1
|
Jeanson L, Mouscadet JF. Ku represses the HIV-1 transcription: identification of a putative Ku binding site homologous to the mouse mammary tumor virus NRE1 sequence in the HIV-1 long terminal repeat. J Biol Chem 2002; 277:4918-24. [PMID: 11733502 DOI: 10.1074/jbc.m110830200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ku has been implicated in nuclear processes, including DNA break repair, transcription, V(D)J recombination, and telomere maintenance. Its mode of action involves two distinct mechanisms: one in which a nonspecific binding occurs to DNA ends and a second that involves a specific binding to negative regulatory elements involved in transcription repression. Such elements were identified in mouse mammary tumor virus and human T cell leukemia virus retroviruses. The purpose of this study was to investigate a role for Ku in the regulation of human immunodeficiency virus (HIV)-1 transcription. First, HIV-1 LTR activity was studied in CHO-K1 cells and in CH0-derived xrs-6 cells, which are devoid of Ku80. LTR-driven expression of a reporter gene was significantly increased in xrs-6 cells. This enhancement was suppressed after re-expression of Ku80. Second, transcription of HIV-1 was followed in U1 human cells that were depleted in Ku by using a Ku80 antisense RNA. Ku depletion led to a increase of both HIV-1 mRNA synthesis and viral production compared with the parent cells. These results demonstrate that Ku acts as a transcriptional repressor of HIV-1 expression. Finally, a putative Ku-specific binding site was identified within the negative regulatory region of the HIV-1 long terminal repeat, which may account for this repression of transcription.
Collapse
Affiliation(s)
- Laurence Jeanson
- CNRS UMR8532, Institut Gustave-Roussy, PR2, 39 rue Camille Desmoulins, 94805 Villejuif, France
| | | |
Collapse
|
2
|
Uliel L, Weisman-Shomer P, Oren-Jazan H, Newcomb T, Loeb LA, Fry M. Human Ku antigen tightly binds and stabilizes a tetrahelical form of the Fragile X syndrome d(CGG)n expanded sequence. J Biol Chem 2000; 275:33134-41. [PMID: 10924524 DOI: 10.1074/jbc.m005542200] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Hairpin and tetrahelical structures of a d(CGG)(n) sequence in the FMR1 gene have been implicated in its expansion in fragile X syndrome. The identification of tetraplex d(CGG)(n) destabilizing proteins (Fry, M., and Loeb, L. A.(1999) J. Biol. Chem. 274, 12797-12803; Weisman-Shomer, P., Naot, Y., and Fry, M. (2000) J. Biol. Chem. 275, 2231-2238) suggested that proteins might modulate d(CGG)(n) folding and aggregation. We assayed human TK-6 lymphoblastoid cell extracts for d(CGG)(8) oligomer binding proteins. The principal binding protein was identified as Ku antigen by its partial amino acid sequence and antigenicity. The purified 88/75-kDa heterodimeric Ku bound with similar affinities (K(d) approximately 1. 8-10.2 x 10(-9) mol/liter) to double-stranded d(CGG)(8).d(CCG)(8), hairpin d(CGG)(8), single-stranded d(CII)(8), or tetraplex structures of telomeric or IgG switch region sequences. However, Ku associated more tightly with bimolecular G'2 tetraplex d(CGG)(8) (K(d) approximately 0.35 x 10(-9) mol/liter). Binding to Ku protected G'2 d(CGG)(8) against nuclease digestion and impeded its unwinding by the tetraplex destabilizing protein qTBP42. Stabilization of d(CGG)(n) tetraplex domains in FMR1 by Ku or other proteins might promote d(CGG) expansion and FMR1 silencing.
Collapse
Affiliation(s)
- L Uliel
- Unit of Biochemistry, The Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa 31096, Israel
| | | | | | | | | | | |
Collapse
|
3
|
Majumder S, Ghoshal K, Li Z, Jacob ST. Hypermethylation of metallothionein-I promoter and suppression of its induction in cell lines overexpressing the large subunit of Ku protein. J Biol Chem 1999; 274:28584-9. [PMID: 10497224 PMCID: PMC2276567 DOI: 10.1074/jbc.274.40.28584] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have shown previously that the heavy metal-induced metallothionein-I (MT-I) gene expression is specifically repressed in a rat fibroblast cell line (Ku-80) overexpressing the 80-kDa subunit of Ku autoantigen but not in cell lines overexpressing the 70-kDa subunit or Ku heterodimer. Here, we explored the molecular mechanism of silencing of MT-I gene in Ku-80 cells. Genomic footprinting analysis revealed both basal and heavy metal-inducible binding at specific cis elements in the parental cell line (Rat-1). By contrast, MT-I promoter in Ku-80 cells was refractory to any transactivating factors, implying alteration of chromatin structure. Treatment of two clonal lines of Ku-80 cells with 5-azacytidine, a potent DNA demethylating agent, rendered MT-I gene inducible by heavy metals, suggesting that the gene is methylated in these cells. Bisulfite genomic sequencing revealed that all 21 CpG dinucleotides in MT-I immediate promoter were methylated in Ku-80 cells, whereas only four CpG dinucleotides were methylated in Rat-1 cells. Almost all methylated CpG dinucleotides were demethylated in Ku-80 cells after 5-azacytidine treatment. To our knowledge, this is the first report that describes hypermethylation of a specific gene promoter and its resultant silencing in response to overexpression of a cellular protein.
