1
|
Nevinsky GA. How Enzymes, Proteins, and Antibodies Recognize Extended DNAs; General Regularities. Int J Mol Sci 2021; 22:1369. [PMID: 33573045 PMCID: PMC7866405 DOI: 10.3390/ijms22031369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/17/2022] Open
Abstract
X-ray analysis cannot provide quantitative estimates of the relative contribution of non-specific, specific, strong, and weak contacts of extended DNA molecules to their total affinity for enzymes and proteins. The interaction of different enzymes and proteins with long DNA and RNA at the quantitative molecular level can be successfully analyzed using the method of the stepwise increase in ligand complexity (SILC). The present review summarizes the data on stepwise increase in ligand complexity (SILC) analysis of nucleic acid recognition by various enzymes-replication, restriction, integration, topoisomerization, six different repair enzymes (uracil DNA glycosylase, Fpg protein from Escherichia coli, human 8-oxoguanine-DNA glycosylase, human apurinic/apyrimidinic endonuclease, RecA protein, and DNA-ligase), and five DNA-recognizing proteins (RNA helicase, human lactoferrin, alfa-lactalbumin, human blood albumin, and IgGs against DNA). The relative contributions of structural elements of DNA fragments "covered" by globules of enzymes and proteins to the total affinity of DNA have been evaluated. Thermodynamic and catalytic factors providing discrimination of unspecific and specific DNAs by these enzymes on the stages of primary complex formation following changes in enzymes and DNAs or RNAs conformations and direct processing of the catalysis of the reactions were found. General regularities of recognition of nucleic acid by DNA-dependent enzymes, proteins, and antibodies were established.
Collapse
Affiliation(s)
- Georgy A Nevinsky
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 63009 Novosibirsk, Russia
| |
Collapse
|
2
|
Lackey KA, Pace RM, Williams JE, Bode L, Donovan SM, Järvinen KM, Seppo AE, Raiten DJ, Meehan CL, McGuire MA, McGuire MK. SARS-CoV-2 and human milk: What is the evidence? MATERNAL & CHILD NUTRITION 2020; 16:e13032. [PMID: 32472745 PMCID: PMC7300480 DOI: 10.1111/mcn.13032] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 12/18/2022]
Abstract
The novel coronavirus SARS-CoV-2 has emerged as one of the most compelling and concerning public health challenges of our time. To address the myriad issues generated by this pandemic, an interdisciplinary breadth of research, clinical and public health communities has rapidly engaged to collectively find answers and solutions. One area of active inquiry is understanding the mode(s) of SARS-CoV-2 transmission. Although respiratory droplets are a known mechanism of transmission, other mechanisms are likely. Of particular importance to global health is the possibility of vertical transmission from infected mothers to infants through breastfeeding or consumption of human milk. However, there is limited published literature related to vertical transmission of any human coronaviruses (including SARS-CoV-2) via human milk and/or breastfeeding. Results of the literature search reported here (finalized on 17 April 2020) revealed a single study providing some evidence of vertical transmission of human coronavirus 229E; a single study evaluating presence of SARS-CoV in human milk (it was negative); and no published data on MERS-CoV and human milk. We identified 13 studies reporting human milk tested for SARS-CoV-2; one study (a non-peer-reviewed preprint) detected the virus in one milk sample, and another study detected SARS-CoV-2 specific IgG in milk. Importantly, none of the studies on coronaviruses and human milk report validation of their collection and analytical methods for use in human milk. These reports are evaluated here, and their implications related to the possibility of vertical transmission of coronaviruses (in particular, SARS-CoV-2) during breastfeeding are discussed.
Collapse
Affiliation(s)
- Kimberly A. Lackey
- Margaret Ritchie School of Family and Consumer SciencesUniversity of IdahoMoscowIdahoUSA
| | - Ryan M. Pace
- Margaret Ritchie School of Family and Consumer SciencesUniversity of IdahoMoscowIdahoUSA
| | - Janet E. Williams
- Department of Animal and Veterinary SciencesUniversity of IdahoMoscowIdahoUSA
| | - Lars Bode
- Department of Pediatrics and Larsson‐Rosenquist Foundation Mother‐Milk‐Infant Center of Research Excellence (MOMI CORE)University of CaliforniaSan DiegoCaliforniaUSA
| | - Sharon M. Donovan
- Department of Food Science and Human Nutrition and Institute of Genomic BiologyUniversity of IllinoisUrbanaIllinoisUSA
| | - Kirsi M. Järvinen
- Department of Pediatrics, Division of Allergy and ImmunologyUniversity of Rochester School of Medicine and DentistryRochesterNew YorkUSA
| | - Antti E. Seppo
- Department of Pediatrics, Division of Allergy and ImmunologyUniversity of Rochester School of Medicine and DentistryRochesterNew YorkUSA
| | - Daniel J. Raiten
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)National Institutes of Health (NIH)BethesdaMarylandUSA
| | - Courtney L. Meehan
- Department of AnthropologyWashington State UniversityPullmanWashingtonUSA
| | - Mark A. McGuire
- Department of Animal and Veterinary SciencesUniversity of IdahoMoscowIdahoUSA
| | - Michelle K. McGuire
