) in a functionally active conformation. BIOMOLECULAR NMR ASSIGNMENTS 2010; 4:139-42. [PMID: 20407887 PMCID: PMC2935522 DOI: 10.1007/s12104-010-9228-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 04/08/2010] [Indexed: 05/13/2023]
Abstract
The plasmid-encoded small multidrug resistance pump from S. aureus transports a variety of quaternary ammonium and other hydrophobic compounds, enhancing the bacterial host's resistance to common hospital disinfectants. The protein folds as a homo-dimer of four transmembrane helices each, and appears to be fully functional only in lipid bilayers. Here we report the backbone resonance assignments and implied secondary structure for (2)H(13)C(15)N Smr reconstituted into lipid bicelles. Significant changes were observed between the chemical shifts of the protein in lipid bicelles compared to those in detergent micelles.
Collapse
Affiliation(s)
- Sébastien F. Poget
- Chemistry Department, College of Staten Island, 2800 Victory Boulevard, Staten Island, NY 10314, USA
| | - Richard Harris
- Biochemistry Department, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Sean M. Cahill
- Biochemistry Department, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Mark E. Girvin
- Biochemistry Department, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| |
Collapse
|
30
|
Abstract
Multiresistance plasmids and transposons, the integrons, the co-amplification of several resistance genes or finally the accumulation of independent mutations can lead to microorganisms resistant to multiple drugs. On the other hand multidrug resistance is due to an efflux pump conferring resistance to unrelated drugs. These microbial efflux pumps are belonging to various transporter families and are often encoded in microbial genomes. There is mounting evidence that these efflux systems are responsible for clinical multidrug resistance in bacteria, yeasts and parasites.
Collapse
Affiliation(s)
- M Ouellette
- Centre de Recherche en Infectiologie du Centre de Recherche du CHUL, Québec, Canada
| | | |
Collapse
|
31
|
Bay DC, Budiman RA, Nieh MP, Turner RJ. Multimeric forms of the small multidrug resistance protein EmrE in anionic detergent. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1798:526-35. [PMID: 20036636 DOI: 10.1016/j.bbamem.2009.12.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 12/18/2009] [Accepted: 12/21/2009] [Indexed: 11/16/2022]
Abstract
Escherichia coli multidrug resistance protein E (EmrE) is a four transmembrane alpha-helix protein, and a member of the small multidrug resistance protein family that confers resistance to a broad range of quaternary cation compounds (QCC) via proton motive force. The multimeric states of EmrE protein during transport or ligand binding are variable and specific to the conditions of study. To explore EmrE multimerization further, EmrE extracted from E. coli membranes was solubilized in anionic detergent, sodium dodecyl sulphate (SDS), at varying protein concentrations. At low concentrations (</=1muM) in SDS-EmrE is monomeric, but upon increasing EmrE concentration, a variety of multimeric states can be observed by SDS-Tricine polyacrylamide gel electrophoresis (PAGE). Addition of the (QCC), tetraphenyl phosphonium (TPP), to SDS-EmrE samples enhanced EmrE multimer formation using SDS-Tricine PAGE. The relative shapes of EmrE multimers in SDS with or without TPP addition were determined by small angle neutron scattering (SANS) analysis and revealed that EmrE dimers altered in conformation depending on the SDS concentration. SANS analysis also revealed that relative shapes of larger EmrE multimers (>/=100nm sizes) altered in the presence of TPP. Circular dichroism spectropolarimetry displayed no differences in secondary structure under the conditions studied. Fluorescence spectroscopy of SDS-EmrE protein demonstrated that aromatic residues, Trp and Tyr, are more susceptible to SDS concentration than TPP addition, but both residues exhibit enhanced quenching at high ligand concentrations. Hence, EmrE forms various multimers in SDS that are influenced by detergent concentration and TPP substrate addition.
