1
|
Idnurm A, Heitman J. Ferrochelatase is a conserved downstream target of the blue light-sensing White collar complex in fungi. MICROBIOLOGY-SGM 2010; 156:2393-2407. [PMID: 20488877 PMCID: PMC3068673 DOI: 10.1099/mic.0.039222-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Light is a universal signal perceived by organisms, including fungi, in which light regulates common and unique biological processes depending on the species. Previous research has established that conserved proteins, originally called White collar 1 and 2 from the ascomycete Neurospora crassa, regulate UV/blue light sensing. Homologous proteins function in distant relatives of N. crassa, including the basidiomycetes and zygomycetes, which diverged as long as a billion years ago. Here we conducted microarray experiments on the basidiomycete fungus Cryptococcus neoformans to identify light-regulated genes. Surprisingly, only a single gene was induced by light above the commonly used twofold threshold. This gene, HEM15, is predicted to encode a ferrochelatase that catalyses the final step in haem biosynthesis from highly photoreactive porphyrins. The C. neoformans gene complements a Saccharomyces cerevisiae hem15Δ strain and is essential for viability, and the Hem15 protein localizes to mitochondria, three lines of evidence that the gene encodes ferrochelatase. Regulation of HEM15 by light suggests a mechanism by which bwc1/bwc2 mutants are photosensitive and exhibit reduced virulence. We show that ferrochelatase is also light-regulated in a white collar-dependent fashion in N. crassa and the zygomycete Phycomyces blakesleeanus, indicating that ferrochelatase is an ancient target of photoregulation in the fungal kingdom.
Collapse
Affiliation(s)
- Alexander Idnurm
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
2
|
Davidson RE, Chesters CJ, Reid JD. Metal ion selectivity and substrate inhibition in the metal ion chelation catalyzed by human ferrochelatase. J Biol Chem 2009; 284:33795-9. [PMID: 19767646 DOI: 10.1074/jbc.m109.030205] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protoporphyrin IX ferrochelatase (EC 4.99.1.1) catalyzes the terminal step in the heme biosynthetic pathway, the insertion of ferrous iron into protoporphyrin IX. Ferrochelatase shows specificity, in vitro, for multiple metal ion substrates and exhibits substrate inhibition in the case of zinc, copper, cobalt, and nickel. Zinc is the most biologically significant of these; when iron is depleted, zinc porphyrins are formed physiologically. Examining the k(cat)/K(m)(app) ratios for zinc and iron reveals that, in vitro, zinc is the preferred substrate at all concentrations of porphyrin. This is not the observed biological specificity, where zinc porphyrins are abnormal; these data argue for the existence of a specific iron delivery mechanism in vivo. We demonstrate that zinc acts as an uncompetitive substrate inhibitor, suggesting that ferrochelatase acts via an ordered pathway. Steady-state characterization demonstrates that the apparent k(cat) depends on zinc and shows substrate inhibition. Although porphyrin substrate is not inhibitory, zinc inhibition is enhanced by increasing porphyrin concentration. This indicates that zinc inhibits by binding to an enzyme-product complex (EZnD(IX)) and is likely to be the second substrate in an ordered mechanism. Our analysis shows that substrate inhibition by zinc is not a mechanism that can promote specificity for iron over zinc, but is instead one that will reduce the production of all metalloporphyrins in the presence of high concentrations of zinc.
Collapse
Affiliation(s)
- Ruth E Davidson
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | | | | |
Collapse
|
3
|
Benedini R, Raja V, Parolari G. Zinc-protoporphyrin IX promoting activity in pork muscle. Lebensm Wiss Technol 2008. [DOI: 10.1016/j.lwt.2007.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Lange H, Mühlenhoff U, Denzel M, Kispal G, Lill R. The heme synthesis defect of mutants impaired in mitochondrial iron-sulfur protein biogenesis is caused by reversible inhibition of ferrochelatase. J Biol Chem 2004; 279:29101-8. [PMID: 15128732 DOI: 10.1074/jbc.m403721200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondria are responsible for the synthesis of both iron-sulfur clusters and heme, but the potential connection between the two major iron-consuming pathways is unknown. Here, we have shown that mutants in the yeast mitochondrial iron-sulfur cluster (ISC) assembly machinery displayed reduced cytochrome levels and diminished activity of the heme-containing cytochrome c oxidase, in addition to iron-sulfur protein defects. In contrast, mutants in components of the mitochondrial ISC export machinery, which are specifically required for maturation of cytosolic iron-sulfur proteins, were not decreased in heme synthesis or cytochrome levels. Heme synthesis does not involve the function of mitochondrial ISC components, because immunological depletion of various ISC proteins from mitochondrial extracts did not affect the formation and amounts of heme. The heme synthesis defects of ISC mutants were found in vivo in isolated mitochondria and in mitochondrial detergent extracts and were confined to an inhibition of ferrochelatase, the enzyme catalyzing the insertion of iron into protoporphyrin IX. In support of these findings, immunopurification of ferrochelatase from ISC mutants restored its activity to wild-type levels. We conclude that the reversible inhibition of ferrochelatase is the molecular reason for the heme deficiency in ISC assembly mutants. This inhibitory mechanism may be used for regulation of iron distribution between the two iron-consuming processes.
