• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4605772)   Today's Articles (4814)   Subscriber (49373)
For: Nishiyama M, Birktoft J, Beppu T. Alteration of coenzyme specificity of malate dehydrogenase from Thermus flavus by site-directed mutagenesis. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53446-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]  Open
Number Cited by Other Article(s)
1
Ge YD, Guo YT, Jiang LL, Wang HH, Hou SL, Su FZ. Enzymatic Characterization and Coenzyme Specificity Conversion of a Novel Dimeric Malate Dehydrogenase from Bacillus subtilis. Protein J 2023;42:14-23. [PMID: 36534341 PMCID: PMC9761052 DOI: 10.1007/s10930-022-10087-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
2
Kamiński K, Ludwiczak J, Jasiński M, Bukala A, Madaj R, Szczepaniak K, Dunin-Horkawicz S. Rossmann-toolbox: a deep learning-based protocol for the prediction and design of cofactor specificity in Rossmann fold proteins. Brief Bioinform 2021;23:6375059. [PMID: 34571541 PMCID: PMC8769691 DOI: 10.1093/bib/bbab371] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/04/2021] [Accepted: 08/22/2021] [Indexed: 11/15/2022]  Open
3
Brochier-Armanet C, Madern D. Phylogenetics and biochemistry elucidate the evolutionary link between l-malate and l-lactate dehydrogenases and disclose an intermediate group of sequences with mix functional properties. Biochimie 2021;191:140-153. [PMID: 34418486 DOI: 10.1016/j.biochi.2021.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/19/2021] [Accepted: 08/15/2021] [Indexed: 01/23/2023]
4
Enzyme-based amperometric biosensors for malic acid - A review. Anal Chim Acta 2021;1156:338218. [PMID: 33781460 DOI: 10.1016/j.aca.2021.338218] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/18/2022]
5
Mähler C, Kratzl F, Vogel M, Vinnenberg S, Weuster‐Botz D, Castiglione K. Loop Swapping as a Potent Approach to Increase Ene Reductase Activity with Nicotinamide Adenine Dinucleotide (NADH). Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
6
Crystal structure and biochemical characterization of malate dehydrogenase from Metallosphaera sedula. Biochem Biophys Res Commun 2019;509:833-838. [DOI: 10.1016/j.bbrc.2019.01.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 01/04/2019] [Indexed: 11/22/2022]
7
Chánique AM, Parra LP. Protein Engineering for Nicotinamide Coenzyme Specificity in Oxidoreductases: Attempts and Challenges. Front Microbiol 2018;9:194. [PMID: 29491854 PMCID: PMC5817062 DOI: 10.3389/fmicb.2018.00194] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/29/2018] [Indexed: 01/10/2023]  Open
8
Thompson MP, Turner NJ. Two-Enzyme Hydrogen-Borrowing Amination of Alcohols Enabled by a Cofactor-Switched Alcohol Dehydrogenase. ChemCatChem 2017. [DOI: 10.1002/cctc.201701092] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
9
Tiwari V. In vitro Engineering of Novel Bioactivity in the Natural Enzymes. Front Chem 2016;4:39. [PMID: 27774447 PMCID: PMC5054688 DOI: 10.3389/fchem.2016.00039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 09/21/2016] [Indexed: 11/23/2022]  Open
10
Takahashi-Íñiguez T, Aburto-Rodríguez N, Vilchis-González AL, Flores ME. Function, kinetic properties, crystallization, and regulation of microbial malate dehydrogenase*. J Zhejiang Univ Sci B 2016;17:247-261. [PMCID: PMC4829630 DOI: 10.1631/jzus.b1500219] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/14/2015] [Indexed: 09/12/2023]
11
Steindel PA, Chen EH, Wirth JD, Theobald DL. Gradual neofunctionalization in the convergent evolution of trichomonad lactate and malate dehydrogenases. Protein Sci 2016;25:1319-31. [PMID: 26889885 PMCID: PMC4918429 DOI: 10.1002/pro.2904] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 02/15/2016] [Indexed: 11/18/2022]
12
Aiba H, Nishiya Y, Azuma M, Yokooji Y, Atomi H, Imanaka T. Characterization of a thermostable glucose dehydrogenase with strict substrate specificity from a hyperthermophilic archaeon Thermoproteus sp. GDH-1. Biosci Biotechnol Biochem 2015;79:1094-102. [DOI: 10.1080/09168451.2015.1018120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
