1
|
Sun M, Bian Z, Luan Q, Chen Y, Wang W, Dong Y, Chen L, Hao C, Xu JR, Liu H. Stage-specific regulation of purine metabolism during infectious growth and sexual reproduction in Fusarium graminearum. THE NEW PHYTOLOGIST 2021; 230:757-773. [PMID: 33411336 DOI: 10.1111/nph.17170] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Ascospores generated during sexual reproduction are the primary inoculum for the wheat scab fungus Fusarium graminearum. Purine metabolism is known to play important roles in fungal pathogens but its lifecycle stage-specific regulation is unclear. By characterizing the genes involved in purine de novo and salvage biosynthesis pathways, we showed that de novo syntheses of inosine, adenosine and guanosine monophosphates (IMP, AMP and GMP) are important for vegetative growth, sexual/asexual reproduction, and infectious growth, whereas purine salvage synthesis is dispensable for these stages in F. graminearum. Addition of GMP rescued the defects of the Fgimd1 mutant in vegetative growth and conidiation but not sexual reproduction, whereas addition of AMP rescued all of these defects of the Fgade12 mutant, suggesting that the function of de novo synthesis of GMP rather than AMP is distinct in sexual stages. Moreover, Acd1, an ortholog of AMP deaminase, is dispensable for growth but essential for ascosporogenesis and pathogenesis, suggesting that AMP catabolism has stage-specific functions during sexual reproduction and infectious growth. The expression of almost all the genes involved in de novo purine synthesis is downregulated during sexual reproduction and infectious growth relative to vegetative growth. This study revealed that F. graminearum has stage-specific regulation of purine metabolism during infectious growth and sexual reproduction.
Collapse
Affiliation(s)
- Manli Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhuyun Bian
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Qiaoqiao Luan
- State Key Laboratory of Crop Stress Biology for Arid Areas, NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yitong Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yongrong Dong
- State Key Laboratory of Crop Stress Biology for Arid Areas, NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lingfeng Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chaofeng Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
2
|
Li S, Chen L, Hu Y, Fang G, Zhao M, Guo Y, Pang Z. Enzymatic production of 5'-inosinic acid by AMP deaminase from a newly isolated Aspergillus oryzae. Food Chem 2016; 216:275-81. [PMID: 27596420 DOI: 10.1016/j.foodchem.2016.07.171] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 07/22/2016] [Accepted: 07/28/2016] [Indexed: 11/28/2022]
Abstract
5'-adenylic acid deaminase (AMP deaminase), an important enzyme for the food industry, can catalyze the irreversible hydrolysis of adenosine monophosphate (AMP) to inosine monophosphate (IMP) and ammonia. In this study, a new strain was screened that efficiently produces 3191.6U/g of AMP deaminase at 32°C. After purification, the optimal temperature and pH of the AMP deaminase were found to be 40°C and 6.0, respectively, but it was partially inhibited by Fe(3+), Cu(2+), Al(3+), and Zn(2+). With amplification of the AMP deaminase production system, 6mL of crude enzyme could produce 2.00mg/g of IMP from 2.04mg/g of dried yeast with an 84.8% molar yield after 40min. These results provide a new insight into AMP deaminase production and offer a potential platform for producing 5'-IMP.
Collapse
Affiliation(s)
- Shubo Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Leitao Chen
- College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Yangjun Hu
- College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Guohui Fang
- College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Mouming Zhao
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yuan Guo
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, China.
| | - Zongwen Pang
- College of Life Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
3
|
Thébault MT, Tanguy A, Meistertzheim AL, Raffin JP. Partial characterization of the gene encoding myoadenylate deaminase from the teleost fish Platichthys flesus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2010; 36:819-825. [PMID: 19821138 DOI: 10.1007/s10695-009-9358-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 05/21/2009] [Indexed: 05/28/2023]
Abstract
AMP-deaminase (AMPD, EC 3.5.4.6), which catalyzes the irreversible hydrolytic deamination of AMP to IMP and ammonia, is an important energy-related enzyme. The partial genomic sequence of the gene encoding myoadenylate deaminase (AMPD1) from the teleost fish Platichthys flesus was determined. The amino acid sequence of P. flesus AMPD1 shows 82% homology with that of the teleost fish Danio rerio. Comparison of genomic sequences of P. flesus and Rattus norvegicus reveals a high degree of conservation of both sequence and structural organization. A phylogenetic analysis of AMPD sequences shows that bony fish and mammalian AMPD1s arise by duplication of a common primordial gene.
