1
|
Bacellar C, Kinschel D, Mancini GF, Ingle RA, Rouxel J, Cannelli O, Cirelli C, Knopp G, Szlachetko J, Lima FA, Menzi S, Pamfilidis G, Kubicek K, Khakhulin D, Gawelda W, Rodriguez-Fernandez A, Biednov M, Bressler C, Arrell CA, Johnson PJM, Milne CJ, Chergui M. Spin cascade and doming in ferric hemes: Femtosecond X-ray absorption and X-ray emission studies. Proc Natl Acad Sci U S A 2020; 117:21914-21920. [PMID: 32848065 PMCID: PMC7486745 DOI: 10.1073/pnas.2009490117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The structure-function relationship is at the heart of biology, and major protein deformations are correlated to specific functions. For ferrous heme proteins, doming is associated with the respiratory function in hemoglobin and myoglobins. Cytochrome c (Cyt c) has evolved to become an important electron-transfer protein in humans. In its ferrous form, it undergoes ligand release and doming upon photoexcitation, but its ferric form does not release the distal ligand, while the return to the ground state has been attributed to thermal relaxation. Here, by combining femtosecond Fe Kα and Kβ X-ray emission spectroscopy (XES) with Fe K-edge X-ray absorption near-edge structure (XANES), we demonstrate that the photocycle of ferric Cyt c is entirely due to a cascade among excited spin states of the iron ion, causing the ferric heme to undergo doming, which we identify. We also argue that this pattern is common to a wide diversity of ferric heme proteins, raising the question of the biological relevance of doming in such proteins.
Collapse
Affiliation(s)
- Camila Bacellar
- Laboratoire de Spectroscopie Ultrarapide, Institut des Sciences et Ingéniéries Chimiques and Lausanne Centre for Ultrafast Science, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Dominik Kinschel
- Laboratoire de Spectroscopie Ultrarapide, Institut des Sciences et Ingéniéries Chimiques and Lausanne Centre for Ultrafast Science, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Giulia F Mancini
- Laboratoire de Spectroscopie Ultrarapide, Institut des Sciences et Ingéniéries Chimiques and Lausanne Centre for Ultrafast Science, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Rebecca A Ingle
- Laboratoire de Spectroscopie Ultrarapide, Institut des Sciences et Ingéniéries Chimiques and Lausanne Centre for Ultrafast Science, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jérémy Rouxel
- Laboratoire de Spectroscopie Ultrarapide, Institut des Sciences et Ingéniéries Chimiques and Lausanne Centre for Ultrafast Science, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Oliviero Cannelli
- Laboratoire de Spectroscopie Ultrarapide, Institut des Sciences et Ingéniéries Chimiques and Lausanne Centre for Ultrafast Science, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Claudio Cirelli
- Swiss Free Electron Laser, Paul-Scherrer-Institut (PSI), 5232 Villigen PSI, Switzerland
| | - Gregor Knopp
- Swiss Free Electron Laser, Paul-Scherrer-Institut (PSI), 5232 Villigen PSI, Switzerland
| | - Jakub Szlachetko
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Kraków, Poland
| | | | - Samuel Menzi
- Swiss Free Electron Laser, Paul-Scherrer-Institut (PSI), 5232 Villigen PSI, Switzerland
| | - Georgios Pamfilidis
- Swiss Free Electron Laser, Paul-Scherrer-Institut (PSI), 5232 Villigen PSI, Switzerland
| | | | | | - Wojciech Gawelda
- European X-ray Free Electron Laser, D-22869 Schenefeld, Germany
- Faculty of Physics, Adam Mickiewicz University, 61-614 Poznan, Poland
| | | | - Mykola Biednov
- European X-ray Free Electron Laser, D-22869 Schenefeld, Germany
| | | | - Christopher A Arrell
- Swiss Free Electron Laser, Paul-Scherrer-Institut (PSI), 5232 Villigen PSI, Switzerland
| | - Philip J M Johnson
- Swiss Free Electron Laser, Paul-Scherrer-Institut (PSI), 5232 Villigen PSI, Switzerland
| | - Christopher J Milne
- Swiss Free Electron Laser, Paul-Scherrer-Institut (PSI), 5232 Villigen PSI, Switzerland
| | - Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide, Institut des Sciences et Ingéniéries Chimiques and Lausanne Centre for Ultrafast Science, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| |
Collapse
|
2
|