- Margaret Ritchie School of Family and Consumer SciencesUniversity of IdahoMoscowIdahoUSA
| |
Collapse
|
3
|
O'Reilly D, Dorodnykh D, Avdeenko NV, Nekliudov NA, Garssen J, Elolimy AA, Petrou L, Simpson MR, Yeruva L, Munblit D. Perspective: The Role of Human Breast-Milk Extracellular Vesicles in Child Health and Disease. Adv Nutr 2020; 12:59-70. [PMID: 32838428 PMCID: PMC7849950 DOI: 10.1093/advances/nmaa094] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/06/2020] [Accepted: 07/15/2020] [Indexed: 12/19/2022] Open
Abstract
Human breast milk (HM) contains multiple bioactive substances determining its impact on children's health. Extracellular vesicles (EVs) are a heterogeneous group of secreted nanoparticles that are present in HM and may be partially responsible for its beneficial effects. The precise roles and content of EVs in HM remain largely unknown. To examine this, we performed a short narrative review on the literature focusing on HM EVs to contextualize the available data, followed by a scoping review of MEDLINE and Embase databases. We identified 424 nonduplicate citations with 19 original studies included. In this perspective, we summarize the evidence around HM EVs, highlight some theoretical considerations based on existing evidence, and provide an overview of some challenges associated with the complexity and heterogeneity of EV research. We consider how the existing data from HM studies conform to the minimal information for studies of EVs (MISEV) guidelines. Across the studies a variety of research methods were utilized involving both bench-based and translational methods, and a range of different EV contents were examined including RNA, proteins, and glycopeptides. We observed a variety of health outcomes in these studies, including allergy and atopy, necrotizing enterocolitis, and HIV. While some promising results have been demonstrated, the heterogeneity in outcomes of interest, methodological limitations, and relatively small number of studies in the field make comparison between studies or further translational work problematic. To date, no studies have examined normative values of HM EVs in a large, diverse population or with respect to potentially important influencing factors such as timing (hind- vs. foremilk), stage (colostrum vs. mature milk), and infant age (preterm vs. term), which makes extrapolation from bench or "basic" research impossible. Future research should focus on addressing the current inadequacies in the literature and utilize MISEV guidelines to inform study design.
Collapse
Affiliation(s)
| | - Denis Dorodnykh
- Department of Pediatrics and Pediatric Infectious Diseases, Institute of Child's Health, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Nina V Avdeenko
- Department of Pediatrics and Pediatric Infectious Diseases, Institute of Child's Health, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Nikita A Nekliudov
- Department of Pediatrics and Pediatric Infectious Diseases, Institute of Child's Health, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Ahmed A Elolimy
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA,Arkansas Children's Nutrition Center, Little Rock, AR, USA
| | - Loukia Petrou
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Melanie Rae Simpson
- Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim, Norway
| | - Laxmi Yeruva
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA,Arkansas Children's Nutrition Center, Little Rock, AR, USA,Arkansas Children's Research Institute, Little Rock, AR, USA
| | | |
Collapse
|
4
|
Lackey KA, Pace RM, Williams JE, Bode L, Donovan SM, Järvinen KM, Seppo AE, Raiten DJ, Meehan CL, McGuire MA, McGuire MK. SARS-CoV-2 and human milk: what is the evidence? MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.04.07.20056812. [PMID: 32511431 PMCID: PMC7217082 DOI: 10.1101/2020.04.07.20056812] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The novel coronavirus SARS-CoV-2 has emerged as one of the most compelling public health challenges of our time. To address the myriad issues generated by this pandemic, an interdisciplinary breadth of research, clinical, and public health communities have rapidly engaged to find answers and solutions. One area of active inquiry is understanding the mode(s) of SARS-CoV-2 transmission. While respiratory droplets are a known mechanism of transmission, other mechanisms are possible. Of particular importance to global health is the possibility of vertical transmission from infected mothers to infants through breastfeeding or consumption of human milk. However, there is limited published literature related to vertical transmission of any human coronavirus (including SARS-CoV-2) via human milk and/or breastfeeding. There is a single study providing some evidence of vertical transmission of human coronavirus 229E, a single study evaluating presence of SARS-CoV in human milk (it was negative), and no published data on MERS-CoV and human milk. There are 9 case studies of human milk tested for SARS-CoV-2; none detected the virus. Importantly, none of the published studies on coronaviruses and human milk report validation of their analytical methods for use in human milk. These reports are evaluated here, and their implications related to the possibility of vertical transmission of coronaviruses (in particular, SARS-CoV-2) during breastfeeding are discussed.