Collapse
Affiliation(s)
- Denice C Bay
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | | | |
Collapse
|
32
|
Induction of multidrug resistance mechanism in Escherichia coli biofilms by interplay between tetracycline and ampicillin resistance genes. Antimicrob Agents Chemother 2009; 53:4628-39. [PMID: 19721076 DOI: 10.1128/aac.00454-09] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biofilms gain resistance to various antimicrobial agents, and the presence of antibiotic resistance genes is thought to contribute to a biofilm-mediated antibiotic resistance. Here we showed the interplay between the tetracycline resistance efflux pump TetA(C) and the ampicillin resistance gene (bla(TEM-1)) in biofilms of Escherichia coli harboring pBR322 in the presence of the mixture of ampicillin and tetracycline. E. coli in the biofilms could obtain the high-level resistance to ampicillin, tetracycline, penicillin, erythromycin, and chloramphenicol during biofilm development and maturation as a result of the interplay between the marker genes on the plasmids, the increase of plasmid copy number, and consequently the induction of the efflux systems on the bacterial chromosome, especially the EmrY/K and EvgA/S pumps. In addition, we characterized the overexpression of the TetA(C) pump that contributed to osmotic stress response and was involved in the induction of capsular colanic acid production, promoting formation of mature biofilms. However, this investigated phenomenon was highly dependent on the addition of the subinhibitory concentrations of antibiotic mixture, and the biofilm resistance behavior was limited to aminoglycoside antibiotics. Thus, marker genes on plasmids played an important role in both resistance of biofilm cells to antibiotics and in formation of mature biofilms, as they could trigger specific chromosomal resistance mechanisms to confer a high-level resistance during biofilm formation.
Collapse
|
33
|
EmrE, a model for studying evolution and mechanism of ion-coupled transporters. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:748-62. [DOI: 10.1016/j.bbapap.2008.12.018] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 12/16/2008] [Accepted: 12/17/2008] [Indexed: 11/23/2022]
|
34
|
Poulsen BE, Rath A, Deber CM. The assembly motif of a bacterial small multidrug resistance protein. J Biol Chem 2009; 284:9870-5. [PMID: 19224913 DOI: 10.1074/jbc.m900182200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multidrug transporters such as the small multidrug resistance (SMR) family of bacterial integral membrane proteins are capable of conferring clinically significant resistance to a variety of common therapeutics. As antiporter proteins of approximately 100 amino acids, SMRs must self-assemble into homo-oligomeric structures for efflux of drug molecules. Oligomerization centered at transmembrane helix four (TM4) has been implicated in SMR assembly, but the full complement of residues required to mediate its self-interaction remains to be characterized. Here, we use Hsmr, the 110-residue SMR family member of the archaebacterium Halobacterium salinarum, to determine the TM4 residue motif required to mediate drug resistance and SMR self-association. Twelve single point mutants that scan the central portion of the TM4 helix (residues 85-104) were constructed and were tested for their ability to confer resistance to the cytotoxic compound ethidium bromide. Six residues were found to be individually essential for drug resistance activity (Gly(90), Leu(91), Leu(93), Ile(94), Gly(97), and Val(98)), defining a minimum activity motif of (90)GLXLIXXGV(98) within TM4. When the propensity of these mutants to dimerize on SDS-PAGE was examined, replacements of all but Ile resulted in approximately 2-fold reduction of dimerization versus the wild-type antiporter. Our work defines a minimum activity motif of (90)GLXLIXXGV(98) within TM4 and suggests that this sequence mediates TM4-based SMR dimerization along a single helix surface, stabilized by a small residue heptad repeat sequence. These TM4-TM4 interactions likely constitute the highest affinity locus for disruption of SMR function by directly targeting its self-assembly mechanism.
Collapse
Affiliation(s)
- Bradley E Poulsen
- Division of Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 1X8
| | | | | |
Collapse
|
35
|
Beaulac C, Sachetelli S, Lagace J. In Vitro Bactericidal Evaluation of a Low Phase Transition Temperature Liposomal Tobramycin Formulation as a Dry Powder Preparation Against Gram Negative and Gram Positive Bacteria. J Liposome Res 2008. [DOI: 10.3109/08982109909018652] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
36
|
Bay DC, Rommens KL, Turner RJ. Small multidrug resistance proteins: A multidrug transporter family that continues to grow. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1814-38. [DOI: 10.1016/j.bbamem.2007.08.015] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 08/07/2007] [Accepted: 08/14/2007] [Indexed: 11/17/2022]
|
37
|
Lehner I, Basting D, Meyer B, Haase W, Manolikas T, Kaiser C, Karas M, Glaubitz C. The Key Residue for Substrate Transport (Glu14) in the EmrE Dimer Is Asymmetric. J Biol Chem 2008; 283:3281-3288. [DOI: 10.1074/jbc.m707899200] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
38
|
Lubelski J, Konings WN, Driessen AJM. Distribution and physiology of ABC-type transporters contributing to multidrug resistance in bacteria. Microbiol Mol Biol Rev 2007; 71:463-76. [PMID: 17804667 PMCID: PMC2168643 DOI: 10.1128/mmbr.00001-07] [Citation(s) in RCA: 210] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Membrane proteins responsible for the active efflux of structurally and functionally unrelated drugs were first characterized in higher eukaryotes. To date, a vast number of transporters contributing to multidrug resistance (MDR transporters) have been reported for a large variety of organisms. Predictions about the functions of genes in the growing number of sequenced genomes indicate that MDR transporters are ubiquitous in nature. The majority of described MDR transporters in bacteria use ion motive force, while only a few systems have been shown to rely on ATP hydrolysis. However, recent reports on MDR proteins from gram-positive organisms, as well as genome analysis, indicate that the role of ABC-type MDR transporters in bacterial drug resistance might be underestimated. Detailed structural and mechanistic analyses of these proteins can help to understand their molecular mode of action and may eventually lead to the development of new strategies to counteract their actions, thereby increasing the effectiveness of drug-based therapies. This review focuses on recent advances in the analysis of ABC-type MDR transporters in bacteria.