Collapse
Affiliation(s)
- S Majumder
- Department of Medical Biochemistry, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
4
|
Bailin T, Mo X, Sadofsky MJ. A RAG1 and RAG2 tetramer complex is active in cleavage in V(D)J recombination. Mol Cell Biol 1999; 19:4664-71. [PMID: 10373515 PMCID: PMC84264 DOI: 10.1128/mcb.19.7.4664] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During V(D)J recombination two proteins, RAG1 and RAG2, assemble as a protein-DNA complex with the appropriate DNA targets containing recombination signal sequences (RSSs). The properties of this complex require a fairly elaborate set of protein-protein and protein-DNA contacts. Here we show that a purified derivative of RAG1, without DNA, exists predominantly as a homodimer. A RAG2 derivative alone has monomer, dimer, and larger forms. The coexpressed RAG1 and RAG2 proteins form a mixed tetramer in solution which contains two molecules of each protein. The same tetramer of RAG1 and RAG2 plus one DNA molecule is the form active in cleavage. Additionally, we show that both DNA products following cleavage can still be held together in a stable protein-DNA complex.
Collapse
Affiliation(s)
- T Bailin
- Program of Gene Regulation, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912-2650, USA
| | | | | |
Collapse
|
5
|
Torrance H, Giffin W, Rodda DJ, Pope L, Haché RJ. Sequence-specific binding of Ku autoantigen to single-stranded DNA. J Biol Chem 1998; 273:20810-9. [PMID: 9694826 DOI: 10.1074/jbc.273.33.20810] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucocorticoid-induced transcription of mouse mammary tumor virus is repressed by Ku antigen/DNA-dependent protein kinase (DNA-PK) through a DNA sequence element (NRE1) in the viral long terminal repeat. Nuclear factors binding to the separated single strands of NRE1 have been identified that may also be important for transcriptional regulation through this element. We report the separation of the upper-stranded NRE1 binding activity in Jurkat T cell nuclear extracts into two components. One component was identified as Ku antigen. The DNA sequence preference for Ku binding to single-stranded DNA closely paralleled the sequence requirements of Ku for double-stranded DNA. Recombinant Ku bound the single, upper strand of NRE1 with an affinity that was 3-4-fold lower than its affinity for double-stranded NRE1. Sequence-specific single-stranded Ku binding occurred rapidly (t1/2 on = 2.0 min) and was exceptionally stable, with an off rate of t1/2= 68 min. While Ku70 cross-linked to the upper strand of NRE1 when Ku was bound to double-stranded and single-stranded DNAs, the Ku80 subunit only cross-linked to single-stranded NRE1. Intriguingly, addition of Mg2+ and ATP, the cofactors required for Ku helicase activity, induced the cross-linking of Ku80 to a double-stranded NRE1-containing oligonucleotide, without completely unwinding the two strands.
Collapse
Affiliation(s)
- H Torrance
- Graduate Program in Biochemistry, University of Ottawa, Loeb Institute for Medical Research, Ottawa Civic Hospital, Ottawa, Ontario K1Y 4E9, Canada
| | | | | | | | | |
Collapse
|
6
|
Dynan WS, Yoo S. Interaction of Ku protein and DNA-dependent protein kinase catalytic subunit with nucleic acids. Nucleic Acids Res 1998; 26:1551-9. [PMID: 9512523 PMCID: PMC147477 DOI: 10.1093/nar/26.7.1551] [Citation(s) in RCA: 263] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Ku protein-DNA-dependent protein kinase system is one of the major pathways by which cells of higher eukaryotes respond to double-strand DNA breaks. The components of the system are evolutionarily conserved and homologs are known from a number of organisms. The Ku protein component binds directly to DNA ends and may help align them for ligation. Binding of Ku protein to DNA also nucleates formation of an active enzyme complex containing the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). The interaction between Ku protein, DNA-PKcs and nucleic acids has been extensively investigated. This review summarizes the results of these biochemical investigations and relates them to recent molecular genetic studies that reveal highly characteristic repair and recombination defects in mutant cells lacking Ku protein or DNA-PKcs.
Collapse
Affiliation(s)
- W S Dynan
- Program in Gene Regulation, Institute of Molecular Medicine and Genetics, Room CB-2803, Medical College of Georgia, 1120 15th Street, Augusta, GA 30912, USA.
| | | |
Collapse
|
7
|
Osipovich O, Durum SK, Muegge K. Defining the minimal domain of Ku80 for interaction with Ku70. J Biol Chem 1997; 272:27259-65. [PMID: 9341172 DOI: 10.1074/jbc.272.43.27259] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Ku protein has a critical function in the repair of double-strand DNA breaks induced for example by ionizing radiation or during VDJ recombination. Ku serves as the DNA-binding subunit of the DNA-dependent kinase and is a heterodimeric protein composed of 80- and 70-kDa subunits. We used the two-hybrid system to analyze the interaction domains of the Ku subunits and to identify possible additional partners for Ku. Screening a human cDNA library with the Ku heterodimer did not reveal any novel partners. Screening with the individual subunits, we detected only Ku70 clones interacting with Ku80 and only Ku80 clones interacting with Ku70, indicating that these are the primary partners for one another. Ku80 and Ku70 formed only heterodimers and did not homodimerize. Ku80 was restricted to interacting with just one Ku70 molecule at a time. The minimal functional interaction domain of Ku80 that interacted with Ku70 was defined. It consisted of a 28-amino acid region extending from amino acid 449 to 477. This region was crucial for interaction with Ku70, since mutation within this critical site at amino acids 453 and 454 abrogated the ability to interact with Ku70. We furthermore verified that the same region is crucial for interaction with Ku70 using in vitro co-translation of both subunits followed by an immunoprecipitation with anti-Ku70 antibodies. This interaction domain of Ku80 does not contain any motif previously recognized in protein-protein interactions.