Collapse
Affiliation(s)
- Kimberly A. Lackey
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, USA
| | - Ryan M. Pace
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, USA
| | - Janet E. Williams
- Department of Animal and Veterinary Sciences, University of Idaho, Moscow, ID, USA
| | - Lars Bode
- Department of Pediatrics and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California, San Diego, La Jolla, CA, USA
| | - Sharon M. Donovan
- Department of Food Science and Human Nutrition and Institute of Genomic Biology, University of Illinois, Urbana, IL USA
| | - Kirsi M. Järvinen
- Department of Pediatrics, Division of Allergy and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Antti E. Seppo
- Department of Pediatrics, Division of Allergy and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Daniel J. Raiten
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Courtney L. Meehan
- Department of Anthropology, Washington State University, Pullman, WA, USA
| | - Mark A. McGuire
- Department of Animal and Veterinary Sciences, University of Idaho, Moscow, ID, USA
| | - Michelle K. McGuire
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, USA
| |
Collapse
|
5
|
Soboleva SE, Sedykh SE, Alinovskaya LI, Buneva VN, Nevinsky GA. Cow Milk Lactoferrin Possesses Several Catalytic Activities. Biomolecules 2019; 9:biom9060208. [PMID: 31146486 PMCID: PMC6627417 DOI: 10.3390/biom9060208] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/14/2019] [Accepted: 05/27/2019] [Indexed: 11/16/2022] Open
Abstract
Lactoferrin (LF) is a Fe3+-binding glycoprotein, that was first recognized in milk and then in other epithelial secretions and barrier body fluids to which many different functions have been attributed to LF including protection from iron-induced lipid peroxidation, immunomodulation, cell growth regulation, DNA and RNA binding, as well as transcriptional activation, еtс. The polyfunctional physiological role of LF is still unclear, but it has been suggested to be responsible for primary defense against microbial and viral infections. It was shown previously that human milk LF possesses several enzymatic activities: DNase, RNase, ATPase, phosphatase, and amylase. Analysis of human, cow, horse, buffalo and camel LF showed a highly conserved three-dimensional (3D) structure including only detail differences in the species. Recently, it was shown that similar to human cow LF possesses DNase and RNase activities. Using different methods here we have shown for the first time that LFs from the milk of seven cows of different breeds possess high peroxidase, protease, amylase, protease, and phosphatase activities. Protease activity of cow LFs was activated by Mg2+ and Ca2+ ions. In contrast to human LFs, ATPase activity was revealed only in three of seven cow LF preparations. The discovery that LF possesses these activities may contribute to understanding the multiple physiological functions of this extremely polyfunctional protein including its protective role against microbial and viral infections.
Collapse
Affiliation(s)
- Svetlana E Soboleva
- Institute of Chemical Biology and Fundamental Medicine of SB RAS, 8 Lavrentiev Ave., 630090 Novosibirsk, Russia.
| | - Sergey E Sedykh
- Institute of Chemical Biology and Fundamental Medicine of SB RAS, 8 Lavrentiev Ave., 630090 Novosibirsk, Russia.
| | - Ludmila I Alinovskaya
- Institute of Chemical Biology and Fundamental Medicine of SB RAS, 8 Lavrentiev Ave., 630090 Novosibirsk, Russia.
| | - Valentina N Buneva
- Institute of Chemical Biology and Fundamental Medicine of SB RAS, 8 Lavrentiev Ave., 630090 Novosibirsk, Russia.
| | - Georgy A Nevinsky
- Institute of Chemical Biology and Fundamental Medicine of SB RAS, 8 Lavrentiev Ave., 630090 Novosibirsk, Russia.
| |
Collapse
|
6
|
Benmoussa A, Provost P. Milk MicroRNAs in Health and Disease. Compr Rev Food Sci Food Saf 2019; 18:703-722. [PMID: 33336926 DOI: 10.1111/1541-4337.12424] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/19/2018] [Accepted: 12/24/2018] [Indexed: 02/06/2023]
Abstract
MicroRNAs are small noncoding RNAs responsible for regulating 40% to 60% of gene expression at the posttranscriptional level. The discovery of circulating microRNAs in several biological fluids opened the path for their study as biomarkers and long-range cell-to-cell communication mediators. Their transfer between individuals in the case of blood transfusion, for example, and their high enrichment in milk have sparked the interest for microRNA transfer through diet, especially from mothers to infants during breastfeeding. The extension of such paradigm led to the study of milk microRNAs in the case of cow or goat milk consumption in adults. Here we provide a comprehensive critical review of the key findings surrounding milk microRNAs in human, cow, and goat milk among other species. We discuss the data on their biological properties, their use as disease biomarkers, their transfer between individuals or species, and their putative or verified functions in health and disease of infants and adult consumers. This work is based on all the literature available and integrates all the results, theories, debates, and validation studies available so far on milk microRNAs and related areas of investigations. We critically discuss the limitations and outline future aspects and avenues to explore in this rapidly growing field of research that could impact public health through infant milk formulations or new therapies. We hope that this comprehensive review of the literature will provide insight for all teams investigating milk RNAs' biological activities and help ensure the quality of future reports.