FINDSEN EW, ONDRIAS MR. TRANSIENT AND TIME-RESOLVED OPTICAL STUDIES OF PHOTOLYZED CARBONMONOXY HEMOGLOBIN AND MYOGLOBIN. Photochem Photobiol 2008. [DOI: 10.1111/php.1990.51.6.741] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Chen X, Shao Z, Marinkovic NS, Miller LM, Zhou P, Chance MR. Conformation transition kinetics of regenerated Bombyx mori silk fibroin membrane monitored by time-resolved FTIR spectroscopy. Biophys Chem 2001; 89:25-34. [PMID: 11246743 DOI: 10.1016/s0301-4622(00)00213-1] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The ethanol-induced conformation transition of regenerated Bombyx mori silk fibroin membrane from a poorly defined to the well ordered state was monitored by time-resolved Fourier transform infrared spectroscopy (FTIR) for the first time. From the analysis of FTIR difference spectra, taken on time scales as short as 6 s and up to 1 h after addition of ethanol, intensity vs. time plots of an increasing band at 1618 cm(-1) were observed indicating formation of a beta-sheet coincident with the loss of intensity of a band at 1668 cm(-1) indicating decreases of random coil and/or silk I structure. Both infrared markers were fitted with identical biphasic exponential decay functions, however, there was a clear burst phase occurring prior to the onset of the observed transitions. The conformation transition process is indicated to either proceed sequentially through (at least) two intermediate states that contain different levels of beta-sheet structure or to have parallel pathways of initial beta-sheet formation followed by a slower 'perfection' phase. The first observed process forms in a burst phase a few seconds after mixing (or even faster), prior to the collection of the first spectrum at 6 s. The second observed process occurs with a time constant of approximately 0.5 min, the intermediate present at this stage then continues with a time constant of 5.5 min completing the observed formation of the beta-sheet. The conformation transition of this slower intermediate is not only indicated by an analysis of the kinetics of the random coil and beta-sheet-specific bands discussed above, it roughly coincides with the appearance of an additional infrared marker at 1695 cm(-1), which may be a marker for beta-sheet structure specific to the formation of the perfected structure. The conformation transition of this protein analyzed by infrared spectroscopy provides insight into a part of the fascinating process of cocoon formation in B. mori.
Collapse
Affiliation(s)
- X Chen
- Department of Macromolecular Science, Fudan University, Shanghai, PR Chlina.
| | | | | | | | | | | |
Collapse
|
4
|
Miller LM, Pedraza AJ, Chance MR. Identification of conformational substates involved in nitric oxide binding to ferric and ferrous myoglobin through difference Fourier transform infrared spectroscopy (FTIR). Biochemistry 1997; 36:12199-207. [PMID: 9315857 DOI: 10.1021/bi962744o] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hemeproteins play an important role in the signaling processes mediated by nitric oxide (NO). For example, the production of NO by nitric oxide synthase, the activation of guanylate cyclase by binding NO, and the scavenging of NO by hemoglobin, myoglobin, and cytochrome c oxidase all occur through unique mechanisms of interaction between NO and hemeproteins. Unlike carbon monoxide (CO) and oxygen (O2), which have been studied extensively, the reactions of NO with ferric and ferrous hemeproteins are not as well characterized. In this work, NO binding to myoglobin is studied using cryogenic optical spectroscopy and Fourier transform infrared spectroscopy (FTIR) in order to characterize the ligand-bound and photoproduct states involved in the interaction of NO with the heme iron and the distal pocket of the protein. For ferrous nitrosyl myoglobin (MbIINO), optical spectroscopy is used to show that the ligand-bound state can be converted to >95% stable photoproduct below 10 K. The Soret peak of the photoproduct is red-shifted by 4 nm relative to deoxy-myoglobin (Mb), similar to previous results for carbonmonoxy- (MbCO) and oxy-myoglobin (MbO2) (Miller et al., 1996). MbIINO completely rebinds by 35 K, indicating that the rebinding barrier for NO is lower than MbCO, consistent with room temperature picosecond kinetic measurements. For ferric nitrosyl myoglobin (MbIIINO), we find that the photoproduct yield at cryogenic temperatures is less than unity and dependent on the distal pocket residue. Native MbIIINO has a lower photoproduct yield than the mutant, MbIII(H64L)NO, where the distal histidine is replaced by leucine. The rebinding rates for the native and mutant species are similar to each other and to MbIINO. By using FTIR difference spectroscopy (photolyzed/unphotolyzed) of isotopically labeled ferrous nitrosyl myoglobin (MbIINO), the NO stretching frequencies in both the ligand-bound states and photoproduct states are determined. Two ligand-bound conformational states (1607 and 1613 cm-1) and two photoproduct conformational states (1852 and 1857 cm-1) are observed for MbIINO. This is the first direct observation of photolyzed NO in the distal pocket of myoglobin. The ligand-bound frequencies are consistent with a bent MbIINO moiety, where the unpaired pi*(NO) electron remains localized on NO, causing nu(N-O) to be approximately 300 cm-1 lower than MbIIINO. Similar to MbO2, we suggest that Nepsilon of the distal histidine is protonated, forming a hydrogen bond to the NO ligand. For native MbIIINO, a single ligand-bound conformational state with respect to nu(N-O) is observed at 1927 cm-1. This frequency decreases to 1904 cm-1 for the mutant, MbIII(H64L)NO, contrary to the increase of the carbon monoxide (CO) stretching frequency in the isoelectronic MbII(H64L)CO mutant versus native MbCO. For linear MbIIINO, we suggest that backbonding from the unpaired pi*(NO) electron to iron results in an increased positive charge on the NO ligand, Fe(delta-)-NO(delta+). This can be facilitated by tautomerism of the distal histidine, leaving Nepsilon of the imidazole ring unprotonated and able to accept positive charge from the Fe(delta-)-NO(delta+) moiety, resulting in a higher bond order (and a 23 cm-1 shift to higher frequency) for native MbIIINO versus MbIII(H64L)NO, where this interaction is absent. These different interactions between the distal histidine and the ferrous versus ferric species illustrate potential ways the protein can stabilize the bound ligand and demonstrate the versatile nature by which NO can bind to hemeproteins.
Collapse
Affiliation(s)
- L M Miller
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10461, USA
| | | | | |
Collapse
|
5
|
Chance MR, Miller LM, Fischetti RF, Scheuring E, Huang WX, Sclavi B, Hai Y, Sullivan M. Global mapping of structural solutions provided by the extended X-ray absorption fine structure ab initio code FEFF 6.01: structure of the cryogenic photoproduct of the myoglobin-carbon monoxide complex. Biochemistry 1996; 35:9014-23. [PMID: 8703904 DOI: 10.1021/bi9605503] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
X-ray methods based on synchrotron technology have the promise of providing time-resolved structural data based on the high flux and brightness of the X-ray beams. One of the most closely examined problems in this area of time-resolved structure determination has been the examination of intermediates in ligand binding to myoglobin. Recent crystallographic experiments using synchrotron radiation have identified the protein tertiary and heme structural changes that occur upon photolysis of the myoglobin--carbon monoxide complex at cryogenic temperatures [Schlichting, I., Berendzen, J., Phillips, G., & Sweet, R. (1994) Nature 371, 808--812]. However, the precision of protein crystallographic data (approximately 0.2 A) is insufficient to provide precise metrical details of the iron--ligand bond lengths. Since bond length changes on this scale can trigger reactivity changes of several orders of magnitude, such detail is critical to a full understanding of metalloprotein structure--function relationships. Extended X-ray absorption fine structure (EXAFS) spectroscopy has the potential for analyzing bond distances to a precision of 0.02 A but is hampered by its relative insensitivity to the geometry of the backscattering atoms. Thus, it is often unable to provide a unique solution to the structure without ancillary structural information. We have developed a suite of computer programs that incorporate this ancillary structural information and compute the expected experimental spectra for a wide ranging series of Cartesian coordinate sets (global mapping). The programs systematically increment the distance of the metal to various coordinating ligands (along with their associated higher shells). Then, utilizing the ab initio EXAFS code FEFF 6.01, simulated spectra are generated and compared to the actual experimental spectra, and the differences are computed. Finally, the results for hundreds of simulations can be displayed (and compared) in a single plot. The power of this approach is demonstrated in the examination of high signal to noise EXAFS data from a photolyzed solution sample of the myoglobin--carbon monoxide complex at 10 K. Evaluation of these data using our global mapping procedures placed the iron to pyrrole nitrogen average distances close to the value for deoxymyoglobin (2.05 +/- 0.01 A), while the distance from iron to the proximal histidine nitrogen is seen to be 2.20 +/- 0.04 A. It is also shown that one cannot uniquely position the CO ligand on the basis of the EXAFS data alone, as a number of reasonable minima (from the perspective of the EXAFS) are observed. This provides a reasonable explanation for the multiplicity of solutions that have been previously reported. The results presented here are seen to be in complete agreement with the crystallographic results of Schlichting et al. (1994) within the respective errors of the two techniques; however, the extended X-ray absorption fine structure data allow the iron--ligand bond lengths to be precisely defined. An examination of the available spectroscopic data, including EXAFS, shows that the crystallographic results of Schlichting et al. (1994) are highly relevant to the physiological solution state and must be taken into account in any attempt to understand the incomplete relaxation process of the heme iron for the Mb*CO photoproduct at low temperature.
Collapse
Affiliation(s)
- M R Chance
- Department of Physiology and Biophysics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Miller LM, Patel M, Chance MR. Identification of Conformational Substates in Oxymyoglobin through the pH-Dependence of the Low-Temperature Photoproduct Yield. J Am Chem Soc 1996. [DOI: 10.1021/ja952534j] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lisa M. Miller
- Contribution from the Department of Physiology and Biophysics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461
| | - Mehul Patel
- Contribution from the Department of Physiology and Biophysics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461
| | - Mark R. Chance
- Contribution from the Department of Physiology and Biophysics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461
| |
Collapse
|
7
|
Chen E, Kliger DS. Time-resolved near UV circular dichroism and absorption studies of carbonmonoxymyoglobin photolysis intermediates. Inorganica Chim Acta 1996. [DOI: 10.1016/0020-1693(95)04860-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Friedman JM. Time-resolved resonance Raman spectroscopy as probe of structure, dynamics, and reactivity in hemoglobin. Methods Enzymol 1994; 232:205-31. [PMID: 8057861 DOI: 10.1016/0076-6879(94)32049-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- J M Friedman
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10461
| |
Collapse
|
9
|
Affiliation(s)
- M R Chance
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
10
|
|
11
|
Potter WT, Hazzard JH, Choc MG, Tucker MP, Caughey WS. Infrared spectra of carbonyl hemoglobins: characterization of dynamic heme pocket conformers. Biochemistry 1990; 29:6283-95. [PMID: 2207074 DOI: 10.1021/bi00478a025] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The infrared spectra for carbon monoxide complexed to hemoglobins were examined in the C-O stretch region. Deconvolution of the spectra requires four bands and supports the presence of four distinct conformers at the ligand binding site. Most typical hemoglobins exhibit only one predominant conformer for each subunit represented by a band at 1951 cm-1 in contrast to myoglobins, which typically exist in two major conformations. Several hemoglobins with an enlarged heme pocket are shown to shift the C-O frequency into the higher frequency conformer regions. Many factors, including pH, temperature, solvents, and divalent metals, are also shown to be capable of expanding the heme pocket. Only very specific structural changes that can reduce the size of the heme pocket will result in the lower frequency conformers. The weighted averages of the multiple CO vibrational frequencies are linearly related to the single 13CO NMR chemical shift values and to the exponential of fast CO on-rates. Conformer interconversion occurs at a rate greater than 10(4) s-1. The infrared C-O stretch spectra provide qualitative and quantitative information on the structural dynamics, stability, and ligand binding properties of hemoglobins.
Collapse
Affiliation(s)
- W T Potter
- Department of Biochemistry, Colorado State University, Fort Collins 80523
| | | | | | | | | |
Collapse
|
12
|
Chance MR, Courtney SH, Chavez MD, Ondrias MR, Friedman JM. O2 and CO reactions with heme proteins: quantum yields and geminate recombination on picosecond time scales. Biochemistry 1990; 29:5537-45. [PMID: 2386783 DOI: 10.1021/bi00475a018] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Picosecond time-resolved absorption spectroscopy and low-temperature studies have been undertaken in order to understand the nature of the intrinsic quantum yields and geminate recombination of carbon monoxide and oxygen to hemoglobin and myoglobin. We find that the photoproduct yields at 40 ps and long times (minutes) after photolysis at 8 K are similar; however, the yield of oxygen photoproducts is 0.4 +/- 0.1 while the yield of carbon monoxide photoproducts is 1.0 +/- 0.1 for both myoglobin and hemoglobin. Measurements in the Soret, near-infrared, and far-IR are used to quantitate the photoproduct yields. These results call into question previous cryogenic kinetic studies of O2 recombination. Significant subnanosecond geminate recombination is observed in oxyhemoglobin down to 150 K, while below 100 K this geminate recombination disappears. The lower photoproduct yields for oxyheme protein complexes can be attributed to both subnanosecond and subpicosecond recombination events which are ligand and protein dynamics dependent.
Collapse
Affiliation(s)
- M R Chance
- Department of Chemistry, Georgetown University, Washington, D.C. 20057
| | | | | | | | | |
Collapse
|
13
|
Morikis D, Champion PM, Springer BA, Sligar SG. Resonance raman investigations of site-directed mutants of myoglobin: effects of distal histidine replacement. Biochemistry 1989; 28:4791-800. [PMID: 2765511 DOI: 10.1021/bi00437a041] [Citation(s) in RCA: 156] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The resonance Raman spectra of met-, deoxy-, and (carbonmonoxy)myoglobin (MbCO) are studied as a function of amino acid replacement at the distal histidine-E7 position. The synthetic wild type is found to be spectroscopically identical with the native material. The methionine and glycine replacements do not affect the met or deoxy spectra but do lead to distinct changes in the nu Fe-CO region of the MbCO spectrum. The native MbCO displays a pH-dependent population redistribution of the nu Fe-CO modes, while the analogous population in the mutant systems is found to be pH independent. This indicates that histidine-E7 is the titratable group in native MbCO. Moreover, the pH dependence of the population dynamics is found to be inconsistent with a simple two-state Henderson-Hasselbalch analysis. Instead, we suggest a four-state model involving the coupling of histidine protonation and conformational change. Within this model, the pK of the distal histidine is found to be 6.0 in the "open" configuration and 3.8 in the "closed" conformation. This corresponds to a 3 kcal/mol destabilization of the positively charged distal histidine within the hydrophobic pocket and suggests how protonation can lead to a larger population of the "open" conformation. At pH 7, the pocket is found to be "open" approximately 3% of the time. Further work, involving both IR and Raman measurements, allows the electron-nuclear coupling strengths of the various nu Fe-CO and nu C-O Raman modes to be determined. The slowly rebinding conformational state, corresponding to nu Fe-CO = 518 cm-1 (nu C-O = 1932 cm-1), displays unusually weak coupling of the Fe-CO mode to the Soret transition. Studies of the nu Fe-CO region as a function of temperature reveal that the equilibria between the conformational states are quenched in both the native and glycine mutant below the freezing point of the solvent. Unusual line narrowing of the nu Fe-CO modes at the phase transition is also observed in all samples studied. This line narrowing stands in marked contrast to the other heme Raman modes and suggests that Fe-CO librational motion and/or distal pocket vibrational (or conformational) excitations are involved in the line broadening at room temperature.
Collapse
Affiliation(s)
- D Morikis
- Department of Physics, Northeastern University, Boston, Massachusetts 02115
| | | | | | | |
Collapse
|
14
|
Sage JT, Morikis D, Champion PM. Resonance Raman studies of oriented chromophores: Metmyoglobin single crystals. J Chem Phys 1989. [DOI: 10.1063/1.455904] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
15
|
Ligand binding channels reflected in the resonance Raman spectra of cryogenically trapped species of myoglobin. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)48109-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
16
|
Campbell BF, Chance MR, Friedman JM. Linkage of functional and structural heterogeneity in proteins: dynamic hole burning in carboxymyoglobin. Science 1987; 238:373-6. [PMID: 3659921 DOI: 10.1126/science.3659921] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Inhomogeneous broadening of the 760-nanometer photoproduct band of carboxymyoglobin at cryogenic temperatures has been demonstrated with a dynamic hole burning technique. Line-shape changes and frequency shifts in this spectral band are generated by ligand recombination and are shown not to be the result of structural relaxation below 60 K. The observation of dynamic hole burning exposes the relation between the structural disorder responsible for the inhomogeneous broadening and the well-known distributed ligand rebinding kinetics. The findings provide direct evidence for the functional relevance of conformational substrates in myoglobin rebinding. In addition, a general protocol for evaluating the relative contributions of structural relaxation and hole burning to the spectral changes accompanying rebinding in hemeproteins is presented.
Collapse
|