Collapse
Affiliation(s)
- O Osipovich
- Laboratory of Molecular Immunoregulation, NCI, National Institutes of Health, Frederick, Maryland 21702-1201, USA
| | | | | |
Collapse
|
8
|
Cary RB, Peterson SR, Wang J, Bear DG, Bradbury EM, Chen DJ. DNA looping by Ku and the DNA-dependent protein kinase. Proc Natl Acad Sci U S A 1997; 94:4267-72. [PMID: 9113978 PMCID: PMC20711 DOI: 10.1073/pnas.94.9.4267] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The DNA-dependent protein kinase (DNA-PK) is required for DNA double-strand break (DSB) repair and immunoglobulin gene rearrangement and may play a role in the regulation of transcription. The DNA-PK holoenzyme is composed of three polypeptide subunits: the DNA binding Ku70/86 heterodimer and an approximately 460-kDa catalytic subunit (DNA-PKcs). DNA-PK has been hypothesized to assemble at DNA DSBs and play structural as well as signal transduction roles in DSB repair. Recent advances in atomic force microscopy (AFM) have resulted in a technology capable of producing high resolution images of native protein and protein-nucleic acid complexes without staining or metal coating. The AFM provides a rapid and direct means of probing the protein-nucleic acid interactions responsible for DNA repair and genetic regulation. Here we have employed AFM as well as electron microscopy to visualize Ku and DNA-PK in association with DNA. A significant number of DNA molecules formed loops in the presence of Ku. DNA looping appeared to be sequence-independent and unaffected by the presence of DNA-PKcs. Gel filtration of Ku in the absence and the presence of DNA indicates that Ku does not form nonspecific aggregates. We conclude that, when bound to DNA, Ku is capable of self-association. These findings suggest that Ku binding at DNA DSBs will result in Ku self-association and a physical tethering of the broken DNA strands.
Collapse
Affiliation(s)
- R B Cary
- Life Sciences Division, Los Alamos National Laboratory, Mail Stop M888, Los Alamos, NM 87545, USA
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Double strand break repair and V(D)J recombination in mammalian cells require the function of the Ku protein complex and the DNA-dependent protein kinase. The DNA-dependent protein kinase is targeted to DNA through its interaction with the Ku protein complex, and thus the specificity of template recognition in the repair and recombination reactions depend on Ku. We have studied Ku binding to DNA using competitive gel shift analysis. We find that Ku bound to one DNA molecule can transfer directly to another DNA molecule when the two DNA molecules have homologous ends containing a minimum of four matched bases. This remarkable reaction can give a false impression of sequence specificity of Ku DNA binding under certain assay conditions. A model is proposed for the DNA binding function of Ku on the basis of these results and the discovery of a novel type of DNA-Ku complex formed at high Ku/DNA ratios is discussed.
Collapse
Affiliation(s)
- T M Bliss
- Cancer Research Campaign Cell Transformation Research Group, Department of Biochemistry, University of Dundee, Dundee DD1 4HN, United Kingdom
| | | |
Collapse
|
10
|
Giffin W, Kwast-Welfeld J, Rodda DJ, Préfontaine GG, Traykova-Andonova M, Zhang Y, Weigel NL, Lefebvre YA, Haché RJ. Sequence-specific DNA binding and transcription factor phosphorylation by Ku Autoantigen/DNA-dependent protein kinase. Phosphorylation of Ser-527 of the rat glucocorticoid receptor. J Biol Chem 1997; 272:5647-58. [PMID: 9038175 DOI: 10.1074/jbc.272.9.5647] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
NRE1 is a DNA sequence element through which Ku antigen/DNA-dependent protein kinase (DNA-PK) catalytic subunit represses the induction of mouse mammary tumor virus transcription by glucocorticoids. Although Ku is an avid binder of DNA ends and has the ability to translocate along DNA, we report that direct sequence-specific Ku binding occurs with higher affinity (Kd = 0.84 +/- 0.24 nM) than DNA end binding. Comparison of Ku binding to several sequences over which Ku can accumulate revealed two classes of sequence. Sequences with similarity to NRE1 competed efficiently for NRE1 binding. Conversely, sequences lacking similarity to NRE1 competed poorly for Ku and were not recognized in the absence of DNA ends. Phosphorylation of glucocorticoid receptor (GR) fusion proteins by DNA-PK reflected Ku DNA-binding preferences and demonstrated that co-localization of GR with DNA-PK on DNA in cis was critical for efficient phosphorylation. Phosphorylation of the GR fusion protein by DNA-PK mapped to a single site, Ser-527. This site occurs adjacent the GR nuclear localization sequence between the DNA and ligand binding domains of GR, and thus its phosphorylation, if confirmed, has the potential to affect receptor function in vivo.