Collapse
Affiliation(s)
- Abderrahim Benmoussa
- CHUQ Research Center/CHUL, 2705 Blvd Laurier, Quebec, QC, G1V 4G2, Canada.,Dept. of Microbiology-Infectious Disease and Immunity and Faculty of Medicine, Univ. Laval, Quebec, QC, G1V 0A6, Canada
| | - Patrick Provost
- CHUQ Research Center/CHUL, 2705 Blvd Laurier, Quebec, QC, G1V 4G2, Canada.,Dept. of Microbiology-Infectious Disease and Immunity and Faculty of Medicine, Univ. Laval, Quebec, QC, G1V 0A6, Canada
| |
Collapse
|
7
|
Soboleva SE, Zakharova OD, Sedykh SE, Ivanisenko NV, Buneva VN, Nevinsky GA. DNase and RNase activities of fresh cow milk lactoferrin. J Mol Recognit 2019; 32:e2777. [DOI: 10.1002/jmr.2777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/24/2018] [Accepted: 12/28/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Svetlana E. Soboleva
- Siberian Division of Russian Academy of SciencesInstitute of Chemical Biology and Fundamental Medicine Novosibirsk Russia
| | - Ol'ga D. Zakharova
- Siberian Division of Russian Academy of SciencesInstitute of Chemical Biology and Fundamental Medicine Novosibirsk Russia
| | - Sergey E. Sedykh
- Siberian Division of Russian Academy of SciencesInstitute of Chemical Biology and Fundamental Medicine Novosibirsk Russia
| | - Nikita V. Ivanisenko
- Siberian Division of Russian Academy of SciencesInstitute of Cytology and Genetics Novosibirsk Russia
| | - Valentina N. Buneva
- Siberian Division of Russian Academy of SciencesInstitute of Chemical Biology and Fundamental Medicine Novosibirsk Russia
| | - Georgy A. Nevinsky
- Siberian Division of Russian Academy of SciencesInstitute of Chemical Biology and Fundamental Medicine Novosibirsk Russia
| |
Collapse
|
8
|
Pulmonary immunity to viruses. Clin Sci (Lond) 2017; 131:1737-1762. [PMID: 28667071 DOI: 10.1042/cs20160259] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/31/2017] [Accepted: 04/06/2017] [Indexed: 12/28/2022]
Abstract
Mucosal surfaces, such as the respiratory epithelium, are directly exposed to the external environment and therefore, are highly susceptible to viral infection. As a result, the respiratory tract has evolved a variety of innate and adaptive immune defenses in order to prevent viral infection or promote the rapid destruction of infected cells and facilitate the clearance of the infecting virus. Successful adaptive immune responses often lead to a functional state of immune memory, in which memory lymphocytes and circulating antibodies entirely prevent or lessen the severity of subsequent infections with the same virus. This is also the goal of vaccination, although it is difficult to vaccinate in a way that mimics respiratory infection. Consequently, some vaccines lead to robust systemic immune responses, but relatively poor mucosal immune responses that protect the respiratory tract. In addition, adaptive immunity is not without its drawbacks, as overly robust inflammatory responses may lead to lung damage and impair gas exchange or exacerbate other conditions, such as asthma or chronic obstructive pulmonary disease (COPD). Thus, immune responses to respiratory viral infections must be strong enough to eliminate infection, but also have mechanisms to limit damage and promote tissue repair in order to maintain pulmonary homeostasis. Here, we will discuss the components of the adaptive immune system that defend the host against respiratory viral infections.
Collapse
|
9
|
Floris I, Billard H, Boquien CY, Joram-Gauvard E, Simon L, Legrand A, Boscher C, Rozé JC, Bolaños-Jiménez F, Kaeffer B. MiRNA Analysis by Quantitative PCR in Preterm Human Breast Milk Reveals Daily Fluctuations of hsa-miR-16-5p. PLoS One 2015; 10:e0140488. [PMID: 26474056 PMCID: PMC4608744 DOI: 10.1371/journal.pone.0140488] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 09/25/2015] [Indexed: 02/03/2023] Open
Abstract
Background and Aims Human breast milk is an extremely dynamic fluid containing many biologically-active components which change throughout the feeding period and throughout the day. We designed a miRNA assay on minimized amounts of raw milk obtained from mothers of preterm infants. We investigated changes in miRNA expression within month 2 of lactation and then over the course of 24 hours. Materials and Methods Analyses were performed on pooled breast milk, made by combining samples collected at different clock times from the same mother donor, along with time series collected over 24 hours from four unsynchronized mothers. Whole milk, lipids or skim milk fractions were processed and analyzed by qPCR. We measured hsa-miR-16-5p, hsa-miR-21-5p, hsa-miR-146-5p, and hsa-let-7a, d and g (all -5p). Stability of miRNA endogenous controls was evaluated using RefFinder, a web tool integrating geNorm, Normfinder, BestKeeper and the comparative ΔΔCt method. Results MiR-21 and miR-16 were stably expressed in whole milk collected within month 2 of lactation from four mothers. Analysis of lipids and skim milk revealed that miR-146b and let-7d were better references in both fractions. Time series (5H-23H) allowed the identification of a set of three endogenous reference genes (hsa-let-7d, hsa-let-7g and miR-146b) to normalize raw quantification cycle (Cq) data. We identified a daily oscillation of miR-16-5p. Perspectives Our assay allows exploring miRNA levels of breast milk from mother with preterm baby collected in time series over 48–72 hours.