Collapse
Affiliation(s)
- Jacek Lubelski
- Department of Molecular Microbiology, University of Groningen, Kerklaan 30, NL-9751 NN Haren, The Netherlands
| | | | | |
Collapse
|
39
|
Poget SF, Girvin ME. Solution NMR of membrane proteins in bilayer mimics: small is beautiful, but sometimes bigger is better. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:3098-106. [PMID: 17961504 DOI: 10.1016/j.bbamem.2007.09.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 09/07/2007] [Accepted: 09/10/2007] [Indexed: 10/22/2022]
Abstract
Considerable progress has been made recently on solution NMR studies of multi-transmembrane helix membrane protein systems of increasing size. Careful correlation of structure with function has validated the physiological relevance of these studies in detergent micelles. However, larger micelle and bicelle systems are sometimes required to stabilize the active forms of dynamic membrane proteins, such as the bacterial small multidrug resistance transporters. Even in these systems with aggregate molecular weights well over 100 kDa, solution NMR structural studies are feasible-but challenging.
Collapse
Affiliation(s)
- Sébastien F Poget
- Biochemistry Department, Albert Einstein College of Medicine, 1300 Morris Park Ave. Bronx, NY 10461, USA
| | | |
Collapse
|
40
|
Hassan KA, Skurray RA, Brown MH. Active Export Proteins Mediating Drug Resistance in Staphylococci. J Mol Microbiol Biotechnol 2007; 12:180-96. [PMID: 17587867 DOI: 10.1159/000099640] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Drug resistance mediated by integral membrane transporters is an important mode of cellular resistance to cytotoxic agents across all classes of living organisms. Gram-positive bacteria, such as staphylococcal species, are not encapsulated by a selective outer membrane permeability barrier. Therefore, these organisms often employ integral membrane drug transport systems to maintain cellular concentrations of antimicrobials at subtoxic levels. Staphylococcal species, including the opportunistic human pathogen Staphylococcus aureus, encode a multitude of drug exporters, encompassing transporters from each of the five currently recognized families of bacterial drug resistance transporters. A number of these transporters are chromosomally encoded and allow the host cell to realize clinically significant levels of drug resistance after minor mutations to regulatory regions. Others are plasmid-encoded and can be easily passed between staphylococcal strains and species, or acquired from other Gram-positive genera. In combination, staphylococcal drug transporters potentiate resistance to a vast array of antimicrobial compounds, including macrolide, quinolone, tetracycline and streptogramin antibiotics, as well as a broad range of biocides, such as quaternary ammonium compounds, biguanidines and diamidines. An understanding of the genetic and molecular properties of drug transporters will lead to effective treatments of staphylococcal infections. Here we provide a detailed review of the active drug transporters of the staphylococci.