Collapse
Affiliation(s)
- W Giffin
- Department of Medicine, University of Ottawa, Loeb Medical Research Institute, Ottawa Civic Hospital, Ottawa, Ontario, Canada K1Y 4E9
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Gorab E, Botella LM, Quinn JP, Amabis JM, Díez JL. Ku-related antigens are associated with transcriptionally active loci in Chironomus polytene chromosomes. Chromosoma 1996; 105:150-7. [PMID: 8781183 DOI: 10.1007/bf02509496] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Antigens of Chironomus reactive with human sera containing anti-Ku antibodies and also with specific antibodies to each Ku subunit were characterized by immunoblot analysis. Three main antigen species were identified in nuclear-enriched extracts from salivary gland cells of Chironomus thummi, ranging in Mr from 55000 to 67000. The nuclear localization of Ku-related antigens in the dipteran Chironomus was studied by immunofluorescent labeling in polytene chromosomes of the salivary glands. Balbiani rings, loci highly active in transcription, were found to be strongly labeled by anti-Ku antibodies. Sugar-induced changes in the activity of the Balbiani ring genes were accompanied by the redistribution of Ku-related antigens as visualized by their absence in regressed Balbiani ring loci, and continued presence only in those that were transcriptionally active. A drastic change in the distribution of Ku-related antigens was also observed when C. thummi larvae underwent heat treatment as the immunofluorescent staining was restricted to previously described heat shock puffs. Anti-Ku sera reacted in addition with several chromosomal bands in which the presence of RNA polymerase II was also immunologically detected. The results show that Chironomus antigens reactive with anti-Ku antibodies are related to transcription in polytene chromosomes.
Collapse
Affiliation(s)
- E Gorab
- Centro de Investigaciones Biológicas (CSIC), Velázquez 144, E-28006 Madrid, Spain
| | | | | | | | | |
Collapse
|
12
|
Warriar N, Pagé N, Govindan MV. Expression of human glucocorticoid receptor gene and interaction of nuclear proteins with the transcriptional control element. J Biol Chem 1996; 271:18662-71. [PMID: 8702520 DOI: 10.1074/jbc.271.31.18662] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have identified sequences responsible for the expression of the human glucocorticoid receptor gene (GR gene) using a set of 5' promoter deletion mutants in HeLa, human placenta, and human breast tumor (MCF-7) cells. The chimeric gene construct -892 5'-GAAGTGACACACTTC3' -878-CAT was sufficient for high level of expression in HeLa and placenta cells in culture. Deletion of palindromic sequences decreased levels of GR expression in these cells. By oligonucleotide-affinity chromatography with the palindromic glucocorticoid receptor enhancing factor-binding element (GREFE), we have isolated from human placenta nuclear extract two novel proteins glucocorticoid receptor enhancing factors 1 and 2 (GREF1 and GREF2), with apparent molecular masses of 80 and 62 kDa, respectively. These proteins, similar to the DNA-binding autoantigen Ku are, like Ku, heterodimers of polypeptide subunits p80 and p62, immunologically related to factors binding to proximal sequence element 1 in the promoter of small nuclear RNA (PSE1) and transferrin receptor enhancing factors. Both Ku80 and Ku70 polypeptides were present in high concentrations in human placenta and HeLa cells. In MCF-7 cells, however, only a high level of p62 was detected. While cotransfection of pcDNA-Ku80 with pHGR(-892 to -878)-CAT potentiated the expression of CAT, introduction of pcDNA-Ku70 did not affect the expression of CAT in transfected MCF-7 cells. UV cross-linking analysis showed that only GREF1 contacted DNA directly. Supershift assays with monoclonal antibodies Ab 111 (Ku80) or Ab N3H10 (Ku70) showed a direct interaction of GREF1 and GREF2 heterodimers with the palindrome. Partial peptide fingerprinting of GREF1 and GREF2 using alpha-chymotrypsin and immunoblotting with Ab 111 and Ab N3H10 confirmed their identities as Ku80 and Ku70, respectively.
Collapse
Affiliation(s)
- N Warriar
- Department of Molecular Endocrinology, Laval University Hospital Center, 2705 Boulevard Laurier, Sainte Foy, G1V 4G2, Québec, Canada
| | | | | |
Collapse
|
13
|
Jacoby DB, Wensink PC. DNA binding specificities of YPF1, a Drosophila homolog to the DNA binding subunit of human DNA-dependent protein kinase, Ku. J Biol Chem 1996; 271:16827-32. [PMID: 8663250 DOI: 10.1074/jbc.271.28.16827] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
YPF1, a heterodimeric protein from Drosophila melanogaster, is a homolog to Ku, the DNA binding subunit of human DNA-dependent protein kinase. This kinase is crucial in transcriptional activation, V(D)J recombination, double-strand break repair, and both topoisomerase and helicase activities. To investigate functional homology between YPF1 and Ku, we examined DNA binding properties of YPF1. Like Ku, at 100 mM KCl, YPF1 binding has no detectable DNA sequence specificity, requires a DNA terminus, and has a concentration-dependent stoichiometry consistent with subsequent translocation along DNA. YPF1 differs from Ku by having a 10(5)-fold higher affinity. At 400 mM KCl, YPF1 still prefers DNA termini but shows binding specificities not observed previously with Ku. In descending order of affinity, YPF1 binds to: specific DNA sequences with a specific polarity and spacing relative to DNA termini; nonspecific linear DNA; and circular DNA. At this higher ionic strength, binding stoichiometry is concentration independent, indicating that YPF1 remains bound to ends. These results demonstrate a strong functional homology between YPF1 and Ku at physiological ionic strength. The strong binding of YPF1 has also allowed us to detect underlying binding specificities that may be specific to YPF1 and its function.