Collapse
Affiliation(s)
- Ilaria Floris
- UMR-1280, INRA, University of Nantes, Physiologie des Adaptations Nutritionnelles, Nantes, France
- * E-mail: (IF); (BK)
| | - Hélène Billard
- UMR-1280, INRA, University of Nantes, Physiologie des Adaptations Nutritionnelles, Nantes, France
| | - Clair-Yves Boquien
- UMR-1280, INRA, University of Nantes, Physiologie des Adaptations Nutritionnelles, Nantes, France
| | | | - Laure Simon
- University of Nantes, Hospital of Mother and Child, Nantes, France
| | - Arnaud Legrand
- University of Nantes, Hospital of Mother and Child, Nantes, France
| | - Cécile Boscher
- University of Nantes, Hospital of Mother and Child, Nantes, France
| | - Jean-Christophe Rozé
- UMR-1280, INRA, University of Nantes, Physiologie des Adaptations Nutritionnelles, Nantes, France
- University of Nantes, Hospital of Mother and Child, Nantes, France
| | | | - Bertrand Kaeffer
- UMR-1280, INRA, University of Nantes, Physiologie des Adaptations Nutritionnelles, Nantes, France
- * E-mail: (IF); (BK)
| |
Collapse
|
10
|
Kocic G, Bjelakovic L, Bjelakovic B, Jevtoci-Stoimenov T, Sokolovic D, Cvetkovic T, Kocic H, Stojanovic S, Langerholc T, Jonovic M. Impact of folic acid supplementation on single- and double-stranded RNA degradation in human colostrum and mature milk. J Med Food 2014; 17:804-9. [PMID: 24650098 DOI: 10.1089/jmf.2013.0093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sufficient intake of folic acid is necessary for normal embryogenesis, fetal, and neonatal development. Folic acid facilitates nucleic acid internalization, and protects cellular DNA from nuclease degradation. Human milk contains enzymes, antimicrobial proteins, and antibodies, along with macrophages, that protect against infections and allergies. However, little to no information is available on the effects of folic acid supplementation on degradation of nucleic acids in human milk. In the present study, we aimed to determine the RNase activity (free and inhibitor-bound) in colostrum and mature milk, following folic acid supplementation. The study design included a total of 59 women, 27 of whom received 400 μg of folic acid daily periconceptionally and after. Folic acid supplementation increased the free RNase and polyadenylase activity following lactation. However, the increased RNase activity was not due to de novo enzyme synthesis, as the inhibitor-bound (latent) RNase activity was significantly lower and disappeared after one month. Folic acid reduced RNase activity by using double-stranded RNA as substrate. Data suggests that folic acid supplementation may improve viral RNAs degradation and mRNA degradation, but not dsRNA degradation, preserving in this way the antiviral defense.
Collapse
Affiliation(s)
- Gordana Kocic
- 1 Department of Biochemistry, Medical Faculty, University Nis , Nis, Serbia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Guschina TA, Soboleva SE, Nevinsky GA. Recognition of specific and nonspecific DNA by human lactoferrin. J Mol Recognit 2013; 26:136-48. [PMID: 23345104 DOI: 10.1002/jmr.2257] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 11/07/2012] [Accepted: 11/08/2012] [Indexed: 11/08/2022]
Abstract
The general principles of recognition of nucleic acids by proteins are among the most exciting problems of molecular biology. Human lactoferrin (LF) is a remarkable protein possessing many independent biological functions, including interaction with DNA. In human milk, LF is a major DNase featuring two DNA-binding sites with different affinities for DNA. The mechanism of DNA recognition by LF was studied here for the first time. Electrophoretic mobility shift assay and fluorescence measurements were used to probe for interactions of the high-affinity DNA-binding site of LF with a series of model-specific and nonspecific DNA ligands, and the structural determinants of DNA recognition by LF were characterized quantitatively. The minimal ligands for this binding site were orthophosphate (K(i) = 5 mM), deoxyribose 5'-phosphate (K(i) = 3 mM), and different dNMPs (K(i) = 0.56-1.6 mM). LF interacted additionally with 9-12 nucleotides or nucleotide pairs of single- and double-stranded ribo- and deoxyribooligonucleotides of different lengths and sequences, mainly through weak additive contacts with internucleoside phosphate groups. Such nonspecific interactions of LF with noncognate single- and double-stranded d(pN)(10) provided ~6 to ~7.5 orders of magnitude of the enzyme affinity for any DNA. This corresponds to the Gibbs free energy of binding (ΔG(0)) of -8.5 to -10.0 kcal/mol. Formation of specific contacts between the LF and its cognate DNA results in an increase of the DNA affinity for the enzyme by approximately 1 order of magnitude (K(d) = 10 nM; ΔG(0) ≈ -11.1 kcal/mol). A general function for the LF affinity for nonspecific d(pN)(n) of different sequences and lengths was obtained, giving the K(d) values comparable with the experimentally measured ones. A thermodynamic model was constructed to describe the interactions of LF with DNA.
Collapse
Affiliation(s)
- Tat'yana A Guschina
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentiev Ave., Novosibirsk 630090, Russia
| | | | | |
Collapse
|
12
|
García-Montoya IA, Cendón TS, Arévalo-Gallegos S, Rascón-Cruz Q. Lactoferrin a multiple bioactive protein: an overview. Biochim Biophys Acta Gen Subj 2012; 1820:226-36. [PMID: 21726601 PMCID: PMC7127262 DOI: 10.1016/j.bbagen.2011.06.018] [Citation(s) in RCA: 303] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/17/2011] [Accepted: 06/20/2011] [Indexed: 12/16/2022]
Abstract
BACKGROUND Lactoferrin (Lf) is an 80kDa iron-binding glycoprotein of the transferrin family. It is abundant in milk and in most biological fluids and is a cell-secreted molecule that bridges innate and adaptive immune function in mammals. Its protective effects range from anticancer, anti-inflammatory and immune modulator activities to antimicrobial activities against a large number of microorganisms. This wide range of activities is made possible by mechanisms of action involving not only the capacity of Lf to bind iron but also interactions of Lf with molecular and cellular components of both hosts and pathogens. SCOPE OF REVIEW This review summarizes the activities of Lf, its regulation and potential applications. MAJOR CONCLUSIONS The extensive uses of Lf in the treatment of various infectious diseases in animals and humans has been the driving force in Lf research however, a lot of work is required to obtain a better understanding of its activity. GENERAL SIGNIFICANCE The large potential applications of Lf have led scientists to develop this nutraceutical protein for use in feed, food and pharmaceutical applications. This article is part of a Special Issue entitled Molecular Mechanisms of Iron Transport and Disorders.
Collapse
Affiliation(s)
- Isui Abril García-Montoya
- Laboratorio de Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito 1, Nuevo Campus Universitario, CP 31125, Chihuahua, Mexico
| | | | | | | |
Collapse
|
13
|
Wu X, Zheng S, Cui L, Wang H, Ng TB. Isolation and characterization of a novel ribonuclease from the pink oyster mushroom Pleurotus djamor. J GEN APPL MICROBIOL 2010; 56:231-9. [DOI: 10.2323/jgam.56.231] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Abstract
On account of the oxidative stress conditions that may appear during parturition, colostrum should provide with not only nutritional and immunological components but also antioxidative protection of newborn. There is evidence that apart from well-known antioxidative enzymes like glutathione peroxidase, superoxide dismutase, catalase or low molecular antioxidants, proteins like lactoperoxidase (LPO), lactoferrin (LF) and ceruloplasmin (CP) may exert antioxidative properties in colostrum. The aim of present study was to determine and to evaluate LPO, LF and CP activities in colostrum and milk of sows and cows. Samples were collected from 16 healthy cows five times: immediately after parturition, 12, 24 and 48 h, and 7 days postpartum as well as from 14 healthy sows five times: immediately after parturition, 6, 12, 24 and 36 h later. Examined parameters were determined spectrophotometrically at 412, 560 and 540 nm respectively. LPO activity was higher in sows as in cows and increased significantly within examined time. LF ability to inhibit superoxide radical generation was higher in sows as in cows and increased significantly within examined time. CP oxidase activity was higher in cows as in sows and decreased significantly during experimental period. In conclusion, antioxidative defence system in colostrum shows dynamic changes that allow for providing with necessary protection from oxidative stress conditions, which may appear after parturition.
Collapse
Affiliation(s)
- E Albera
- Department of Animal Biochemistry and Physiology, Faculty of Veterinary Medicine, Agricultural University, Lublin, Poland
| | | |
Collapse
|
15
|
|
16
|
Odintsova ES, Buneva VN, Nevinsky GA. Casein-hydrolyzing activity of sIgA antibodies from human milk. J Mol Recognit 2005; 18:413-21. [PMID: 15952246 DOI: 10.1002/jmr.743] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
During pregnancy and immediately after delivery (i.e. at the beginning of lactation), the female organism is frequently characterized by an immune status similar to that of patients with autoimmune diseases. In addition, lactation is associated with an appearance of catalytically active antibodies or abzymes (Abzs) with DNAse, RNase, ATPase, amylolitic, protein kinase and lipid kinase activities in breast milk. However, until now there were no examples of human milk Abzs with a proteolytic activity. We present the first evidence that electrophoretically and immunologically homogeneous human milk sIgAs possess a beta-casein-hydrolyzing activity different from known proteases. Abzs specifically hydrolyze both human and bovine beta-caseins but not many other proteins tested. Using different methods including in situ analysis of proteolytic activity in a gel after SDS-PAGE it was shown that the observed proteolytic activity is an intrinsic property of human milk polyclonal sIgAs. Specific inhibitors of acidic and thiol proteases demonstrated a weak effect on proteolytic activity of Abzs, while a specific inhibitor of serine proteases (AEBSF) significantly inhibited the proteolytic activity of the abzymes. The K(M) value for human casein as a substrate was estimated (7.3 microM). Our findings suggest that the immune system of clinically healthy mothers can generate IgAs with a beta-casein-specific serine protease-like activity.
Collapse
Affiliation(s)
- Elena S Odintsova
- Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Siberian Division, Novosibirsk 630090, Russia
| | | | | |
Collapse
|
17
|
Kanyshkova TG, Babina SE, Semenov DV, Isaeva N, Vlassov AV, Neustroev KN, Kul'minskaya AA, Buneva VN, Nevinsky GA. Multiple enzymic activities of human milk lactoferrin. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:3353-61. [PMID: 12899692 DOI: 10.1046/j.1432-1033.2003.03715.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lactoferrin (LF) is a Fe3+-binding glycoprotein, first recognized in milk and then in other human epithelial secretions and barrier fluids. Many different functions have been attributed to LF, including protection from iron-induced lipid peroxidation, immunomodulation and cell growth regulation, DNA binding, and transcriptional activation. Its physiological role is still unclear, but it has been suggested to be responsible for primary defense against microbial and viral infection. We present evidence that different subfractions of purified human milk LF possess five different enzyme activities: DNase, RNase, ATPase, phosphatase, and malto-oligosaccharide hydrolysis. LF is the predominant source of these activities in human milk. Some of its catalytically active subfractions are cytotoxic and induce apoptosis. The discovery that LF possesses these activities may help to elucidate its many physiological functions, including its protective role against microbial and viral infection.