Collapse
Affiliation(s)
- Karl A Hassan
- School of Biological Sciences, University of Sydney, Sydney, Australia
| | | | | |
Collapse
|
41
|
Poget SF, Cahill SM, Girvin ME. Isotropic bicelles stabilize the functional form of a small multidrug-resistance pump for NMR structural studies. J Am Chem Soc 2007; 129:2432-3. [PMID: 17284035 PMCID: PMC2530891 DOI: 10.1021/ja0679836] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sébastien F Poget
- Biochemistry Department, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | |
Collapse
|
42
|
Fleishman SJ, Harrington SE, Enosh A, Halperin D, Tate CG, Ben-Tal N. Quasi-symmetry in the Cryo-EM Structure of EmrE Provides the Key to Modeling its Transmembrane Domain. J Mol Biol 2006; 364:54-67. [PMID: 17005200 DOI: 10.1016/j.jmb.2006.08.072] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 08/25/2006] [Accepted: 08/25/2006] [Indexed: 11/24/2022]
Abstract
Small multidrug resistance (SMR) transporters contribute to bacterial resistance by coupling the efflux of a wide range of toxic aromatic cations, some of which are commonly used as antibiotics and antiseptics, to proton influx. EmrE is a prototypical small multidrug resistance transporter comprising four transmembrane segments (M1-M4) that forms dimers. It was suggested recently that EmrE molecules in the dimer have different topologies, i.e. monomers have opposite orientations with respect to the membrane plane. A 3-D structure of EmrE acquired by electron cryo-microscopy (cryo-EM) at 7.5 Angstroms resolution in the membrane plane showed that parts of the structure are related by quasi-symmetry. We used this symmetry relationship, combined with sequence conservation data, to assign the transmembrane segments in EmrE to the densities seen in the cryo-EM structure. A C alpha model of the transmembrane region was constructed by considering the evolutionary conservation pattern of each helix. The model is validated by much of the biochemical data on EmrE with most of the positions that were identified as affecting substrate translocation being located around the substrate-binding cavity. A suggested mechanism for proton-coupled substrate translocation in small multidrug resistance antiporters provides a mechanistic rationale to the experimentally observed inverted topology.
Collapse
Affiliation(s)
- Sarel J Fleishman
- Department of Biochemistry, George S Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv, Israel
| | | | | | | | | | | |
Collapse
|
43
|
Noguchi N, Nakaminami H, Nishijima S, Kurokawa I, So H, Sasatsu M. Antimicrobial agent of susceptibilities and antiseptic resistance gene distribution among methicillin-resistant Staphylococcus aureus isolates from patients with impetigo and staphylococcal scalded skin syndrome. J Clin Microbiol 2006; 44:2119-25. [PMID: 16757607 PMCID: PMC1489400 DOI: 10.1128/jcm.02690-05] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Revised: 03/06/2006] [Accepted: 04/18/2006] [Indexed: 11/20/2022] Open
Abstract
The susceptibilities to antimicrobial agents of and distributions of antiseptic resistance genes in methicillin-resistant Staphylococcus aureus (MRSA) strains isolated between 1999 and 2004 in Japan were examined. The data of MRSA strains that are causative agents of impetigo and staphylococcal scalded skin syndrome (SSSS) were compared with those of MRSA strains isolated from patients with other diseases. The susceptibilities to antiseptic agents in MRSA isolates from patients with impetigo and SSSS were higher than those in MRSA isolates from patients with other diseases. The distribution of the qacA/B genes in MRSA strains isolated from patients with impetigo and SSSS (1.3%, 1/76) was remarkably lower than that in MRSA strains isolated from patients with other diseases (45.9%, 95/207). Epidemiologic typings of staphylococcal cassette chromosome mec (SCCmec) and pulsed-field gel electrophoresis (PFGE) showed that MRSA strains isolated from patients with impetigo and SSSS had type IV SCCmec (75/76), except for one strain, and 64.5% (49/76) of the strains had different PFGE types. In addition, the patterns of restriction digestion of all tested qacA/B plasmid in MRSA isolates having different PFGE types were identical. The results showed that a specific MRSA clone carrying qacA/B was not prevalent, but qacA/B was spread among health care-associated MRSA strains. Therefore, it was concluded that the lower distribution rate of qacA/B resulted in higher susceptibilities to cationic antiseptic agents in MRSA isolated from patients with impetigo and SSSS.
Collapse
Affiliation(s)
- Norihisa Noguchi
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | | | | | | | | | | |
Collapse
|
44
|
Bucarey SA, Villagra NA, Fuentes JA, Mora GC. The cotranscribed Salmonella enterica sv. Typhi tsx and impX genes encode opposing nucleoside-specific import and export proteins. Genetics 2006; 173:25-34. [PMID: 16489221 PMCID: PMC1461456 DOI: 10.1534/genetics.105.054700] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Salmonella enterica tsx gene encodes a nucleoside-specific outer membrane channel. The Tsx porin is essential for the prototrophic growth of S. enterica sv. Typhi in the absence of nucleosides. RT-PCR analysis shows that the tsx gene is cotranscribed with an open reading frame unique to S. enterica, impX (STY0450), which encodes an inner membrane protein 108 amino acids in length, which is predicted to have only two transmembrane alpha-helices. Fusions of the lacZ gene to both tsx and impX reveal that the transcription of both genes is induced in the presence of adenosine. A null mutation in the S. Typhi impX gene suppresses the induced auxotrophy for adenosine or thymidine resulting from a tsx mutation and confers sensitivity to high concentrations of adenosine or thymidine. The ImpX protein, when tagged with a 3xFLAG epitope, is functional and associates with the inner membrane; impX mutants are defective in the export of 3H-radiolabeled thymidine. Taken together, these and other results suggest that the S. Typhi Tsx porin and ImpX inner membrane protein facilitate competing mechanisms of thymidine influx and efflux, respectively, to maintain the steady-state levels of internal nucleoside pools.
Collapse
Affiliation(s)
- Sergio A Bucarey
- Programa Doctorado de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | |
Collapse
|
45
|
Poget SF, Krueger-Koplin ST, Krueger-Koplin RD, Cahill SM, Chandra Shekar S, Girvin ME. NMR assignment of the dimeric S. aureus small multidrug-resistance pump in LPPG micelles. JOURNAL OF BIOMOLECULAR NMR 2006; 36 Suppl 1:10. [PMID: 16456704 DOI: 10.1007/s10858-005-5346-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Affiliation(s)
- Sébastien F Poget
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10469, USA
| | | | | | | | | | | |
Collapse
|
46
|
Sikora CW, Turner RJ. SMR proteins SugE and EmrE bind ligand with similar affinity and stoichiometry. Biochem Biophys Res Commun 2005; 335:105-11. [PMID: 16055085 DOI: 10.1016/j.bbrc.2005.07.051] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Accepted: 07/14/2005] [Indexed: 11/16/2022]
Abstract
Suppressor of a groEL mutation protein E (SugE) is a small multidrug resistance (SMR) homologue. In comparison with other SMR proteins, SugE promotes bacterial resistance to a narrow range of quaternary ammonium compounds (QACs). Isothermal titration calorimetry was used to study the binding of QACs to Escherichia coli SugE in different membrane mimetic environments. In this study, the binding stoichiometry of SugE to drug was found to be 1:1, and the binding of SugE to drug was observed with the dissociation constant (K(D)) in the micromolar range for each of the drugs in the membrane mimetic environments explored. This interaction appears to be enthalpy-driven with enthalpies of 8-12 kcal/mol for each of the drugs. These results are similar to those found with drug binding to the SMR protein EmrE in an earlier study.
Collapse
Affiliation(s)
- Curtis W Sikora
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alta., Canada T2N 1N4
| | | |
Collapse
|
47
|
Sharoni M, Steiner-Mordoch S, Schuldiner S. Exploring the Binding Domain of EmrE, the Smallest Multidrug Transporter. J Biol Chem 2005; 280:32849-55. [PMID: 16049002 DOI: 10.1074/jbc.m504910200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
EmrE is a small multidrug transporter in Escherichia coli that extrudes various positively charged drugs across the plasma membrane in exchange with protons, thereby rendering cells resistant to these compounds. Biochemical experiments indicate that the basic functional unit of EmrE is a dimer where the common binding site for protons and substrate is formed by the interaction of an essential charged residue (Glu14) from both EmrE monomers. Previous studies implied that other residues in the vicinity of Glu14 are part of the binding domain. Alkylation of Cys replacements in the same transmembrane domain inhibits the activity of the protein and this inhibition is fully prevented by substrates of EmrE. To monitor directly the reaction we tested also the extent of modification using fluorescein-5-maleimide. While most residues are not accessible or only partially accessible, four, Y4C, I5C, L7C, and A10C, were modified at least 80%. Furthermore, preincubation with tetraphenylphosphonium reduces the reaction of two of these residues by up to 80%. To study other essential residues we generated functional hetero-oligomers and challenged them with various methane thiosulfonates. Taken together the findings imply the existence of a binding cavity accessible to alkylating reagents where at least three residues from TM1, Tyr40 from TM2, and Trp63 in TM3 are involved in substrate binding.