Collapse
Affiliation(s)
- D B Jacoby
- Rosenstiel Center, Brandeis University, Waltham, Massachusetts 02254-9110, USA
| | | |
Collapse
|
14
|
Lees-Miller SP. The DNA-dependent protein kinase, DNA-PK: 10 years and no ends in sight. Biochem Cell Biol 1996; 74:503-12. [PMID: 8960356 DOI: 10.1139/o96-054] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The phenomenon of DNA-dependent protein phosphorylation was first described little over 10 years ago. Since then a DNA-dependent protein kinase, DNA-PK, has been purified from human cells and many of its biochemical properties have been characterized. DNA-PK is composed of a large catalytic subunit, DNA-PKcs, and a DNA-targeting protein, Ku. When assembled on a suitable DNA molecule, the DNA-PK holoenzyme acts as a serine/threonine protein kinase that in vitro phosphorylates many DNA binding and non-binding proteins and transcription factors. Recent genetic studies point strongly to functions in DNA double-strand break repair and V(D)J recombination. In addition, biochemical studies suggest a role in the regulation of transcription. Here we discuss, from a historical perspective, the events leading up to our current understanding of the function of DNA-PK, including recent results from our own studies suggesting the involvement of DNA-PK in apoptosis and in viral infection of human cells.
Collapse
Affiliation(s)
- S P Lees-Miller
- Department of Biological Sciences, University of Calgary, AB, Canada.
| |
Collapse
|
15
|
Beall EL, Rio DC. Drosophila IRBP/Ku p70 corresponds to the mutagen-sensitive mus309 gene and is involved in P-element excision in vivo. Genes Dev 1996; 10:921-33. [PMID: 8608940 DOI: 10.1101/gad.10.8.921] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The P family of transposable elements in Drosophila transpose by a cut-and-paste mechanism involving double-strand gap repair. We report here that a Drosophila mutagen-sensitive mutant, mus3O9, contains a mutation in IRBP (inverted repeat binding protein), the Drosophila homolog of the mammalian Ku p70 gene. We show that the repair of double-strand DNA breaks after P-element excision is severely reduced in mus3O9 mutants using an in vivo assay for P-element transposase activity. In addition, excision products recovered from mus3O9 mutant embryos by use of a plasmid-based P-element mobility assay contain large deletions, suggesting that IRBP is involved in the repair of double-strand DNA breaks. Our findings provide the first demonstration that a mutation in the IRBP gene affects double-strand DNA break repair and suggest that DNA repair functions are conserved between Drosophila and mammals.
Collapse
Affiliation(s)
- E L Beall
- Department of Molecular and Cell Biology, University of California, Berkeley, 94720-3204, USA
| | | |
Collapse
|
16
|
Giffin W, Torrance H, Rodda DJ, Préfontaine GG, Pope L, Hache RJ. Sequence-specific DNA binding by Ku autoantigen and its effects on transcription. Nature 1996; 380:265-8. [PMID: 8637578 DOI: 10.1038/380265a0] [Citation(s) in RCA: 171] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
DNA-dependent protein kinase (DNA-PK) has been implicated in several nuclear processes including transcription, DNA replication, double-stranded DNA break repair, and V(D)J recombination. Linkage of kinase and substrate on DNA in cis is required for efficient phosphorylation. Recruitment of DNA-PK to DNA is by Ku autoantigen, a DNA-end-binding protein required for DNA-PK catalytic activity. Although Ku is known to translocate along naked DNA, how DNA-end binding by Ku might lead to DNA-PK-mediated phosphorylation of sequence-specific DNA-binding proteins in vivo has not been obvious. Here we report the identification of Ku as a transcription factor that recruits DNA-PK directly to specific DNA sequences. NRE1 (negative regulatory element 1) is a DNA sequence element (-394/ -381) in the long terminal repeat of mouse mammary tumour virus (MMTV) that is important for repressing inappropriate viral expression. We show that direct binding of Ku/DNA-PK to NRE1 represses glucocorticoid-induced MMTV transcription.
Collapse
Affiliation(s)
- W Giffin
- Department of Medicine, University of Ottawa, Loeb Institute for Medical Research, Ottawa Civic Hospital, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Galperin C, Leung PS, Gershwin ME. Molecular biology of autoantigens in rheumatic diseases. Rheum Dis Clin North Am 1996; 22:175-210. [PMID: 8907071 DOI: 10.1016/s0889-857x(05)70268-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The advent of molecular biologic techniques has provided new approaches that are of great utility to the study of autoimmune-mediated responses. In the past few years, there has been a remarkable accumulation of knowledge concerning the molecular identity and function of autoantigens, and further consolidation for the use of autoantibodies as diagnostic markers in clinical rheumatology. The understanding of basis methodologies in molecular biology applied to the study of autoantigens, in particular, techniques for cloning and analyzing genes that are important in rheumatic diseases, is valuable for both basic scientists and clinicians interested in diagnostic and prognostic markers of various connective tissue diseases.