Collapse
Affiliation(s)
- Tat'yana G Kanyshkova
- Novosibirsk Institute of Bioorganic Chemistry, Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Aggett P, Leach JL, Rueda R, MacLean WC. Innovation in infant formula development: a reassessment of ribonucleotides in 2002. Nutrition 2003; 19:375-84. [PMID: 12679175 DOI: 10.1016/s0899-9007(02)00999-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nucleotides play a significant role in many physiologic functions, ranging from the encoding of genetic information to signal transduction. Accumulating evidence from recent animal and clinical studies supports the original notion that nucleotides are semi-essential dietary nutrients. The development of a new technique, total potentially available nucleosides, to accurately quantify the nucleotide content in various biological fluids has allowed investigators to properly assess the importance of nucleotide function and availability in various conditions. Data from animal studies indicate that exogenous nucleotides produce beneficial gastrointestinal and immunologic effects, especially during times of rapid growth, when nucleotide availability may be low. Infant studies confirm these findings and are presented in this review. Regulatory agencies are currently using this information collectively to support the rationale for the supplementation of infant formulas with higher amounts of nucleotides.
Collapse
Affiliation(s)
- Peter Aggett
- Postgraduate School of Medicine and Health, University of Central Lancashire, Preston, United Kingdom
| | | | | | | |
Collapse
|
19
|
Stepaniak L. Isolation and partial characterization of catalytic antibodies with oligonuclease activity from bovine colostrum. Prep Biochem Biotechnol 2002; 32:17-28. [PMID: 11934074 DOI: 10.1081/pb-120013158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Catalytic antibodies (abzymes) which hydrolyze RNA and DNA were isolated from bovine colostrum by sequential chromatography on Protein A Sepharose, denaturated DNA-cellulose, Mono Q, and gel permeation chromatography on Superose 12 at pH 2.3 after acidic shock. Metachromatic agar containing toluidine blue and yeast RNA was used to measure RNase activity. Electrophoresis in agarose showed DNase activity on plasmid DNA from Escherichia coli and DNA from calf thymus in fractions from all 4 purification steps. Gel permeation chromatography showed that the abzymes hydrolysed both a single-stranded polyadenylic acid (Poly A) and single-stranded polycitidylic acid (Poly C), while partially purified RNase from the colostrum hydrolysed Poly (C), but not Poly (A). Electrophoresis of purified abzymes under denaturing conditions showed protein bands of molecular mass corresponding to heavy and light chains of IgG. The abzymes immunoreacted with anti-bovine IgG. The RNase activity of the purified abzymes represented 0.022% of total RNase activity in the colostrum; acid shock and gel filtration at low pH reduced the specific RNase activity of abzymes 3.6-fold. The RNase activity of abzymes at pH 6.6 was reduced by 90% by heat treatment at 75 degrees C for 52 min.
Collapse
Affiliation(s)
- Leszek Stepaniak
- Department of Food Science, Agricultural University of Norway, As
| |
Collapse
|
20
|
Kuchan MJ, Ostrom KM, Smith C, Hu PE. Influence of purine intake on uric acid excretion in infants fed soy infant formulas. J Am Coll Nutr 2000; 19:16-22. [PMID: 10682871 DOI: 10.1080/07315724.2000.10718909] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE These studies tested the hypothesis that increasing intake of purines, delivered as RNA from soy protein-based infant formula, would increase urinary uric acid excretion in infants. METHODS Study One examined the influence of feeding on serum uric acid in a total of 178 infants from four separate trials with infants fed commercial and experimental soy-based and milk-based infant formulas or human milk. Studies Two and Three compared the effect of a standard purine soy formula (STD Purine; 180 mg purines/L from RNA) and a reduced purine soy formula (Reduced Purine; 65 mg purines/L; 26 mg/L from RNA and 39 mg/L from ribonucleotides) on urinary uric acid excretion in infants. In Study Two, 11 infants ranging in age from 16 to 128 days of age were fed both formulas in a random crossover design. Complete 72-hour urine collections were done at the end of each 11-day feeding period. Urinary uric acid excretion was expressed as mmol/day. In Study Three, 33 infants were enrolled before eight days of age and randomized to one of the formulas one week later. Spot urine samples were collected at 28 and/or 56 days of age and urinary uric acid concentration was expressed as mmol/mmol creatinine. RESULTS In Study One, each of the feedings resulted in mean serum uric acid levels within normal reference ranges. Soy formula led to higher serum uric acid levels than human milk, and human milk to levels indistinguishable from cow milk-based formulas. In Study Two, infants excreted significantly more uric acid in the urine when fed the STD Purine formula compared to the Reduced Purine formula (0.86+/-.04 vs. 0.57+/-.04 mmol/d) (p = 0.006). In Study Three, infants fed the STD Purine formula had a significantly higher concentration of uric acid in their urine compared to those fed the Reduced Purine formula (2.1+/-0.2 vs. 1.4+/-0.1 mmol uric acid/mmol creatinine) (p = 0.0001). CONCLUSION These data indicate that healthy infants can digest RNA and subsequently absorb the liberated purine ribonucleotides as determined by urinary uric acid concentration.