Collapse
Affiliation(s)
- M T Thébault
- UMR CNRS 6539, Laboratoire des Sciences de l'Environnement Marin, Institut Universitaire Européen de la Mer, Université de Brest, Place Nicolas Copernic, 29280, Plouzané, France.
| | | | | | | |
Collapse
|
4
|
Loret MO, Pedersen L, François J. Revised procedures for yeast metabolites extraction: application to a glucose pulse to carbon-limited yeast cultures, which reveals a transient activation of the purine salvage pathway. Yeast 2007; 24:47-60. [PMID: 17192850 DOI: 10.1002/yea.1435] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
In this study we have revised our original procedure of yeast metabolites extraction. We showed that: (a) less than 5% of intracellular metabolites leaks out during the step of rapid arrest of cellular metabolism by quenching yeast cells into a 60% methanol solution kept at -40 degrees C; and (b) with a few exception, the stability of metabolites were not altered during the 3 min boiling procedure in a buffered ethanol solution. However, there was a loss of external added metabolites of 5-30%, depending on the type of metabolites. This was mainly attributable to their retention on cellular debris after ethanol treatment, which prevented centrifugation of the cellular extracts before evaporation of ethanol. We further simplified our previous high-performance ionic chromatography (HPIC) techniques for easier, more reliable and robust quantitative measurements of organic acids, sugar phosphates and sugar nucleotides, and extended these techniques to purine and pyrimidine bases, using a variable wavelength detector set at 220 and 260 nm in tandem with a pulsed electrochemical or suppressed conductivity detector. These protocols were successfully applied to a glucose pulse to carbon-limited yeast cultures on purines metabolism. This study showed that glucose induced a fast activation of the purine salvage pathway, as indicated by a transient drop of ATP and ADP with a concomitant rise of IMP and inosine. This metabolic perturbation was accompanied by a rapid increase in the activity of the ISN1-encoded specific IMP-5'-nucleotidase. The mechanism of this activation remains to be determined.
Collapse
Affiliation(s)
- Marie Odile Loret
- Laboratoire de Biotechnologie et Bioprocédés, UMR-CNRS 5504, UMR-INRA 792, Avenue de Rangueil, 31077 Toulouse Cedex 04, France
| | | | | |
Collapse
|
5
|
Genome-wide screening for genes whose deletions confer sensitivity to mutagenic purine base analogs in yeast. BMC Genet 2005; 6:31. [PMID: 15932646 PMCID: PMC1173102 DOI: 10.1186/1471-2156-6-31] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Accepted: 06/02/2005] [Indexed: 11/16/2022] Open
Abstract
Background N-hydroxylated base analogs, such as 6-hydroxylaminopurine (HAP) and 2-amino-6-hydroxylaminopurine (AHA), are strong mutagens in various organisms due to their ambiguous base-pairing properties. The systems protecting cells from HAP and related noncanonical purines in Escherichia coli include specialized deoxyribonucleoside triphosphatase RdgB, DNA repair endonuclease V, and a molybdenum cofactor-dependent system. Fewer HAP-detoxification systems have been identified in yeast Saccharomyces cerevisiae and other eukaryotes. Cellular systems protecting from AHA are unknown. In the present study, we performed a genome-wide search for genes whose deletions confer sensitivity to HAP and AHA in yeast. Results We screened the library of yeast deletion mutants for sensitivity to the toxic and mutagenic action of HAP and AHA. We identified novel genes involved in the genetic control of base analogs sensitivity, including genes controlling purine metabolism, cytoskeleton organization, and amino acid metabolism. Conclusion We developed a method for screening the yeast deletion library for sensitivity to the mutagenic and toxic action of base analogs and identified 16 novel genes controlling pathways of protection from HAP. Three of them also protect from AHA.
Collapse
|