Collapse
Affiliation(s)
- C Galperin
- University of California, Davis, School of Medicine, USA
| | | | | |
Collapse
|
18
|
Affiliation(s)
- K Schwarz
- Section of Molecular Biology, Pediatrics II, University of Ulm, Germany
| | | |
Collapse
|
19
|
Affiliation(s)
- C W Anderson
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | | |
Collapse
|
20
|
Grinstein E, Royer HD. Multiple octamer-binding proteins are targets for the cell cycle-regulated nuclear inhibitor I-92. DNA Cell Biol 1995; 14:493-500. [PMID: 7598804 DOI: 10.1089/dna.1995.14.493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
p92 is a novel sequence-specific octamer-binding factor interacting with the enhancer of human papillomavirus type 18. The nuclear inhibitor I-92 regulates the DNA binding activity of p92 during the cell cycle such that p92 DNA binding is restricted to S-phase. The sequence motif ++ 5'-AATTGCTTGCATAA, consisting of two partially overlapping octamer-related sequences, represents a recognition site for p92. It was the aim of this study to characterize the complexity of proteins interacting with the 5'-AATTGCTTGCATAA motif and to determine their regulation by I-92. UV cross-linking experiments showed that, besides p92, multiple novel proteins interact with the 5'-AATTGCTGCATAA motif. These novel proteins p84, p75, p73, p69, p61, p57, p49, and p46 specifically bind to this motif, although with different affinities. The inhibitor I-92 regulates, besides p92, the DNA-binding activities of p84, p75, p73, p69, and p57 but not of p61, p49, and p46. The association of I-92 with p92, p84, p75, p73, p69, and p57 was completely reversible after treatment with the detergent deoxycholate (DOC). Finally, we analyzed I-92 specificity and found that I-92 selectively inhibited DNA binding activities of partially purified octamer-binding proteins p84 and p92 whereas DNA binding of the POU factor Oct-1 was not regulated by I-92. Our results show that I-92 regulates multiple octamer-binding proteins and these findings provide an example how gene regulation could be linked to cell cycle regulation.
Collapse
Affiliation(s)
- E Grinstein
- Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Germany
| | | |
Collapse
|
21
|
Wang J, Satoh M, Pierani A, Schmitt J, Chou CH, Stunnenberg HG, Roeder RG, Reeves WH. Assembly and DNA binding of recombinant Ku (p70/p80) autoantigen defined by a novel monoclonal antibody specific for p70/p80 heterodimers. J Cell Sci 1994; 107 ( Pt 11):3223-33. [PMID: 7699019 DOI: 10.1242/jcs.107.11.3223] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Ku autoantigen is a heterodimer of 70 kDa (p70) and -80 kDa (p80) subunits that is the DNA-binding component of a DNA-dependent protein kinase (DNA-PK). The 350 kDa (p350) catalytic subunit of DNA-PK phosphorylates Sp-1, Oct-1, p53 and RNA polymerase II in vitro, but the precise cellular role of DNA-PK remains unclear. In the present studies, the assembly of p70/p80 heterodimers and the interaction of Ku with DNA was investigated using recombinant vaccinia viruses directing the synthesis of human p70 (p70-vacc) and p80 (p80-vacc), and monoclonal antibodies (mAbs). Expression of human Ku antigens in rabbit kidney (RK13) cells could be demonstrated by immunofluorescent staining because this cell line contains little endogenous Ku. A novel mAb designated 162 stained the nuclei of RK13 cells coinfected with p70-vacc and p80-vacc, but not cells that were infected with either virus alone, suggesting that it recognized the p70/p80 heterodimer but not monomeric p70 or p80. In agreement with the immunofluorescence data, 162 immunoprecipitated both p70 and p80 from extracts of coinfected cells, but did not immunoprecipitate either subunit by itself from extracts of cells infected with p70-vacc or p80-vacc, respectively. Conversely, the binding of 162 to Ku isolated from human K562 cells stabilized the p70/p80 heterodimer under conditions that normally dissociate p70 from p80. The nuclei of cells infected with p70-vacc alone could be stained with mAb N3H10 (anti-p70) and cells infected with p80-vacc alone could be stained with mAb 111 (anti-p80), indicating that the formation of p70/p80 heterodimers was not required for nuclear transport. Finally, free recombinant and cellular p70 both bound to DNA efficiently in vitro, suggesting that free p70, like the p70/p80 heterodimer, serves as a DNA-binding factor. Moreover, free human p70 could be released from the nuclei of p70-vacc-infected RK13 cells by deoxyribonuclease I treatment, suggesting that it was associated with chromatin in vivo. The nuclear transport of free p70 and the association of free p70 with chromatin in vivo raise the possibility that newly synthesized cellular p70 might undergo nuclear transport and DNA-binding prior to dimerization with p80 or assembly with p350.