Collapse
Affiliation(s)
- M J Kuchan
- Pediatric Clinical Nutrition Research, Medical and Regulatory Affairs, Ross Products Division of Abbott Laboratories, Columbus, Ohio 43215-1724, USA
| | | | | | | |
Collapse
|
21
|
Sorrentino S, D'Alessandro AM, Maras B, Di Ciccio L, D'Andrea G, De Prisco R, Bossa F, Libonati M, Oratore A. Purification of a 76-kDa iron-binding protein from human seminal plasma by affinity chromatography specific for ribonuclease: structural and functional identity with milk lactoferrin. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1430:103-10. [PMID: 10082938 DOI: 10.1016/s0167-4838(98)00269-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A pink-colored iron-binding protein has been found in large amount in human seminal plasma and identified as a lactoferrin isoform. Its purification, by a modification of a three-step chromatography procedure developed in an attempt to purify a ribonuclease from the same fluid, provided about 15-18 mg of pure protein from 100 ml of seminal plasma. Despite its ability to bind a ribonuclease ligand during the affinity step, the iron-binding protein did not display any detectable RNase activity in a standard assay with yeast RNA as substrate. It showed an apparent molecular weight of 76 kDa and resulted to be quite similar, if not identical, to human milk lactoferrin in many respects. Its N-terminal sequence (31 amino acid residues) starting with Arg-3 was identical to that of one of the N-terminally truncated lactoferrin variants isolated from human milk. Moreover, the amino acid sequence of a number of peptides, which represented about 23% of the entire sequence, has been also shown to be identical to that of the corresponding peptides of human milk lactoferrin. Double diffusion analysis revealed full recognition by antibodies anti-human milk lactoferrin of the human seminal plasma protein. Using immunoblotting analysis, both human milk lactoferrin and human seminal protein were recognized by antibodies anti-milk lactoferrin. When tested for its iron binding capacity, with Fe-NTA as iron donor, the protein purified was able to bind iron up to 100% saturation, as judged by absorbance at 465 nm.
Collapse
Affiliation(s)
- S Sorrentino
- Dipartimento di Chimica Organica e Biologica, Università di Napoli, via Mezzocannone 16, I-80136, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Buneva VN, Kanyshkova TG, Vlassov AV, Semenov DV, Breusova LR, Nevinsky GA. Catalytic DNA- and RNA-hydrolyzing antibodies from milk of healthy human mothers. Appl Biochem Biotechnol 1998; 75:63-76. [PMID: 10214697 DOI: 10.1007/bf02787709] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Various catalytically active antibodies (Abs), or abzymes, have been detected recently in the sera of patients with autoimmune pathologies, in whom their presence is probably associated with autoimmunization. Normal humans are generally not considered to have abzymes, since no obvious immunizing factors are present. Here is shown by different methods that IgG from the milk of normal females possesses both DNase and RNase activities. The activities were also present in the IgG F(ab')2 and Fab fragments. Affinity modification of IgG by the chemically reactive derivative of an oligonucleotide led to preferential modification of the L chain of IgG. After separation of the subunits by sodium dodecyl sulfate electrophoresis in a gel containing DNA, an in-gel assay showed DNase activity in the L chain. The L chain separated by affinity chromatography on DNA-cellulose was catalytically active. These findings speak in favor of the generation of catalytic Abs by the immune system of healthy mothers. It is known that the treatment of adults with DNases and RNases offers protection from viral and bacterial diseases. Since breast milk protects the infants from infections until the immune system is developed, this raises the possibility that catalytic Abs like nucleases, may possess a protective role.
Collapse
Affiliation(s)
- V N Buneva
- Novosibirsk Institute of Bioorganic Chemistry, Siberian Division of Russian Academy of Sciences, Russia
| | | | | | | | | | | |
Collapse
|
23
|
Kanyshkova TG, Semenov DV, Buneva VN, Nevinsky GA. DNA-hydrolyzing activity of the light chain of IgG antibodies from milk of healthy human mothers. FEBS Lett 1997; 416:23-6. [PMID: 9369225 DOI: 10.1016/s0014-5793(97)01163-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Various catalytically active antibodies or abzymes have been detected recently in the sera of patients with several autoimmune pathologies, where their presence is most probably associated with autoimmunization. Normal humans are generally considered to have no abzymes, since no obvious immunizing factors are present. Recently we have shown that IgG (its Fab and F(ab)2 fragments) from the milk of normal humans possesses DNase activity. Here we demonstrate for the first time that the light chain of IgG catalyzes the reaction of DNA hydrolysis. These findings speak in favor of the generation of abzymes in the tissue of healthy mothers, and since a mother's breast milk protects her infant from infections until the immune system is developed, they raise the possibility that these abzymes may contribute to this protective role.
Collapse
Affiliation(s)
- T G Kanyshkova
- Novosibirsk Institute of Bioorganic Chemistry, Siberian Division of Russian Academy of Sciences, Novosibirsk
| | | | | | | |
Collapse
|
24
|
Devi AS, Das MR, Pandit MW. Lactoferrin contains structural motifs of ribonuclease. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1205:275-81. [PMID: 8155709 DOI: 10.1016/0167-4838(94)90245-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A high molecular weight ribonuclease isolated from human milk (hmRNAase) shares identical immunological, physical, structural features and considerable sequence homology with human lactoferrin; and it has been demonstrated to be an isoform of lactoferrin. We have analyzed the sequence data of lactoferrin looking for the existence of specific features corresponding to the consensus sequence of pyrimidine-specific ribonucleases. The analysis was done by comparing sequence features with respect to elements which are, in principle, responsible for RNAase activity. This revealed the existence of a ribonuclease-signature pattern in lactoferrin. Further analysis of X-ray data together with molecular modeling studies have revealed close similarities between the spatial geometry of the constituent groups of the active site of pyrimidine-specific ribonucleases and the corresponding groups comprising the potential active site of lactoferrin. Our results provide the strong structural basis for the existence of ribonuclease activity in lactoferrin.
Collapse
Affiliation(s)
- A S Devi
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | |
Collapse
|