13
Cui D, Zhang L, Jiang S, Yao Z, Gao B, Lin J, Yuan YA, Wei D. A computational strategy for altering an enzyme in its cofactor preference to NAD(H) and/or NADP(H). FEBS J 2015;282:2339-51. [PMID: 25817922 DOI: 10.1111/febs.13282] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 03/09/2015] [Accepted: 03/23/2015] [Indexed: 01/19/2023]
14
Chou HH, Marx CJ, Sauer U. Transhydrogenase promotes the robustness and evolvability of E. coli deficient in NADPH production. PLoS Genet 2015;11:e1005007. [PMID: 25715029 PMCID: PMC4340650 DOI: 10.1371/journal.pgen.1005007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 01/14/2015] [Indexed: 11/18/2022]  Open
15
Improving the NADH-cofactor specificity of the highly active AdhZ3 and AdhZ2 from Escherichia coli K-12. J Biotechnol 2014;189:157-65. [PMID: 24992211 DOI: 10.1016/j.jbiotec.2014.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/18/2014] [Accepted: 06/21/2014] [Indexed: 11/22/2022]
16
Computational design of short-chain dehydrogenase Gox2181 for altered coenzyme specificity. J Biotechnol 2013;167:386-92. [PMID: 23916946 DOI: 10.1016/j.jbiotec.2013.07.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 07/21/2013] [Accepted: 07/23/2013] [Indexed: 11/21/2022]
17
Sharkey MA, Gori A, Capone M, Engel PC. Reversal of the extreme coenzyme selectivity of Clostridium symbiosum glutamate dehydrogenase. FEBS J 2012;279:3003-9. [PMID: 22747945 DOI: 10.1111/j.1742-4658.2012.08681.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
18
Griffin J, Engel PC. An Examination by Site-Directed Mutagenesis of Putative Key Residues in the Determination of Coenzyme Specificity in Clostridial NAD-Dependent Glutamate Dehydrogenase. Enzyme Res 2011;2011:595793. [PMID: 21876794 PMCID: PMC3157743 DOI: 10.4061/2011/595793] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 04/28/2011] [Accepted: 05/04/2011] [Indexed: 12/04/2022]  Open
19
Capone M, Scanlon D, Griffin J, Engel PC. Re-engineering the discrimination between the oxidized coenzymes NAD+ and NADP+ in clostridial glutamate dehydrogenase and a thorough reappraisal of the coenzyme specificity of the wild-type enzyme. FEBS J 2011;278:2460-8. [PMID: 21564547 DOI: 10.1111/j.1742-4658.2011.08172.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
20
Identification and biochemical characterization of a thermostable malate dehydrogenase from the mesophile Streptomyces coelicolor A3(2). Biosci Biotechnol Biochem 2010;74:2194-201. [PMID: 21071865 DOI: 10.1271/bbb.100357] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
21
Wang ZD, Wang BJ, Ge YD, Pan W, Wang J, Xu L, Liu AM, Zhu GP. Expression and identification of a thermostable malate dehydrogenase from multicellular prokaryote Streptomyces avermitilis MA-4680. Mol Biol Rep 2010;38:1629-36. [DOI: 10.1007/s11033-010-0273-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 09/02/2010] [Indexed: 01/18/2023]
22
Ma C, Zhang L, Dai J, Xiu Z. Relaxing the coenzyme specificity of 1,3-propanediol oxidoreductase from Klebsiella pneumoniae by rational design. J Biotechnol 2010;146:173-8. [PMID: 20156491 DOI: 10.1016/j.jbiotec.2010.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 01/22/2010] [Accepted: 02/07/2010] [Indexed: 10/19/2022]
23
Yoneda K, Sakuraba H, Tsuge H, Katunuma N, Ohshima T. Crystal structure of archaeal highly thermostable L-aspartate dehydrogenase/NAD/citrate ternary complex. FEBS J 2007;274:4315-25. [PMID: 17651440 DOI: 10.1111/j.1742-4658.2007.05961.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
24
Tomita T, Fushinobu S, Kuzuyama T, Nishiyama M. Structural basis for the alteration of coenzyme specificity in a malate dehydrogenase mutant. Biochem Biophys Res Commun 2006;347:502-8. [PMID: 16828705 DOI: 10.1016/j.bbrc.2006.06.131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 06/22/2006] [Indexed: 11/30/2022]
25
Rodríguez-Arnedo A, Camacho M, Llorca F, Bonete MJ. Complete reversal of coenzyme specificity of isocitrate dehydrogenase from Haloferax volcanii. Protein J 2006;24:259-66. [PMID: 16284723 DOI: 10.1007/s10930-005-6746-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Indexed: 10/25/2022]