Collapse
Affiliation(s)
- J Wang
- Department of Medicine, University of North Carolina, Chapel Hill 27599-7280
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Khachigian L, Fries J, Benz M, Bonthron D, Collins T. Novel cis-acting elements in the human platelet-derived growth factor B-chain core promoter that mediate gene expression in cultured vascular endothelial cells. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31695-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
23
|
Franke S, Scholz G, Scheidereit C. Identification of novel ubiquitous and cell type-specific factors that specifically recognize immunoglobulin heavy chain and kappa light chain promoters. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32129-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
24
|
Getts R, Stamato T. Absence of a Ku-like DNA end binding activity in the xrs double-strand DNA repair-deficient mutant. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)33960-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
25
|
Jacoby D, Wensink P. Yolk protein factor 1 is a Drosophila homolog of Ku, the DNA-binding subunit of a DNA-dependent protein kinase from humans. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)78149-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
26
|
Blier P, Griffith A, Craft J, Hardin J. Binding of Ku protein to DNA. Measurement of affinity for ends and demonstration of binding to nicks. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53216-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
27
|
Gottlieb TM, Jackson SP. The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell 1993; 72:131-42. [PMID: 8422676 DOI: 10.1016/0092-8674(93)90057-w] [Citation(s) in RCA: 874] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The DNA-dependent protein kinase (DNA-PK) phosphorylates Sp1 and several other nuclear proteins. Here, we show that Sp1 and the DNA-PK must be colocalized on the same DNA molecule for efficient phosphorylation to occur. Interestingly, we find that the DNA-PK binds to and is activated by the ends of DNA molecules. Furthermore, we show that the DNA binding properties of the DNA-PK are identical to those of Ku, a well-characterized human autoimmune antigen. We demonstrate that the DNA-PK can be fractionated into two components, one of which is Ku and the other of which is a polypeptide of approximately 350 kd. DNA cross-linking and coimmunoprecipitation studies indicate that the catalytic 350 kd DNA-PK component is directed to DNA by protein-protein interactions with Ku. The implications of the unusual DNA binding mode and multicomponent nature of the DNA-PK are discussed.
Collapse
|
28
|
Isern RA, Yaneva M, Weiner E, Parke A, Rothfield N, Dantzker D, Rich S, Arnett FC. Autoantibodies in patients with primary pulmonary hypertension: association with anti-Ku. Am J Med 1992; 93:307-12. [PMID: 1524083 DOI: 10.1016/0002-9343(92)90238-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE Patients with primary pulmonary hypertension (PPH) frequently have Raynaud's phenomenon, serum antinuclear antibodies (ANAs), and/or pulmonary vascular lesions similar to those seen in certain connective tissue diseases, especially scleroderma. A number of relatively disease-specific autoantibodies have been described in connective tissue diseases but have not been studied in patients with PPH. Therefore, sera from PPH patients were studied for a variety of autoantibodies, seeking a possible link between this pulmonary disorder and connective tissue diseases. PATIENTS AND METHODS Sera from 31 patients with PPH and 24 with secondary pulmonary hypertension (SPH) were studied for the following autoantibodies: anti-centromere (indirect immunofluorescence of Hep-2 cells), anti-CENP-B by immunoblotting and enzyme immunoassay (EIA) using cloned CENP-B fusion protein, anti-topoisomerase I (Scl-70), anti-Ku using immunoblotting of affinity purified antigens, anti-cardiolipin using EIA, and anti-Ro (SS-A), La (SS-B), Sm, nRNP, Jo-1, PM-Scl, and Mi-2 by counter-current immunoelectrophoresis. RESULTS Anti-Ku antibodies were found in 23% of patients with PPH, 4% with SPH, and none of 24 normal controls (PPH versus SPH, p = 0.06: PPH versus controls, p = 0.01). Antibodies to CENP-B were found in one patient each with PPH and SPH, anti-topoisomerase I in one with SPH, and anti-Ro (SS-A) and La (SS-B) in one with PPH. Overall, 12 patients (39%) with PPH had Raynaud's phenomenon or positive ANA results, with 9 (29%) having more specific autoantibodies associated with connective tissue diseases. CONCLUSIONS These results further suggest a link between at least a subgroup of patients with PPH and autoimmune connective tissue diseases, with anti-Ku antibodies being a possible new serologic marker.
Collapse
Affiliation(s)
- R A Isern
- Department of Internal Medicine, University of Texas Medical School, Houston 77225
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abu-Elheiga L, Yaneva M. Antigenic determinants of the 70-kDa subunit of the Ku autoantigen. CLINICAL IMMUNOLOGY AND IMMUNOPATHOLOGY 1992; 64:145-52. [PMID: 1379527 DOI: 10.1016/0090-1229(92)90192-q] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Autoantibodies against Ku antigen were found in subsets of sera from patients with rheumatic diseases. The Ku autoantigen was characterized as a DNA-binding protein complex composed of two subunits, 70 and 86 kDa. In this study, we report the amino acid sequences of the 70-kDa subunit that are important for interactions with a monoclonal and autoimmune antibodies. Full-length cDNA and numerous 5' and 3' deletion mutants were expressed in bacteria and the immunoreactivity of the fusion proteins was analyzed by Western blotting. The reactivity of the monoclonal antibody depended on the region between Ile321 and Phe350. Ten autoimmune sera were tested for reactivity with deletion mutants in immunoblots. The reactivity of six sera strongly depended on the C-terminal amino acids and four sera did not show such dependence; however, these C-terminal sequences did not react with the sera when expressed alone. These results strongly suggest the conformational nature of the Ku autoepitopes. Interestingly, the DNA-binding activity of this Ku protein subunit analyzed by Southwestern blot depended on the same C-terminal amino acids that were involved in interactions with autoantibodies, indicating that anti-Ku autoantibodies are directed to conformationally intact Ku antigen. Reactivities of the autoimmune sera with Met1-Arg115, Met116-Val149, and Val149-Arg586 were also observed. These results demonstrate that different amino acid regions can be involved in interactions with autoimmune antibodies.
Collapse
Affiliation(s)
- L Abu-Elheiga
- Department of Pharmacology, Baylor College of Medicine Houston, Texas 77030
| | | |
Collapse
|
30
|
Abstract
The in vitro DNA-binding activity of Ku protein, a heterodimer of 70 and 86 kDa subunits, was studied using affinity-purified protein. Ku protein bound to different DNA probes and displayed a multiple-band pattern in band mobility shift assays. The protein-DNA complex formation was effectively blocked by different DNA competitors, indicating a non-sequence specific binding of Ku protein to DNA; no preference of binding of Ku protein to regulatory sequences derived from U1 snRNA, U6 snRNA or nucleolar protein p120 genes was observed. The number and size of the Ku protein-DNA complexes increased with increasing of the protein concentration and the size of DNA probe, suggesting that the protein accumulates on the DNA fragment until saturation of the binding sites. In UV-crosslinking experiments, the binding of Ku protein to DNA was shown to start with the 70 kDa subunit contacting free DNA ends.
Collapse
Affiliation(s)
- W W Zhang
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas 77030
| | | |
Collapse
|
31
|
Quinn JP, Simpson J, Farina AR. The Ku complex is modulated in response to viral infection and other cellular changes. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1131:181-7. [PMID: 1319210 DOI: 10.1016/0167-4781(92)90074-a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The complex of Ku with DNA is demonstrated to have multiple forms as assayed by gel retardation analysis. In CV1 cells this variation of complex can be modulated in response to viral infection with SV40. By Western blot analysis, a correlation can be made between modification of the complex formed on DNA in response to viral infection with variation of the 85 kDa subunit of Ku. Modification of the 85 kDa subunit can also be seen when cells are exposed to various extracellular stimuli including variation in serum levels, PMA and CaPO4.
Collapse
Affiliation(s)
- J P Quinn
- MRC Brain Metabolism Unit, Royal Edinburgh Hospital, UK
| | | | | |
Collapse
|
32
|
Chou CH, Satoh M, Wang J, Reeves WH. B-cell epitopes of autoantigenic DNA-binding proteins. Mol Biol Rep 1992; 16:191-8. [PMID: 1380643 DOI: 10.1007/bf00464707] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- C H Chou
- Division of Rheumatology and Immunology, University of North Carolina, Chapel Hill 27599
| | | | | | | |
Collapse
|
33
|
|
34
|
Griffith AJ, Craft J, Evans J, Mimori T, Hardin JA. Nucleotide sequence and genomic structure analyses of the p70 subunit of the human Ku autoantigen: evidence for a family of genes encoding Ku (p70)-related polypeptides. Mol Biol Rep 1992; 16:91-7. [PMID: 1608402 DOI: 10.1007/bf00419754] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
cDNA encoding the p70 polypeptide subunit of the human Ku autoantigen was isolated. In vitro expression analysis of the cDNA demonstrates that it encodes the entire open reading frame. Nucleotide sequence analysis and comparison to other previously described sequences indicate the existence of several single-nucleotide and amino acid polymorphisms. Southern blot analyses demonstrate the presence of multiple copies of homologous DNA sequences in the human genome. These data support the hypothesis that multiple genes encode a family of Ku(p70)-related polypeptides.
Collapse
Affiliation(s)
- A J Griffith
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510
| | | | | | | | | |
Collapse
|
35
|
Wedrychowski A, Henzel W, Huston L, Paslidis N, Ellerson D, McRae M, Seong D, Howard O, Deisseroth A. Identification of proteins binding to interferon-inducible transcriptional enhancers in hematopoietic cells. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42866-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
36
|
Griffith AJ, Blier PR, Mimori T, Hardin JA. Ku polypeptides synthesized in vitro assemble into complexes which recognize ends of double-stranded DNA. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)48498-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
37
|
Dalziel RG, Mendelson SC, Quinn JP. The nuclear autoimmune antigen Ku is also present on the cell surface. Autoimmunity 1992; 13:265-7. [PMID: 1472635 DOI: 10.3109/08916939209112334] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Polyclonal antibodies were raised against the individual 85 and 70 kDa subunits of the Ku complex purified from nuclear extract prepared from the T cell line MLA144. They specifically recognise the appropriate subunits of the Ku complex from whole cell extract of HeLa cells using Western blot analysis. They are also able to identify the Ku proteins present in the cell membrane using FACS analysis.
Collapse
Affiliation(s)
- R G Dalziel
- Department of Veterinary Pathology, Royal (Dick) School of Veterinary Studies, Summerhall, Edinburgh
| | | | | |
Collapse
|
38
|
Quinn JP, Farina AR. Autoimmune antigen Ku is enriched on oligonucleotide columns distinct from those containing the octamer binding protein DNA consensus sequence. FEBS Lett 1991; 286:225-8. [PMID: 1864373 DOI: 10.1016/0014-5793(91)80979-d] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
During purification of the AP1 complex from the T cell line MLA144 we enriched for a complex which bound to an oligonucleotide column containing the AP1 DNA consensus sequence and co-eluted with a fraction required for AP1 binding activity. This complex although co-eluting with AP1 binding activity had previously been determined to be non-specific in its DNA binding properties. Further investigation determined that the complex was a heterodimer of 85 and 70 kDa which was antigenically related to the autoimmune antigen Ku. It is important to be aware of the abundance and avidity of the Ku complex to bind oligonucleotide columns when purifying sequence specific binding proteins.
Collapse
Affiliation(s)
- J P Quinn
- MRC Brain Metabolism Unit, Royal Edinburgh Hospital, Scotland
| | | |
Collapse
|