Collapse
Affiliation(s)
- Heike Lange
- Institut für Zytobiologie und Zytopathologie der Philipps-Universität Marburg, Robert-Koch-Strasse 6, 35033 Marburg, Germany
| | | | | | | | | |
Collapse
|
5
|
Shi Z, Ferreira GC. Probing the Active Site Loop Motif of Murine Ferrochelatase by Random Mutagenesis. J Biol Chem 2004; 279:19977-86. [PMID: 14981080 DOI: 10.1074/jbc.m313821200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ferrochelatase catalyzes the terminal step of the heme biosynthetic pathway by inserting ferrous iron into protoporphyrin IX. A conserved loop motif was shown to form part of the active site and contact the bound porphyrin by molecular dynamics calculations and structural analysis. We applied a random mutagenesis approach and steady-state kinetic analysis to assess the role of the loop motif in murine ferrochelatase function, particularly with respect to porphyrin interaction. Functional substitutions in the 10 consecutive loop positions Gln(248)-Leu(257) were identified by genetic complementation in Escherichia coli strain Deltavis. Lys(250), Val(251), Pro(253), Val(254), and Pro(255) tolerated a variety of replacements including single substitutions and contained low informational content. Gln(248), Ser(249), Gly(252), Trp(256), and Leu(257) possessed high informational content, since permissible replacements were limited and only observed in multiply substituted mutants. Selected active loop variants exhibited k(cat) values comparable with or higher than that of wild-type murine ferrochelatase. The K(m) values for porphyrin increased, except for the single mutant V251L. Other than a moderate increase observed in the triple mutant S249A/K250Q/V251C, the K(m) values for Fe(2+) were lowered. The k(cat)/K(m) for porphyrin remained largely unchanged, with the exception of a 10-fold reduction in the triple mutant K250M/V251L/W256Y. The k(cat)/K(m) for Fe(2+) was improved. Molecular modeling of these active loop variants indicated that loop mutations resulted in alterations of the active site architecture. However, despite the plasticity of the loop primary structure, the relative spatial positioning of the loop in the active site appeared to be maintained in functional variants, supporting a role for the loop in ferrochelatase function.
Collapse
Affiliation(s)
- Zhen Shi
- Department of Biochemistry and Molecular Biology, College of Medicine and H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, FL 33612, USA
| | | |
Collapse
|
6
|
Shi Z, Ferreira GC. A continuous anaerobic fluorimetric assay for ferrochelatase by monitoring porphyrin disappearance. Anal Biochem 2003; 318:18-24. [PMID: 12782026 DOI: 10.1016/s0003-2697(03)00175-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A continuous spectrofluorimetric assay for determining ferrochelatase activity has been developed using the physiological substrates ferrous iron and protoporphyrin IX under strictly anaerobic conditions. In contrast to heme, the product of the ferrochelatase-catalyzed reaction, protoporphyrin IX is fluorescent, and therefore the progress of the reaction can be monitored by following the decrease in protoporphyrin fluorescence intensity (with excitation and emission wavelengths at 505 and 635 nm, respectively). This continuous fluorimetric assay detects activities as low as 0.01 nmol porphyrin consumed min(-1), representing an increase in sensitivity of up to two orders of magnitude over the currently used, discontinuous assays. The determination of the steady-state kinetic parameters of ferrochelatase yielded K(m)(PPIX)=1.4+/-0.2 microM, K(m)(Fe(2+))=1.9+/-0.3 microM, and k(cat)=4.0+/-0.3 min(-1). In addition to its applicability for acquisition of kinetic data to characterize ferrochelatase and recombinant variants, this new method should permit detection of low concentrations of ferrochelatase in biological samples.
Collapse
Affiliation(s)
- Zhen Shi
- Department of Biochemistry and Molecular Biology, College of Medicine, Tampa, FL 33612, USA
| | | |
Collapse
|
7
|
Lu Y, Sousa A, Franco R, Mangravita A, Ferreira GC, Moura I, Shelnutt JA. Binding of protoporphyrin IX and metal derivatives to the active site of wild-type mouse ferrochelatase at low porphyrin-to-protein ratios. Biochemistry 2002; 41:8253-62. [PMID: 12081474 DOI: 10.1021/bi025569m] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Resonance Raman (RR) spectroscopy is used to examine porphyrin substrate, product, and inhibitor interactions with the active site of murine ferrochelatase (EC 4.99.1.1), the terminal enzyme in the biosynthesis of heme. The enzyme catalyzes in vivo Fe(2+) chelation into protoporphyrin IX to give heme. The RR spectra of native ferrochelatase show that the protein, as isolated, contains varying amounts of endogenously bound high- or low-spin ferric heme, always at much less than 1 equiv. RR data on the binding of free-base protoporphyrin IX and its metalated complexes (Fe(III), Fe(II), and Ni(II)) to active wild-type protein were obtained at varying ratios of porphyrin to protein. The binding of ferric heme, a known inhibitor of the enzyme, leads to the formation of a low-spin six-coordinate adduct. Ferrous heme, the enzyme's natural product, binds in the ferrous high-spin five-coordinate state. Ni(II) protoporphyrin, a metalloporphyrin that has a low tendency toward axial ligation, becomes distorted when bound to ferrochelatase. Similarly for free-base protoporphyrin, the natural substrate of ferrochelatase, the RR spectra of porphyrin-protein complexes reveal a saddling distortion of the porphyrin. These results corroborate and extend our previous findings that porphyrin distortion, a crucial step of the catalytic mechanism, occurs even in the absence of bound metal substrate. Moreover, RR data reveal the presence of an amino acid residue in the active site of ferrochelatase which is capable of specific axial ligation to metals.
Collapse
Affiliation(s)
- Yi Lu
- Biomolecular Materials and Interfaces Department, Sandia National Laboratories and the Department of Chemistry, University of New Mexico, Albuquerque, New Mexico, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Corsi B, Cozzi A, Arosio P, Drysdale J, Santambrogio P, Campanella A, Biasiotto G, Albertini A, Levi S. Human mitochondrial ferritin expressed in HeLa cells incorporates iron and affects cellular iron metabolism. J Biol Chem 2002; 277:22430-7. [PMID: 11953424 DOI: 10.1074/jbc.m105372200] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial ferritin (MtF) is a newly identified ferritin encoded by an intronless gene on chromosome 5q23.1. The mature recombinant MtF has a ferroxidase center and binds iron in vitro similarly to H-ferritin. To explore the structural and functional aspects of MtF, we expressed the following forms in HeLa cells: the MtF precursor (approximately 28 kDa), a mutant MtF precursor with a mutated ferroxidase center, a truncated MtF lacking the approximately 6-kDa mitochondrial leader sequence, and a chimeric H-ferritin with this leader sequence. The experiments show that all constructs with the leader sequence were processed into approximately 22-kDa subunits that assembled into multimeric shells electrophoretically distinct from the cytosolic ferritins. Mature MtF was found in the matrix of mitochondria, where it is a homopolymer. The wild type MtF and the mitochondrially targeted H-ferritin both incorporated the (55)Fe label in vivo. The mutant MtF with an inactivated ferroxidase center did not take up iron, nor did the truncated MtF expressed transiently in cytoplasm. Increased levels of MtF both in transient and in stable transfectants resulted in a greater retention of iron as MtF in mitochondria, a decrease in the levels of cytosolic ferritins, and up-regulation of transferrin receptor. Neither effect occurred with the mutant MtF with the inactivated ferroxidase center. Our results indicate that exogenous iron is as available to mitochondrial ferritin as it is to cytosolic ferritins and that the level of MtF expression may have profound consequences for cellular iron homeostasis.
Collapse
Affiliation(s)
- Barbara Corsi
- Section of Chemistry, Faculty of Medicine, University of Brescia, Brescia, 25100 Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Sah JF, Ito H, Kolli BK, Peterson DA, Sassa S, Chang KP. Genetic rescue of Leishmania deficiency in porphyrin biosynthesis creates mutants suitable for analysis of cellular events in uroporphyria and for photodynamic therapy. J Biol Chem 2002; 277:14902-9. [PMID: 11836252 DOI: 10.1074/jbc.m200107200] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leishmania was found deficient in at least five and most likely seven of the eight enzymes in the heme biosynthesis pathway, accounting for their growth requirement for heme compounds. The xenotransfection of this trypanosomatid protozoan led to their expression of the mammalian genes encoding delta-aminolevulinate (ALA) dehydratase and porphobilinogen deaminase, the second and the third enzymes of the pathway, respectively. These transfectants still require hemin or protoporphyrin IX for growth but produce porphyrin when ALA was supplied exogenously. Leishmania is thus deficient in all first three enzymes of the pathway. Uroporphyrin I was produced as the sole intermediate by these transfectants, further indicating that they are also deficient in at least two porphyrinogen-metabolizing enzymes downstream of porphobilinogen deaminase, i.e. uroporphyrinogen III co-synthase and uroporphyrinogen decarboxylase. Pulsing the transfectants with ALA induced their transition from aporphyria to uroporphyria. Uroporphyrin I emerged in these cells initially as diffused throughout the cytosol, rendering them sensitive to UV irradiation. The porphyrin was subsequently sequestered in cytoplasmic vacuoles followed by its release and accumulation in the extracellular milieu, concomitant with a reduced photosensitivity of the cells. These events may represent cellular mechanisms for disposing soluble toxic waste from the cytosol. Monocytic tumor cells were rendered photosensitive by infection with uroporphyric Leishmania, suggestive of their potential application for photodynamic therapy.
Collapse
Affiliation(s)
- Jerome Franklin Sah
- Department of Microbiology, University of Health Sciences, Chicago Medical School, North Chicago, Illinois 60064, USA
| | | | | | | | | | | |
Collapse
|
10
|
Ferreira GC, Franco R, Mangravita A, George GN. Unraveling the substrate-metal binding site of ferrochelatase: an X-ray absorption spectroscopic study. Biochemistry 2002; 41:4809-18. [PMID: 11939775 DOI: 10.1021/bi015814m] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ferrochelatase (EC 4.99.1.1), the terminal enzyme of the heme biosynthetic pathway, catalyzes the insertion of ferrous iron into the protoporphyrin IX ring. Ferrochelatases can be arbitrarily divided into two broad categories: those with and those without a [2Fe-2S] center. In this work we have used X-ray absorption spectroscopy to investigate the metal ion binding sites of murine and Saccharomyces cerevisiae (yeast) ferrochelatases, which are representatives of the former and latter categories, respectively. Co(2+) and Zn(2+) complexes of both enzymes were studied, but the Fe(2+) complex was only studied for yeast ferrochelatase because the [2Fe-2S] center of the murine enzyme interferes with the analysis. Co(2+) and Zn(2+) binding to site-directed mutants of the murine enzyme were also studied, in which the highly conserved and potentially metal-coordinating residues H207 and Y220 were substituted by residues that should not coordinate metal (i.e., H207N, H207A, and Y220F). Our experiments indicate four-coordinate zinc with Zn(N/O)(3)(S/Cl)(1) coordination for the yeast and Zn(N/O)(2)(S/Cl)(2) coordination for the wild-type murine enzyme. In contrast to zinc, a six-coordinate site for Co(2+) coordinated with oxygen or nitrogen was present in both the yeast and murine (wild-type and mutated) enzymes, with evidence of two histidine ligands in both. Like Co(2+), Fe(2+) bound to yeast ferrochelatase was coordinated by approximately six oxygen or nitrogen ligands, again with evidence of two histidine ligands. For the murine enzyme, mutation of both H207 and Y220 significantly changed the spectra, indicating a likely role for these residues in metal ion substrate binding. This is in marked disagreement with the conclusions from X-ray crystallographic studies of the human enzyme, and possible reasons for this are discussed.
Collapse
Affiliation(s)
- Gloria C Ferreira
- Department of Biochemistry and Molecular Biology, College of Medicine, Institute for Biomolecular Science and H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, Florida 33612, USA.
| | | | | | | |
Collapse
|
11
|
Craig EA, Voisine C, Schilke B. Mitochondrial iron metabolism in the yeast Saccharomyces cerevisiae. Biol Chem 1999; 380:1167-73. [PMID: 10595579 DOI: 10.1515/bc.1999.148] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Iron is fundamental to many biological processes, but is also detrimental as it fosters the synthesis of destructive oxygen radicals. Recent experiments have increased our knowledge of the critical process of regulation of mitochondrial iron metabolism. A number of genes directly involved in iron homeostasis in this organelle have been identified. Intriguingly, a minor Hsp70 molecular chaperone of the mitochondrial matrix has been implicated as a player in this process as well.
Collapse
Affiliation(s)
- E A Craig
- Department of Biomolecular Chemistry, University of Wisconsin, Madison 53706, USA
| | | | | |
Collapse
|
12
|
Lange H, Kispal G, Lill R. Mechanism of iron transport to the site of heme synthesis inside yeast mitochondria. J Biol Chem 1999; 274:18989-96. [PMID: 10383398 DOI: 10.1074/jbc.274.27.18989] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The import of metals, iron in particular, into mitochondria is poorly understood. Iron in mitochondria is required for the biosynthesis of heme and various iron-sulfur proteins. We have developed an in vitro assay to follow the uptake of iron into isolated yeast mitochondria. By measuring the incorporation of iron into porphyrin by ferrochelatase in the matrix, we were able to define the mechanism of iron import. Iron uptake is driven energetically by a membrane potential across the inner membrane but does not require ATP. Only reduced iron is functional in generating heme. Iron cannot be preloaded in the mitochondrial matrix but rather has to be transported across the inner membrane simultaneously with the synthesis of heme, suggesting that ferrochelatase receives iron directly from the inner membrane. Transport of iron is inhibited by manganese but not by zinc, nickel, and copper ions, explaining why in vivo these ions are not incorporated into porphyrin. The inner membrane proteins Mmt1p and Mmt2p proposed to be involved in mitochondrial iron movement are not required for the supply of ferrochelatase with iron. Iron transport can be reconstituted efficiently in a membrane potential-dependent fashion in proteoliposomes that were formed from a detergent extract of mitochondria. Our biochemical analysis of iron import into yeast mitochondria provides the basis for the identification of components involved in transport.
Collapse
Affiliation(s)
- H Lange
- Institut für Zytobiologie und Zytopathologie der Philipps-Universität Marburg, Robert-Koch-Strasse 5, 35033 Marburg, Germany
| | | | | |
Collapse
|
13
|
Góra M, Rytka J, Labbe-Bois R. Activity and cellular location in Saccharomyces cerevisiae of chimeric mouse/yeast and Bacillus subtilis/yeast ferrochelatases. Arch Biochem Biophys 1999; 361:231-40. [PMID: 9882451 DOI: 10.1006/abbi.1998.0990] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have constructed a series of chimeric yeast/mouse and yeast/Bacillus subtilis ferrochelatase genes in order to investigate domains of the ferrochelatase that are important for activity and/or association with the membrane. These genes were expressed in a Saccharomyces cerevisiae mutant in which the endogenous ferrochelatase gene (HEM15) had been deleted, and the phenotypes of the transformants were characterized. Exchanging the approximately 40-amino-acid C-terminus between the yeast and mouse ferrochelatases caused a total loss of activity and the hybrid proteins were unstable when overproduced in Escherichia coli. The water-soluble ferrochelatase of B. subtilis did not complement the yeast mutant, although a large amount of active protein accumulated in the cytosol. Addition of the N-terminal leader sequence of yeast ferrochelatase to the B. subtilis enzyme targeted the fusion protein to mitochondria, but both the precursor and the mature forms of the enzyme were inactive in vivo and had residual activity when measured in vitro. An internal approximately 45-amino-acid segment located at the N-terminus of yeast ferrochelatase was identified, which, when replaced with the corresponding 30-amino-acid segment of the B. subtilis enzyme, caused the yeast enzyme to be located in the mitochondrial matrix as a soluble protein. The fusion protein was inactive in vivo and had residual activity in vitro. We speculate that this segment, which shows the greatest variability between species, is responsible for the association of the enzyme with the membrane.
Collapse
Affiliation(s)
- M Góra
- Institute of Biochemistry and Biophysics, Polish Academy of Science, 5A Pawinskiego Street, Warsaw, 02-106, Poland
| | | | | |
Collapse
|
14
|
Buisson N, Labbe-Bois R. Flavohemoglobin expression and function in Saccharomyces cerevisiae. No relationship with respiration and complex response to oxidative stress. J Biol Chem 1998; 273:9527-33. [PMID: 9545281 DOI: 10.1074/jbc.273.16.9527] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast Saccharomyces cerevisiae contains a flavohemoglobin, encoded by the gene YHB1, whose function is unclear. Previous reports presented evidence that its maximal expression requires disruption of mitochondrial respiration and that it plays a role in the response to oxidative stress. We have studied the expression of YHB1 in respiratory deficient cells and in cells exposed to various compounds causing oxidative stress. Several different strains and approaches (spectroscopic detection of the oxygenated form of Yhb1p, beta-galactosidase activity of a YHB1-lacZ fusion, and Northern blot analysis) were used to demonstrate that YHB1 expression and Yhb1p production are not increased by respiration deficiency. YHB1 expression was unchanged in cells challenged with antimycin A or menadione, while it decreased in cells exposed to H2O2, diamide, dithiothreitol, and Cu2+. Transcription of YHB1 is not under the control of the transcriptional factor Yap1p. These results do not support a participation of YHB1 in the genetic response to oxidative stress. We also analyzed the growth phenotypes associated with altered Yhb1p production using YHB1-deleted strains and strains that greatly overproduced Yhb1p. Yhb1p appears to protect cells against the damage caused by Cu2+ and dithiothreitol, while sensitizing them to H2O2. Yhb1p overproduction in a glucose-6-phosphate dehydrogenase-deficient mutant decreased its growth rate. These data indicate that there is a complex relationship(s) between Yhb1p function(s) and cell defense reactions against various stresses.
Collapse
Affiliation(s)
- N Buisson
- Laboratoire de Biochimie des Porphyrines, Institut Jacques Monod, Université Paris 7, 2 place Jussieu, 75251 Paris, France
| | | |
Collapse
|
15
|
Kispal G, Csere P, Guiard B, Lill R. The ABC transporter Atm1p is required for mitochondrial iron homeostasis. FEBS Lett 1997; 418:346-50. [PMID: 9428742 DOI: 10.1016/s0014-5793(97)01414-2] [Citation(s) in RCA: 220] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The function of the ABC transporter Atm1p located in the mitochondrial inner membrane is not yet known. To study its cellular role, we analyzed a mutant in which ATM1 was disrupted. Delta atm1 cells are deficient in the holoforms, but not the apoforms of heme-carrying proteins both within and outside mitochondria, yet both synthesis and transport of heme are functional. Delta atm1 cells are hypersensitive for growth in the presence of oxidative reagents, and they contain increased levels of the antioxidant glutathione, in particular of its oxidized form. Mitochondria deficient in Atm1p accumulate 30-fold higher levels of free iron as compared to wild-type organelles, i.e. three-fold more than mitochondria deficient in frataxin, the protein mutated in Friedreich's ataxia. The increased mitochondrial iron content may be causative of the oxidative damage of heme-containing proteins in delta atm1 cells. Our data assign an important function to Atm1p in mitochondrial iron homeostasis.
Collapse
Affiliation(s)
- G Kispal
- Institut für Zytobiologie der Philipps-Universität Marburg, Germany
| | | | | | | |
Collapse
|
16
|
Zoładek T, Nguyen BN, Rytka J. Saccharomyces cerevisiae mutants defective in heme biosynthesis as a tool for studying the mechanism of phototoxicity of porphyrins. Photochem Photobiol 1996; 64:957-62. [PMID: 8972638 DOI: 10.1111/j.1751-1097.1996.tb01861.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mutants of Saccharomyces cerevisiae accumulating uroporphyrin (UP) or protoporphyrin (PP) were used as a model for the in vivo phototoxic effect of porphyrins observed in the human skin photosensitivity associated with porphyrias (porphyria cutanea tarda and erythropoietic protoporphyria). We have found that UP is localized in vacuoles and PP is present in all compartments except vacuoles in yeast cells. Endogenous PP is much more effective as a photosensitizer of yeast cells than UP. Protoporphyrin action is strictly dependent on the presence of oxygen. In contrast, UP displays a phototoxic effect even if oxygen is not present in the suspension, implicating a free radical mechanism that operates in anaerobiosis upon photosensitization by UP. Catalase or superoxide dismutase deficiency affects photosensitization by UP. A possible mechanism of UP photosensitizing activity is discussed.
Collapse
Affiliation(s)
- T Zoładek
- Department of Genetics, Polish Academy of Sciences, Warszawa, Poland.
| | | | | |
Collapse
|
17
|
Gora M, Grzybowska E, Rytka J, Labbe-Bois R. Probing the active-site residues in Saccharomyces cerevisiae ferrochelatase by directed mutagenesis. In vivo and in vitro analyses. J Biol Chem 1996; 271:11810-6. [PMID: 8662602 DOI: 10.1074/jbc.271.20.11810] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Ferrochelatase is a mitochondrial inner membrane-bound enzyme that catalyzes the insertion of ferrous iron into protoporphyrin, the terminal step in protoheme biosynthesis. The functional/structural roles of 10 invariant amino acid residues were investigated by site-directed mutagenesis in the yeast Saccharomyces cerevisiae ferrochelatase. The mutant enzymes were expressed in a yeast strain lacking the ferrochelatase gene HEM15 and in Escherichia coli. The kinetic parameters of the mutant enzymes were determined for the enzymes associated with the yeast membranes and the enzymes in the bacterial soluble fraction. They were compared with the in vivo functioning of the mutant enzymes. The main conclusions are the following. Glu-314 is critical for catalysis, and we suggest that it is the base responsible for abstracting the N-pyrrole proton(s). His-235 is essential for metal binding. Asp-246 and Tyr-248 are also involved in metal binding in a synergistic manner. The Km for protoporphyrin was also increased in the H235L, D246A, and Y248L mutants, suggesting that the binding sites of the two substrates are not independent of each other. The R87A, Y95L, Q111E, Q273E, W282L, and F308A mutants had 1.2-2-fold increased Vm and 4-10-fold increased Km values for protoporphyrin, but the amount of heme made in vivo was 10-100% of the normal value. These mutations probably affected the geometry of the active center, resulting in improper positioning of protoporphyrin.
Collapse
Affiliation(s)
- M Gora
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | |
Collapse
|
18
|
Amillet JM, Galiazzo F, Labbe-Bois R. Effect of heme and vacuole deficiency on FRE1 gene expression and ferrireductase activity in Saccharomyces cerevisiae. FEMS Microbiol Lett 1996; 137:25-9. [PMID: 8935653 DOI: 10.1111/j.1574-6968.1996.tb08077.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have examined the effects of heme or vacuole deficiency on the kinetics of induction of cell surface ferrireductase activity and expression of the FRE1 gene encoding a component of ferrireductase, in response to iron or copper deprivation in S. cerevisiae. Heme deficiency caused a small decrease in the basal expression of FRE1, but did not impair its induction by Fe or Cu limitation. Thus, the absence of ferrireductase activity and its non-inducibility in heme-less cells is not due to the absence of FRE1 expression. Vacuole deficiency led to constitutively high ferrireductase activity slightly induced by Cu limitation, and to high levels of FRE1 expression further inducible by Fe or Cu deprivation. Thus, the vacuole might be a component of the iron signalling pathway.
Collapse
Affiliation(s)
- J M Amillet
- Institut Jacques Monod, Université Paris, France
| | | | | |
Collapse
|
19
|
Góra M, Chaciñska A, Rytka J, Labbe-Bois R. Isolation and functional characterization of mutant ferrochelatases in Saccharomyces cerevisiae. Biochimie 1996; 78:144-52. [PMID: 8818224 DOI: 10.1016/0300-9084(96)82647-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Ferrochelatase is a mitochondrial inner membrane-bound enzyme that catalyzes the incorporation of ferrous iron into protoporphyrin, the last step in protoheme biosynthesis. It is encoded by the HEM15 gene in the yeast Saccharomyces cerevisiae. Five hem15 mutants causing defective heme synthesis and protoporphyrin accumulation were investigated. The mutations were identified by sequencing the mutant hem15 alleles amplified in vitro from mutant genomic DNA. A single nucleotide change, causing an amino acid substitution, was found in each mutant. The substitution L62F caused a five-fold increase in Vmax and 32-fold and four-fold increases in the KM's for protoporphyrin and metal. Replacements of the conserved G47 by S and S102 by F increased the KM for protoporphyrin 10-fold without affecting the affinity for metal or enzyme activity. Two amino acid changes, L205P and P221L, produced a thermosensitive phenotype. In vivo heme synthesis, the amount of immunodetected protein, and ferrochelatase activity measured in vitro were more affected in cells grown at 37 degrees C than at 30 degrees C. The effects of these mutations on the enzyme function are discussed with respects to ferrochelatase structure and mechanism of action.
Collapse
Affiliation(s)
- M Góra
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Warsaw, Poland
| | | | | | | |
Collapse
|
20
|
Hansson M, Al-Karadaghi S. Purification, crystallization, and preliminary X-ray analysis of Bacillus subtilis ferrochelatase. Proteins 1995; 23:607-9. [PMID: 8749860 DOI: 10.1002/prot.340230419] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Bacillus subtilis ferrochelatase (EC 4.99.1.1), the final enzyme in protoheme IX biosynthesis, was produced with an inducible T7 RNA polymerase expression system in Escherichia coli and purified from the soluble cell fraction. It was crystallized from polyethylene glycol solution using the microseeding technique. The crystals diffract to a minimum Bragg spacing of 2.1 A. The space group is P4(2) with unit cell dimensions a = b = 50.2 A, c = 120.1 A.