26
Tomita T, Fushinobu S, Kuzuyama T, Nishiyama M. Crystal structure of NAD-dependent malate dehydrogenase complexed with NADP(H). Biochem Biophys Res Commun 2005;334:613-8. [PMID: 16009341 DOI: 10.1016/j.bbrc.2005.06.133] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 06/23/2005] [Indexed: 11/29/2022]
27
Woodyer R, Zhao H, van der Donk WA. Mechanistic investigation of a highly active phosphite dehydrogenase mutant and its application for NADPH regeneration. FEBS J 2005;272:3816-27. [PMID: 16045753 DOI: 10.1111/j.1742-4658.2005.04788.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
28
Bhuiya MW, Sakuraba H, Ohshima T, Imagawa T, Katunuma N, Tsuge H. The first crystal structure of hyperthermostable NAD-dependent glutamate dehydrogenase from Pyrobaculum islandicum. J Mol Biol 2005;345:325-37. [PMID: 15571725 DOI: 10.1016/j.jmb.2004.10.063] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Revised: 10/19/2004] [Accepted: 10/21/2004] [Indexed: 11/17/2022]
29
Watanabe S, Kodaki T, Makino K. Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc. J Biol Chem 2004;280:10340-9. [PMID: 15623532 DOI: 10.1074/jbc.m409443200] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]  Open
30
Woodyer R, van der Donk WA, Zhao H. Relaxing the nicotinamide cofactor specificity of phosphite dehydrogenase by rational design. Biochemistry 2004;42:11604-14. [PMID: 14529270 DOI: 10.1021/bi035018b] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
31
Marohnic CC, Bewley MC, Barber MJ. Engineering and characterization of a NADPH-utilizing cytochrome b5 reductase. Biochemistry 2003;42:11170-82. [PMID: 14503867 DOI: 10.1021/bi034819b] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
32
Zhang L, Kudo T, Takaya N, Shoun H. The B' helix determines cytochrome P450nor specificity for the electron donors NADH and NADPH. J Biol Chem 2002;277:33842-7. [PMID: 12105197 DOI: 10.1074/jbc.m203923200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]  Open
33
Chotani G, Dodge T, Hsu A, Kumar M, LaDuca R, Trimbur D, Weyler W, Sanford K. The commercial production of chemicals using pathway engineering. BIOCHIMICA ET BIOPHYSICA ACTA 2000;1543:434-455. [PMID: 11150618 DOI: 10.1016/s0167-4838(00)00234-x] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
34
Chen R, Yang H. A highly specific monomeric isocitrate dehydrogenase from Corynebacterium glutamicum. Arch Biochem Biophys 2000;383:238-45. [PMID: 11185559 DOI: 10.1006/abbi.2000.2082] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
35
Yaoi T, Laksanalamai P, Jiemjit A, Kagawa HK, Alton T, Trent JD. Cloning and characterization of ftsZ and pyrF from the archaeon Thermoplasma acidophilum. Biochem Biophys Res Commun 2000;275:936-45. [PMID: 10973825 DOI: 10.1006/bbrc.2000.3401] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
36
Schepens I, Johansson K, Decottignies P, Gillibert M, Hirasawa M, Knaff DB, Miginiac-Maslow M. Inhibition of the thioredoxin-dependent activation of the NADP-malate dehydrogenase and cofactor specificity. J Biol Chem 2000;275:20996-1001. [PMID: 10801830 DOI: 10.1074/jbc.m002066200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]  Open
37
Piubelli L, Aliverti A, Arakaki AK, Carrillo N, Ceccarelli EA, Karplus PA, Zanetti G. Competition between C-terminal tyrosine and nicotinamide modulates pyridine nucleotide affinity and specificity in plant ferredoxin-NADP(+) reductase. J Biol Chem 2000;275:10472-6. [PMID: 10744737 DOI: 10.1074/jbc.275.14.10472] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]  Open
38
Kita K, Fukura T, Nakase KI, Okamoto K, Yanase H, Kataoka M, Shimizu S. Cloning, overexpression, and mutagenesis of the Sporobolomyces salmonicolor AKU4429 gene encoding a new aldehyde reductase, which catalyzes the stereoselective reduction of ethyl 4-chloro-3-oxobutanoate to ethyl (S)-4-chloro-3-hydroxybutanoate. Appl Environ Microbiol 1999;65:5207-11. [PMID: 10583966 PMCID: PMC91706 DOI: 10.1128/aem.65.12.5207-5211.1999] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]  Open