Collapse
Affiliation(s)
- Michal Sharoni
- Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | | | | |
Collapse
|
48
|
Elbaz Y, Tayer N, Steinfels E, Steiner-Mordoch S, Schuldiner S. Substrate-induced tryptophan fluorescence changes in EmrE, the smallest ion-coupled multidrug transporter. Biochemistry 2005; 44:7369-77. [PMID: 15882076 DOI: 10.1021/bi050356t] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tryptophan residues may play several roles in integral membrane proteins including direct interaction with substrates. In this work we studied the contribution of tryptophan residues to substrate binding in EmrE, a small multidrug transporter of Escherichia coli that extrudes various positively charged drugs across the plasma membrane in exchange with protons. Each of the four tryptophan residues was replaced by site-directed mutagenesis. The only single substitutions that affected the protein's activity were those in position 63. While cysteine and tyrosine replacements yielded a completely inactive protein, the replacement of Trp63 with phenylalanine brought about a protein that, although it could not confer any resistance against the toxicants tested, could bind substrate with an affinity 2 orders of magnitude lower than that of the wild-type protein. Double or multiple cysteine replacements at the other positions generate proteins that are inactive in vivo but regain their activity upon solubilization and reconstitution. The findings suggest a possible role of the tryptophan residues in folding and/or insertion. Substrate binding to the wild-type protein and to a mutant with a single tryptophan residue in position 63 induced a very substantial fluorescence quenching that is not observed in inactive mutants or chemically modified protein. The reaction is dependent on the concentration of the substrate and saturates at a concentration of 2.57 microM with the protein concentration of 5 microM supporting the contention that the functional unit is a dimer. These findings strongly suggest the existence of an interaction between Trp63 and substrate, and the nature of this interaction can now be studied in more detail with the tools developed in this work.
Collapse
Affiliation(s)
- Yael Elbaz
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | | | | | | | | |
Collapse
|
49
|
Langton KP, Henderson PJF, Herbert RB. Antibiotic resistance: multidrug efflux proteins, a common transport mechanism? Nat Prod Rep 2005; 22:439-51. [PMID: 16047044 DOI: 10.1039/b413734p] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Kate P Langton
- Astbury Centre for Structural Molecular Biology, School of Biochemistry and Microbiology, University of Leeds, LS2 9JT, UK.
| | | | | |
Collapse
|
50
|
Islam S, Jalal S, Wretlind B. Expression of the MexXY efflux pump in amikacin-resistant isolates of Pseudomonas aeruginosa. Clin Microbiol Infect 2004; 10:877-83. [PMID: 15373880 DOI: 10.1111/j.1469-0691.2004.00991.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The MexZ-MexX-MexY multidrug efflux system in Pseudomonas aeruginosa was studied to determine its contribution to aminoglycoside resistance. Amikacin-resistant (AR) mutants were generated from P. aeruginosa strain PAO1, and clinical isolates of P. aeruginosa were collected from cystic fibrosis patients. The regulatory gene mexZ and the intergenic region (mexOZ) between mexZ and mexX were investigated for mutation by PCR and DNA sequence analysis. The results showed that 14 of 15 AR clinical isolates and one of ten laboratory mutants had at least one mutation in mexZ and/or mexOZ. To study the effect of mexZ and mexOZ mutations, the production of MexY mRNA was investigated quantitatively by real-time PCR. Seven of ten AR mutants (MIC 4-8 mg/L) produced 8-21-fold more MexY mRNA than PAO1. These isolates were sensitive to fluoroquinolones, carbapenems and ceftazidime. One AR mutant (MIC 64 mg/L) that produced > 200-fold more MexY mRNA than PAO1 was also resistant to fluoroquinolones, carbapenems and ceftazidime. Thirteen of 15 AR clinical isolates produced 3.4-727-fold more MexY mRNA. No evidence was found for the aminoglycoside-modifying enzymes 6'-N-acetyltransferase type Ib, 4'-O-nucleotidyltransferase type IIb or aminoglycoside 3'-phosphotransferase IIps in these strains. Nine AR mutants overproduced MexY without mutations in mexZ or mexOZ, suggesting that MexXY efflux is also regulated by gene(s) other than mexZ.
Collapse
Affiliation(s)
- S Islam
- Division of Clinical Bacteriology, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | |
Collapse
|