Collapse
Affiliation(s)
- M Hansson
- Department of Microbiology, Lund University, Sweden
| | | |
Collapse
|
21
|
Ferreira GC, Franco R, Lloyd SG, Moura I, Moura JJ, Huynh BH. Structure and function of ferrochelatase. J Bioenerg Biomembr 1995; 27:221-9. [PMID: 7592569 DOI: 10.1007/bf02110037] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ferrochelatase is the terminal enzyme of the heme biosynthetic pathway in all cells. It catalyzes the insertion of ferrous iron into protoporphyrin IX, yielding heme. In eukaryotic cells, ferrochelatase is a mitochondrial inner membrane-associated protein with the active site facing the matrix. Decreased values of ferrochelatase activity in all tissues are a characteristic of patients with protoporphyria. Point-mutations in the ferrochelatase gene have been recently found to be associated with certain cases of erythropoietic protoporphyria. During the past four years, there have been considerable advances in different aspects related to structure and function of ferrochelatase. Genomic and cDNA clones for bacteria, yeast, barley, mouse, and human ferrochelatase have been isolated and sequenced. Functional expression of yeast ferrochelatase in yeast strains deficient in this enzyme, and expression in Escherichia coli and in baculovirus-infected insect cells of different ferrochelatase cDNAs have been accomplished. A recently identified (2Fe-2S) cluster appears to be a structural feature shared among mammalian ferrochelatases. Finally, functional studies of ferrochelatase site-directed mutants, in which key amino acids were replaced with residues identified in some cases of protoporphyria, will be summarized in the context of protein structure.
Collapse
Affiliation(s)
- G C Ferreira
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Florida, Tampa 33612, USA
| | | | | | | | | | | |
Collapse
|
22
|
Kohno H, Okuda M, Furukawa T, Tokunaga R, Taketani S. Site-directed mutagenesis of human ferrochelatase: identification of histidine-263 as a binding site for metal ions. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1209:95-100. [PMID: 7947988 DOI: 10.1016/0167-4838(94)90142-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In nature, ferrochelatase catalyzes the insertion of ferrous ion into the porphyrin macrocycle of protoporphyrin IX to exclude two protons to form protoheme IX: other porphyrin substrates, including mesoporphyrin IX may be used in vitro. Based on the deduced amino-acid sequences, one histidine residue (H263 of human enzyme) is conserved among all ferrochelatases cloned from human to bacterial cells, and three histidine residues (H157, H341 and H388 of human enzyme) are conserved among eukaryotic ferrochelatases; no cysteine residue is conserved. To attempt to clarify the binding site of ferrous ion, we converted four highly conserved histidine residues in human ferrochelatase to alanine, using site-directed mutagenesis. The mutant enzymes were expressed in Escherichia coli, and iron- and zinc-chelating activities were examined. Mutants H157A and H388A lost most of their activities and concomitantly the enzyme became susceptible to proteolytic degradation. Kinetic studies with the residual activities showed no significant change of Km values for metal ions or for mesoporphyrin IX. Mutation at H341 did not alter the enzyme activities. Iron- and zinc-chelating activities of mutant H263A were reduced to 30% and 21% of the activities of the wild type, respectively. Moreover, this mutation resulted in 18- and 3.4-fold increases in Km values toward ferrous and zinc ions, respectively, while the Km value for mesoporphyrin remained unchanged. These results indicate that the binding site for metal ions in ferrochelatase is distinct from that for the porphyrin, and suggest that histidine-263 contributes significantly to the binding of metal ions. Maintenance of the structure of the protein molecule may involve functions related to histidine-157 and -388.
Collapse
Affiliation(s)
- H Kohno
- Department of Hygiene, Kansai Medical University, Osaka, Japan
| | | | | | | | | |
Collapse
|
23
|
Hansson M, Hederstedt L. Purification and characterisation of a water-soluble ferrochelatase from Bacillus subtilis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 220:201-8. [PMID: 8119288 DOI: 10.1111/j.1432-1033.1994.tb18615.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Bacillus subtilis ferrochelatase is encoded by the hemH gene of the hemEHY gene cluster and catalyses the incorporation of Fe2+ into protoporphyrin IX. B. subtilis ferrochelatase produced in Escherichia coli was purified. It was found to be a monomeric, water-soluble enzyme of molecular mass 35 kDa which in addition to Fe2+ can incorporate Zn2+ and Cu2+ into protoporphyrin IX. Chemical modification experiments indicated that the single cysteine residue in the ferrochelatase is required for enzyme activity although it is not a conserved residue compared to other ferrochelatases. In growing B. subtilis, the ferrochelatase constitutes approximately 0.05% (by mass) of the total cell protein, which corresponds to some 600 ferrochelatase molecules/cell. The turnover number of isolated ferrochelatase, 18-29 min-1, was found to be consistent with the rate of haem synthesis in exponentially growing cells (0.2 mol haem formed/min/mol enzyme). It is concluded that the B. subtilis ferrochelatase has enzymic properties which are similar to those of other characterised ferrochelatases of known primary structure, i.e. ferrochelatases of the mitochondrial inner membrane of yeast and mammalian cells. However, in contrast to these enzymes the B. subtilis enzyme is a water-soluble protein and should be more amenable to structural analysis.
Collapse
Affiliation(s)
- M Hansson
- Department of Microbiology, Lund University, Sweden
| | | |
Collapse
|