39
Fan F, Plapp BV. Probing the affinity and specificity of yeast alcohol dehydrogenase I for coenzymes. Arch Biochem Biophys 1999;367:240-9. [PMID: 10395740 DOI: 10.1006/abbi.1999.1242] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
40
Didierjean C, Rahuel-Clermont S, Vitoux B, Dideberg O, Branlant G, Aubry A. A crystallographic comparison between mutated glyceraldehyde-3-phosphate dehydrogenases from Bacillus stearothermophilus complexed with either NAD+ or NADP+. J Mol Biol 1997;268:739-59. [PMID: 9175858 DOI: 10.1006/jmbi.1997.0998] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
41
Naterstad K, Lauvrak V, Sirevåg R. Malate dehydrogenase from the mesophile Chlorobium vibrioforme and from the mild thermophile Chlorobium tepidum: molecular cloning, construction of a hybrid, and expression in Escherichia coli. J Bacteriol 1996;178:7047-52. [PMID: 8955383 PMCID: PMC178614 DOI: 10.1128/jb.178.24.7047-7052.1996] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]  Open
42
Friesen JA, Lawrence CM, Stauffacher CV, Rodwell VW. Structural determinants of nucleotide coenzyme specificity in the distinctive dinucleotide binding fold of HMG-CoA reductase from Pseudomonas mevalonii. Biochemistry 1996;35:11945-50. [PMID: 8810898 DOI: 10.1021/bi9609937] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
43
Eyschen J, Vitoux B, Rahuel-Clermont S, Marraud M, Branlant G, Cung MT. Phosphorus-31 nuclear magnetic resonance studies on coenzyme binding and specificity in glyceraldehyde-3-phosphate dehydrogenase. Biochemistry 1996;35:6064-72. [PMID: 8634248 DOI: 10.1021/bi952579x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
44
Hurley JH, Chen R, Dean AM. Determinants of cofactor specificity in isocitrate dehydrogenase: structure of an engineered NADP+ --> NAD+ specificity-reversal mutant. Biochemistry 1996;35:5670-8. [PMID: 8639526 DOI: 10.1021/bi953001q] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
45
Lauvergeat V, Kennedy K, Feuillet C, McKie JH, Gorrichon L, Baltas M, Boudet AM, Grima-Pettenati J, Douglas KT. Site-directed mutagenesis of a serine residue in cinnamyl alcohol dehydrogenase, a plant NADPH-dependent dehydrogenase, affects the specificity for the coenzyme. Biochemistry 1995;34:12426-34. [PMID: 7547988 DOI: 10.1021/bi00038a041] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
46
French CE, Hailes AM, Rathbone DA, Long MT, Willey DL, Bruce NC. Biological production of semisynthetic opiates using genetically engineered bacteria. BIO/TECHNOLOGY (NATURE PUBLISHING COMPANY) 1995;13:674-6. [PMID: 9634804 DOI: 10.1038/nbt0795-674] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
47
Fjellström O, Olausson T, Hu X, Källebring B, Ahmad S, Bragg PD, Rydström J. Three-dimensional structure prediction of the NAD binding site of proton-pumping transhydrogenase from Escherichia coli. Proteins 1995;21:91-104. [PMID: 7777492 DOI: 10.1002/prot.340210203] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
48
Goward CR, Nicholls DJ. Malate dehydrogenase: a model for structure, evolution, and catalysis. Protein Sci 1994;3:1883-8. [PMID: 7849603 PMCID: PMC2142602 DOI: 10.1002/pro.5560031027] [Citation(s) in RCA: 169] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
49
Issakidis E, Saarinen M, Decottignies P, Jacquot J, Crétin C, Gadal P, Miginiac-Maslow M. Identification and characterization of the second regulatory disulfide bridge of recombinant sorghum leaf NADP-malate dehydrogenase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41892-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]  Open
50
Higuchi T, Imamura Y, Otagiri M. Chemical modification of arginine and lysine residues in coenzyme-binding domain of carbonyl reductase from rabbit kidney: indomethacin affords a significant protection against inactivation of the enzyme by phenylglyoxal. BIOCHIMICA ET BIOPHYSICA ACTA 1994;1199:81-6. [PMID: 8280759 DOI: 10.1016/0304-4165(94)90100-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA